WO2021005736A1 - Air conditioner, particle removing system, and control method - Google Patents

Air conditioner, particle removing system, and control method Download PDF

Info

Publication number
WO2021005736A1
WO2021005736A1 PCT/JP2019/027276 JP2019027276W WO2021005736A1 WO 2021005736 A1 WO2021005736 A1 WO 2021005736A1 JP 2019027276 W JP2019027276 W JP 2019027276W WO 2021005736 A1 WO2021005736 A1 WO 2021005736A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
particle
control unit
value
air conditioner
Prior art date
Application number
PCT/JP2019/027276
Other languages
French (fr)
Japanese (ja)
Inventor
将敬 鈴木
論季 小竹
柳澤 隆行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/027276 priority Critical patent/WO2021005736A1/en
Priority to JP2020506850A priority patent/JPWO2021005736A1/en
Publication of WO2021005736A1 publication Critical patent/WO2021005736A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • the present invention relates to an air conditioner, a particle removal system and a control method.
  • Patent Document 1 discloses a dust collector that collects dust in a room by using a plurality of blowers (14, 30) and one dust collector (40).
  • the dust collector described in Patent Document 1 detects dust using infrared rays inside each of a plurality of blowers (14, 30) and one dust collector (40) (for example, Patent Document 1). See paragraphs [0049], paragraphs [0053] and paragraphs [0058] of.). Further, the dust collector described in Patent Document 1 measures the wind direction and the wind speed in a room by using an ultrasonic anemometer (see, for example, the above paragraph of Patent Document 1).
  • the dust collector described in Patent Document 1 has a problem that the distribution state of dust in the room cannot be detected. As a result, there is a problem that an unnecessary air flow may be generated when collecting dust in the room. For example, there is a problem that an air flow may be generated through an area where there is no dust in the room.
  • the present invention has been made to solve the above problems, and when removing particulate matter such as dust in a space such as a room, it is possible to detect the distribution state of the particulate matter in the space.
  • the purpose is to provide an air conditioner.
  • the air conditioner of the present invention uses a rider to calculate the density value of the particles to be detected in the air-conditioning target space, and a blower that controls the ventilation direction with respect to the air-conditioning target space using the density value. It includes a control unit.
  • the air conditioner of the present invention can detect the distribution state of particulate matter in a space when removing particulate matter such as dust in a space such as a room.
  • FIG. It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the distance-strength characteristic and the example of a reference distance-strength characteristic. It is explanatory drawing which shows the example of the distribution of the 1st density value in the particle detection target space. It is explanatory drawing which shows the example of the distribution of the 2nd density value in the particle detection target space. It is explanatory drawing which shows the example of the wind direction wind speed model. It is explanatory drawing which shows the example of the blast control for particle induction.
  • FIG. It is explanatory drawing which shows the hardware composition of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the other hardware configuration of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of another particle removal system including the air conditioner which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows another example of the blast control for particle induction.
  • FIG. It is a block diagram which shows the main part of another particle removal system including the air conditioner which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows another example of the blast control for particle induction.
  • FIG. It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows the example of the 1st wind measurement target area. It is explanatory drawing which shows the example of the 9th wind measurement target area.
  • It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 2.
  • FIG. 5 is a block diagram showing a main part of another particle removal system including an air conditioner according to a third embodiment. It is explanatory drawing which shows another example of the blast control for particle induction.
  • FIG. 1 It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3.
  • FIG. 2 It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3.
  • FIG. 2 It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3.
  • FIG. 2 It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 4.
  • FIG. 4 It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4.
  • FIG. 4 It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4.
  • FIG. 1 is a block diagram showing a main part of a particle removal system including an air conditioner according to a first embodiment.
  • FIG. 2 is a block diagram showing a main part of the indoor unit of the air conditioner according to the first embodiment.
  • the particle removal system including the air conditioner according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the main part of the particle removal system 500 is composed of the air conditioner 200, the ventilation device 300, and the air purifier 400.
  • the air conditioner 200 is composed of, for example, an air conditioner.
  • the ventilation device 300 is composed of, for example, a ventilation fan.
  • the air conditioner 200 has an indoor unit 1 and an outdoor unit 2.
  • the indoor unit 1 has a heat exchanger (not shown)
  • the outdoor unit 2 has another heat exchanger (not shown), and these heat exchangers have a refrigerant pipe (not shown). (Shown) are thermally connected to each other.
  • the outdoor unit 2 has a compressor for refrigerant (not shown) and the like. Since the structure, arrangement, operation, and the like of these members are known, detailed description thereof will be omitted.
  • the air conditioner 200 is operated by a remote controller (hereinafter referred to as "remote controller") 3.
  • the left-right direction with respect to the indoor unit 1 is referred to as "x direction”.
  • the front-rear direction with respect to the indoor unit 1 is referred to as a "y direction”.
  • the vertical direction with respect to the indoor unit 1 is referred to as "z direction”.
  • the azimuth direction of the indoor unit 1 with respect to the front-rear direction that is, the azimuth direction with respect to the y direction is simply referred to as “azimuth direction”.
  • the elevation / depression angle direction with respect to the front-rear direction of the indoor unit 1, that is, the elevation / depression angle direction with respect to the y direction is simply referred to as the "elevation / depression angle direction”.
  • the space S1 subject to air conditioning by the air conditioner 200 is referred to as an "air conditioning target space”. That is, the air conditioning target space S1 is a space to be ventilated by the ventilation device 300. Further, the air conditioning target space S1 is a space subject to air purification by the air purifier 400.
  • the air blowing direction ⁇ B with respect to the azimuth direction of the air blowing direction ⁇ B and ⁇ B with respect to the air harmonization target space S1 by the indoor unit 1 may be referred to as a “first air blowing direction”. Further, the air blowing direction ⁇ B with respect to the elevation / depression angle direction may be referred to as a “second air blowing direction”.
  • the indoor unit 1 has a wind direction plate (hereinafter referred to as “first wind direction plate”) 11 having a variable mounting angle with respect to the azimuth direction, and a wind direction plate having a variable mounting angle with respect to the elevation / depression angle direction (hereinafter referred to as “first wind direction plate”). It has (2) a wind direction plate () 12 and a fan (hereinafter referred to as a "blower fan”) 13 for blowing air to the air conditioning target space S1. Further, the indoor unit 1 has a drive motor 14 for the first wind direction plate 11, a drive motor 15 for the second wind direction plate 12, and a drive motor 16 for the blower fan 13.
  • Airflow direction control unit 21 by controlling the mounting angle of the first wind direction plate 11, by controlling the rotational position of the rotor of the drive motor 14, more specifically, controls the first blowing direction [Phi B Is. Further, the ventilation direction control unit 21 controls the second ventilation direction ⁇ B by controlling the mounting angle of the second wind direction plate 12, and more specifically, by controlling the rotation position of the rotor in the drive motor 15. Is what you do.
  • the blast air volume control unit 22 controls the rotation speed of the blast fan 13, and more specifically, by controlling the rotation speed of the rotor in the drive motor 16, the blast air volume with respect to the air conditioning target space S1 by the indoor unit 1. It controls V B.
  • the user of the air conditioner 200 inputs a set temperature value or the like using the remote controller 3.
  • the mounting angle of the first wind direction plate 11, the mounting angle of the second wind direction plate 12, the rotation speed of the blower fan 13, the operation of the compressor, and the like are controlled according to the input set temperature value and the like.
  • air conditioning for example, cooling or heating
  • blower control the control of the blower directions ⁇ B and ⁇ B by the blower direction control unit 21 and the control of the blower air volume V B by the blower air volume control unit 22 are collectively referred to as “blower control”. Further, the air-conditioning control for realizing the air-conditioning in the air-conditioning target space S1 is referred to as "air-conditioning air-conditioning control”.
  • the blast control unit 23 is composed of the blast direction control unit 21 and the blast volume control unit 22.
  • the indoor unit 1 has a rider 17.
  • the rider 17 is composed of, for example, a pulse modulation type rider or a CW (Continuous Wave) type rider. Since the structure and operating principle of the rider of each method are known, detailed description thereof will be omitted.
  • the output port OP of the laser beam L by the rider 17 is provided, for example, on the front portion of the indoor unit 1.
  • the rider 17 has a variable output direction (hereinafter referred to as “line-of-sight direction”) D of the laser beam L.
  • line-of-sight direction D of the laser beam L.
  • the rider 17 By outputting the laser beam L to the air-conditioning target space S1, the rider 17 exhibits a characteristic (hereinafter, “distance-intensity”) of the received signal with respect to the distance Z in the line-of-sight direction D (hereinafter referred to as “reception intensity”) P. "Characteristics”.) P (Z) is acquired.
  • the reception intensity P corresponds to, for example, the peak value of the power spectrum obtained by FFT (Fast Fourier Transform) with respect to the time axis waveform of the received signal. That is, the reception intensity P corresponds to the intensity of the received signal at the peak frequency. Since the method of acquiring the distance-strength characteristic P (Z) by the rider of each method is known, detailed description thereof will be omitted.
  • the rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning the space S1 for air conditioning in a raster scan manner.
  • the rider 17 outputs information indicating the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D (hereinafter referred to as “distance-intensity characteristic information”) to the first particle density calculation unit 24.
  • the distance-intensity characteristic information includes angle values ⁇ and ⁇ indicating the line-of-sight direction D corresponding to each distance-intensity characteristic P (Z).
  • is an angle value with respect to the azimuth direction
  • is an angle value with respect to the elevation / depression angle direction.
  • the first particle density calculation unit 24 uses the distance-intensity characteristic information output by the rider 17 to form a plurality of regions (hereinafter referred to as “first particle detection target regions”) A1 in the air harmonization target space S1.
  • first density value ⁇ 1 of a predetermined particulate substance
  • detection target particle a predetermined particulate substance
  • the plurality of first particle detection target regions A1 make at least a part of the air conditioning target space S1 (hereinafter referred to as “particle detection target space”) S2 in the x direction, the y direction, and the z direction. It is divided into predetermined intervals.
  • each first particle detection target region A1 is set to a value corresponding to the spatial resolution of the rider 17 (for example, several centimeters on each side).
  • the particle detection target space S2 is usually set to a space corresponding to the entire or substantially the entire air conditioning target space S1.
  • the detection target particle may include any particle as long as it has a particle size of a predetermined value or more.
  • This predetermined value is determined according to, for example, the wavelength of the laser beam L.
  • This predetermined value is, for example, 20 to 30 micrometers (hereinafter referred to as “ ⁇ m”) or 100 to 200 ⁇ m.
  • the particles to be detected include, for example, house dust, dust, dust, bacteria, viruses, molds, fine particulate matter (so-called "PM2.5”) and the like.
  • the first particle density calculation unit 24 is information indicating the distribution of the first density value ⁇ 1 in the air harmonization target space S1 (more specifically, the particle detection target space S2) (hereinafter referred to as “first particle density distribution information”). Is output to the second particle density calculation unit 25.
  • the second particle density calculation unit 25 spatially obtains the first density value ⁇ 1 calculated by the first particle density calculation unit 24 by using the first particle density distribution information output by the first particle density calculation unit 24. It is to average. More specifically, the second particle density calculation unit 25 averages the calculated first density value ⁇ 1 for each predetermined distance range with respect to the x direction, the y direction, and the z direction. The width of each distance range is set to a value of, for example, 10 centimeters or more and 1 meter or less. The second particle density calculation unit 25 may be used to obtain a moving average.
  • the second particle density calculation unit 25 is a plurality of regions (hereinafter, referred to as “second particle detection target region”) A2 in the air conditioning target space S1 (more specifically, the particle detection target space S2).
  • the density value (hereinafter referred to as "second density value") ⁇ 2 of the detection target particle is calculated. That is, each second particle detection target region A2 is formed by spatially merging two or more corresponding first particle detection target regions A1 among the plurality of first particle detection target regions A1. .. Therefore, the size of each second particle detection target region A2 is larger than the size of each first particle detection target region A1. On the other hand, the number of the second particle detection target region A2 is smaller than the number of the first particle detection target region A1.
  • the second particle density calculation unit 25 is information indicating the distribution of the second density value ⁇ 2 in the air harmonization target space S1 (more specifically, the particle detection target space S2) (hereinafter referred to as “second particle density distribution information”). Is output to the ventilation control unit 23.
  • the first density value ⁇ 1 and the second density value ⁇ 2 may be collectively referred to simply as “density value”.
  • this density value may be labeled with " ⁇ ".
  • the process in which the first particle density calculation unit 24 calculates the first density value ⁇ 1 and the process in which the second particle density calculation unit 25 calculates the second density value ⁇ 2 are collectively referred to as "particle detection process". That is, the particle detection process is a process of detecting the particles to be detected in the air conditioning target space S1 (more specifically, the particle detection target space S2).
  • the particle detection processing unit 26 is composed of the first particle density calculation unit 24 and the second particle density calculation unit 25.
  • a specific example of the distance-intensity characteristic P (Z), the distance-intensity characteristic to be compared with the distance-intensity characteristic P (Z) (hereinafter, “reference distance-intensity characteristic”).
  • Pref (Z) a specific example of the distribution of the first density value ⁇ 1 indicated by the first particle density distribution information, and a specific example of the second density value ⁇ 2 indicated by the second particle density distribution information will be described. To do.
  • a specific example of a method of calculating the first density value ⁇ 1 by the first particle density calculation unit 24 will be described.
  • the scattering intensity of Mie scattering is proportional to the backscattering coefficient.
  • the backscattering coefficient is a value corresponding to the volume density of particles in the air.
  • the reference distance-intensity characteristic Pref (Z) indicates the distance-intensity characteristic in each line-of-sight direction D when the density value ⁇ at each point in the air harmonization target space S1 is equal to or less than a predetermined threshold value ⁇ th1.
  • the reception intensity P at the distance-intensity characteristic P (Z) is larger than the reception intensity at the reference distance-intensity characteristic Def (Z) (hereinafter referred to as "reference reception intensity")
  • the density value ⁇ at the corresponding point is the threshold value. It can be said that the state is larger than ⁇ th1.
  • the reception intensity P is equal to or less than the reference reception intensity Pref, it can be said that the density value ⁇ at the corresponding point is the threshold value ⁇ th1 or less.
  • the threshold value ⁇ th1 is set to 25 micrograms per cubic meter (hereinafter referred to as “ ⁇ g / m 3 ”). This is a value based on the exposure limit of PM2.5 in the air quality guideline of WHO (World Health Organization).
  • FIG. 3 shows an example of the distance-intensity characteristic P (Z) and an example of the reference distance-intensity characteristic Pref (Z).
