WO2021008358A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021008358A1
WO2021008358A1 PCT/CN2020/099411 CN2020099411W WO2021008358A1 WO 2021008358 A1 WO2021008358 A1 WO 2021008358A1 CN 2020099411 W CN2020099411 W CN 2020099411W WO 2021008358 A1 WO2021008358 A1 WO 2021008358A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
signaling
resource pool
offset
Prior art date
Application number
PCT/CN2020/099411
Other languages
English (en)
French (fr)
Inventor
蒋琦
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021008358A1 publication Critical patent/WO2021008358A1/zh
Priority to US17/575,644 priority Critical patent/US20220225289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a method and device for timing synchronization in a system with a relatively large transmission delay.
  • V2X Vehicle-to-Everything
  • 3GPP has also started standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP defines 4 Use Case Groups for 5G V2X services, including: Automated Queue Driving (Vehicles Platnooning), Support for Extended Sensors (Extended Sensors), Semi/Full Auto Driving (Advanced Driving) and Remote Driving ( Remote Driving).
  • Automated Queue Driving Vehicle-to-Everything
  • the V2X sender determines the time-frequency resources for V2X transmission through sensing measurement (Sensing Measurement).
  • NTN Non-Terrestrial Networks
  • R15 the research project of Non-Terrestrial Networks (NTN, Non-Terrestrial Networks) under NR was passed at the 3GPP RAN#75 plenary meeting.
  • the R15 version started.
  • NTN network has the advantage of wide coverage.
  • NTN network can configure time-frequency resources for V2X transmission for geographical locations not covered by ground base stations, and then V2X terminals determine the actual transmission based on base station configuration signaling. Time-frequency resources.
  • the base station In Rel-12's D2D (Device to Device) transmission, the base station generally configures a unified time domain resource for D2D transmission for the entire cell to avoid the impact on the Uu port (corresponding to the cellular link); because The delay from the user to the base station under the coverage of the base station is small, often not exceeding the duration of a multi-carrier symbol, and it is considered that the UE (User Equipment) far away from the base station and the UE closer to the base station are configured in a unified manner Under the D2D time domain resources, it will not affect the Uu port of the terminal itself.
  • UE User Equipment
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one time-frequency resource pool among the K time-frequency resource pools;
  • the K time offsets are respectively One-to-one correspondence with the K time-frequency resource pools, and the first signaling is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools;
  • the first time The offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set in the time domain.
  • the time offset value between the start time and the start time of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is on the secondary link transmission.
  • the principle of the above method is: because the transmission delays of different UEs to the base station are very different, when the base station configures unified time domain resources for V2X transmission, the Uu port transmission of some UEs will shift to other On the UE’s V2X resources; in response to the above problem, the K time offsets are respectively used to indicate the number of multi-carrier symbols that the data channel needs to be delayed when the data channel is actually transmitted in the K time-frequency resource pools ; The time domain resources corresponding to the number of multi-carrier symbols mentioned above will be interfered by the Uu port uplink transmission of other UEs.
  • the advantage of the above method is that when the base station configures the V2X transmission and knows the location information of the UE under coverage, the base station can indicate K time offsets, combined with scheduling, in a unified configuration for V2X transmission
  • the time-domain resources of the Uu port are indicated by K time offsets to avoid the interference of the Uu port to the PC-5 port, thereby improving spectrum efficiency and avoiding fragmentation of time-domain resources.
  • the above method is characterized in that the first signaling includes K sub-signaling, the K sub-signaling is used to determine the K time-frequency resource pools, and the K sub-signaling The signaling is used to determine the K time offsets respectively.
  • the advantage of the above method is that the K sub-signaling can independently configure the K time offsets, thereby more flexibly indicating when the K time-frequency resource pools cannot be used for V2X transmission. Domain resources, improve spectrum efficiency, and increase scheduling flexibility.
  • the above method is characterized in that any one of the K time offsets belongs to a first time offset set, and the first time offset set includes more than 1 A positive integer number of time offsets; for a given subcarrier interval of subcarriers occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed .
  • the advantage of the above method is that different subcarrier intervals correspond to different durations of multi-carrier symbols, and further correspond to different value ranges of K time offsets; the above design shifts the K time offsets The value range of the shift amount is connected with the subcarrier interval, and the introduction of excessive signaling overhead for indicating the K time offset values is avoided.
  • the above method is characterized by including:
  • the second signaling includes a set of configuration information of the first signal, the second signaling is physical layer signaling; the second time-frequency resource set belongs to the first time-frequency resource pool, for Given the sub-carrier interval of the sub-carrier occupied by the second signaling in the frequency domain, the second time-frequency resource set is at the start time of the time domain and the first time-frequency resource pool is in the time domain. The length of the time interval between the starting moments is fixed.
  • the above method is characterized in that the first signaling is used to determine the resource mapping manner of the first signal in the first time-frequency resource pool.
  • the above method is characterized in that the K time offsets are related to the position information of the first node.
  • the advantage of the above method is that the position of the first node relative to the base station will affect the degree of interference that the first node receives from the Uu ports of other UEs, and the K time offsets are compared with The location information of the first node establishes a connection, which helps to configure V2X resources more efficiently and reduce interference.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the recipient of the first signaling includes a first node, and the first node sends the first signal in a first time-frequency resource set;
  • the first time-frequency resource set belongs to a first time-frequency resource pool,
  • the first time-frequency resource pool is one of the K time-frequency resource pools;
  • K time offsets correspond to the K time-frequency resource pools respectively, and the first information Let is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools;
  • the first time offset is the first time offset in the K time-frequency resource pools
  • the time offset corresponding to the frequency resource pool, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain The time offset value between times; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • the above method is characterized in that the first signaling includes K sub-signaling, the K sub-signaling is used to determine the K time-frequency resource pools, and the K sub-signaling The signaling is used to determine the K time offsets respectively.
  • the above method is characterized in that any one of the K time offsets belongs to a first time offset set, and the first time offset set includes more than 1 A positive integer number of time offsets; for a given subcarrier interval of subcarriers occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed .
  • the above method is characterized in that the first node sends second signaling in a second set of time-frequency resources; the second signaling includes a set of configuration information of the first signal, so The second signaling is physical layer signaling; the second time-frequency resource set belongs to the first time-frequency resource pool, for a given subcarrier of the subcarrier occupied by the second signaling in the frequency domain Interval, the length of the time interval between the start time of the second time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain is fixed.
  • the above method is characterized in that the first signaling is used to determine the resource mapping manner of the first signal in the first time-frequency resource pool.
  • the above method is characterized in that the K time offsets are related to the position information of the first node.
  • This application discloses a method used in a third node of wireless communication, which is characterized in that it includes:
  • the sender of the first signal receives first signaling, and the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1, and the first time-frequency resource
  • the set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; the K time offsets are respectively the same as the K time-frequency resource pools One-to-one correspondence.
  • the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools; the first time offset is the K time In the offset, the time offset corresponding to the first time-frequency resource pool, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the first time The time offset value between the start moments of the frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • the above method is characterized in that the first signaling includes K sub-signaling, the K sub-signaling is used to determine the K time-frequency resource pools, and the K sub-signaling The signaling is used to determine the K time offsets respectively.
  • the above method is characterized in that any one of the K time offsets belongs to a first time offset set, and the first time offset set includes more than 1 A positive integer number of time offsets; for a given subcarrier interval of subcarriers occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed .
  • the above method is characterized by including:
  • the second signaling includes a set of configuration information of the first signal, the second signaling is physical layer signaling; the second time-frequency resource set belongs to the first time-frequency resource pool, for Given the sub-carrier interval of the sub-carrier occupied by the second signaling in the frequency domain, the second time-frequency resource set is at the start time of the time domain and the first time-frequency resource pool is in the time domain. The length of the time interval between the starting moments is fixed.
  • the above method is characterized in that the first signaling is used to determine the resource mapping manner of the first signal in the first time-frequency resource pool.
  • the above method is characterized in that the K time offsets are related to the location information of the sender of the first signal.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives first signaling, where the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the first transmitter sends the first signal in the first time-frequency resource set
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one time-frequency resource pool among the K time-frequency resource pools;
  • the K time offsets are respectively One-to-one correspondence with the K time-frequency resource pools, and the first signaling is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools;
  • the first time The offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set in the time domain.
  • the time offset value between the start time and the start time of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is on the secondary link transmission.
  • This application discloses a second node used for wireless communication, which is characterized by including:
  • the second transmitter sends first signaling, where the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the recipient of the first signaling includes a first node, and the first node sends the first signal in a first time-frequency resource set;
  • the first time-frequency resource set belongs to a first time-frequency resource pool,
  • the first time-frequency resource pool is one of the K time-frequency resource pools;
  • K time offsets correspond to the K time-frequency resource pools respectively, and the first information Let is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools;
  • the first time offset is the first time offset in the K time-frequency resource pools
  • the time offset corresponding to the frequency resource pool, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain The time offset value between times; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • This application discloses a third node used for wireless communication, which is characterized by including:
  • a second receiver receiving the first signal in the first time-frequency resource set
  • the sender of the first signal receives first signaling, and the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1, and the first time-frequency resource
  • the set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; the K time offsets are respectively the same as the K time-frequency resource pools One-to-one correspondence.