  • i indicates a range bin number
  • B (i) indicates a range bin
  • Z (i) indicates a distance value corresponding to each range bin.
  • the reference numeral “P (i)” may be used for the reception intensity P corresponding to each range bin B (i)
  • the reference reception intensity Pref corresponding to each range bin B (i) is referred to as “Pref (i)”.
  • a code may be used, and a code of “ ⁇ (i)” may be used for the density value ⁇ corresponding to each range bin B (i).
  • the reception intensities P (1) to P (4) in the range bins B (1) to B (4) are equivalent to the corresponding reference reception intensities Pref (1) to Pref (4). Therefore, the first particle density calculation unit 24 determines that the density values ⁇ (1) to ⁇ (4) at the points corresponding to the range bins B (1) to B (4) are all equal to or less than the threshold value ⁇ th1.
  • the reception intensities P (5) to P (10) in the range bins B (5) to B (10) are larger than the corresponding reference reception intensities Pref (5) to Pref (10). Therefore, the first particle density calculation unit 24 determines that the density values ⁇ (5) to ⁇ (10) at the points corresponding to the range bins B (5) to B (10) are all larger than the threshold value ⁇ th1.
  • the first particle density calculation unit 24 calculates the density value ⁇ (5) at the point corresponding to the range bin B (5) based on the absolute value
  • the first particle density calculation unit 24 is based on the absolute value
  • the density values ⁇ (6) to ⁇ (10) at the points corresponding to (10) are calculated respectively.
  • the x-coordinate value in the air-conditioning target space S1 of the point corresponding to each range bin B (i) is expressed by the following equation (1).
  • the y coordinate value in the air conditioning target space S1 at the relevant point is expressed by the following equation (2).
  • the z coordinate value in the air conditioning target space S1 at the relevant point is expressed by the following equation (3).
  • the point corresponding to each range bin B (i) is any of the plurality of first particle detection target regions A1. It is determined whether the point corresponds to the first particle detection target region A1 of the above.
  • the first particle density calculation unit 24 sets the density value ⁇ (i) at each point to the first density value ⁇ 1 in the corresponding first particle detection target region A1 based on the result of the determination.
  • the rider 17 scans the air conditioning target space S1 in a raster scan manner.
  • the first particle density calculation unit 24 calculates the density value ⁇ (i) in each range bin B (i) for each of the plurality of line-of-sight directions D. Then, the first particle density calculation unit 24 sets each of these density values ⁇ (i) to the first density value ⁇ 1 in the corresponding first particle detection target region A1.
  • the first density value ⁇ 1 in each of the plurality of first particle detection target regions A1 is calculated.
  • individual circles indicate the first density value ⁇ 1 in the corresponding first particle detection target region A1. That is, the darker the color of the circle, the larger the first density value ⁇ 1 in the corresponding first particle detection target region A1.
  • the first particle density calculation unit 24 outputs information indicating the distribution of the first density value ⁇ 1 in the particle detection target space S2, that is, the first particle density distribution information to the second particle density calculation unit 25.
  • the second particle density calculation unit 25 uses the first particle density distribution information output by the first particle density calculation unit 24 to space the first density value ⁇ 1 calculated by the first particle density calculation unit 24. Average. As a result, the second particle density calculation unit 25 calculates the second density value ⁇ 2 in each of the plurality of second particle detection target regions A2. As described above, the individual second particle detection target region A2 is formed by spatially merging two or more corresponding first particle detection target regions A1 among the plurality of first particle detection target regions A1. Is.
  • FIG. 5 shows an example of the second density value ⁇ 2 in each of the 12 second particle detection target regions A2 when the 12 second particle detection target regions A2 are set.
  • each sphere shows a second density value ⁇ 2 in the corresponding second particle detection target region A2. That is, the darker the color of the sphere, the larger the second density value ⁇ 2 in the corresponding second particle detection target region A2.
  • the indoor unit 1 has a communication device 19.
  • the communication device 19 is composed of, for example, a transmitter and a receiver for wireless communication.
  • the communication device 19 can communicate with each of the ventilation device 300 and the air purifier 400.
  • the communication control unit 31 uses the communication device 19 to acquire information indicating the installation position of the ventilation device 300 in the air conditioning target space S1 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to acquire information indicating the installation position of the air purifier 400 in the air conditioning target space S1 by communication between the indoor unit 1 and the air purifier 400. .. Hereinafter, this information is collectively referred to as "installation position information".
  • the communication control unit 31 uses the communication device 19 to execute control for instructing the ventilation device 300 to start the operation of the ventilation device 300 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to execute control for instructing the air purifier 400 to start the operation of the air purifier 400 by communicating between the indoor unit 1 and the air purifier 400. .. Hereinafter, these controls are collectively referred to as "operation start instruction control".
  • the communication control unit 31 uses the communication device 19 to execute control for instructing the ventilation device 300 to stop the operation of the ventilation device 300 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to execute control for instructing the air purifier 400 to stop the operation of the air purifier 400 by communication between the indoor unit 1 and the air purifier 400. .. Hereinafter, these controls are collectively referred to as "operation stop instruction control".
  • the blast control unit 23 uses the second particle density distribution information output by the second particle density calculation unit 25 to set the detection target particles in the air conditioning target space S1 into a predetermined region (hereinafter referred to as “particle guidance target region””. ) Execute the ventilation control for guiding to A4 (hereinafter referred to as “particle induction blowing control”).
  • particle guidance target region a predetermined region
  • A4 a predetermined region
  • the ventilation control unit 23 compares the second density value ⁇ 2 in each second particle detection target region A2 with the predetermined threshold value ⁇ th2. As a result, the blower control unit 23 determines whether or not the particle induction blower control needs to be executed.
  • the blower control unit 23 needs to execute the blower control for particle guidance. Is determined to be.
  • the blower control unit 23 determines that the execution of the blower control for particle induction is unnecessary. ..
  • the threshold value ⁇ th2 is set in consideration of the influence of the detection target particles on the human body.
  • the threshold value ⁇ th2 may be set to a value equivalent to the threshold value ⁇ th1.
  • the communication control unit 31 acquires the installation position information and executes the operation start instruction control. Further, the blast control unit 23 starts the blast control for particle induction as follows.
  • the blast control unit 23 has a wind direction value (hereinafter referred to as "first wind direction value”) with respect to the azimuth direction in each of a plurality of regions (hereinafter referred to as “unit regions”) A5 in the air conditioning target space S1.
  • first wind direction value elevation wind direction value for the depression angle direction (hereinafter sometimes referred to as “second wind direction value”.)
  • theta M, and the wind speed V M model hereinafter referred to as "wind model”.
  • the blower control unit 23 stores in advance a plurality of wind direction and wind speed model tables T corresponding to the plurality of wind direction and wind speed models M.
  • the plurality of unit regions A5 are formed by dividing the air conditioning target space S1 into predetermined intervals in the x direction, the y direction, and the z direction.
  • FIG. 6 shows an example of a portion corresponding to a predetermined x-coordinate value in one wind direction wind speed model M among a plurality of wind direction wind speed models M.
  • each arrow of a plurality of white shows a wind vector D M in the corresponding unit region A5.
  • wind vector D M has an orientation which corresponds to the wind direction value [Phi M, theta M, and those having a size corresponding to the wind speed value V M.
  • the linear arrow indicates the air conditioning target space S1 when the blower control unit 23 executes the blower control by the blower directions ⁇ B , ⁇ B and the blower air volume V B corresponding to the one wind direction wind speed model M.
  • An example of the airflow AF generated inside is shown.
  • the ventilation control unit 23 uses the installation position information acquired by the communication control unit 31 to set a region (A4_1 in the figure) corresponding to the installation position of the ventilation device 300 in the particle guidance target region A4.
  • the region (A4_2 in the figure) corresponding to the installation position of the air purifier 400 is set as the particle induction target region A4.
  • the blow control unit 23 selects the wind direction / wind speed model M in which the airflows AF_1 and AF_2 that guide the particles to be detected (PM in the figure) to the particle guidance target regions A4_1 and A4_2 are generated from the plurality of wind direction / wind speed models M.
  • the blast control unit 23 uses the wind direction and speed model table T to execute blast control according to the blast directions ⁇ B , ⁇ B and the blast volume V B corresponding to the selected wind direction and speed model M.
  • the particles to be detected are guided to the particle induction target regions A4_1 and A4_2.
  • the detection target particles guided to the particle guidance target region A4-1 are discharged to the outside of the air conditioning target space S1 by the operating ventilation device 300.
  • the particles to be detected guided to the particle guidance target region A4-2 are removed by the operating air purifier 400.
  • the particle detection processing unit 26 executes the particle detection process at a predetermined time interval, and the air blow control unit 23 determines whether or not the particle guidance air blow control needs to be executed. When it is determined that the execution of the particle guiding blower control is necessary, the blower control unit 23 continues the particle guidance blower control. On the other hand, when it is determined that the execution of the particle guiding air blowing control is unnecessary, the air blowing control unit 23 ends the particle guiding air blowing control, and the communication control unit 31 executes the operation stop instruction control.
  • the main part of the control device 100 is composed of the blower control unit 23, the particle detection processing unit 26, and the communication control unit 31.
  • the main part of the indoor unit 1 is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100. There is.
  • the indoor unit 1 and the outdoor unit 2 form a main part of the air conditioner 200.
  • the control device 100 has a processor 41 and a memory 42.
  • the memory 42 stores a program for realizing the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31.
  • the processor 41 reads out and executes the stored program, the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized.
  • the control device 100 has a processing circuit 43.
  • the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized by the dedicated processing circuit 43.
  • control device 100 has a processor 41, a memory 42, and a processing circuit 43 (not shown).
  • a processor 41 some of the functions of the blower control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized by the processor 41 and the memory 42, and the remaining functions are realized by the dedicated processing circuit 43. Will be done.
  • the processor 41 is composed of one or a plurality of processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 42 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 42 is composed of one or more non-volatile memories and one or more volatile memories.
  • the individual volatile memories are, for example, those using RAM (Random Access Memory).
  • the individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small Memory Disk (Erasable Digital Disk) Drive) is used.
  • the processing circuit 43 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or a plurality of processing circuits.
  • the individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
  • control device 100 Next, with reference to the flowchart of FIG. 9, the operation of the control device 100 will be mainly described with particle detection processing, operation start instruction control, particle guidance ventilation control, and operation stop instruction control.
  • the rider 17 when the blower control unit 23 is executing the blower control for air conditioning, the rider 17 repeatedly scans the inside of the air conditioning target space S1. The rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D in each scan.
  • the particle detection processing unit 26 executes the processing of step ST1 when, for example, each scanning by the rider 17 is completed.
  • step ST1 the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again.
  • the particle detection processing unit 26 outputs the second particle density distribution information to the ventilation control unit 23.
  • step ST2 the blower control unit 23 determines whether or not the particle induction blower control needs to be executed by using the second particle density distribution information output by the particle detection processing unit 26. Since the specific example of the determination method by the blower control unit 23 is as described above, the description thereof will be omitted again.
  • step ST2 When it is determined that it is necessary to execute the particle guidance ventilation control (step ST2 “YES”), the communication control unit 31 executes the operation start instruction control in step ST3.
  • step ST4 the blower control unit 23 starts the blower control for particle guidance. Since the specific example of the blower control for particle induction is as described above, the description thereof will be omitted again. At this time, when the air-conditioning blower control is being executed, the air-conditioning control unit 23 may stop the air-conditioning blower control during the execution.
  • step ST4 After the particle induction ventilation control is started in step ST4, scanning by the rider 17 is repeatedly executed. When each scan by the rider 17 is completed, the process of step ST5 is executed.
  • step ST5 the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again.
  • the particle detection processing unit 26 outputs the second particle density distribution information to the ventilation control unit 23.
  • step ST6 the blower control unit 23 determines whether or not the particle induction blower control needs to be executed by using the second particle density distribution information output by the particle detection processing unit 26. Since the specific example of the determination method by the blower control unit 23 is as described above, the description thereof will be omitted again.
  • step ST6 “NO” When it is determined that the execution of the particle guiding air blow control is necessary (step ST6 “NO”), the particle guiding air blow control is continued. On the other hand, when it is determined that the execution of the particle guiding air blowing control is unnecessary (step ST6 “YES”), the air blowing control unit 23 ends the particle guiding air blowing control in step ST7. At this time, the air-conditioning control unit 23 may restart the air-conditioning air-conditioning control that was stopped at the timing of step ST2 “YES”. Next, in step ST8, the communication control unit 31 executes the operation stop instruction control.
  • the air conditioner 200 executes the particle detection process using the rider 17.
  • the lidar 17 for the particle detection process, it is possible to detect the particles to be detected in the region near the installation position of the indoor unit 1 at an early stage, and the particles to be detected in the region far from the installation position. Can be detected early.
  • the rider 17 for the particle detection process it is possible to detect the distribution state of the density value ⁇ in a wide range (for example, substantially the entire area) in the air conditioning target space S1.
  • the airflow AF suitable for removing the particles to be detected can be generated by using the wind direction and speed model table T. Specifically, for example, an airflow AF that guides the particles to be detected to the ventilation device 300 or the air purifier 400 can be generated.
  • the particle removal system 500 may not include the air purifier 400.
  • the region (A4-1 in the figure) corresponding to the installation position of the ventilation device 300 may be set in the particle induction target region A4.
  • the particle removal system 500 may not include the ventilation device 300.
  • the region (A4_2 in the figure) corresponding to the installation position of the air purifier 400 may be set in the particle induction target region A4.
  • a different wind direction and speed model M may be selected for each type of particles to be detected.
  • This viscosity has sense target particles, the weight of the molecules contained in the detection target particles, and depending on the size of the molecules contained in the detection target particles, wind velocity V M required for the induction of the detection target particles (i.e. detection This is because the amount of air blown air V B ) required to guide the target particles may differ.
  • At least a part of the wind direction and wind speed models M among the plurality of wind direction and wind speed models M may use a trained model by so-called "machine learning”.
  • the particle detection processing unit 26 may not have the second particle density calculation unit 25. In this case, the particle detection processing unit 26 may output the first particle density distribution information to the ventilation control unit 23.
  • the blower control unit 23 uses the first density value ⁇ 1 instead of the second density value ⁇ 2 to determine whether or not the particle guide blower control needs to be executed, and even if the particle guide blower control is executed. good.
  • a model of wind direction values ⁇ M and ⁇ M in each of the plurality of unit regions A5 (hereinafter referred to as “wind direction model”) M'and this.
  • a table (hereinafter referred to as "wind direction model table”) T'showing the correspondence between the blowing directions ⁇ B and ⁇ B for realizing the wind direction model M' may be stored in advance.
  • the blowing directions ⁇ B and ⁇ B in the particle guiding blowing control are set to the values corresponding to the selected wind direction model M', while the blowing air volume V B in the particle guiding blowing control is the air conditioning blowing control. It may be set to the same value as the air volume V B in .
  • the method of controlling the air volume V B by the air volume control unit 22 is not limited to the method of controlling the rotation speed of the rotor in the drive motor 16.
  • the indoor unit 1 may have a damper (not shown) for adjusting the air volume.
  • the blast air volume control unit 22 may control the blast air volume V B by controlling the damper, that is, by changing the duct resistance curve.
  • the air conditioner 200 may be any device for air conditioning and is not limited to the air conditioner.
  • the air conditioner 200 may be composed of a fan, a blower, or an air duct device.
  • the particle removal system 500 may include a plurality of air conditioners 200.
  • the blower control for particle guidance by the selected wind direction and speed model M may be realized by coordinating the plurality of air conditioners 200. As a result, it is possible to realize the blowing control for particle guidance by the complicated wind direction and speed model M.
  • the air conditioner 200 uses the rider 17 to set the density value ⁇ and the particle detection processing unit 26 for calculating the density value ⁇ of the detection target particles in the air conditioning target space S1. It is provided with a ventilation control unit 23 for controlling the ventilation directions ⁇ B and ⁇ B with respect to the air conditioning target space S1.
  • a ventilation control unit 23 for controlling the ventilation directions ⁇ B and ⁇ B with respect to the air conditioning target space S1.
  • the particle detection processing unit 26 spatially averages the first particle density calculation unit 24 for calculating the first density value ⁇ 1 in each of the plurality of first particle detection target regions A1 and the first density value ⁇ 1.
  • the second particle density calculation unit 25 for calculating the second density value ⁇ 2 in each of the plurality of second particle detection target regions A2 is provided, and the ventilation control unit 23 sets the second density value ⁇ 2. It is used to control the ventilation directions ⁇ B and ⁇ B.
  • the second density value ⁇ 2 it is possible to stabilize the detection of the particles to be detected as compared with the case where the first density value ⁇ 1 is used.
  • the processing load of the blower control unit 23 can be reduced.
  • blower control unit 23 controls the blower air volume V B with respect to the blower directions ⁇ B , ⁇ B and the air conditioning target space S1 by using the density value ⁇ .
  • the particle detection processing unit 26 spatially averages the first particle density calculation unit 24 for calculating the first density value ⁇ 1 in each of the plurality of first particle detection target regions A1 and the first density value ⁇ 1.
  • the second particle density calculation unit 25 for calculating the second density value ⁇ 2 in each of the plurality of second particle detection target regions A2 is provided, and the ventilation control unit 23 sets the second density value ⁇ 2. It is used to control the ventilation direction ⁇ B , ⁇ B and the ventilation air volume V B.
  • the second density value ⁇ 2 it is possible to stabilize the detection of the particles to be detected as compared with the case where the first density value ⁇ 1 is used.
  • the processing load of the blower control unit 23 can be reduced.
  • the ventilation control unit 23 guides the detection target particles to the particle guidance target region A4 in the air conditioning target space S1 by controlling the ventilation directions ⁇ B and ⁇ B. Thereby, for example, the particles to be detected can be guided to the region corresponding to the installation position of the ventilation device 300 or the region corresponding to the installation position of the air purifier 400.
  • the blast control unit 23 guides the particles to be detected to the particle guidance target region A4 in the air conditioning target space S1 by controlling the blast directions ⁇ B , ⁇ B and the blast air volume V B. Thereby, for example, the particles to be detected can be guided to the region corresponding to the installation position of the ventilation device 300 or the region corresponding to the installation position of the air purifier 400.
  • the ventilation control unit 23 sets the region corresponding to the installation position of the ventilation device 300 in the air conditioning target space S1 to the particle guidance target region A4. As a result, it is possible to realize the removal of the detection target particles by the ventilation device 300.
  • blower control unit 23 sets the region corresponding to the installation position of the air purifier 400 in the air conditioning target space S1 to the particle guidance target region A4. As a result, it is possible to realize the removal of the particles to be detected by the air purifier 400.
  • the particle removal system 500 includes an air conditioner 200 and a ventilation device 300. As a result, it is possible to realize the removal of the detection target particles by the ventilation device 300.
  • the particle removal system 500 includes an air conditioner 200 and an air purifier 400. As a result, it is possible to realize the removal of the particles to be detected by the air purifier 400.
  • control method according to the first embodiment is a control method of the air conditioner 200, in which the particle detection processing unit 26 uses the rider 17 to set the density value ⁇ of the detection target particles in the air conditioning target space S1. After calculation, the ventilation control unit 23 controls the ventilation directions ⁇ B and ⁇ B with respect to the air conditioning target space S1 by using the density value ⁇ . Thereby, the same effect as the above effect by the air conditioner 200 can be obtained.
  • FIG. 14 is a block diagram showing a main part of the particle removal system including the air conditioner according to the second embodiment.
  • FIG. 15 is a block diagram showing a main part of the indoor unit of the air conditioner according to the second embodiment.
  • a particle removal system including an air conditioner according to a second embodiment will be described with reference to FIGS. 14 and 15.
  • FIG. 14 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 15, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the main part of the particle removal system 500a is composed of the air conditioner 200a, the ventilation device 300, and the air purifier 400.
  • the rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning in the air-conditioning target space S1.
  • the rider 17 is subjected to the scanning at a point corresponding to at least one distance value Z (i) in each of the plurality of line-of-sight directions D (hereinafter referred to as “wind measurement target point”) Pr.
  • the wind speed value for the line-of-sight direction D (hereinafter referred to as "line-of-sight direction wind speed value”) Vr is acquired.
  • the rider 17 outputs information including the angle values ⁇ and ⁇ and the line-of-sight direction wind speed value Vr (hereinafter referred to as “line-of-sight direction wind speed information”) to the wind measurement processing unit 29.
  • the wind measurement processing unit 29 uses the line-of-sight direction wind speed information output by the rider 17 to azimuth angles in each of the N regions (hereinafter referred to as “wind measurement target regions”) A6 in the air conditioning target space S1.
  • the wind direction value (that is, the first wind direction value) ⁇ L with respect to the direction
  • the wind direction value (that is, the second wind direction value) ⁇ L with respect to the elevation / depression angle direction
  • the wind speed value VL are calculated.
  • Each of the N wind measurement target areas A6 is, for example, an area surrounded by the corresponding M wind measurement target points Pr among the plurality of wind measurement target points Pr.
  • N is an arbitrary integer of 2 or more
  • M is an arbitrary integer of 3 or more.
  • the wind measurement processing unit 29 is composed of the wind direction value calculation unit 27 that calculates the wind direction values ⁇ L and ⁇ L , and the wind speed value calculation unit 28 that calculates the wind speed value VL .
  • the process in which the wind direction value calculation unit 27 calculates the wind direction values ⁇ L and ⁇ L and the process in which the wind speed value calculation unit 28 calculates the wind speed value VL are collectively referred to as “wind measurement process”.
  • _n may be added to each code related to the nth wind measurement target area A6 of the N wind measurement target areas A6 (1 ⁇ n ⁇ N).
  • _n_m may be added to each code related to the mth wind measurement target point Pr among the M wind measurement target points Pr corresponding to the nth wind measurement target area A6 (1 ⁇ m ⁇ ). M).
  • the rider 17 emits laser light in each of the line-of-sight direction D_1, which corresponds to the angle values ⁇ _1 and ⁇ _1, the line-of-sight direction D_1, which corresponds to the angle values ⁇ _1, and ⁇ _1, and the line-of-sight direction D_1, which corresponds to the angle values ⁇ _1, and ⁇ _1.
  • L is output.
  • the three wind speed values in the line-of-sight direction Vr_1_1, Vr_1_2, and Vr_1_3 at the three wind measurement target points Pr_1, Pr_1_2, and Pr_1_3 are acquired, respectively.
  • Vu is a wind speed value in the x direction at the corresponding wind measurement target point Pr.
  • Vv is a wind speed value in the y direction at the corresponding wind measurement target point Pr.
  • Vw is a wind speed value in the z direction at the corresponding wind measurement target point Pr.
  • Vr Vu ⁇ sin ⁇ ⁇ cos ⁇ + Vv ⁇ cos ⁇ ⁇ cos ⁇ + Vw ⁇ sin ⁇ (4)
  • the wind measurement processing unit 29 calculates the wind speed values Vu_1, Vv_1, Vw_1 in the first wind measurement target region A6_1 by solving this ternary simultaneous equation.
  • the first wind measurement target area A6_1 is an area surrounded by three wind measurement target points Pr_1_1, Pr_1_2, and Pr_1-3.
  • the wind direction value calculation unit 27 calculates the wind direction value ⁇ L in the first wind measurement target region A6-1 by the following formula (5) using the wind speed values Vu_1 and Vv_1 calculated by the above formula (4). To do. Further, the wind direction value calculation unit 27 uses the wind speed values Vu_1, Vv_1, Vw_1 calculated by the above equation (4), and the wind direction value ⁇ L in the first wind measurement target region A6_1 by the following equation (6). Is calculated. Moreover, wind speed value calculation unit 28, the equation (4) wind velocity values calculated by Vu_1, Vv_1, using VW_1, the following equation (7), the wind speed value in the first wind measurement target region A6_1 V L Is calculated.
  • wind direction value [Phi L, theta L and wind speed V L is calculated in the wind measurement target region A6_N of the N (see FIG. 17).
  • the wind direction value calculation unit 27 considers that the wind direction and the wind speed in each wind measurement target area A6 are uniform, and the wind direction values ⁇ L , ⁇ L and the wind speed value V in each wind measurement target area A6. L is calculated. Therefore, it is preferable to set the size of each wind measurement target region A6 to a value small enough to be considered to have uniform wind direction and speed in each wind measurement target region A6.
  • the difference value between each of the two angle values ⁇ _n among the M angle values ⁇ _n_1 to ⁇ _n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target region A6_n. .. Further, the difference value between each of the two angle values ⁇ _n among the M angle values ⁇ _n_1 to ⁇ _n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target region A6_n. ..
  • the blast control unit 23a executes blast control for air conditioning and blast control for particle induction.
  • the wind direction wind speed model M selected from the plurality of wind direction wind speed models M is used for the air blow control for particle guidance.
  • the selected wind direction / wind speed model M is referred to as a “selected wind direction / wind speed model”.
  • the wind direction / wind speed model table T corresponding to the selected wind direction / wind speed model M is referred to as a “selected wind direction / wind speed model table”.
  • the blower control unit 23a the wind direction value calculated by the wind measurement processing unit 29 [Phi L, using a theta L and wind speed value V L, the blowing direction [Phi B indicated by selecting Wind model table T, theta B and against blowing air volume V B, and has a function to correct the blowing direction ⁇ B, ⁇ B and the blower air volume V B of the air blow control particle induction (i.e. corrected).
  • the blower direction control unit 21a controls to correct the first blower direction ⁇ B
  • the blower direction control unit 21a controls to correct the second blower direction ⁇ B
  • the blower air volume control unit 22a corrects the blower air volume V B.
  • the control is collectively called "correction control”. Specific examples of correction control are as follows.
  • the blowing direction control unit 21a includes a first wind direction value [Phi L in each wind measurement target region A6, the difference value [Phi E between the first wind direction value [Phi M in the corresponding unit region A5 in selective Wind model M calculate.
  • N difference values ⁇ E corresponding to N wind measurement target regions A6 on a one-to-one basis are calculated.
  • blowing direction control unit 21a a second wind direction values in individual wind measurement target region A6 theta L, the difference value theta E and the second wind direction value theta M in the corresponding unit region A5 in selective Wind model M calculate.
  • N difference values ⁇ E corresponding one-to-one with the N wind measurement target regions A6 are calculated.
  • blowing air volume control unit 22a calculates the wind velocity value V L in the individual wind measurement target region A6, the difference value V E of the wind speed V M at the corresponding unit area A5 in selective Wind model M.
  • the N differential values V E corresponding one-to-one with the N wind measurement target region A6 is calculated.
  • the air blowing direction control section 21a At least one of the difference values of the N difference values [Phi E (hereinafter referred to as "comparative difference value”.) Compare [Phi E with a predetermined threshold Faith.
  • the comparison difference value ⁇ E is, for example, the largest difference value ⁇ E among the N difference values ⁇ E.
  • the ventilation direction control unit 21a calculates an RMS (Root Mean Square) error ⁇ RMSE based on N difference values ⁇ E , and compares the calculated RMS error ⁇ RMSE with a predetermined threshold value ⁇ th.
  • the ventilation direction control unit 21a determines that the first ventilation direction ⁇ B needs to be corrected. On the other hand, when the comparison difference value ⁇ E or the RMS error ⁇ RMSE is less than the threshold value ⁇ th, the ventilation direction control unit 21a determines that the correction of the first ventilation direction ⁇ B is unnecessary.
  • blowing direction control section 21a at least one of the difference values of the N difference values theta E (hereinafter referred to as "comparative difference value”.)
  • the theta E with a predetermined threshold value .theta.TH.
  • the comparison difference value ⁇ E is, for example, the largest difference value ⁇ E among the N difference values ⁇ E.
  • blowing direction control unit 21a calculates the RMS error theta RMSE by the N difference values theta E, compare the RMS error theta RMSE, which is the calculated to a predetermined threshold value .theta.TH.
  • blowing direction control unit 21a determines that the second blowing direction ⁇ B needs to be corrected.
  • blowing direction control unit 21a determines that the second blowing direction theta B correction is not required.
  • blowing air volume control section 22a at least one of the difference values of the N difference values V E (hereinafter referred to as "comparative difference value”.) Compare V E with a predetermined threshold Vth. Comparative difference value V E is, for example, the largest difference value V E of the N difference values V E. Or, blow air volume control unit 22a calculates the RMS error V RMSE by the N difference values V E, compare the RMS error V RMSE, which is the calculated to a predetermined threshold value Vth. If the comparison difference value V E or RMS error V RMSE is equal to or greater than the threshold Vth, blowing air volume control unit 22a determines that the correction of the blowing air volume V B is essential. On the other hand, when the comparison difference value V E or RMS error V RMSE is smaller than the threshold value Vth, blowing air volume control unit 22a determines that the correction of the blowing air volume V B is not required.