  • the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools; the first time offset is the K time In the offset, the time offset corresponding to the first time-frequency resource pool, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the first time The time offset value between the start moments of the frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • this application has the following advantages:
  • the base station configures V2X transmission and knows the location information of the UE under coverage
  • the base station can indicate K time offsets, combined with scheduling, while uniformly configuring the time domain resources for V2X transmission through K
  • the indication of time offset avoids Uu port interference to PC-5 port, thereby improving spectrum efficiency and avoiding fragmentation of time domain resources;
  • the K sub-signaling can independently configure the K time offsets, thereby more flexibly indicating the time domain resources that cannot be used for V2X transmission in the K time-frequency resource pools, improving spectrum efficiency and increasing scheduling flexibility;
  • Different subcarrier intervals correspond to different durations of multi-carrier symbols, which in turn correspond to different K time offset value ranges; the above design establishes the K time offset value ranges and subcarrier intervals The connection is more reasonable and avoids the introduction of excessive signaling overhead for indicating the K time offset values;
  • the position of the first node relative to the base station will affect the degree of interference that the first node receives from the Uu ports of other UEs, and then establish K time offsets with the position information of the first node Contact, help configure V2X resources more efficiently and reduce interference.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flowchart of the first signaling according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of the technical solution in the present application according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first time-frequency resource pool according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of K time-frequency resource pools according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a first time offset set according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a second time-frequency resource set according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a resource mapping manner of a first signal in the first time-frequency resource pool according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of a resource mapping manner of a first signal in the first time-frequency resource pool according to another embodiment of the present application
  • FIG. 13 shows a schematic diagram of the relationship between the K time offsets and the position information of the first node according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • Fig. 15 shows a structural block diagram used in a second node according to an embodiment of the present application.
  • Fig. 16 shows a structural block diagram used in the third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives first signaling in step 101, and the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the first signal is sent in the first time-frequency resource set.
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; K time offsets The shift amounts respectively correspond to the K time-frequency resource pools one-to-one, and the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools;
  • the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set at The time offset value between the start time of the time domain and the start time of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is in the secondary Transmission on the link.
  • the first signaling is MAC (Media Access Control, media access control) CE (Control Element, control element).
  • the first signaling is physical layer dynamic signaling.
  • the first signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling is UE-specific.
  • the first signaling is exclusive to a terminal group, and the UE belongs to the terminal group.
  • the first signaling is exclusive to a zone, and the UE is located in the zone.
  • the sender of the first signaling is an NTN base station
  • the NTN base station covers multiple zones
  • the UE is located in one of the multiple zones.
  • the first signaling is exclusive to a beam spot (Beam Spot), and the UE is located in the beam spot; or the first signaling is exclusive to a beam area (Beam Area), the The UE is located in the beam area.
  • Beam Spot a beam spot
  • Beam Area a beam area
  • the sender of the first signaling is an NTN base station; the NTN base station covers multiple beam spots, and the UE is located in one of the multiple beam spots Or, the NTN base station covers multiple beam areas, and the UE is located in one beam area of the multiple beam areas.
  • any one of the K time-frequency resource pools occupies a positive integer number of multi-carrier symbols in the time domain and a positive integer number of subcarriers in the frequency domain.
  • any time-frequency resource pool in the K time-frequency resource pools includes M time slots.
  • the M is equal to 1.
  • the M is a positive integer greater than one.
  • the M time slots are continuous in the time domain.
  • any time-frequency resource pool in the K time-frequency resource pools includes M subframes.
  • the M is equal to 1.
  • the M is a positive integer greater than one.
  • the M sub-frames are continuous in the time domain.
  • the first time-frequency resource set occupies a positive integer number of multi-carrier symbols in the time domain and a positive integer number of subcarriers in the frequency domain.
  • the unit of any time offset in the K time offsets is the length of time occupied by one multi-carrier symbol.
  • the unit of any time offset in the K time offsets is microseconds.
  • the unit of any time offset in the K time offsets is 1/30720 milliseconds.
  • the unit of any one of the K time offsets is 1/X milliseconds, and the X is a positive integer multiple of 30720.
  • any one of the K time offsets is a positive integer number of multi-carrier symbols.
  • At least one of the K time offsets is equal to zero.
  • the meaning of the one-to-one correspondence between the K time offsets and the K time-frequency resource pools respectively includes: a given time offset is the K time offsets
  • the given time offset corresponds to a given timing-frequency resource pool in the K time-frequency resource pools; when the first node sends in the given timing-frequency resource pool For a given wireless signal, the time offset between the start time of the time domain resource occupied by the given wireless signal and the start time of the given timing-frequency resource pool in the time domain is equal to the given time Offset.
  • the physical layer channel occupied by the given wireless signal includes PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the physical layer channel occupied by the given wireless signal includes PSFCH (Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel
  • the first time offset is equal to 0, and the start time of the first time-frequency resource set in the time domain is the same as the start time of the first time-frequency resource pool in the time domain.
  • the first time offset is equal to the duration of N1 multi-carrier symbols, and the start time of the first time-frequency resource set in the time domain is greater than that of the first time-frequency resource pool in the time domain.
  • the start time of is N1 multi-carrier symbols later, where N1 is a positive integer.
  • the cut-off time of the first time-frequency resource set in the time domain is the same as the cut-off time of the first time-frequency resource pool in the time domain.
  • the cut-off time of the first time-frequency resource set in the time domain is aligned with the subframe boundary, or the cut-off time of the first time-frequency resource set in the time domain is aligned with the slot boundary.
  • the physical layer signal occupied by the first signal includes PSSCH.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the transport layer channel occupied by the first signal includes SL-SCH (Sidelink Shared Channel, secondary link shared channel).
  • SL-SCH Segmentlink Shared Channel, secondary link shared channel
  • the cellular link includes a wireless link between the first node and the base station.
  • the cellular link includes a wireless link between the first node and the second node in this application.
  • the cellular link includes a wireless link between the terminal and the attached base station of the serving cell.
  • the secondary link includes a PC-5 link.
  • the secondary link includes a wireless link between the first node and the third node in this application.
  • the secondary link includes a wireless link between the first node and the terminal device.
  • the secondary link includes a wireless link between terminal devices.
  • the secondary link includes a wireless link between UEs.
  • the sender of the first signaling is the second node.
  • the second node in this application is a base station in NTN.
  • the second node in this application is a non-terrestrial base station.
  • the second node in this application is GEO (Geostationary Earth Orbiting, synchronous earth orbit) satellite, MEO (Medium Earth Orbiting, medium earth orbit) satellite, LEO (Low Earth Orbit, low earth orbit) satellite , HEO (Highly Elliptical Orbiting) satellite or Airborne Platform (air platform).
  • GEO Globalstar Earth Orbiting, synchronous earth orbit
  • MEO Medium Earth Orbiting, medium earth orbit
  • LEO Low Earth Orbit, low earth orbit
  • HEO Highly Elliptical Orbiting Satellite
  • Airborne Platform air platform
  • the multi-carrier symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in this application is SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbol.
  • the multi-carrier symbol in this application is a FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an OFDM symbol including a CP (Cyclic Prefix).
  • the multi-carrier symbol in this application is a DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) symbol including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UEs (User Equipment) 201, and include a UE 241 that performs secondary link communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • HSS
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway, Serving Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the corresponding Internet protocol service of the operator, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE 241 corresponds to the third node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the radio link between the UE201 and the UE241 is a secondary link.
  • the first node in this application is a terminal covered by the gNB203.
  • the third node in this application is a terminal covered by the gNB203.
  • the UE201 and the UE241 belong to the same beam spot.
  • the UE201 and the UE241 belong to the same beam area.
  • the first node and the third node belong to a V2X pair (Pair).
  • the first node is a car.
  • the first node is a vehicle.
  • the second node is a base station.
  • the third node is a vehicle.
  • the third node is a car.
  • the third node is an RSU (Road Side Unit).
  • the third node is a group header (Group Header) of a terminal group.
  • the first node is an RSU.
  • the first node is a group head of a terminal group.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first signaling is generated in the RRC306.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the first signal is generated in the RRC306.
  • the second signaling is generated in the PHY301 or the PHY351.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) signal cluster mapping.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first communication device 450 means at least: receiving first signaling, the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1.
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is among the K time-frequency resource pools One time-frequency resource pool; K time offsets correspond to the K time-frequency resource pools respectively, and the first signaling is used to determine each time-frequency in the K time-frequency resource pools
  • the time offset corresponding to the resource pool; the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset It is equal to the time offset value between the start moment of the first time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain; the first signaling is in the cellular link
  • the first signal is transmitted on the secondary link.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first A signaling, the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1; and the first signal is sent in the first time-frequency resource set; the first time The set of frequency resources belongs to a first time-frequency resource pool, and the first time-frequency resource pool is a time-frequency resource pool among the K time-frequency resource pools; the K time offsets are respectively different from the K time-frequency resource pools.
  • Resource pools have a one-to-one correspondence, and the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools; the first time offset is the K The first time offset corresponding to the first time-frequency resource pool in the first time offsets is equal to the start time of the first time-frequency resource set in the time domain and the first time offset The time offset value between the start moments of the time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending first signaling, the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the receiver includes a first node, and the first node sends a first signal in a first time-frequency resource set; the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is One of the K time-frequency resource pools; K time offsets correspond to the K time-frequency resource pools respectively, and the first signaling is used to determine the K time-frequency resource pools The time offset corresponding to each time-frequency resource pool in the time-frequency resource pool; the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets The first time offset is equal to the time offset between the start moment of the first time
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first signaling, the first signaling is used to determine K time-frequency resource pools, and the K is a positive integer greater than 1.