  • the blowing direction control unit 21a receives at least one of the N difference values ⁇ E (hereinafter referred to as “correction difference value”). .) Calculate the correction value ⁇ C according to ⁇ E.
  • the correction difference value ⁇ E is, for example, the largest difference value ⁇ E among the N difference values ⁇ E. Airflow direction control unit 21a on the basis of the correction value [Phi C which is the calculated, corrected for the first blowing direction [Phi B indicated by selecting Wind model table T, the first blowing direction [Phi B in blast control particles derived To do.
  • the blowing direction control unit 21a sends the difference value of at least one of the N difference values ⁇ E (hereinafter, “correction difference value”). ”.) Calculate the correction value ⁇ C according to ⁇ E.
  • the correction difference value ⁇ E is, for example, the largest difference value ⁇ E among the N difference values ⁇ E.
  • Airflow direction control unit 21a based on the correction value theta C which is the calculated, corrected for the second blowing direction theta B indicated by selecting Wind model table T, a second blowing direction theta B in the particle-induced blower control To do.
  • blowing air volume control section 22a if the correction of the blowing air volume V B is determined to be needed, blowing air volume control section 22a, at least one of the difference values of the N difference values V E (hereinafter referred to as "correction difference value” .) and calculates a correction value V C corresponding to V E.
  • Correction difference value V E is, for example, the largest difference value V E of the N difference values V E.
  • Blowing air volume control unit 22a based on the correction value V C, which is the calculated, relative to the blowing air volume V B indicated selection Wind model table T, corrects the blowing air volume V B of the air blow control particle induction.
  • Respect wind direction and wind speed of the air-conditioning target space S1, the installation situation of furniture within the air-conditioning target space S1, the target value (i.e. ⁇ M, ⁇ M, V M ) measured values for (i.e. ⁇ L, ⁇ L, An error of VL ) may occur.
  • the error can be reduced by executing the correction control by the blower control unit 23a.
  • the accuracy of induction by the blower control for particle induction can be improved.
  • the rider 17 may scan the air conditioning target space S1 a plurality of times during the execution of the particle guidance ventilation control, and the wind measurement process and the correction control may be executed a plurality of times. Thereby, the above error can be gradually reduced. That is, the correction control may be by so-called "feedback control".
  • the main part of the control device 100a is composed of the air blow control unit 23a, the particle detection processing unit 26, the wind measurement processing unit 29, and the communication control unit 31.
  • the main part of the indoor unit 1a is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100a.
  • the indoor unit 1a and the outdoor unit 2 form a main part of the air conditioner 200a.
  • the functions of the air blow control unit 23a, the particle detection processing unit 26, the wind measurement processing unit 29, and the communication control unit 31 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be realized.
  • control device 100a Next, with reference to the flowchart of FIG. 18, the operation of the control device 100a will be described focusing on the wind measurement process and the correction control.
  • the rider 17 repeatedly scans the air conditioning target space S1 during the execution of the particle induction ventilation control, that is, between steps ST4 and ST7 shown in FIG. During the execution of the particle guidance blower control, the wind measurement process and the correction control are repeatedly executed according to the scanning by the rider 17.
  • step ST11 the wind measurement processing unit 29 executes the wind measurement processing. Since the specific example of the wind measurement process is as described above, the description thereof will be omitted again.
  • wind direction value [Phi L in each of the N wind measurement target region A6, theta L and wind speed V L is calculated.
  • the blowing direction control unit 21a uses the first wind direction value [Phi L of N calculated by the wind measurement process in step ST11, determines the necessity of the first blowing direction [Phi B fixes To do. Further, at step ST13, the blowing direction control unit 21a uses the second wind direction value theta L of N calculated by the wind measurement process in step ST11, determines the necessity of the second blowing direction theta B fixes To do. Further, in step ST14, the blast air volume control unit 22a determines whether or not the blast air volume V B needs to be corrected by using the N wind speed values VL calculated by the wind measurement process in step ST11. Since specific examples of these determination methods are as described above, the description thereof will be omitted again.
  • step ST15 the air blowing direction control unit 21a is the first indicated by the selected wind direction wind speed model table T in step ST4. relative airflow direction [Phi B, modifying the first blowing direction [Phi B in blast control particles induction.
  • step ST12 “NO” the processing of step ST15 is skipped.
  • step ST16 when it is determined that the correction of the second blowing direction ⁇ B is necessary (step ST13 “YES”), in step ST16, the blowing direction control unit 21a is shown by the selected wind direction and wind speed model table T in step ST4.
  • the second blowing direction ⁇ B in the particle guiding blowing control is modified with respect to the second blowing direction ⁇ B.
  • step ST13 “NO” when it is determined that the correction of the second blowing direction ⁇ B is unnecessary (step ST13 “NO”), the processing of step ST16 is skipped.
  • step ST17 the air volume control unit 22a uses the air volume control unit 22a to indicate the air volume indicated by the selected wind direction and speed model table T in step ST4.
  • V B the air volume V B in the air blow control for particle induction is corrected.
  • step ST14 “NO” the process of step ST17 is skipped.
  • the ventilation control unit 23a executes the correction control. Since the specific example of the correction control is as described above, the description thereof will be omitted again.
  • blowing direction control unit 21a instead of the RMS error [Phi RMSE, may be configured to compare the average value of N difference values [Phi E with a predetermined threshold Faith.
  • Airflow direction control unit 21a instead of the RMS error theta RMSE, may be configured to compare the average value of N difference values theta E with a predetermined threshold .theta.TH.
  • Blowing air volume control unit 22a instead of the RMS error V RMSE, may be configured to compare the average value of N difference values V E with a predetermined threshold Vth.
  • the correction control may be intended only for the ventilation directions ⁇ B and ⁇ B. That is, the air volume V B may be excluded from the target of correction control. In this case, it is not necessary to calculate the wind speed value VL in the wind measurement process. Further, the processing of steps ST14 and ST17 shown in FIG. 18 is unnecessary. However, from the viewpoint of improving the accuracy of guidance by the blower control for particle guidance, it is more preferable to include the blower air volume V B in the correction control target.
  • the correction control may be intended only for the first blowing direction ⁇ B. That is, the second blowing direction ⁇ B and the blowing air volume V B may be excluded from the target of the correction control.
  • the term of Vw ⁇ sin ⁇ in the above equation (4) is unnecessary.
  • the ventilation control unit 23a uses the second particle density distribution information output by the second particle density calculation unit 25 to use the region in which the high-density detection target particles exist (that is, the second density value ⁇ 2 having a threshold value ⁇ th2 or more).
  • the region corresponding to the second particle detection target region A2 having the above) may be set in the wind measurement target region A6.
  • the rider 17 may be configured by a pulse type Doppler lidar.
  • the rider 17 outputs the laser beam L in one line-of-sight direction D
  • the line-of-sight direction wind speed value Vr at each of the plurality of wind measurement target points Pr arranged along the line-of-sight direction D is acquired. can do. Therefore, as shown in FIG. 19, a plurality of wind measurement target regions A6 arranged along the line-of-sight direction D can be set at one time.
  • the air conditioner 200a can employ various modifications similar to those described in the first embodiment. Further, as the particle removing system 500a, various modifications similar to those described in the first embodiment can be adopted.
  • the air conditioner 200a includes a wind measurement processing unit 29 that calculates the wind direction values ⁇ L and ⁇ L in the air harmonization target space S1 by using the rider 17, and is a blow control unit.
  • 23a controls the blowing directions ⁇ B and ⁇ B by using the density value ⁇ and the wind direction values ⁇ L and ⁇ L.
  • the correction control for the blowing directions ⁇ B and ⁇ B can improve the accuracy of guidance by the blowing control for particle guidance.
  • the air conditioner 200a using the rider 17, with the wind measurement processing unit 29 for calculating the air-conditioning target space S1 wind direction value [Phi L, a theta L and wind speed value V L, the blower control unit 23a, the density
  • the blowing direction ⁇ B , ⁇ B and the blowing air volume V B are controlled by using the value ⁇ , the wind direction value ⁇ L , ⁇ L, and the wind speed value VL .
  • FIG. 20 is a block diagram showing a main part of the particle removal system including the air conditioner according to the third embodiment.
  • FIG. 21 is a block diagram showing a main part of the indoor unit of the air conditioner according to the third embodiment.
  • a particle removal system including an air conditioner according to a third embodiment will be described with reference to FIGS. 20 and 21.
  • FIG. 20 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 21, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the main part of the particle removal system 500b is composed of the air conditioner 200b, the ventilation device 300, and the air purifier 400.
  • the rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning in the air-conditioning target space S1.
  • the rider 17 acquires so-called "intensity image” and "distance image” by the scanning.
  • Each pixel in the intensity image indicates an intensity value (for example, reception intensity P) of a received signal obtained by outputting the laser beam L in the line-of-sight direction D corresponding to the pixel.
  • Each pixel in the distance image indicates a distance value obtained by outputting the laser beam L in the line-of-sight direction D corresponding to the pixel.
  • the rider 17 outputs image information indicating the acquired intensity image (hereinafter referred to as “intensity image information”) and image information indicating the acquired distance image (hereinafter referred to as “distance image information”). ..
  • the images acquired by the rider 17 may be collectively referred to as “rider images”.
  • the object detection processing unit 30 executes a process of detecting an object O in the air harmonized target space S1 (hereinafter referred to as “object detection process”) using the intensity image information and the distance image information output by the rider 17. Is.
  • object detection process a process of detecting an object O in the air harmonized target space S1 (hereinafter referred to as “object detection process”) using the intensity image information and the distance image information output by the rider 17.
  • object detection process includes, for example, a person and furniture. Specific examples of the object detection process are as follows.
  • the object O is a so-called "hard target”. Therefore, first, the object detection processing unit 30 extracts the pixel group corresponding to the hard target in the rider image by executing the threshold value processing on the intensity image.
  • the intensity value of each pixel included in the pixel group corresponding to a hard target is one of about 104 times larger than the intensity values of other pixels. Therefore, by executing the threshold processing on the intensity image, the pixel group corresponding to the hard target in the rider image can be extracted.
  • the object detection processing unit 30 is based on the coordinate values of the extracted pixel group in the rider image and the distance value of the extracted pixel group in the distance image, and the three-dimensional position of each object O in the air conditioning target space S1. Is calculated. That is, by using the distance image in addition to the intensity image, it is possible to calculate the position of the object O in the x direction and the z direction, as well as the position of the object O in the y direction.
  • the object detection processing unit 30 determines whether or not the extracted pixel group corresponds to a person by executing pattern matching processing on the intensity image or the distance image. As a result, it is determined whether or not each object O is a person. Further, the object detection processing unit 30 determines whether or not the extracted pixel group corresponds to furniture by executing pattern matching processing on the intensity image or the distance image. As a result, it is determined whether or not each object O is furniture.
  • the object detection processing unit 30 outputs information indicating the result of the object detection processing (hereinafter referred to as “object detection result information”) to the ventilation control unit 23.
  • object detection result information information indicating the result of the object detection processing
  • the blast control unit 23 uses the object detection result information output by the object detection processing unit 30 for the particle guidance blast control. More specifically, the blower control unit 23 uses the output object detection result information for selecting the wind direction and speed model M.
  • the object detection processing unit 30 selects a wind direction and speed model M capable of realizing an airflow AF that avoids the person in the particle guidance ventilation control.
  • the person (FIG. 22) is controlled by blowing air for particle guidance based on the wind direction wind speed model table (that is, the selected wind direction wind speed model table) T corresponding to the selected wind direction wind speed model (that is, the selected wind direction wind speed model) M.
  • Airflow AF that avoids medium H
  • the object detection processing unit 30 selects the wind direction wind speed model M capable of realizing the airflow AF that avoids the furniture in the airflow control for particle guidance.
  • the furniture (FIG. 22) is controlled by blowing air for particle guidance based on the wind direction wind speed model table (that is, the selected wind direction wind speed model table) T corresponding to the selected wind direction wind speed model (that is, the selected wind direction wind speed model) M.
  • An airflow AF that avoids middle F) is generated. As a result, it is possible to prevent the particles to be detected (PM in the figure) from adhering to the furniture.
  • the main part of the control device 100b is composed of the blast control unit 23, the particle detection processing unit 26, the object detection processing unit 30, and the communication control unit 31.
  • the main part of the indoor unit 1b is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100b. There is.
  • the indoor unit 1b and the outdoor unit 2 form a main part of the air conditioner 200b.
  • the functions of the blower control unit 23, the particle detection processing unit 26, the object detection processing unit 30, and the communication control unit 31 may be realized by the processor 41 and the memory 42, or may be realized by the dedicated processing circuit 43. It may be realized.
  • FIG. 23 the operation of the control device 100b will be described focusing on particle detection processing, operation start instruction control, object detection processing, and air blow control for particle guidance.
  • the same steps as those shown in FIG. 9A are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST1 the processes of steps ST1 and ST2 are executed. If it is determined that step ST2 is “YES”, the process of step ST3 is executed.
  • step ST21 the object detection processing unit 30 executes the object detection process. Since the specific example of the object detection process is as described above, the description thereof will be omitted again.
  • the object detection processing unit 30 outputs the object detection result information to the ventilation control unit 23.
  • step ST4a the blower control unit 23 starts the blower control for particle guidance.
  • the blast control unit 23 uses the object detection result information output by the object detection processing unit 30 to select the wind direction and speed model M. Since the specific example of the blower control for particle induction is as described above, the description thereof will be omitted again.
  • step ST4a After the particle induction ventilation control is started in step ST4a, the processes of steps ST5 to ST8 are executed. Since these processes are the same as those described with reference to FIG. 9B in the first embodiment, illustration and description thereof will be omitted.
  • the object O to be detected by the object detection process is not limited to people and furniture.
  • the object detection processing unit 30 may detect a wall in the air-conditioning target space S1 and also detect an open window in the wall by executing the object detection process.
  • the use of the object detection result information is not limited to the selection of the wind direction and wind speed model M.
  • the ventilation control unit 23 may use the object detection result information for setting the particle guidance target region A4.
  • the main part of the particle removal system 500b may be configured by the air conditioner 200b.
  • the particle removal system 500b may not include the ventilation device 300, and the particle removal system 500b may not include the air purifier 400.
  • the ventilation control unit 23 sets the region (A4_3 in the figure) corresponding to the open window (OW in the figure) to the particle guidance target region A4 by using the object detection result information. It may be a thing.
  • control device 100b may have a wind measurement processing unit 29. Further, the control device 100b may have a blast control unit 23a instead of the blast control unit 23. In this case, the blower control unit 23a may use the object detection result information for selecting the wind direction and speed model M and the like.
  • the camera 18 may be provided in the indoor unit 1b.
  • the camera 18 images the inside of the air-conditioning target space S1.
  • the object detection processing unit 30 may use an image captured by the camera 18 (hereinafter referred to as “camera image”) for the object detection processing instead of the rider image.
  • the camera 18 is composed of a stereo camera or a monocular camera.
  • the distance between the camera 18 and the object O can be measured using the camera image.
  • the position of the object O with respect to the y direction can be calculated.
  • the camera 18 is composed of a monocular camera, the distance between the camera 18 and the object O can be measured by using the result of so-called "machine learning" in addition to using the camera image. As a result, the position of the object O with respect to the y direction can be calculated.
  • the object detection processing unit 30 may use the camera image for the object detection processing in addition to the rider image. By increasing the types of images used in the object detection process, the accuracy of the object detection process can be improved.
  • the particle detection processing unit 26 uses the object detection result information to set a region corresponding to the position of a person in the air harmonization target space S1 as a region to be subject to particle detection processing (that is, a first particle detection target region A1). And may be set in the second particle detection target area A2). As a result, the density value ⁇ in the region corresponding to the position of the person concerned can be calculated.
  • the wind measurement processing unit 29 uses the object detection result information to create a region corresponding to the position of a person in the air conditioning target space S1. It may be set in the area to be measured (that is, the wind measurement target area A6). Thus, it is possible to calculate the wind direction value [Phi L, theta L and wind speed value V L in the region corresponding to the position of the person.
  • a region within a predetermined range for example, a range with a radius of 1 meter
  • a predetermined range for example, a range with a radius of 1 meter
  • the air conditioner 200b can employ various modifications similar to those described in the first and second embodiments.
  • the air blow control for particle induction may be intended only for the air blow directions ⁇ B and ⁇ B.
  • the wind measurement process may be intended only for the wind direction values ⁇ L and ⁇ L.
  • the correction control may be intended only for the ventilation directions ⁇ B and ⁇ B.
  • the air conditioner 200b uses the rider 17 or the camera 18 to calculate the position of the object O in the air conditioning target space S1 and the object detection processing unit for discriminating the object O.
  • the blower control unit 23 or the blower control unit 23a controls the blower directions ⁇ B and ⁇ B based on the calculation result and the determination result by the object detection processing unit 30.
  • the airflow AF avoiding people and furniture can be generated in the air conditioning target space S1.
  • the airflow control unit 23 or the airflow control unit 23a controls the airflow directions ⁇ B and ⁇ B to detect the particles to be detected.
  • An airflow AF that avoids the object O is generated. As a result, it is possible to prevent the particles to be detected from being inhaled by a person. In addition, it is possible to prevent the particles to be detected from adhering to the furniture.
  • the air conditioner 200b includes an object detection processing unit 30 that calculates the position of the object O in the air conditioning target space S1 and discriminates the object O by using the rider 17 or the camera 18, and is provided with the blower control unit 23 or
  • the blower control unit 23a controls the blower directions ⁇ B , ⁇ B and the blower air volume V B based on the calculation result and the determination result by the object detection processing unit 30.
  • the airflow AF avoiding people and furniture can be generated in the air conditioning target space S1.
  • the airflow control unit 23 or the airflow control unit 23a controls the airflow directions ⁇ B , ⁇ B and the airflow amount V B.
  • the particles to be detected generate an airflow AF that avoids the object O. As a result, it is possible to prevent the particles to be detected from being inhaled by a person. In addition, it is possible to prevent the particles to be detected from adhering to the furniture.
  • blower control unit 23 or the blower control unit 23a sets the region corresponding to the open window in the air conditioning target space S1 to the particle guidance target region A4. As a result, the ventilation device 300 and the air purifier 400 in the particle removal system 500b can be eliminated.
  • FIG. 29 is a block diagram showing a main part of the particle removal system including the air conditioner according to the fourth embodiment.
  • FIG. 30 is a block diagram showing a main part of the indoor unit of the air conditioner according to the fourth embodiment.
  • a particle removal system including an air conditioner according to a fourth embodiment will be described with reference to FIGS. 29 and 30.
  • FIG. 29 the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 30, the same reference numerals are given to blocks similar to the blocks shown in FIG. 2, and the description thereof will be omitted.
  • the main part of the particle removal system 500c is composed of the air conditioner 200c, the ventilation device 300, and the air purifier 400.
  • the indoor unit 1c is provided with the ultraviolet irradiation device 20.
  • the ultraviolet irradiation device 20 irradiates the inside of the air conditioning target space S1 with ultraviolet rays.
  • the ultraviolet irradiation port by the ultraviolet irradiation device 20 is provided, for example, on the front surface of the indoor unit 1c.
  • the ultraviolet irradiation device 20 has a variable ultraviolet irradiation direction.
  • the ultraviolet irradiation control unit 32 acquires the second particle density distribution information output by the second particle density calculation unit 25. Based on the acquired second particle density distribution information, the ultraviolet irradiation control unit 32 uses the ultraviolet irradiation device 20 to form a region having a second density value ⁇ 2 equal to or higher than the threshold value ⁇ th2 in the air harmonization target space S1, that is, air harmony. Control of irradiating the region where the detection target particles exist in the target space S1 with ultraviolet rays (hereinafter referred to as “ultraviolet irradiation control”) is executed.
  • the ultraviolet irradiation control unit 32 sets the amount of ultraviolet rays irradiated by the ultraviolet irradiation device 20 based on the amount of energy at which the survival probability is equal to or less than a predetermined value.
  • the ultraviolet irradiation control unit 32 sets the irradiation direction of the ultraviolet rays by the ultraviolet irradiation device 20 in the direction in which the ultraviolet rays are irradiated to the region having the second density value ⁇ 2 of the threshold value ⁇ th2 or more based on the second particle density distribution information. To do.
  • the ultraviolet irradiation device 20 irradiates ultraviolet rays in the set irradiation direction at the set irradiation amount. Bacteria, viruses, molds, etc. among the particles detected by the particle detection process can be inactivated by irradiating the ultraviolet rays.
  • the main part of the control device 100c is composed of the ventilation control unit 23, the particle detection processing unit 26, the communication control unit 31, and the ultraviolet irradiation control unit 32.
  • the indoor unit 1c is required by the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, the ultraviolet irradiation device 20, and the control device 100c.
  • the part is composed.
  • the indoor unit 1c and the outdoor unit 2 form a main part of the air conditioner 200c.
  • the functions of the ventilation control unit 23, the particle detection processing unit 26, the communication control unit 31, and the ultraviolet irradiation control unit 32 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be realized.
  • control device 100c Next, with reference to the flowchart of FIG. 31, the operation of the control device 100c will be described focusing on the particle detection process and the ultraviolet irradiation process.
  • step ST31 the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again.
  • the particle detection processing unit 26 outputs the second particle density distribution information to the ultraviolet irradiation control unit 32.
  • step ST32 the ultraviolet irradiation control unit 32 determines whether or not the ultraviolet irradiation control needs to be executed based on the result of the particle detection process.
  • the ultraviolet irradiation control unit 32 needs to execute the ultraviolet irradiation control. Judge that there is.
  • the ventilation control unit 23 determines that the execution of the ultraviolet irradiation control is unnecessary. That is, the criterion for determining the necessity of executing the ultraviolet irradiation control may be the same as the criterion for determining the necessity of executing the blower control for particle induction.
  • step ST32 “YES” When it is determined that the execution of the ultraviolet irradiation control is necessary (step ST32 “YES”), the ultraviolet irradiation control executes the ultraviolet irradiation control in step ST33. Since the details of the ultraviolet irradiation control have already been described, the description thereof will be omitted again.
  • control device 100c may have a wind measurement processing unit 29. Further, the control device 100c may have a blast control unit 23a instead of the blast control unit 23.
  • control device 100c may have an object detection processing unit 30.
  • the ultraviolet irradiation control unit 32 may use the object detection result information for setting the ultraviolet irradiation direction. Specifically, for example, when a person is in the air conditioning target space S1, the ultraviolet irradiation control unit 32 sets the direction of irradiation of ultraviolet rays by the ultraviolet irradiation device 20 in a direction avoiding the person. As a result, it is possible to prevent the person from being irradiated with ultraviolet rays.
  • the object detection processing unit 30 when the object detection processing unit 30 is provided in the control device 100c, the following control may be executed in the control device 100c. That is, when ultraviolet rays are irradiated by the ultraviolet irradiation device 20, when there is a person in the air harmonization target space S1, the control device 100c emits a sound notifying the irradiation of ultraviolet rays or a sound prompting to leave the room, or the indoor unit 1c or Control to output to a speaker (not shown) provided on the remote controller 3 is executed. Alternatively, at this time, the control device 100c instructs the mobile information terminal (not shown) capable of communicating with the communication device 19 and possessed by the user of the air conditioner 200c to output such voice. Perform control.
  • control device 100c executes a control instructing the mobile information terminal to display an image notifying the irradiation of ultraviolet rays or an image prompting the user to leave the room. By leaving the room, it is possible to prevent the person from being irradiated with ultraviolet rays.
  • the camera 18 may be provided in the indoor unit 1c (not shown).
  • the object detection processing unit 30 may use the camera image in place of or in addition to the rider image for the object detection processing.
  • the particle detection processing unit 26 may not have the second particle density calculation unit 25.
  • the particle detection processing unit 26 may output the first particle density distribution information to the ultraviolet irradiation control unit 32.
  • the ultraviolet irradiation control unit 32 may use the first density value ⁇ 1 instead of the second density value ⁇ 2 to determine whether or not the ultraviolet irradiation control needs to be executed and to execute the ultraviolet irradiation control.
  • the air conditioner 200c can employ various modifications similar to those described in the first to third embodiments.
  • the air blow control for particle induction may be intended only for the air blow directions ⁇ B and ⁇ B.
  • the wind measurement process may be intended only for the wind direction values ⁇ L and ⁇ L.
  • the correction control may be intended only for the ventilation directions ⁇ B and ⁇ B.
  • the air conditioner 200c of the fourth embodiment irradiates the region where the detection target particles exist in the air conditioning target space S1 with ultraviolet rays based on the density value ⁇ . This makes it possible to inactivate bacteria, viruses, molds and the like.
  • the air conditioner, particle removal system and control method of the present invention can be used for removing house dust, dust, dust, bacteria, viruses, mold, PM2.5 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner (200) is provided with: a particle detection processing unit (26) that uses a rider (17) to calculate a density value (ρ) of particles to be detected in a space (S1) to be air conditioned; and a blow control unit (23) that uses the density value (ρ) to control blow directions (Φ,Θ) with respect to the space (S1) to be air conditioned.

Description

空気調和機、粒子除去システム及び制御方法Air conditioner, particle removal system and control method
 本発明は、空気調和機、粒子除去システム及び制御方法に関する。 The present invention relates to an air conditioner, a particle removal system and a control method.
 従来、空気調和用の種々の機器が開発されている。より具体的には、エアコンディショナ(以下「エアコン」という。)、扇風機、送風機及びエアダクト装置などが開発されている。以下、これらの機器を総称して「空気調和機」という。また、従来、空気調和機を用いた種々の技術が開発されている。例えば、特許文献1には、複数個の送風機(14,30)及び1個の集塵機(40)を用いて、室内における塵埃を回収する集塵装置が開示されている。 Conventionally, various devices for air conditioning have been developed. More specifically, air conditioners (hereinafter referred to as "air conditioners"), electric fans, blowers, air duct devices, and the like have been developed. Hereinafter, these devices are collectively referred to as "air conditioners". Further, conventionally, various techniques using an air conditioner have been developed. For example, Patent Document 1 discloses a dust collector that collects dust in a room by using a plurality of blowers (14, 30) and one dust collector (40).
特開2010-60266号公報Japanese Unexamined Patent Publication No. 2010-60266
 特許文献1記載の集塵装置は、複数個の送風機(14,30)及び1個の集塵機(40)の各々の内部にて、赤外線を用いて塵埃を検知している(例えば、特許文献1の段落[0049]、段落[0053]及び段落[0058]参照。)。また、特許文献1記載の集塵装置は、超音波風向風速計を用いて、室内における風向及び風速を計測している(例えば、特許文献1の上記段落参照。)。 The dust collector described in Patent Document 1 detects dust using infrared rays inside each of a plurality of blowers (14, 30) and one dust collector (40) (for example, Patent Document 1). See paragraphs [0049], paragraphs [0053] and paragraphs [0058] of.). Further, the dust collector described in Patent Document 1 measures the wind direction and the wind speed in a room by using an ultrasonic anemometer (see, for example, the above paragraph of Patent Document 1).
 このため、特許文献1記載の集塵装置においては、室内における塵埃の分布状態を検知することができない問題があった。この結果、室内における塵埃を回収するにあたり、不要な気流が生成されることがあるという問題があった。例えば、室内における塵埃の存在しない領域を通る気流が生成されることがあるという問題があった。 For this reason, the dust collector described in Patent Document 1 has a problem that the distribution state of dust in the room cannot be detected. As a result, there is a problem that an unnecessary air flow may be generated when collecting dust in the room. For example, there is a problem that an air flow may be generated through an area where there is no dust in the room.
 本発明は、上記のような課題を解決するためになされたものであり、室内等の空間における塵埃等の粒子状物質を除去するにあたり、空間における粒子状物質の分布状態を検知することができる空気調和機を提供することを目的とする。 The present invention has been made to solve the above problems, and when removing particulate matter such as dust in a space such as a room, it is possible to detect the distribution state of the particulate matter in the space. The purpose is to provide an air conditioner.
 本発明の空気調和機は、ライダを用いて、空気調和対象空間における検知対象粒子の密度値を算出する粒子検知処理部と、密度値を用いて、空気調和対象空間に対する送風方向を制御する送風制御部と、を備えるものである。 The air conditioner of the present invention uses a rider to calculate the density value of the particles to be detected in the air-conditioning target space, and a blower that controls the ventilation direction with respect to the air-conditioning target space using the density value. It includes a control unit.
 本発明の空気調和機は、室内等の空間における塵埃等の粒子状物質を除去するにあたり、空間における粒子状物質の分布状態を検知することができる。 The air conditioner of the present invention can detect the distribution state of particulate matter in a space when removing particulate matter such as dust in a space such as a room.