  • the receiver of the first signaling includes a first node, and the first The node sends the first signal in a first time-frequency resource set; the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools Time-frequency resource pool; K time offsets correspond to the K time-frequency resource pools respectively, and the first signaling is used to determine each time-frequency resource in the K time-frequency resource pools The time offset corresponding to the pool; the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to The time offset value between the start moment of the first time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain; the first signaling is on a cellular link Transmission, the first signal is transmitted on the secondary link.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: receive the first signal in the first time-frequency resource set; the sender of the first signal receives the first signaling, and the first signaling is used to determine K time Frequency resource pool, where K is a positive integer greater than 1; the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools Time-frequency resource pool; K time offsets correspond to the K time-frequency resource pools respectively, and the first signaling is used to determine each time-frequency resource in the K time-frequency resource pools The time offset corresponding to the pool; the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to The time offset value between the start moment of the first time-frequency resource set
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: The first signal is received in the first time-frequency resource set; the sender of the first signal receives the first signaling, and the first signaling is used to determine K time-frequency resource pools, where K is greater than 1.
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; K time offsets Corresponding to the K time-frequency resource pools respectively, and the first signaling is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools; first The time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set in the time domain The time offset value between the start time of the first time-frequency resource pool and the start time of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is on the secondary link ⁇ Transfer.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a UE.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first A signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the first Signaling; the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used in the first
  • the first signal is sent in the time-frequency resource set; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 It is used to receive the first signal in the first time-frequency resource set.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used in the second The second signaling is sent in the time-frequency resource set; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 One is used to receive the second signaling in the second set of time-frequency resources.
  • Embodiment 5 illustrates a flow chart of the first signaling, as shown in FIG. 5.
  • the first node U1 and the second node N2 communicate through the Uu link, and the first node U1 and the third node U3 communicate through the secondary link; the steps marked in the box F0 in the figure Is optional.
  • step S10 For the first node U1, in step S10, receiving a first signaling; signaling transmitted in step S11 that the second frequency resource when the second set; in step S12 transmits a first signal at a first frequency resource set time .
  • the first signaling transmitted in step S20 For the second node N2, the first signaling transmitted in step S20.
  • step 30 the second signaling received at a second frequency when the resource set; receiving a first signal in step S31 in the first frequency resource set time.
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; K time offsets The shift amounts respectively correspond to the K time-frequency resource pools one-to-one, and the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools;
  • the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set at The time offset value between the start time of the time domain and the start time of the first time-frequency resource pool in the time domain;
  • the first signaling is transmitted on the cellular link, and the first signal is in the secondary Transmission on the link;
  • the second signaling includes a set of configuration information of the first signal, the second signaling is physical layer signaling;
  • the second set of time-frequency resources belongs to the first time-frequency resource Pool, for a given subcarrier interval of the subcarrier occupied by the second signaling in the
  • the first signaling includes K sub-signals, the K sub-signals are respectively used to determine the K time-frequency resource pools, and the K sub-signals are respectively used to determine the Said K time offsets.
  • the K sub-signals are respectively used to determine the K frequency domain resource sets occupied by the K time-frequency resource pools; any of the K frequency domain resource sets A set of frequency domain resources includes a positive integer number of subcarriers.
  • the K sub-signals are respectively used to determine the K time-domain resource sets occupied by the K time-frequency resource pools; any of the K time-domain resource sets A time domain resource set includes a positive integer number of multi-carrier symbols.
  • any sub-signaling in the K sub-signaling corresponds to 1 bit, and the 1 bit is equal to "0", which means that the corresponding time offset is equal to 0, and the 1 bit is equal to "1" means that the corresponding time offset is equal to the first time offset.
  • the first time offset is equal to T1 microseconds, and the T1 is a positive real number.
  • the first time offset is equal to Y/X milliseconds
  • the X is a positive integer multiple of 30720
  • the Y is a positive integer.
  • the first time offset is equal to T2 multi-carrier symbols, and the T2 is a positive integer.
  • the first time offset has nothing to do with the K sub-signaling.
  • the first time offset is configured through signaling other than the first signaling.
  • the first time offset is related to the position of the first node U1.
  • the first time offset is related to the distance between the first node U1 and the second node N2.
  • the first time offset is related to the inclination angle between the second node N2 and the first node U1.
  • any one of the K sub-signals corresponds to an L bit, and the L bit is used to indicate the corresponding time offset among the K time offsets .
  • the number of bits of the information bit set for generating the first signaling is fixed.
  • the number of bits of the information bit set for generating the first signaling is related to the value of K.
  • the number of bits of the information bit set for generating the first signaling is variable.
  • any one of the K time offsets belongs to a first time offset set, and the first time offset set includes a positive integer number of time offsets greater than 1. ; For a given sub-carrier interval of the sub-carrier occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed.
  • the first time offset set includes Q time offsets, and the Q is a positive integer greater than 1.
  • the given sub-signaling is any one of the K sub-signaling
  • the given time offset is the given time offset among the K time offsets.
  • the time offset determined by the stator signaling, and the given stator signaling is used to indicate the given time offset from the Q time offsets.
  • the first time offset set is a first type candidate time offset set among Q1 first type candidate time offset sets
  • the Q1 first type candidate time offset sets are The candidate time offset sets correspond to Q1 different subcarrier intervals.
  • any first-type candidate time offset set in the Q1 first-type candidate time offset sets includes a positive integer number of time offsets.
  • the above sentence "For a given sub-carrier interval of the sub-carrier occupied by the first signal in the frequency domain, the time offset included in the first time offset set "The amount is fixed" means: the first time offset set includes Q time offsets, and the Q time offsets are only related to the subcarriers occupied by the first signal in the frequency domain.
  • the subcarrier spacing is related.
  • the “quantity is fixed” means that: the first time offset set includes Q time offsets, and when the subcarrier interval of the subcarrier occupied by the first signal in the frequency domain remains unchanged, so The Q time offsets remain unchanged.
  • the physical layer signaling occupied by the second signaling is PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the second signaling is an SCI (Sidelink Control Information, secondary link control information).
  • the second time-frequency resource set occupies a positive integer number of REs (Resource Element, resource particles), and any RE in the positive integer number of REs occupied by the second time-frequency resource set belongs to all The first time-frequency resource pool.
  • REs Resource Element, resource particles
  • the above sentence "For a given subcarrier interval of the subcarrier occupied by the second signaling in the frequency domain, the second time-frequency resource set is set at the start time of the time domain and the first "The length of the time interval between the start time of the time-frequency resource pool in the time domain is fixed" means that when the subcarrier interval of the subcarrier occupied by the second signaling in the frequency domain remains unchanged, The length of the time interval between the start moment of the second time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain remains unchanged.
  • the sentence "The length of the time interval between the start time of the second time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain is fixed.
  • the meaning includes: the length of the time interval between the start moment of the second time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain is equal to zero.
  • the sentence "The length of the time interval between the start time of the second time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain is fixed.
  • the meaning includes: the length of the time interval between the start moment of the second time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain is equal to P1 multi-carrier symbols, the P1 It is fixed.
  • the sentence "The length of the time interval between the start time of the second time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain is fixed.
  • the meaning includes: the length of the time interval between the start time of the second time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain is equal to P1 multi-carrier symbols, when the When the subcarrier interval of the subcarrier occupied by the second signaling in the frequency domain remains unchanged, the P1 is unchanged.
  • the second signaling is used to indicate the time domain resources occupied by the first time-frequency resource set.
  • the second signaling is used to indicate frequency domain resources occupied by the first time-frequency resource set.
  • the second signaling is used to indicate the deadline of the first time-frequency resource set in the time domain.
  • the configuration information set of the first signal included in the second signaling includes frequency domain resources occupied by the first signal, time domain resources occupied by the first signal, and MCS (Modulation and Coding Status) used by the first signal, RV (Redundancy Version) corresponding to the first signal, HARQ (Hybrid Automatic Repeat Request) corresponding to the first signal, mixed Automatic retransmission request) process number (Process Number), or at least one of NDI (New Data Indicator) indicating the first signal.
  • MCS Modulation and Coding Status
  • the first signaling is used to determine a resource mapping manner of the first signal in the first time-frequency resource pool.
  • the first transmission block is used to generate the first signal, the size of the first transmission block and the resource of the first signal in the first time-frequency resource pool
  • the mapping method is related.
  • the first signaling is used to indicate a resource mapping manner of the first signal in the first time-frequency resource pool.
  • the first signaling is used to indicate that the resource mapping mode of the first signal in the first time-frequency resource pool is Puncture.
  • the resource mapping mode of the first signal in the first time-frequency resource pool in the above sentence is puncturing means that the first bit block is used to generate the first bit block.
  • a signal the first bit block generates R modulation symbols after operations such as modulation and coding, the R modulation symbols are mapped from the start time of the first time-frequency resource pool, and the R modulation symbols A positive integer number of modulation symbols located from the start time of the first time-frequency resource pool to the start time of the first time-frequency resource set are punctured.
  • the first signaling is used to indicate that the resource mapping mode of the first signal in the first time-frequency resource pool is rate-mactching.
  • the resource mapping mode of the first signal in the first time-frequency resource pool in the above sentence is rate matching means that the first bit block is used to generate the first bit block.
  • a signal, the first bit block is subjected to operations such as modulation and coding to generate R modulation symbols, and the R modulation symbols are mapped from the start time of the first time-frequency resource set.
  • the K time offsets are related to the location information of the first node U1.
  • the meaning of the K time offsets in the above sentence related to the location information of the first node U1 includes: any time offset in the K time offsets
  • the quantity belongs to a second time offset set, and the second time offset set includes Q2 time offsets, and the Q2 time offsets are related to the position information of the first node U1.
  • the location information of the first node U1 includes the linear distance between the first node U1 and the second node N2.
  • the location information of the first node U1 includes an inclination angle between the second node N2 and the first node U1.
  • the location information of the first node U1 includes the transmission delay between the first node U1 and the second node N2.
  • the location information of the first node U1 includes the beam point to which the first node U1 belongs, or includes the beam interval to which the first node U1 belongs.