実施の形態1に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 距離-強度特性の例及び基準距離-強度特性の例を示す説明図である。It is explanatory drawing which shows the example of the distance-strength characteristic and the example of a reference distance-strength characteristic. 粒子検知対象空間における第1密度値の分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution of the 1st density value in the particle detection target space. 粒子検知対象空間における第2密度値の分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution of the 2nd density value in the particle detection target space. 風向風速モデルの例を示す説明図である。It is explanatory drawing which shows the example of the wind direction wind speed model. 粒子誘導用送風制御の例を示す説明図である。It is explanatory drawing which shows the example of the blast control for particle induction. 実施の形態1に係る空気調和機の室内機の制御装置のハードウェア構成を示す説明図である。It is explanatory drawing which shows the hardware composition of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の制御装置の他のハードウェア構成を示す説明図である。It is explanatory drawing which shows the other hardware configuration of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機を含む他の粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of another particle removal system including the air conditioner which concerns on Embodiment 1. FIG. 粒子誘導用送風制御の他の例を示す説明図である。It is explanatory drawing which shows another example of the blast control for particle induction. 実施の形態1に係る空気調和機を含む他の粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of another particle removal system including the air conditioner which concerns on Embodiment 1. FIG. 粒子誘導用送風制御の他の例を示す説明図である。It is explanatory drawing which shows another example of the blast control for particle induction. 実施の形態2に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 2. FIG. 第1の風計測対象領域の例を示す説明図である。It is explanatory drawing which shows the example of the 1st wind measurement target area. 第Nの風計測対象領域の例を示す説明図である。It is explanatory drawing which shows the example of the 9th wind measurement target area. 実施の形態2に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 2. 複数個の風計測対象領域の例を示す説明図である。It is explanatory drawing which shows the example of a plurality of wind measurement target areas. 実施の形態3に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 3. 実施の形態3に係る空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 3. 粒子誘導用送風制御の他の例を示す説明図である。It is explanatory drawing which shows another example of the blast control for particle induction. 実施の形態3に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 3. 実施の形態3に係る空気調和機を含む他の粒子除去システムの要部を示すブロック図である。FIG. 5 is a block diagram showing a main part of another particle removal system including an air conditioner according to a third embodiment. 粒子誘導用送風制御の他の例を示す説明図である。It is explanatory drawing which shows another example of the blast control for particle induction. 実施の形態3に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 3. FIG. 実施の形態4に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。It is a block diagram which shows the main part of the particle removal system including the air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of the air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る空気調和機の室内機の制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device of the indoor unit of the air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る他の空気調和機の室内機の要部を示すブロック図である。It is a block diagram which shows the main part of the indoor unit of another air conditioner which concerns on Embodiment 4. FIG.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。図2は、実施の形態1に係る空気調和機の室内機の要部を示すブロック図である。図1及び図2を参照して、実施の形態1に係る空気調和機を含む粒子除去システムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of a particle removal system including an air conditioner according to a first embodiment. FIG. 2 is a block diagram showing a main part of the indoor unit of the air conditioner according to the first embodiment. The particle removal system including the air conditioner according to the first embodiment will be described with reference to FIGS. 1 and 2.
 図1に示す如く、空気調和機200、換気装置300及び空気清浄機400により、粒子除去システム500の要部が構成されている。空気調和機200は、例えば、エアコンにより構成されている。換気装置300は、例えば、換気扇により構成されている。 As shown in FIG. 1, the main part of the particle removal system 500 is composed of the air conditioner 200, the ventilation device 300, and the air purifier 400. The air conditioner 200 is composed of, for example, an air conditioner. The ventilation device 300 is composed of, for example, a ventilation fan.
 空気調和機200は、室内機1及び室外機2を有している。室内機1は熱交換器(不図示)を有しており、かつ、室外機2は他の熱交換器(不図示)を有しており、かつ、これらの熱交換器は冷媒管(不図示)により互いに熱的に接続されている。また、室外機2は冷媒用の圧縮機(不図示)等を有している。これらの部材の構造、配置及び動作などは公知であるため、詳細な説明は省略する。また、空気調和機200は、リモートコントローラ(以下「リモコン」という。)3により操作されるものである。 The air conditioner 200 has an indoor unit 1 and an outdoor unit 2. The indoor unit 1 has a heat exchanger (not shown), the outdoor unit 2 has another heat exchanger (not shown), and these heat exchangers have a refrigerant pipe (not shown). (Shown) are thermally connected to each other. Further, the outdoor unit 2 has a compressor for refrigerant (not shown) and the like. Since the structure, arrangement, operation, and the like of these members are known, detailed description thereof will be omitted. Further, the air conditioner 200 is operated by a remote controller (hereinafter referred to as "remote controller") 3.
 以下、室内機1に対する左右方向を「x方向」という。また、室内機1に対する前後方向を「y方向」という。また、室内機1に対する上下方向を「z方向」という。また、室内機1の前後方向に対する方位角方向、すなわちy方向に対する方位角方向を単に「方位角方向」という。また、室内機1の前後方向に対する仰俯角方向、すなわちy方向に対する仰俯角方向を単に「仰俯角方向」という。 Hereinafter, the left-right direction with respect to the indoor unit 1 is referred to as "x direction". Further, the front-rear direction with respect to the indoor unit 1 is referred to as a "y direction". Further, the vertical direction with respect to the indoor unit 1 is referred to as "z direction". Further, the azimuth direction of the indoor unit 1 with respect to the front-rear direction, that is, the azimuth direction with respect to the y direction is simply referred to as "azimuth direction". Further, the elevation / depression angle direction with respect to the front-rear direction of the indoor unit 1, that is, the elevation / depression angle direction with respect to the y direction is simply referred to as the "elevation / depression angle direction".
 また、空気調和機200による空気調和の対象となる空間S1を「空気調和対象空間」という。すなわち、空気調和対象空間S1は、換気装置300による換気の対象となる空間である。また、空気調和対象空間S1は、空気清浄機400による空気清浄の対象となる空間である。 Further, the space S1 subject to air conditioning by the air conditioner 200 is referred to as an "air conditioning target space". That is, the air conditioning target space S1 is a space to be ventilated by the ventilation device 300. Further, the air conditioning target space S1 is a space subject to air purification by the air purifier 400.
 また、室内機1による空気調和対象空間S1に対する送風方向Φ,Θのうちの方位角方向に対する送風方向Φを「第1送風方向」ということがある。また、仰俯角方向に対する送風方向Θを「第2送風方向」ということがある。 Further, the air blowing direction Φ B with respect to the azimuth direction of the air blowing direction Φ B and Θ B with respect to the air harmonization target space S1 by the indoor unit 1 may be referred to as a “first air blowing direction”. Further, the air blowing direction Θ B with respect to the elevation / depression angle direction may be referred to as a “second air blowing direction”.
 図2に示す如く、室内機1は、方位角方向に対する取付け角度が可変な風向板(以下「第1風向板」という。)11、仰俯角方向に対する取付け角度が可変な風向板(以下「第2風向板」という。)12、及び空気調和対象空間S1に対する送風用のファン(以下「送風ファン」という。)13を有している。また、室内機1は、第1風向板11用の駆動モータ14、第2風向板12用の駆動モータ15、及び送風ファン13用の駆動モータ16を有している。 As shown in FIG. 2, the indoor unit 1 has a wind direction plate (hereinafter referred to as “first wind direction plate”) 11 having a variable mounting angle with respect to the azimuth direction, and a wind direction plate having a variable mounting angle with respect to the elevation / depression angle direction (hereinafter referred to as “first wind direction plate”). It has (2) a wind direction plate () 12 and a fan (hereinafter referred to as a "blower fan") 13 for blowing air to the air conditioning target space S1. Further, the indoor unit 1 has a drive motor 14 for the first wind direction plate 11, a drive motor 15 for the second wind direction plate 12, and a drive motor 16 for the blower fan 13.
 送風方向制御部21は、第1風向板11の取付け角度を制御することにより、より具体的には駆動モータ14におけるロータの回転位置を制御することにより、第1送風方向Φを制御するものである。また、送風方向制御部21は、第2風向板12の取付け角度を制御することにより、より具体的には駆動モータ15におけるロータの回転位置を制御することにより、第2送風方向Θを制御するものである。 Airflow direction control unit 21, by controlling the mounting angle of the first wind direction plate 11, by controlling the rotational position of the rotor of the drive motor 14, more specifically, controls the first blowing direction [Phi B Is. Further, the ventilation direction control unit 21 controls the second ventilation direction Θ B by controlling the mounting angle of the second wind direction plate 12, and more specifically, by controlling the rotation position of the rotor in the drive motor 15. Is what you do.
 送風風量制御部22は、送風ファン13の回転数を制御することにより、より具体的には駆動モータ16におけるロータの回転数を制御することにより、室内機1による空気調和対象空間S1に対する送風風量Vを制御するものである。 The blast air volume control unit 22 controls the rotation speed of the blast fan 13, and more specifically, by controlling the rotation speed of the rotor in the drive motor 16, the blast air volume with respect to the air conditioning target space S1 by the indoor unit 1. It controls V B.
 空気調和機200のユーザは、リモコン3を用いて設定温度の値などを入力する。当該入力された設定温度の値などに応じて、第1風向板11の取付け角度、第2風向板12の取付け角度、送風ファン13の回転数、及び圧縮機の動作などが制御される。これらの制御により、空気調和対象空間S1内の空気調和(例えば冷房又は暖房)が実現される。 The user of the air conditioner 200 inputs a set temperature value or the like using the remote controller 3. The mounting angle of the first wind direction plate 11, the mounting angle of the second wind direction plate 12, the rotation speed of the blower fan 13, the operation of the compressor, and the like are controlled according to the input set temperature value and the like. By these controls, air conditioning (for example, cooling or heating) in the air conditioning target space S1 is realized.
 以下、送風方向制御部21による送風方向Φ,Θの制御及び送風風量制御部22による送風風量Vの制御を総称して「送風制御」という。また、空気調和対象空間S1内の空気調和を実現するための送風制御を「空気調和用送風制御」という。送風方向制御部21及び送風風量制御部22により、送風制御部23が構成されている。 Hereinafter, the control of the blower directions Φ B and Θ B by the blower direction control unit 21 and the control of the blower air volume V B by the blower air volume control unit 22 are collectively referred to as “blower control”. Further, the air-conditioning control for realizing the air-conditioning in the air-conditioning target space S1 is referred to as "air-conditioning air-conditioning control". The blast control unit 23 is composed of the blast direction control unit 21 and the blast volume control unit 22.
 室内機1は、ライダ17を有している。ライダ17は、例えば、パルス変調方式のライダ又はCW(Continuous Wave)方式のライダにより構成されている。各方式のライダの構造及び動作原理などは公知であるため、詳細な説明は省略する。 The indoor unit 1 has a rider 17. The rider 17 is composed of, for example, a pulse modulation type rider or a CW (Continuous Wave) type rider. Since the structure and operating principle of the rider of each method are known, detailed description thereof will be omitted.
 ライダ17によるレーザ光Lの出力口OPは、例えば、室内機1の前面部に設けられている。ライダ17は、レーザ光Lの出力方向(以下「視線方向」という。)Dが可変なものである。ライダ17は、空気調和対象空間S1にレーザ光Lを出力することにより、視線方向Dにおける、距離Zに対する受信信号の強度(以下「受信強度」という。)Pを示す特性(以下「距離-強度特性」という。)P(Z)を取得するものである。受信強度Pは、例えば、受信信号の時間軸波形に対するFFT(Fast Fourier Transform)により得られたパワースペクトルのピーク値に対応するものである。すなわち、受信強度Pは、ピーク周波数における受信信号の強度に対応するものである。各方式のライダによる距離-強度特性P(Z)の取得方法は公知であるため、詳細な説明は省略する。 The output port OP of the laser beam L by the rider 17 is provided, for example, on the front portion of the indoor unit 1. The rider 17 has a variable output direction (hereinafter referred to as “line-of-sight direction”) D of the laser beam L. By outputting the laser beam L to the air-conditioning target space S1, the rider 17 exhibits a characteristic (hereinafter, “distance-intensity”) of the received signal with respect to the distance Z in the line-of-sight direction D (hereinafter referred to as “reception intensity”) P. "Characteristics".) P (Z) is acquired. The reception intensity P corresponds to, for example, the peak value of the power spectrum obtained by FFT (Fast Fourier Transform) with respect to the time axis waveform of the received signal. That is, the reception intensity P corresponds to the intensity of the received signal at the peak frequency. Since the method of acquiring the distance-strength characteristic P (Z) by the rider of each method is known, detailed description thereof will be omitted.
 ライダ17は、空気調和対象空間S1内をラスタースキャン状に走査することにより、複数個の視線方向Dの各々における距離-強度特性P(Z)を取得する。ライダ17は、複数個の視線方向Dの各々における距離-強度特性P(Z)を示す情報(以下「距離-強度特性情報」という。)を第1粒子密度算出部24に出力する。なお、距離-強度特性情報は、個々の距離-強度特性P(Z)に対応する視線方向Dを示す角度値φ,θを含むものである。φは方位角方向に対する角度値であり、θは仰俯角方向に対する角度値である。 The rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning the space S1 for air conditioning in a raster scan manner. The rider 17 outputs information indicating the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D (hereinafter referred to as “distance-intensity characteristic information”) to the first particle density calculation unit 24. The distance-intensity characteristic information includes angle values φ and θ indicating the line-of-sight direction D corresponding to each distance-intensity characteristic P (Z). φ is an angle value with respect to the azimuth direction, and θ is an angle value with respect to the elevation / depression angle direction.
 第1粒子密度算出部24は、ライダ17により出力された距離-強度特性情報を用いて、空気調和対象空間S1内の複数個の領域(以下「第1粒子検知対象領域」という。)A1の各々における、所定の粒子状物質(以下「検知対象粒子」という。)の密度値(以下「第1密度値」という。)ρ1を算出するものである。ここで、複数個の第1粒子検知対象領域A1は、空気調和対象空間S1のうちの少なくとも一部の空間(以下「粒子検知対象空間」という。)S2をx方向、y方向及びz方向に所定間隔に分割してなるものである。個々の第1粒子検知対象領域A1のサイズは、ライダ17の空間分解能に応じた値(例えば各辺数センチメートル)に設定されている。粒子検知対象空間S2は、通常、空気調和対象空間S1の全体又は略全体に対応する空間に設定されている。 The first particle density calculation unit 24 uses the distance-intensity characteristic information output by the rider 17 to form a plurality of regions (hereinafter referred to as “first particle detection target regions”) A1 in the air harmonization target space S1. In each, the density value (hereinafter referred to as "first density value") ρ1 of a predetermined particulate substance (hereinafter referred to as "detection target particle") is calculated. Here, the plurality of first particle detection target regions A1 make at least a part of the air conditioning target space S1 (hereinafter referred to as “particle detection target space”) S2 in the x direction, the y direction, and the z direction. It is divided into predetermined intervals. The size of each first particle detection target region A1 is set to a value corresponding to the spatial resolution of the rider 17 (for example, several centimeters on each side). The particle detection target space S2 is usually set to a space corresponding to the entire or substantially the entire air conditioning target space S1.