  • the coverage area of the second node N2 is divided into Q3 areas, where Q3 is a positive integer greater than 1, and the Q3 areas respectively correspond to Q3 second type time offsets
  • the first node U1 belongs to a given area of the Q3 areas, and the given area corresponds to a second time offset set in the Q3 second type time offset sets, the The second time offset set includes Q2 time offsets, and any time offset in the K time offsets is one of the Q2 time offsets; so Said Q2 is a positive integer greater than 1.
  • Embodiment 6 illustrates a schematic diagram of a technical solution, as shown in FIG. 6.
  • the first node and the third node are under the coverage of the second node at the same time, and V2X communication is carried out between the first node and the third node; at the same time, the fourth node is also covered by the second node. Coverage, and communication between the fourth node and the second node is performed on the cellular link; the second node configures the first node and the third node with the first time domain resource set identified in the figure for V2X transmission. The transmission delay difference between the first node and the fourth node to reach the second node is large.
  • the fourth node shown in the figure is in the second node.
  • the transmission of the cellular link sent in the time domain resource set will still be shifted to the first time domain resource set considered by the first node;
  • the problems solved by the solution proposed in this application include those described in this embodiment Problem: TA1 in the figure corresponds to the TA from the first node to the second node, and TA2 corresponds to the TA from the fourth node to the second node.
  • the fourth node is a ground terminal device.
  • the fourth node is a low-altitude device.
  • the fourth node is a device other than a base station.
  • the fourth node and the first node belong to different beam spots.
  • the fourth node and the first node belong to different beam intervals.
  • the distance between the fourth node and the first node is not less than the product of the speed of light and the duration of one multi-carrier symbol.
  • Embodiment 7 illustrates a schematic diagram of a first time-frequency resource pool, as shown in FIG. 7.
  • the first time-frequency resource pool includes a first time-frequency resource set, the first time-frequency resource set corresponds to a first time offset value, and the first time offset value is equal to the first time-frequency resource set.
  • the time offset value between the start time of the first time-frequency resource set in the time domain and the start time of the first time-frequency resource pool in the time domain.
  • the data channel on the secondary link sent in the first time-frequency resource pool starts from the first time-frequency resource set.
  • the channels other than the data channel on the secondary link sent in the first time-frequency resource pool start from the first time-frequency resource pool.
  • Embodiment 8 illustrates a schematic diagram of K time-frequency resource pools, as shown in FIG. 8.
  • the K time-frequency resource pools shown in the figure are TDM (Time Division Multiplexing, time division multiplexing mode) in the time domain, and the given time-frequency resource pool shown in the figure is any of the K time-frequency resource pools.
  • TDM Time Division Multiplexing, time division multiplexing mode
  • a time-frequency resource pool the given timing-frequency resource pool includes a given timing-frequency resource set, a given time offset in the K time offsets corresponds to the given timing-frequency resource set, when the first node When sending a given wireless signal in the given timing-frequency resource pool, the difference between the start time of the time domain resource occupied by the given radio signal and the start moment of the given timing-frequency resource pool in the time domain
  • the time offset value is equal to the given time offset.
  • At least two of the K time offsets have different values.
  • the values of any two time offsets that are not equal to 0 in the K time offsets are the same.
  • the given wireless signal includes a data channel.
  • the physical layer channel occupied by the given wireless signal includes a PSFCH.
  • the physical layer channel occupied by the given wireless signal only includes the PSSCH.
  • the physical layer channels occupied by the given wireless signal include channels other than the PSCCH.
  • Embodiment 9 illustrates a schematic diagram of the first time offset set, as shown in FIG. 9.
  • the first time offset set shown in the figure is a first type candidate time offset set among Q1 first type candidate time offset sets, and the Q1 first type candidate time offset sets
  • the quantity set corresponds to Q1 different subcarrier intervals
  • the first time offset set corresponds to the first subcarrier interval, when the subcarrier interval of the subcarrier occupied by the first signal is equal to the first subcarrier In the interval, the first time offset is a time offset in the first time offset set
  • the Q1 candidate time offset sets of the first type shown in the figure are respectively the first type Candidate time offset set #1 to the first type candidate time offset set #Q1
  • the Q1 different subcarrier intervals are subcarrier interval #1 to subcarrier interval #Q1
  • the subcarrier interval# 1 to subcarrier interval #Q1 respectively correspond to the first type candidate time offset set #1 to the first type candidate time offset set #Q1 one-to-one.
  • the Q1 different sub-carrier intervals include one or more sub-carrier intervals of 15 kHz (kilohertz), 30 kHz, 60 kHz, or 120 kHz.
  • the Q1 different sub-carrier intervals include one or more sub-carrier intervals among 3.75 kHz (kilohertz), 7.5 kHz, or 15 kHz.
  • At least one time offset does not belong to any two first-type candidate time offset sets in the Q1 first-type candidate time offset sets.
  • Embodiment 10 illustrates a schematic diagram of a second time-frequency resource set, as shown in FIG. 10.
  • the first time-frequency resource pool includes a first time-frequency resource set and a second time-frequency resource set; the start time of the second time-frequency resource set in the time domain and the first time-frequency resource The length of the time interval between the start time of the pool in the time domain is fixed and equal to the second time offset; the start time of the first time-frequency resource set in the time domain and the first time-frequency resource The length of the time interval between the start moments of the pool in the time domain is equal to the first time offset; the second time offset is not equal to the first time offset.
  • the first set of time-frequency resources and the second set of time-frequency resources are orthogonal in the time-frequency domain.
  • Embodiment 11 illustrates a schematic diagram of a resource mapping manner of a first signal in the first time-frequency resource pool, as shown in FIG. 11.
  • the first signal is mapped to the first time-frequency resource pool through puncturing.
  • the first data block is used to generate the first signal
  • the first data block is used to generate X modulation symbols
  • the X modulation symbols are obtained from the first time-frequency resource pool.
  • the included start multi-carrier symbols of the time domain start to map, and modulation symbols that are earlier than the start multi-carrier symbols of the time domain included in the first time-frequency resource set are punctured.
  • Embodiment 12 illustrates another schematic diagram of the resource mapping manner of the first signal in the first time-frequency resource pool, as shown in FIG. 12.
  • the first signal is mapped to the first time-frequency resource pool by way of rate matching.
  • a first data block is used to generate the first signal, the first data block is used to generate X modulation symbols, and the X modulation symbols are derived from the first time-frequency resource set.
  • the modulation symbols of the first multi-carrier symbols included in the time domain start to be mapped into the first time-frequency resource set.
  • Embodiment 13 illustrates a schematic diagram of the relationship between the K time offsets and the position information of the first node, as shown in FIG. 13.
  • the coverage area of the second node N2 is divided into Q3 areas, where Q3 is a positive integer greater than 1, and the Q3 areas respectively correspond to Q3 second type time offset sets;
  • the first node U1 belongs to a given area of the Q3 areas, and the given area corresponds to a second time offset set in the Q3 second type time offset sets, and the second time offset
  • the offset set includes Q2 time offsets, and any one of the K time offsets is one of the Q2 time offsets; the Q2 is greater than A positive integer of 1.
  • the Q3 regions shown in the figure are respectively region #1 to region #Q3, and the Q3 second-type time offset sets are respectively the second-type time offset set #1 to the second-type time offset Collection #Q3.
  • the Q3 regions correspond to Q3 beam spots respectively.
  • the Q3 regions correspond to Q3 beam intervals respectively.
  • the Q3 regions respectively correspond to Q3 different terminal-to-base station transmission delay delay ranges.
  • Embodiment 14 illustrates a structural block diagram in the first node, as shown in FIG. 14.
  • the first node 1400 includes a first receiver 1401 and a first transceiver 1402.
  • the first receiver 1401 receives first signaling, where the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the first transmitter 1402 sends the first signal in the first time-frequency resource set
  • the first time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; K time offsets The shift amounts respectively correspond to the K time-frequency resource pools one-to-one, and the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools;
  • the first time offset is the time offset corresponding to the first time-frequency resource pool in the K time offsets, and the first time offset is equal to the first time-frequency resource set at The time offset value between the start time of the time domain and the start time of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is in the secondary Transmission on the link.
  • the first signaling includes K sub-signals, the K sub-signals are respectively used to determine the K time-frequency resource pools, and the K sub-signals are respectively used to determine the Said K time offsets.
  • any one of the K time offsets belongs to a first time offset set, and the first time offset set includes a positive integer number of time offsets greater than 1. ; For a given sub-carrier interval of the sub-carrier occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed.
  • the first transmitter 1402 sends second signaling in a second set of time-frequency resources;
  • the second signaling includes a set of configuration information of the first signal, and the second signaling is Physical layer signaling;
  • the second time-frequency resource set belongs to the first time-frequency resource pool, and for a given subcarrier interval of the subcarrier occupied by the second signaling in the frequency domain, the second The length of the time interval between the start moment of the time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain is fixed.
  • the first signaling is used to determine a resource mapping manner of the first signal in the first time-frequency resource pool.
  • the K time offsets are related to the location information of the first node.
  • the first receiver 1401 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transmitter 1402 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 15 illustrates a structural block diagram in the second node, as shown in FIG. 15.
  • the second node 1500 includes a second transmitter 1501.
  • the second transmitter 1501 sends first signaling, where the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the recipient of the first signaling includes a first node, and the first node sends the first signal in the first time-frequency resource set;
  • the first time-frequency resource set belongs to the first time-frequency resource set Resource pool, the first time-frequency resource pool is one of the K time-frequency resource pools; K time offsets correspond to the K time-frequency resource pools respectively, and the The first signaling is used to determine the time offset corresponding to each time-frequency resource pool in the K time-frequency resource pools;
  • the first time offset is the time offset in the K time-frequency resource pools The time offset corresponding to the first time-frequency resource pool, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the first time-frequency resource pool in the time domain
  • the value of the time offset between the start moments; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • the first signaling includes K sub-signals, the K sub-signals are respectively used to determine the K time-frequency resource pools, and the K sub-signals are respectively used to determine the Said K time offsets.
  • any one of the K time offsets belongs to a first time offset set, and the first time offset set includes a positive integer number of time offsets greater than 1. ; For a given sub-carrier interval of the sub-carrier occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed.
  • the first signaling is used to determine the resource mapping manner of the first signal in the first time-frequency resource pool.
  • the K time offsets are related to the location information of the first node.
  • the second transmitter 1501 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • Embodiment 16 illustrates a structural block diagram in the third node, as shown in FIG. 16.
  • the third node 1600 includes a second receiver 1601.
  • the second receiver 1601 receives the first signal in the first time-frequency resource set
  • the sender of the first signal receives first signaling, and the first signaling is used to determine K time-frequency resource pools, where K is a positive integer greater than 1;
  • the time-frequency resource set belongs to a first time-frequency resource pool, and the first time-frequency resource pool is one of the K time-frequency resource pools; the K time offsets are respectively different from the K time-frequency resource pools.
  • Frequency resource pools correspond one to one, and the first signaling is used to determine the time offset corresponding to each of the K time-frequency resource pools; the first time offset is the The time offset corresponding to the first time-frequency resource pool in the K time offsets, where the first time offset is equal to the start time of the first time-frequency resource set in the time domain and the The time offset value between the start moments of the first time-frequency resource pool in the time domain; the first signaling is transmitted on the cellular link, and the first signal is transmitted on the secondary link.
  • the first signaling includes K sub-signals, the K sub-signals are respectively used to determine the K time-frequency resource pools, and the K sub-signals are respectively used to determine the Said K time offsets.
  • any one of the K time offsets belongs to a first time offset set, and the first time offset set includes a positive integer number of time offsets greater than 1. ; For a given sub-carrier interval of the sub-carrier occupied by the first signal in the frequency domain, the time offset included in the first time offset set is fixed.
  • the second receiver 1601 receives second signaling in a second set of time-frequency resources; the second signaling includes a set of configuration information of the first signal, and the second signaling is Physical layer signaling; the second time-frequency resource set belongs to the first time-frequency resource pool, and for a given subcarrier interval of the subcarrier occupied by the second signaling in the frequency domain, the second The length of the time interval between the start moment of the time-frequency resource set in the time domain and the start moment of the first time-frequency resource pool in the time domain is fixed.
  • the first signaling is used to determine a resource mapping manner of the first signal in the first time-frequency resource pool.
  • the K time offsets are related to the location information of the first node.
  • the second receiver 1601 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the first and second nodes in this application include, but are not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNB, gNB, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, aerial base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令被用于确定K个时频资源池;并在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的之一;K个时间偏移量分别对应所述K个时频资源池,所述第一信令被用于确定所述K个时频资源池所对应的K个时间偏移量;第一时间偏移量对应所述第一时频资源池,所述第一时间偏移量等于所述第一时频资源集合和所述第一时频资源池之间的起始时刻的时间偏移值。本申请通过设计第一信令,灵活配置用于副链路传输的时域资源,避免传输延迟较大的***中蜂窝链路和副链路之间的干扰。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及传输延迟较大的***中定时同步的方法和装置。
背景技术
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。目前的V2X***中,同时支持基于基站配置时频资源用于V2X传输,以及V2X的发送端通过感知测量(Sensing Measurement)确定时频资源用于V2X传输。
与此同时,为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始。在3GPP RAN#79次全会上决定开始研究NTN网络中的解决方案,然后在R16或R17版本中启动WI对相关技术进行标准化。
发明内容
NTN网络具有覆盖广的优势,当NTN结合V2X技术时,NTN网络能够为地面基站覆盖不到的地理位置配置用于V2X传输的时频资源,随后V2X终端间基于基站配置信令确定实际传输的时频资源。Rel-12的D2D(Device to Device,设备到设备)传输中,基站一般会为整个小区配置统一的用于D2D传输的时域资源,以避免对Uu口(对应蜂窝链路)的影响;因为基站覆盖下的用户到基站的延迟都较小,往往不会超过一个多载波符号的持续时间,进而认为离基站较远的UE(User Equipment,用户设备)和离基站较近的UE在统一配置的D2D时域资源下,不会对终端本身的Uu口产生影响。然而当把V2X引入NTN网络中时,由于不同UE之间的TA(Timing Advance,定时提前)存在很大的差异,甚至达到几个甚至十几个毫秒,如果沿用Rel-12的方式,当基站配置统一的V2X时域资源时,较大的TA差异会导致某些UE的Uu传输会偏移到其它UE的V2X链路上,进而导致干扰。
针对上述问题的一个简单方法,就是为不同的TA用户配置时域差距足够远的V2X时域资源,以避免Uu口的传输偏移到PC-5口(对应副链路)上,然后此种方式会造成过多的资源不可被Uu口调度,且降低频谱效率。针对上述问题,本申请公开了一种解决方案,需要说明的是,在不冲突的情况下,本申请的第一节点和第三节点的实施例和实施例中的特征可以应用到基站中,且本申请中的第二节点的实施例和实施例中的特征可以应用到终端中。与此同时,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
在第一时频资源集合中发送第一信号;
其中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移 量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,上述方法的原理在于:由于不同UE到基站的传输延迟存在很大差异,当基站配置统一的时域资源用于V2X传输时,某些UE的Uu口传输会偏移到其他UE的V2X资源上;针对上述问题,所述K个时间偏移量分别被用于指示所述K个时频资源池中实际传输数据信道时,所述数据信道需要被延迟的多载波符号数;上述多载波符号数所对应的时域资源会受到其它UE的Uu口上行传输的干扰。
作为一个实施例,上述方法的好处在于:当基站对V2X传输进行配置,且知道覆盖下UE的位置信息时,基站可以通过指示K个时间偏移量,结合调度,在统一配置用于V2X传输的时域资源的同时通过K个时间偏移量的指示避免Uu口对PC-5口的干扰,进而提高频谱效率,避免时域资源的碎片化。
根据本申请的一个方面,上述方法的特征在于,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
作为一个实施例,上述方法的好处在于:所述K个子信令能够独立配置所述K个时间偏移量,进而更加灵活的指示所述K个时频资源池中不能用于V2X传输的时域资源,提高频谱效率,增加调度灵活性。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
作为一个实施例,上述方法的好处在于:不同的子载波间隔对应不同的多载波符号的持续时间,进而对应不同的K个时间偏移量的取值范围;上述设计将所述K个时间偏移量的取值范围和子载波间隔建立联系,且避免为指示所述K个时间偏移值而引入过多的信令开销。
根据本申请的一个方面,上述方法的特征在于包括:
在第二时频资源集合中发送第二信令;
其中,所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量与所述第一节点的位置信息有关。
作为一个实施例,上述方法的好处在于:所述第一节点相对基站的位置会影响所述第一节点受到的来自其他UE的Uu口的干扰的程度,进而通过将K个时间偏移量与所述第一节点的位置信息建立联系,有助于更高效的配置V2X资源,降低干扰。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
其中,所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一 一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
根据本申请的一个方面,上述方法的特征在于,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
根据本申请的一个方面,上述方法的特征在于,所述第一节点在第二时频资源集合中发送第二信令;所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量与所述第一节点的位置信息有关。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
在第一时频资源集合中接收第一信号;
其中,所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
根据本申请的一个方面,上述方法的特征在于,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