 検知対象粒子は、所定値以上の粒径を有する粒子であれば、如何なる粒子を含むものであっても良い。この所定値は、例えば、レーザ光Lの波長に応じて定まるものである。この所定値は、例えば、20~30マイクロメートル(以下「μm」と記載する。)又は100~200μmである。検知対象粒子は、例えば、ハウスダスト、塵、埃、細菌、ウィルス、カビ及び微小粒子状物質(いわゆる「PM2.5」)などを含むものである。 The detection target particle may include any particle as long as it has a particle size of a predetermined value or more. This predetermined value is determined according to, for example, the wavelength of the laser beam L. This predetermined value is, for example, 20 to 30 micrometers (hereinafter referred to as “μm”) or 100 to 200 μm. The particles to be detected include, for example, house dust, dust, dust, bacteria, viruses, molds, fine particulate matter (so-called "PM2.5") and the like.
 第1粒子密度算出部24は、空気調和対象空間S1(より具体的には粒子検知対象空間S2)における第1密度値ρ1の分布を示す情報(以下「第1粒子密度分布情報」という。)を第2粒子密度算出部25に出力する。 The first particle density calculation unit 24 is information indicating the distribution of the first density value ρ1 in the air harmonization target space S1 (more specifically, the particle detection target space S2) (hereinafter referred to as “first particle density distribution information”). Is output to the second particle density calculation unit 25.
 第2粒子密度算出部25は、第1粒子密度算出部24により出力された第1粒子密度分布情報を用いて、第1粒子密度算出部24により算出された第1密度値ρ1を空間的に平均化するものである。より具体的には、第2粒子密度算出部25は、当該算出された第1密度値ρ1をx方向、y方向及びz方向に対する所定の距離範囲毎に平均化するものである。個々の距離範囲の幅は、例えば、10センチメートル以上かつ1メートル以下の値に設定されている。なお、第2粒子密度算出部25は、移動平均を求めるものであっても良い。 The second particle density calculation unit 25 spatially obtains the first density value ρ1 calculated by the first particle density calculation unit 24 by using the first particle density distribution information output by the first particle density calculation unit 24. It is to average. More specifically, the second particle density calculation unit 25 averages the calculated first density value ρ1 for each predetermined distance range with respect to the x direction, the y direction, and the z direction. The width of each distance range is set to a value of, for example, 10 centimeters or more and 1 meter or less. The second particle density calculation unit 25 may be used to obtain a moving average.
 これにより、第2粒子密度算出部25は、空気調和対象空間S1(より具体的には粒子検知対象空間S2)内の複数個の領域(以下「第2粒子検知対象領域」という。)A2の各々における、検知対象粒子の密度値(以下「第2密度値」という。)ρ2を算出するものである。すなわち、個々の第2粒子検知対象領域A2は、複数個の第1粒子検知対象領域A1のうちの対応する2個以上の第1粒子検知対象領域A1を空間的にマージしてなるものである。したがって、個々の第2粒子検知対象領域A2のサイズは、個々の第1粒子検知対象領域A1のサイズに比して大きい。他方、第2粒子検知対象領域A2の個数は、第1粒子検知対象領域A1の個数に比して少ない。 As a result, the second particle density calculation unit 25 is a plurality of regions (hereinafter, referred to as “second particle detection target region”) A2 in the air conditioning target space S1 (more specifically, the particle detection target space S2). In each case, the density value (hereinafter referred to as "second density value") ρ2 of the detection target particle is calculated. That is, each second particle detection target region A2 is formed by spatially merging two or more corresponding first particle detection target regions A1 among the plurality of first particle detection target regions A1. .. Therefore, the size of each second particle detection target region A2 is larger than the size of each first particle detection target region A1. On the other hand, the number of the second particle detection target region A2 is smaller than the number of the first particle detection target region A1.
 第2粒子密度算出部25は、空気調和対象空間S1(より具体的には粒子検知対象空間S2)における第2密度値ρ2の分布を示す情報(以下「第2粒子密度分布情報」という。)を送風制御部23に出力する。 The second particle density calculation unit 25 is information indicating the distribution of the second density value ρ2 in the air harmonization target space S1 (more specifically, the particle detection target space S2) (hereinafter referred to as “second particle density distribution information”). Is output to the ventilation control unit 23.
 以下、第1密度値ρ1及び第2密度値ρ2を総称して単に「密度値」ということがある。また、この密度値に「ρ」の符号を付すことがある。 Hereinafter, the first density value ρ1 and the second density value ρ2 may be collectively referred to simply as "density value". In addition, this density value may be labeled with "ρ".
 また、第1粒子密度算出部24が第1密度値ρ1を算出する処理及び第2粒子密度算出部25が第2密度値ρ2を算出する処理を総称して「粒子検知処理」という。すなわち、粒子検知処理は、空気調和対象空間S1(より具体的には粒子検知対象空間S2)内の検知対象粒子を検知する処理である。第1粒子密度算出部24及び第2粒子密度算出部25により、粒子検知処理部26が構成されている。 Further, the process in which the first particle density calculation unit 24 calculates the first density value ρ1 and the process in which the second particle density calculation unit 25 calculates the second density value ρ2 are collectively referred to as "particle detection process". That is, the particle detection process is a process of detecting the particles to be detected in the air conditioning target space S1 (more specifically, the particle detection target space S2). The particle detection processing unit 26 is composed of the first particle density calculation unit 24 and the second particle density calculation unit 25.
 ここで、図3~図5を参照して、距離-強度特性P(Z)の具体例、距離-強度特性P(Z)に対する比較対象となる距離-強度特性(以下「基準距離-強度特性」という。)Pref(Z)の具体例、第1粒子密度分布情報が示す第1密度値ρ1の分布の具体例、及び第2粒子密度分布情報が示す第2密度値ρ2の具体例について説明する。併せて、第1粒子密度算出部24による第1密度値ρ1の算出方法の具体例について説明する。 Here, with reference to FIGS. 3 to 5, a specific example of the distance-intensity characteristic P (Z), the distance-intensity characteristic to be compared with the distance-intensity characteristic P (Z) (hereinafter, “reference distance-intensity characteristic”). A specific example of Pref (Z), a specific example of the distribution of the first density value ρ1 indicated by the first particle density distribution information, and a specific example of the second density value ρ2 indicated by the second particle density distribution information will be described. To do. At the same time, a specific example of a method of calculating the first density value ρ1 by the first particle density calculation unit 24 will be described.
 以下の参考文献1に記載されているように、ミー散乱の散乱強度は、後方散乱係数に比例する。後方散乱係数は、空気中の粒子の体積密度に応じた値となる。 As described in Reference 1 below, the scattering intensity of Mie scattering is proportional to the backscattering coefficient. The backscattering coefficient is a value corresponding to the volume density of particles in the air.
[参考文献1]
Troy E. Cowan, "Healthcare acquired infection (HAIs): a deadly problem that is preventable: UV can help, What's holding it back?," Proceedings of SPIE, Vol. 10479, 104791A, 2018.
[Reference 1]
Troy E. Cowan, "Healthcare acquired infection (HAIs): a deadly problem that is preventable: UV can help, What's holding it back ?," Proceedings of SPIE, Vol. 10479, 104791A, 2018.
 そこで、第1粒子密度算出部24には、基準距離-強度特性Pref(Z)を示す情報が予め記憶されている。基準距離-強度特性Pref(Z)は、空気調和対象空間S1内の各地点における密度値ρが所定の閾値ρth1以下であるときの、個々の視線方向Dにおける距離-強度特性を示している。距離-強度特性P(Z)における受信強度Pが基準距離-強度特性Pref(Z)における受信強度(以下「基準受信強度」という。)Prefよりも大きい場合、対応する地点における密度値ρが閾値ρth1よりも大きい状態であるといえる。他方、受信強度Pが基準受信強度Pref以下である場合、対応する地点における密度値ρが閾値ρth1以下の状態であるといえる。 Therefore, the information indicating the reference distance-intensity characteristic Pref (Z) is stored in advance in the first particle density calculation unit 24. The reference distance-intensity characteristic Pref (Z) indicates the distance-intensity characteristic in each line-of-sight direction D when the density value ρ at each point in the air harmonization target space S1 is equal to or less than a predetermined threshold value ρth1. When the reception intensity P at the distance-intensity characteristic P (Z) is larger than the reception intensity at the reference distance-intensity characteristic Def (Z) (hereinafter referred to as "reference reception intensity"), the density value ρ at the corresponding point is the threshold value. It can be said that the state is larger than ρth1. On the other hand, when the reception intensity P is equal to or less than the reference reception intensity Pref, it can be said that the density value ρ at the corresponding point is the threshold value ρth1 or less.
 例えば、検知対象粒子がPM2.5である場合、閾値ρth1は、25マイクログラム毎立方メートル(以下「μg/m」と記載する。)に設定されている。これは、WHO(World Health Organization)の空気質ガイドラインにおけるPM2.5の暴露限界に基づく値である。 For example, when the particle to be detected is PM2.5, the threshold value ρth1 is set to 25 micrograms per cubic meter (hereinafter referred to as “μg / m 3 ”). This is a value based on the exposure limit of PM2.5 in the air quality guideline of WHO (World Health Organization).
 図3は、距離-強度特性P(Z)の例、及び基準距離-強度特性Pref(Z)の例を示している。図中、iはレンジビン番号を示しており、B(i)はレンジビンを示しており、Z(i)は各レンジビンに対応する距離値を示している。以下、各レンジビンB(i)に対応する受信強度Pに「P(i)」の符号を用いることがあり、各レンジビンB(i)に対応する基準受信強度Prefに「Pref(i)」の符号を用いることがあり、各レンジビンB(i)に対応する密度値ρに「ρ(i)」の符号を用いることがある。 FIG. 3 shows an example of the distance-intensity characteristic P (Z) and an example of the reference distance-intensity characteristic Pref (Z). In the figure, i indicates a range bin number, B (i) indicates a range bin, and Z (i) indicates a distance value corresponding to each range bin. Hereinafter, the reference numeral “P (i)” may be used for the reception intensity P corresponding to each range bin B (i), and the reference reception intensity Pref corresponding to each range bin B (i) is referred to as “Pref (i)”. A code may be used, and a code of “ρ (i)” may be used for the density value ρ corresponding to each range bin B (i).
 図3に示す例において、レンジビンB(1)~B(4)における受信強度P(1)~P(4)は、対応する基準受信強度Pref(1)~Pref(4)と同等である。したがって、第1粒子密度算出部24は、レンジビンB(1)~B(4)に対応する地点における密度値ρ(1)~ρ(4)が、いずれも閾値ρth1以下であると判定する。他方、レンジビンB(5)~B(10)における受信強度P(5)~P(10)は、対応する基準受信強度Pref(5)~Pref(10)よりも大きい。したがって、第1粒子密度算出部24は、レンジビンB(5)~B(10)に対応する地点における密度値ρ(5)~ρ(10)が、いずれも閾値ρth1よりも大きいと判定する。 In the example shown in FIG. 3, the reception intensities P (1) to P (4) in the range bins B (1) to B (4) are equivalent to the corresponding reference reception intensities Pref (1) to Pref (4). Therefore, the first particle density calculation unit 24 determines that the density values ρ (1) to ρ (4) at the points corresponding to the range bins B (1) to B (4) are all equal to or less than the threshold value ρth1. On the other hand, the reception intensities P (5) to P (10) in the range bins B (5) to B (10) are larger than the corresponding reference reception intensities Pref (5) to Pref (10). Therefore, the first particle density calculation unit 24 determines that the density values ρ (5) to ρ (10) at the points corresponding to the range bins B (5) to B (10) are all larger than the threshold value ρth1.
 第1粒子密度算出部24は、受信強度P(5)の絶対値|P(5)|に基づき、レンジビンB(5)に対応する地点における密度値ρ(5)を算出する。または、第1粒子密度算出部24は、基準受信強度Pref(5)に対する受信強度P(5)の比率R(5)に基づき、レンジビンB(5)に対応する地点における密度値ρ(5)を算出する。 The first particle density calculation unit 24 calculates the density value ρ (5) at the point corresponding to the range bin B (5) based on the absolute value | P (5) | of the reception intensity P (5). Alternatively, the first particle density calculation unit 24 determines the density value ρ (5) at the point corresponding to the range bin B (5) based on the ratio R (5) of the reception intensity P (5) to the reference reception intensity Ref (5). Is calculated.
 これと同様に、第1粒子密度算出部24は、絶対値|P(6)|~|P(10)|又は比率R(6)~R(10)に基づき、レンジビンB(6)~B(10)に対応する地点における密度値ρ(6)~ρ(10)をそれぞれ算出する。 Similarly, the first particle density calculation unit 24 is based on the absolute value | P (6) | to | P (10) | or the ratios R (6) to R (10), and the range bins B (6) to B. The density values ρ (6) to ρ (10) at the points corresponding to (10) are calculated respectively.
 ここで、個々のレンジビンB(i)に対応する地点の空気調和対象空間S1におけるx座標値は、以下の式(1)により表される。また、当該地点の空気調和対象空間S1におけるy座標値は、以下の式(2)により表される。また、当該地点の空気調和対象空間S1におけるz座標値は、以下の式(3)により表される。 Here, the x-coordinate value in the air-conditioning target space S1 of the point corresponding to each range bin B (i) is expressed by the following equation (1). Further, the y coordinate value in the air conditioning target space S1 at the relevant point is expressed by the following equation (2). Further, the z coordinate value in the air conditioning target space S1 at the relevant point is expressed by the following equation (3).
 x=Z(i)×sinφ       (1)
 y=Z(i)×sinθ×cosφ  (2)
 z=Z(i)×cosφ×cosθ  (3)
x = Z (i) × sinφ (1)
y = Z (i) × sinθ × cosφ (2)
z = Z (i) × cosφ × cosθ (3)
 第1粒子密度算出部24は、上記式(1)~上記式(3)に基づき、個々のレンジビンB(i)に対応する地点が、複数個の第1粒子検知対象領域A1のうちのいずれの第1粒子検知対象領域A1に対応する地点であるのかを判定する。第1粒子密度算出部24は、当該判定の結果に基づき、個々の地点における密度値ρ(i)を、対応する第1粒子検知対象領域A1における第1密度値ρ1に設定する。 In the first particle density calculation unit 24, based on the above formulas (1) to (3), the point corresponding to each range bin B (i) is any of the plurality of first particle detection target regions A1. It is determined whether the point corresponds to the first particle detection target region A1 of the above. The first particle density calculation unit 24 sets the density value ρ (i) at each point to the first density value ρ1 in the corresponding first particle detection target region A1 based on the result of the determination.