根据本申请的一个方面,上述方法的特征在于包括:
在第二时频资源集合中接收第二信令;
其中,所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述第一信号 在所述第一时频资源池中的资源映射方式。
根据本申请的一个方面,上述方法的特征在于,所述K个时间偏移量与所述第一信号的发送者的位置信息有关。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
第一发射机,在第一时频资源集合中发送第一信号;
其中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第二发射机,发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
其中,所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
本申请公开了一种被用于无线通信的第三节点,其特征在于包括:
第二接收机,在第一时频资源集合中接收第一信号;
其中,所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.当基站对V2X传输进行配置,且知道覆盖下UE的位置信息时,基站可以通过指示K个时间偏移量,结合调度,在统一配置用于V2X传输的时域资源的同时通过K个时间偏移量的指示避免Uu口对PC-5口的干扰,进而提高频谱效率,避免时域资源的碎片化;
-.所述K个子信令能够独立配置所述K个时间偏移量,进而更加灵活的指示所述K个时频资源池中不能用于V2X传输的时域资源,提高频谱效率,增加调度灵活性;
-.不同的子载波间隔对应不同的多载波符号的持续时间,进而对应不同的K个时间偏移量的取值范围;上述设计将所述K个时间偏移量取值范围和子载波间隔建立联系,更为合理,且避免为指示所述K个时间偏移值而引入过多的信令开销;
-.所述第一节点相对基站的位置会影响所述第一节点受到的来自其他UE的Uu口的干扰的程度,进而通过将K个时间偏移量与所述第一节点的位置信息建立联系,有助于更高效的配置V2X资源,降低干扰。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的一个实施例的本申请中的技术方案的原理图;
图7示出了根据本申请的一个实施例的第一时频资源池的示意图;
图8示出了根据本申请的一个实施例的K个时频资源池的示意图;
图9示出了根据本申请的一个实施例的第一时间偏移量集合的示意图;
图10示出了根据本申请的一个实施例的第二时频资源集合的示意图;
图11示出了根据本申请的一个实施例的第一信号在所述第一时频资源池中资源映射方式的示意图;
图12示出了根据本申请的另一个实施例的第一信号在所述第一时频资源池中资源映射方式的示意图;
图13示出了根据本申请的一个实施例的所述K个时间偏移量与所述第一节点的位置信息的关系的示意图;
图14示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点中的结构框图;
图16示出了根据本申请的一个实施例的用于第三节点中的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;在步骤102中在第一时频资源集合中发送第一信号。
实施例1中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一信令是MAC(Media Access Control,媒体接入控制)CE(Control Element,控制单元)。
作为一个实施例,所述第一信令是物理层动态信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信令是UE专属的。
作为一个实施例,所述第一信令是终端组专属的,所述UE属于所述终端组。
作为一个实施例,所述第一信令是Zone(地带)专属的,所述UE位于所述Zone中。
作为该实施例的一个子实施例,所述第一信令的发送者是一个NTN基站,所述NTN基站覆盖多个Zone,所述UE位于所述多个Zone中的一个Zone。
作为一个实施例,所述第一信令是波束点(Beam Spot)专属的,所述UE位于所述波束点中;或者所述第一信令是波束区域(Beam Area)专属的,所述UE位于所述波束区域中。
作为该实施例的一个子实施例,所述第一信令的发送者是一个NTN基站;所述NTN基站覆盖多个波束点,所述UE位于所述多个波束点中的一个波束点中;或者,所述NTN基站覆盖多个波束区域,所述UE位于所述多个波束区域中的一个波束区域中。
作为一个实施例,所述K个时频资源池中的任一时频资源池在时域占用正整数个多载波符号,且在频域占用正整数个子载波。
作为一个实施例,所述K个时频资源池中的任一时频资源池包括M个时隙。
作为该实施例的一个子实施例,所述M等于1。
作为该实施例的一个子实施例,所述M是大于1的正整数。
作为该实施例的一个子实施例,所述M个时隙在时域是连续的。
作为一个实施例,所述K个时频资源池中的任一时频资源池包括M个子帧。
作为该实施例的一个子实施例,所述M等于1。
作为该实施例的一个子实施例,所述M是大于1的正整数。
作为该实施例的一个子实施例,所述M个子帧在时域是连续的。
作为一个实施例,第一时频资源集合在时域占用正整数个多载波符号,且在频域占用正整数个子载波。
作为一个实施例,所述K个时间偏移量中的任一时间偏移量的单位是一个多载波符号所占用的时间长度。
作为一个实施例,所述K个时间偏移量中的任一时间偏移量的单位是微秒。
作为一个实施例,所述K个时间偏移量中的任一时间偏移量的单位是1/30720毫秒。
作为一个实施例,所述K个时间偏移量中的任一时间偏移量的单位是1/X毫秒,所述X是30720的正整数倍。
作为一个实施例,所述K个时间偏移量中的任一时间偏移量是正整数个多载波符号。
作为一个实施例,所述K个时间偏移量中至少存在一个时间偏移量等于0。
作为该实施例的一个子实施例,所述K个时间偏移量分别与所述K个时频资源池一一对应的意思包括:给定时间偏移量是所述K个时间偏移量中的任一时间偏移量,所述给定时间偏移量对应所述K个时频资源池中的给定时频资源池;当所述第一节点在所述给定时频资源池中发送给定无线信号时,所述给定无线信号所占用的时域资源的起始时刻和所述给定时频资源池在时域的起始时刻之间的时间偏移值等于所述给定时间偏移量。
作为该子实施例的一个附属实施例,所述给定无线信号所占用的物理层信道包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为该子实施例的一个附属实施例,所述给定无线信号所占用的物理层信道包括PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一时间偏移量等于0,所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻相同。
作为一个实施例,所述第一时间偏移量等于N1个多载波符号的持续时间,所述第一时频资源集合在时域的起始时刻比所述第一时频资源池在时域的起始时刻晚N1个多载波符号,所述N1是正整数。
作为一个实施例,所述第一时频资源集合在时域的截止时刻与所述第一时频资源池在时域的截止时刻相同。
作为一个实施例,所述第一时频资源集合在时域的截止时刻与子帧边界对齐,或者所述 第一时频资源集合在时域的截止时刻与时隙边界对齐。
作为一个实施例,所述第一信号所占用的物理层信号包括PSSCH。
作为一个实施例,所述第一信号是一个无线信号。
作为一个实施例,所述第一信号是一个基带信号。
作为一个实施例,所述第一信号所占用的传输层信道包括SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述蜂窝链路包括所述第一节点与基站之间的无线链路。
作为一个实施例,所述蜂窝链路包括所述第一节点与本申请中的所述第二节点的无线链路。
作为一个实施例,所述蜂窝链路包括终端与服务小区的附着基站之间的无线链路。
作为一个实施例,所述副链路包括PC-5链路。
作为一个实施例,所述副链路包括所述第一节点和本申请中的所述第三节点之间的无线链路。
作为一个实施例,所述副链路包括所述第一节点与终端设备之间的无线链路。
作为一个实施例,所述副链路包括终端设备之间的无线链路。
作为一个实施例,所述副链路包括UE之间的无线链路。
作为一个实施例,所述第一信令的发送者是第二节点。
作为一个实施例,本申请中的所述第二节点是一个NTN中的基站。
作为一个实施例,本申请中的所述第二节点是一个非地面基站。
作为一个实施例,本申请中的所述第二节点是GEO(Geostationary Earth Orbiting,同步地球轨道)卫星、MEO(Medium Earth Orbiting,中地球轨道)卫星、LEO(Low Earth Orbit,低地球轨道)卫星、HEO(Highly Elliptical Orbiting,高椭圆轨道)卫星或Airborne Platform(空中平台)中的之一。
作为一个实施例,本申请中所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述多载波符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述多载波符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,以及包括一个与UE201进行副链路通信的UE241,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制 平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第三节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖内的一个终端。
作为一个实施例,所述UE201与所述UE241属于同一个波束点。
作为一个实施例,所述UE201与所述UE241属于同一个波束区域。
作为一个实施例,所述第一节点和所述第三节点属于一个V2X对(Pair)。
作为一个实施例,所述第一节点是一辆汽车。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第三节点是一个交通工具。
作为一个实施例,所述第三节点是一辆汽车。
作为一个实施例,所述第三节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第三节点是一个终端组的组头(Group Header)。
作为一个实施例,所述第一节点是一个RSU。
作为一个实施例,所述第一节点是一个终端组的组头。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通 信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第二信令生成于所述PHY301,或者所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促 进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;以及在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;以及在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:在第一时频资源集合中接收第一信号;所述第一信号的发送者接收第一信令,所述第一信令被用于确定K 个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源集合中接收第一信号;所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令;所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在第一时频资源集合中发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在第一时频资源集合中接收第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在第二时频资源集合中发送第二信令;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在第二时频资源集合中接收第二信令。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过Uu链路进行通信,第一节点U1与第三节点U3之间通过副链路进行通信;图中方框F0中标注的步骤是可选的。
对于 第一节点U1,在步骤S10中接收第一信令;在步骤S11中在第二时频资源集合中发送第二信令;在步骤S12中在第一时频资源集合中发送第一信号。
对于 第二节点N2,在步骤S20中发送第一信令。
对于 第三节点U3,在步骤30中在第二时频资源集合中接收第二信令;在步骤S31中在第一时频资源集合中接收第一信号。
实施例5中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述 K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输;所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
作为一个实施例,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
作为该实施例的一个子实施例,所述K个子信令分别被用于确定所述K个时频资源池所占用的K个频域资源集合;所述K个频域资源集合中的任一频域资源集合包括正整数个子载波。
作为该实施例的一个子实施例,所述K个子信令分别被用于确定所述K个时频资源池所占用的K个时域资源集合;所述K个时域资源集合中的任一时域资源集合包括正整数个多载波符号。
作为该实施例的一个子实施例,所述K个子信令中的任一子信令对应1比特,所述1比特等于“0”表示对应的时间偏移量等于0,所述1比特等于“1”表示对应的时间偏移量等于第一时间偏移量。
作为该子实施例的一个附属实施例,所述第一时间偏移量等于T1微秒,所述T1是正实数。
作为该子实施例的一个附属实施例,所述第一时间偏移量等于Y/X毫秒,所述X是30720的正整数倍,所述Y是正整数。
作为该子实施例的一个附属实施例,所述第一时间偏移量等于T2个多载波符号,所述T2是正整数。
作为该子实施例的一个附属实施例,所述第一时间偏移量与所述K个子信令无关。
作为该子实施例的一个附属实施例,所述第一时间偏移量通过所述第一信令之外的信令配置。
作为该子实施例的一个附属实施例,所述第一时间偏移量与所述第一节点U1的位置有关。
作为该子实施例的一个附属实施例,所述第一时间偏移量与所述第一节点U1和所述第二节点N2之间的距离有关。
作为该子实施例的一个附属实施例,所述第一时间偏移量与所述第二节点N2和所述第一节点U1之间的倾角有关。
作为该实施例的一个子实施例,所述K个子信令中的任一子信令对应L比特,所述L比特被用于指示所述K个时间偏移量中对应的时间偏移量。
作为该实施例的一个子实施例,生成所述第一信令的信息比特集合的比特数是固定的。
作为该实施例的一个子实施例,生成所述第一信令的信息比特集合的比特数与所述K的值有关。
作为该实施例的一个子实施例,生成所述第一信令的信息比特集合的比特数是可变的。
作为一个实施例,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
作为该实施例的一个子实施例,所述第一时间偏移量集合中包括Q个时间偏移量,所述Q是大于1的正整数。
作为该子实施例的一个附属实施例,给定子信令是所述K个子信令中的任一子信令,给定时间偏移量是所述K个时间偏移量中被所述给定子信令确定的时间偏移量,所述给定子信令被用于从所述Q个时间偏移量中指示所述给定时间偏移量。
作为该实施例的一个子实施例,所述第一时间偏移量集合是Q1个第一类候选时间偏移量集合中的一个第一类候选时间偏移量集合,所述Q1个第一类候选时间偏移量集合分别对应Q1个不同的子载波间隔。
作为该子实施例的一个附属实施例,所述Q1个第一类候选时间偏移量集合中的任一第一类候选时间偏移量集合中包括正整数个时间偏移量。
作为该实施例的一个子实施例,上述句子“对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的”的意思包括:所述第一时间偏移量集合中包括Q个时间偏移量,所述Q个时间偏移量仅与所述第一信号在频域所占用的子载波的子载波间隔有关。
作为该实施例的一个子实施例,上述句子“对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的”的意思包括:所述第一时间偏移量集合中包括Q个时间偏移量,当所述第一信号在频域所占用的子载波的子载波间隔保持不变,所述Q个时间偏移量保持不变。
作为一个实施例,所述第二信令所占用的物理层信令是PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第二信令是一个SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第二时频资源集合占用正整数个RE(Resource Element,资源颗粒),所述第二时频资源集合所占用的所述正整数个RE中的任一RE属于所述第一时频资源池。
作为一个实施例,上述句子“对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的”的意思包括:当所述第二信令在频域所占用的子载波的子载波间隔保持不变时,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度不变。
作为一个实施例,上述句子“所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的”的意思包括:所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度等于0。
作为一个实施例,上述句子“所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的”的意思包括:所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度等于P1个多载波符号,所述P1是固定的。
作为一个实施例,上述句子“所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的”的意思包括:所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度等于P1个多载波符号,当所述第二信令在频域所占用的子载波的子载波间隔保持不变时,所述P1是不变的。
作为一个实施例,所述第二信令被用于指示所述第一时频资源集合所占用的时域资源。
作为一个实施例,所述第二信令被用于指示所述第一时频资源集合所占用的频域资源。
作为一个实施例,所述第二信令被用于指示所述第一时频资源集合在时域的截止时间。
作为一个实施例,所述第二信令所包括的所述第一信号的配置信息集合包括所述第一信号所占用的频域资源,所述第一信号所占用的时域资源,所述第一信号所采用的MCS(Modulation and Coding Status,调制编码方式),所述第一信号对应的RV(Redundancy Version,冗余版本),所述第一信号对应的HARQ(Hybrid Automatic Repeat Request,混 合自动重传请求)进程号(Process Number),或指示所述第一信号的NDI(New Data Indicator,新数据指示)中的至少之一。
作为一个实施例,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
作为该实施例的一个子实施例,第一传输块被用于生成所述第一信号,所述第一传输块的大小与所述第一信号在所述第一时频资源池中的资源映射方式有关。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一信号在所述第一时频资源池中的资源映射方式。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一信号在所述第一时频资源池中的资源映射方式是打孔(Puncture)。
作为该子实施例的一个附属实施例,上述句子所述第一信号在所述第一时频资源池中的资源映射方式是打孔的意思包括:第一比特块被用于生成所述第一信号,所述第一比特块经过调制编码等操作后生成R个调制符号,所述R个调制符号从所述第一时频资源池的起始时刻开始映射,且所述R个调制符号中位于所述第一时频资源池的起始时刻到所述第一时频资源集合的起始时刻的正整数个调制符号被打孔。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一信号在所述第一时频资源池中的资源映射方式是速率匹配(Rate-mactching)。
作为该子实施例的一个附属实施例,上述句子所述第一信号在所述第一时频资源池中的资源映射方式是速率匹配的意思包括:第一比特块被用于生成所述第一信号,所述第一比特块经过调制编码等操作后生成R个调制符号,所述R个调制符号从所述第一时频资源集合的起始时刻开始映射。
作为一个实施例,所述K个时间偏移量与所述第一节点U1的位置信息有关。
作为该实施例的一个子实施例,上述句子所述K个时间偏移量与所述第一节点U1的位置信息有关的意思包括:所述K个时间偏移量中的任一时间偏移量属于第二时间偏移量集合,所述第二时间偏移量集合包括Q2个时间偏移量,所述Q2个时间偏移量与所述第一节点U1的位置信息有关。
作为该实施例的一个子实施例,所述第一节点U1的位置信息包括所述第一节点U1与所述第二节点N2之间的直线距离。
作为该实施例的一个子实施例,所述第一节点U1的位置信息包括所述第二节点N2与所述第一节点U1之间的倾角。
作为该实施例的一个子实施例,所述第一节点U1的位置信息包括所述第一节点U1与所述第二节点N2之间的传输延迟。
作为该实施例的一个子实施例,所述第一节点U1的位置信息包括所述第一节点U1属于的波束点,或者包括所述第一节点U1属于的波束区间。
作为该实施例的一个子实施例,所述第二节点N2的覆盖区域被分成Q3个区域,所述Q3是大于1的正整数,所述Q3个区域分别对应Q3个第二类时间偏移量集合;所述第一节点U1属于所述Q3个区域的给定区域,所述给定区域对应所述Q3个第二类时间偏移量集合中的第二时间偏移量集合,所述第二时间偏移量集合包括Q2个时间偏移量,所述K个时间偏移量中的任一时间偏移量均是所述Q2个时间偏移量中的一个时间偏移量;所述Q2是大于1的正整数。
实施例6
实施例6示例了一个技术方案的示意图,如附图6所示。在附图6中,第一节点和第三节点同时属于第二节点的覆盖之下,且第一节点和第三节点之间进行V2X的通信;与此同时,第四节点也被第二节点覆盖,且第四节点与第二节点之间进行蜂窝链路的通信;第二节点为第一节点和第三节点配置了图中标识的用于V2X传输的第一时域资源集合,因第一节点和第四节点到达第二节点的传输时延差距较大,导致虽然第二节点配置 了统一的用于V2X传输的第一时域资源集合,图中所示的第四节点在第二时域资源集合中发送的蜂窝链路的传输仍然会偏移到第一节点所认为的第一时域资源集合中;本申请中提出的方案所解决的问题就包括本实施例中所描述的问题;图中TA1对应第一节点到第二节点的TA,TA2对应第四节点到第二节点的TA。
作为一个实施例,所述第四节点是一个地面终端设备。
作为一个实施例,所述第四节点是一个低空设备。
作为一个实施例,所述第四节点是一个基站之外的设备。
作为一个实施例,所述第四节点和所述第一节点属于不同的波束点。
作为一个实施例,所述第四节点和所述第一节点属于不同的波束区间。
作为一个实施例,所述第四节点和所述第一节点之间的距离不小于光速与一个多载波符号的持续时间之间的乘积。
实施例7
实施例7示例了一个第一时频资源池的示意图,如附图7所示。在附图7中,所述第一时频资源池包括第一时频资源集合,所述第一时频资源集合对应第一时间偏移值,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值。
作为一个实施例,在所述第一时频资源池中发送的副链路上的数据信道起始于所述第一时频资源集合。
作为一个实施例,在所述第一时频资源池中发送的副链路上的数据信道之外的信道起始于所述第一时频资源池。
实施例8
实施例8示例了一个K个时频资源池的示意图,如附图8所示。图中所示的K个时频资源池在时域是TDM(Time Division Multiplexing,时分复用模式)的,图中所示的给定时频资源池是所述K个时频资源池中的任一时频资源池,所述给定时频资源池包括给定时频资源集合,所述K个时间偏移量中的给定时间偏移量对应所述给定时频资源集合,当所述第一节点在所述给定时频资源池中发送给定无线信号时,所述给定无线信号所占用的时域资源的起始时刻和所述给定时频资源池在时域的起始时刻之间的时间偏移值等于所述给定时间偏移量。
作为一个实施例,所述K个时间偏移量中至少存在两个时间偏移量的值是不同的。
作为一个实施例,所述K个时间偏移量中任意两个不等于0的时间偏移量的值是相同的。
作为一个实施例,所述给定无线信号包括数据信道。
作为一个实施例,所述给定无线信号所占用的物理层信道包括PSFCH。
作为一个实施例,所述给定无线信号所占用的物理层信道仅包括PSSCH。
作为一个实施例,所述给定无线信号所占用的物理层信道包括PSCCH之外的信道。
实施例9
实施例9示例了一个第一时间偏移量集合的示意图,如附图9所示。图中所示的所述第一时间偏移量集合是Q1个第一类候选时间偏移量集合中的一个第一类候选时间偏移量集合,所述Q1个第一类候选时间偏移量集合分别对应Q1个不同的子载波间隔;所述第一时间偏移量集合对应第一子载波间隔,当所述第一信号所占用的子载波的子载波间隔等于所述第一子载波间隔时,所述第一时间偏移量是所述第一时间偏移量集合中的一个时间偏移量;图中所示的Q1个第一类候选时间偏移量集合分别是第一类候选时间偏移量集合#1至第一类候选时间偏移量集合#Q1,所述Q1个不同的子载波间隔分别是子载波间隔#1至子载波间隔#Q1,所述子载波间隔#1至子载波间隔#Q1分别与所述第一类候选时间偏移量集合#1至第一类候选时间偏移量集合#Q1一一对应。
作为一个实施例,所述Q1个不同的子载波间隔包括15kHz(千赫兹)、30kHz、60kHz或120kHz中的一个或多个子载波间隔。
作为一个实施例,所述Q1个不同的子载波间隔包括3.75kHz(千赫兹)、7.5kHz或15kHz中的一个或多个子载波间隔。
作为一个实施例,至少存在一个时间偏移量不属于所述Q1个第一类候选时间偏移量集合中的任意两个第一类候选时间偏移量集合。
实施例10
实施例10示例了一个第二时频资源集合的示意图,如附图10所示。在附图10中,第一时频资源池包括第一时频资源集合和第二时频资源集合;所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的,且等于第二时间偏移量;所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度等于第一时间偏移量;所述第二时间偏移量和所述第一时间偏移量不相等。
作为一个实施例,所述第一时频资源集合和所述第二时频资源集合在时频域是正交的。
作为一个实施例,不存在一个RE同时属于所述第一时频资源集合和所述第二时频资源集合。
实施例11
实施例11示例了一个第一信号在所述第一时频资源池中资源映射方式的示意图,如附图11所示。在附图11中,所述第一信号是通过打孔的方式被映射到所述第一时频资源池中的。
作为一个实施例,第一数据块被用于生成所述第一信号,所述第一数据块被用于生成X个调制符号,所述X个调制符号从所述第一时频资源池所包括的时域的起始多载波符号开始映射,且早于所述第一时频资源集合所包括的时域的起始多载波符号的调制符号被打孔。
实施例12
实施例12示例了另一个第一信号在所述第一时频资源池中资源映射方式的示意图,如附图12所示。在附图12中,所述第一信号是通过速率匹配的方式被映射到所述第一时频资源池中的。
作为一个实施例,第一数据块被用于生成所述第一信号,所述第一数据块被用于生成X个调制符号,所述X个调制符号从所述第一时频资源集合所包括的时域的起始多载波符号的调制符号开始映射到所述第一时频资源集合中。
实施例13
实施例13示例了一个所述K个时间偏移量与所述第一节点的位置信息的关系的示意图,如附图13所示。在附图13中,所述第二节点N2的覆盖区域被分成Q3个区域,所述Q3是大于1的正整数,所述Q3个区域分别对应Q3个第二类时间偏移量集合;所述第一节点U1属于所述Q3个区域的给定区域,所述给定区域对应所述Q3个第二类时间偏移量集合中的第二时间偏移量集合,所述第二时间偏移量集合包括Q2个时间偏移量,所述K个时间偏移量中的任一时间偏移量均是所述Q2个时间偏移量中的一个时间偏移量;所述Q2是大于1的正整数。图中所示的Q3个区域分别是区域#1至区域#Q3,所述Q3个第二类时间偏移量集合分别是第二类时间偏移量集合#1至第二类时间偏移量集合#Q3。
作为一个实施例,所述Q3个区域分别对应Q3个波束点。
作为一个实施例,所述Q3个区域分别对应Q3个波束区间。
作为一个实施例,所述Q3个区域分别对应Q3个不同的终端到基站的传输延迟的延迟范围。
实施例14
实施例14示例了一个第一节点中的结构框图,如附图14所示。附图14中,第一节点1400包括第一接收机1401和第一收发机1402。
第一接收机1401,接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是 大于1的正整数;
第一发射机1402,在第一时频资源集合中发送第一信号;
实施例14中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
作为一个实施例,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
作为一个实施例,所述第一发射机1402在第二时频资源集合中发送第二信令;所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
作为一个实施例,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
作为一个实施例,所述K个时间偏移量与所述第一节点的位置信息有关。
作为一个实施例,所述第一接收机1401包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1402包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例15
实施例15示例了一个第二节点中的结构框图,如附图15所示。附图15中,第二节点1500包括第二发射机1501。
第二发射机1501,发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
实施例15中,所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
作为一个实施例,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
作为一个实施例,所述第一信令被用于确定所述第一信号在所述第一时频资源池中 的资源映射方式。
作为一个实施例,所述K个时间偏移量与所述第一节点的位置信息有关。
作为一个实施例,所述第二发射机1501包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
实施例16
实施例16示例了一个第三节点中的结构框图,如附图16所示。附图16中,第三节点1600包括第二接收机1601。
第二接收机1601,在第一时频资源集合中接收第一信号;
实施例16中,所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
作为一个实施例,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
作为一个实施例,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
作为一个实施例,所述第二接收机1601在第二时频资源集合中接收第二信令;所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
作为一个实施例,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
作为一个实施例,所述K个时间偏移量与所述第一节点的位置信息有关。
作为一个实施例,所述第二接收机1601包括实施例4中的天线420、发射器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
    第一发射机,在第一时频资源集合中发送第一信号;
    其中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一信令包括K个子信令,所述K个子信令分别被用于确定所述K个时频资源池,且所述K个子信令分别被用于确定所述K个时间偏移量。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述K个时间偏移量中的任意一个时间偏移量属于第一时间偏移量集合,所述第一时间偏移量集合包括大于1的正整数个时间偏移量;对于给定的所述第一信号在频域所占用的子载波的子载波间隔,所述第一时间偏移量集合所包括的时间偏移量是固定的。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一发射机在第二时频资源集合中发送第二信令;所述第二信令包括所述第一信号的配置信息集合,所述第二信令是物理层信令;所述第二时频资源集合属于所述第一时频资源池,对于给定的所述第二信令在频域所占用的子载波的子载波间隔,所述第二时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间间隔长度是固定的。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一信令被用于确定所述第一信号在所述第一时频资源池中的资源映射方式。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述K个时间偏移量与所述第一节点的位置信息有关。
  7. 一种被用于无线通信的第二节点,其特征在于包括:
    第二发射机,发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
    其中,所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
  8. 一种被用于无线通信的第三节点,其特征在于包括:
    第二接收机,在第一时频资源集合中接收第一信号;
    其中,所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
    在第一时频资源集合中发送第一信号;
    其中,所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;
    其中,所述第一信令的接收者包括第一节点,所述第一节点在第一时频资源集合中发送第一信号;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
  11. 一种被用于无线通信的第三节点中的方法,其特征在于包括:
    在第一时频资源集合中接收第一信号;
    其中,所述第一信号的发送者接收第一信令,所述第一信令被用于确定K个时频资源池,所述K是大于1的正整数;所述第一时频资源集合属于第一时频资源池,所述第一时频资源池是所述K个时频资源池中的一个时频资源池;K个时间偏移量分别与所述K个时频资源池一一对应,所述第一信令被用于确定所述K个时频资源池中的每个时频资源池所对应的时间偏移量;第一时间偏移量是所述K个时间偏移量中所述第一时频资源池所对应的时间偏移量,所述第一时间偏移量等于所述第一时频资源集合在时域的起始时刻和所述第一时频资源池在时域的起始时刻之间的时间偏移值;所述第一信令在蜂窝链路上传输,所述第一信号在副链路上传输。
PCT/CN2020/099411 2019-07-15 2020-06-30 一种被用于无线通信的节点中的方法和装置 WO2021008358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/575,644 US20220225289A1 (en) 2019-07-15 2022-01-14 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910636223.XA CN112235870B (zh) 2019-07-15 2019-07-15 一种被用于无线通信的节点中的方法和装置
CN201910636223.X 2019-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/575,644 Continuation US20220225289A1 (en) 2019-07-15 2022-01-14 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021008358A1 true WO2021008358A1 (zh) 2021-01-21

Family

ID=74111476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099411 WO2021008358A1 (zh) 2019-07-15 2020-06-30 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220225289A1 (zh)
CN (2) CN115226230A (zh)
WO (1) WO2021008358A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347215A (zh) * 2016-05-06 2017-11-14 普天信息技术有限公司 在v2x网络中资源的分配方法及终端
CN107645774A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 V2x网络中调度pc5口资源的确认方法
CN108307438A (zh) * 2017-01-13 2018-07-20 华为技术有限公司 数据发送方法、数据接收方法、终端设备和网络设备
US20180242115A1 (en) * 2015-08-14 2018-08-23 Lg Electronics Inc. Method for transmitting and receiving v2x message in wireless communication system, and an apparatus for same
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690188B (zh) * 2016-08-05 2019-12-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN113891483B (zh) * 2017-03-06 2024-04-16 上海朗帛通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置
US10680782B2 (en) * 2017-06-16 2020-06-09 Qualcomm Incorporated Strategic mapping of uplink resources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242115A1 (en) * 2015-08-14 2018-08-23 Lg Electronics Inc. Method for transmitting and receiving v2x message in wireless communication system, and an apparatus for same
CN107347215A (zh) * 2016-05-06 2017-11-14 普天信息技术有限公司 在v2x网络中资源的分配方法及终端
CN107645774A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 V2x网络中调度pc5口资源的确认方法
CN108307438A (zh) * 2017-01-13 2018-07-20 华为技术有限公司 数据发送方法、数据接收方法、终端设备和网络设备
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, SHANZHI ET AL.: "Technologies, standards and applications of LTE-V2X for vehicular networks", TELECOMMUNICATIONS SCIENCE, no. 04, 20 April 2018 (2018-04-20), DOI: 20200819141620A *
HUAWEI ET AL.: "Discussion on NR Uu to Control LTE PC5", 3GPP TSG RAN WG1 MEETING #94 R1-1808096, 10 August 2008 (2008-08-10), XP051515498, DOI: 20200819143106A *
VIVO: "NR Sidelink Synchronization Mechanism", 3GPP TSG RAN WG1 MEETING #95 R1-1812308, 3 November 2018 (2018-11-03), XP051478497, DOI: 20200819142250A *

Also Published As

Publication number Publication date
US20220225289A1 (en) 2022-07-14
CN115226230A (zh) 2022-10-21
CN112235870B (zh) 2022-07-05
CN112235870A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020244375A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114630436A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112203351B (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088609A1 (zh) 一种被用于无线通信的方法和设备
WO2020244385A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020259238A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021008358A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088610A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114793151B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061248A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113497686B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061249A1 (zh) 一种被用于定位的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841425

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20841425

Country of ref document: EP

Kind code of ref document: A1