 上記のとおり、ライダ17は、空気調和対象空間S1内をラスタースキャン状に走査する。第1粒子密度算出部24は、複数個の視線方向Dの各々について、個々のレンジビンB(i)における密度値ρ(i)を算出する。そして、第1粒子密度算出部24は、これらの密度値ρ(i)の各々を、対応する第1粒子検知対象領域A1における第1密度値ρ1に設定する。 As described above, the rider 17 scans the air conditioning target space S1 in a raster scan manner. The first particle density calculation unit 24 calculates the density value ρ (i) in each range bin B (i) for each of the plurality of line-of-sight directions D. Then, the first particle density calculation unit 24 sets each of these density values ρ (i) to the first density value ρ1 in the corresponding first particle detection target region A1.
 これにより、図4に示す如く、複数個の第1粒子検知対象領域A1の各々における第1密度値ρ1が算出される。図中、個々の丸印は、対応する第1粒子検知対象領域A1における第1密度値ρ1を示している。すなわち、当該丸印の色が濃いほど、対応する第1粒子検知対象領域A1における第1密度値ρ1が大きいことを示している。第1粒子密度算出部24は、粒子検知対象空間S2における第1密度値ρ1の分布を示す情報、すなわち第1粒子密度分布情報を第2粒子密度算出部25に出力する。 As a result, as shown in FIG. 4, the first density value ρ1 in each of the plurality of first particle detection target regions A1 is calculated. In the figure, individual circles indicate the first density value ρ1 in the corresponding first particle detection target region A1. That is, the darker the color of the circle, the larger the first density value ρ1 in the corresponding first particle detection target region A1. The first particle density calculation unit 24 outputs information indicating the distribution of the first density value ρ1 in the particle detection target space S2, that is, the first particle density distribution information to the second particle density calculation unit 25.
 次いで、第2粒子密度算出部25は、第1粒子密度算出部24により出力された第1粒子密度分布情報を用いて、第1粒子密度算出部24により算出された第1密度値ρ1を空間的に平均化する。これにより、第2粒子密度算出部25は、複数個の第2粒子検知対象領域A2の各々における第2密度値ρ2を算出する。上記のとおり、個々の第2粒子検知対象領域A2は、複数個の第1粒子検知対象領域A1のうちの対応する2個以上の第1粒子検知対象領域A1を空間的にマージしてなるものである。 Next, the second particle density calculation unit 25 uses the first particle density distribution information output by the first particle density calculation unit 24 to space the first density value ρ1 calculated by the first particle density calculation unit 24. Average. As a result, the second particle density calculation unit 25 calculates the second density value ρ2 in each of the plurality of second particle detection target regions A2. As described above, the individual second particle detection target region A2 is formed by spatially merging two or more corresponding first particle detection target regions A1 among the plurality of first particle detection target regions A1. Is.
 図5は、12個の第2粒子検知対象領域A2が設定されている場合における、当該12個の第2粒子検知対象領域A2の各々における第2密度値ρ2の例を示している。図中、個々の球体は、対応する第2粒子検知対象領域A2における第2密度値ρ2を示している。すなわち、当該球体の色が濃いほど、対応する第2粒子検知対象領域A2における第2密度値ρ2が大きいことを示している。 FIG. 5 shows an example of the second density value ρ2 in each of the 12 second particle detection target regions A2 when the 12 second particle detection target regions A2 are set. In the figure, each sphere shows a second density value ρ2 in the corresponding second particle detection target region A2. That is, the darker the color of the sphere, the larger the second density value ρ2 in the corresponding second particle detection target region A2.
 室内機1は、通信装置19を有している。通信装置19は、例えば、無線通信用の送信機及び受信機により構成されている。通信装置19は、換気装置300及び空気清浄機400の各々と通信自在である。 The indoor unit 1 has a communication device 19. The communication device 19 is composed of, for example, a transmitter and a receiver for wireless communication. The communication device 19 can communicate with each of the ventilation device 300 and the air purifier 400.
 通信制御部31は、通信装置19を用いて、室内機1と換気装置300間の通信により、空気調和対象空間S1における換気装置300の設置位置を示す情報を取得するものである。また、通信制御部31は、通信装置19を用いて、室内機1と空気清浄機400間の通信により、空気調和対象空間S1における空気清浄機400の設置位置を示す情報を取得するものである。以下、これらの情報を総称して「設置位置情報」という。 The communication control unit 31 uses the communication device 19 to acquire information indicating the installation position of the ventilation device 300 in the air conditioning target space S1 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to acquire information indicating the installation position of the air purifier 400 in the air conditioning target space S1 by communication between the indoor unit 1 and the air purifier 400. .. Hereinafter, this information is collectively referred to as "installation position information".
 通信制御部31は、通信装置19を用いて、室内機1と換気装置300間の通信により、換気装置300の作動開始を換気装置300に指示する制御を実行するものである。また、通信制御部31は、通信装置19を用いて、室内機1と空気清浄機400間の通信により、空気清浄機400の作動開始を空気清浄機400に指示する制御を実行するものである。以下、これらの制御を総称して「作動開始指示制御」という。 The communication control unit 31 uses the communication device 19 to execute control for instructing the ventilation device 300 to start the operation of the ventilation device 300 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to execute control for instructing the air purifier 400 to start the operation of the air purifier 400 by communicating between the indoor unit 1 and the air purifier 400. .. Hereinafter, these controls are collectively referred to as "operation start instruction control".
 通信制御部31は、通信装置19を用いて、室内機1と換気装置300間の通信により、換気装置300の作動停止を換気装置300に指示する制御を実行するものである。また、通信制御部31は、通信装置19を用いて、室内機1と空気清浄機400間の通信により、空気清浄機400の作動停止を空気清浄機400に指示する制御を実行するものである。以下、これらの制御を総称して「作動停止指示制御」という。 The communication control unit 31 uses the communication device 19 to execute control for instructing the ventilation device 300 to stop the operation of the ventilation device 300 by communication between the indoor unit 1 and the ventilation device 300. Further, the communication control unit 31 uses the communication device 19 to execute control for instructing the air purifier 400 to stop the operation of the air purifier 400 by communication between the indoor unit 1 and the air purifier 400. .. Hereinafter, these controls are collectively referred to as "operation stop instruction control".
 送風制御部23は、第2粒子密度算出部25により出力された第2粒子密度分布情報を用いて、空気調和対象空間S1内の検知対象粒子を所定の領域(以下「粒子誘導対象領域」という。)A4に誘導するための送風制御(以下「粒子誘導用送風制御」という。)を実行する。以下、図6及び図7を参照して、粒子誘導用送風制御の具体例について説明する。 The blast control unit 23 uses the second particle density distribution information output by the second particle density calculation unit 25 to set the detection target particles in the air conditioning target space S1 into a predetermined region (hereinafter referred to as “particle guidance target region””. ) Execute the ventilation control for guiding to A4 (hereinafter referred to as "particle induction blowing control"). Hereinafter, a specific example of blower control for particle induction will be described with reference to FIGS. 6 and 7.
 まず、送風制御部23は、個々の第2粒子検知対象領域A2における第2密度値ρ2を所定の閾値ρth2と比較する。これにより、送風制御部23は、粒子誘導用送風制御の実行要否を判定する。 First, the ventilation control unit 23 compares the second density value ρ2 in each second particle detection target region A2 with the predetermined threshold value ρth2. As a result, the blower control unit 23 determines whether or not the particle induction blower control needs to be executed.
 例えば、閾値ρth2以上の第2密度値ρ2を有する第2粒子検知対象領域A2の個数が所定個(例えば1個)以上である場合、送風制御部23は、粒子誘導用送風制御の実行が要であると判定する。他方、閾値ρth2以上の第2密度値ρ2を有する第2粒子検知対象領域A2の個数が所定個未満である場合、送風制御部23は、粒子誘導用送風制御の実行が不要であると判定する。閾値ρth2は、検知対象粒子が人体に与える影響などを考慮して設定されたものである。閾値ρth2は、閾値ρth1と同等の値に設定されたものであっても良い。 For example, when the number of the second particle detection target regions A2 having the threshold value ρth2 or more and the second density value ρ2 is a predetermined number (for example, one) or more, the blower control unit 23 needs to execute the blower control for particle guidance. Is determined to be. On the other hand, when the number of the second particle detection target regions A2 having the threshold value ρth2 or more and the second density value ρ2 is less than a predetermined number, the blower control unit 23 determines that the execution of the blower control for particle induction is unnecessary. .. The threshold value ρth2 is set in consideration of the influence of the detection target particles on the human body. The threshold value ρth2 may be set to a value equivalent to the threshold value ρth1.
 粒子誘導用送風制御の実行が要であると判定された場合、通信制御部31は、設置位置情報を取得するとともに、作動開始指示制御を実行する。また、送風制御部23は、以下のように粒子誘導用送風制御を開始する。 When it is determined that the execution of the air blow control for particle guidance is necessary, the communication control unit 31 acquires the installation position information and executes the operation start instruction control. Further, the blast control unit 23 starts the blast control for particle induction as follows.
 すなわち、送風制御部23には、空気調和対象空間S1内の複数個の領域(以下「単位領域」という。)A5の各々における、方位角方向に対する風向値(以下「第1風向値」ということがある。)Φ、仰俯角方向に対する風向値(以下「第2風向値」ということがある。)Θ、及び風速値Vのモデル(以下「風向風速モデル」という。)Mと、この風向風速モデルMを実現するための送風方向Φ,Θ及び送風風量Vとの対応関係を示すテーブル(以下「風向風速モデルテーブル」という。)Tが予め記憶されている。より具体的には、送風制御部23には、複数個の風向風速モデルMに対応する複数個の風向風速モデルテーブルTが予め記憶されている。複数個の単位領域A5は、空気調和対象空間S1をx方向、y方向及びz方向に所定間隔に分割してなるものである。 That is, the blast control unit 23 has a wind direction value (hereinafter referred to as "first wind direction value") with respect to the azimuth direction in each of a plurality of regions (hereinafter referred to as "unit regions") A5 in the air conditioning target space S1. is.) [Phi M, elevation wind direction value for the depression angle direction (hereinafter sometimes referred to as "second wind direction value".) theta M, and the wind speed V M model (hereinafter referred to as "wind model".) and M, A table (hereinafter referred to as "wind direction and wind speed model table") T showing the correspondence between the air blowing directions Φ B and Θ B and the air blowing air volume V B for realizing this wind direction and wind speed model M is stored in advance. More specifically, the blower control unit 23 stores in advance a plurality of wind direction and wind speed model tables T corresponding to the plurality of wind direction and wind speed models M. The plurality of unit regions A5 are formed by dividing the air conditioning target space S1 into predetermined intervals in the x direction, the y direction, and the z direction.
 図6は、複数個の風向風速モデルMのうちの1個の風向風速モデルMにおける、所定のx座標値に対応する部分の例を示している。図中、複数個の白抜きの矢印の各々は、対応する単位領域A5における風ベクトルDを示している。すなわち、風ベクトルDは、風向値Φ,Θに対応する向きを有し、かつ、風速値Vに対応する大きさを有するものである。また、線状の矢印は、当該1個の風向風速モデルMに対応する送風方向Φ,Θ及び送風風量Vによる送風制御を送風制御部23が実行した場合における、空気調和対象空間S1内に発生する気流AFの例を示している。 FIG. 6 shows an example of a portion corresponding to a predetermined x-coordinate value in one wind direction wind speed model M among a plurality of wind direction wind speed models M. In the figure, each arrow of a plurality of white shows a wind vector D M in the corresponding unit region A5. In other words, wind vector D M has an orientation which corresponds to the wind direction value [Phi M, theta M, and those having a size corresponding to the wind speed value V M. Further, the linear arrow indicates the air conditioning target space S1 when the blower control unit 23 executes the blower control by the blower directions Φ B , Θ B and the blower air volume V B corresponding to the one wind direction wind speed model M. An example of the airflow AF generated inside is shown.
 図7に示す如く、送風制御部23は、通信制御部31により取得された設置位置情報を用いて、換気装置300の設置位置に対応する領域(図中A4_1)を粒子誘導対象領域A4に設定するとともに、空気清浄機400の設置位置に対応する領域(図中A4_2)を粒子誘導対象領域A4に設定する。送風制御部23は、複数個の風向風速モデルMのうち、検知対象粒子(図中PM)を粒子誘導対象領域A4_1,A4_2に誘導する気流AF_1,AF_2が発生する風向風速モデルMを選択する。送風制御部23は、風向風速モデルテーブルTを用いて、当該選択された風向風速モデルMに対応する送風方向Φ,Θ及び送風風量Vによる送風制御を実行する。 As shown in FIG. 7, the ventilation control unit 23 uses the installation position information acquired by the communication control unit 31 to set a region (A4_1 in the figure) corresponding to the installation position of the ventilation device 300 in the particle guidance target region A4. At the same time, the region (A4_2 in the figure) corresponding to the installation position of the air purifier 400 is set as the particle induction target region A4. The blow control unit 23 selects the wind direction / wind speed model M in which the airflows AF_1 and AF_2 that guide the particles to be detected (PM in the figure) to the particle guidance target regions A4_1 and A4_2 are generated from the plurality of wind direction / wind speed models M. The blast control unit 23 uses the wind direction and speed model table T to execute blast control according to the blast directions Φ B , Θ B and the blast volume V B corresponding to the selected wind direction and speed model M.
 これにより、検知対象粒子(図中PM)が粒子誘導対象領域A4_1,A4_2に誘導される。粒子誘導対象領域A4_1に誘導された検知対象粒子は、作動中の換気装置300により空気調和対象空間S1外に排出される。粒子誘導対象領域A4_2に誘導された検知対象粒子は、作動中の空気清浄機400により除去される。 As a result, the particles to be detected (PM in the figure) are guided to the particle induction target regions A4_1 and A4_2. The detection target particles guided to the particle guidance target region A4-1 are discharged to the outside of the air conditioning target space S1 by the operating ventilation device 300. The particles to be detected guided to the particle guidance target region A4-2 are removed by the operating air purifier 400.
 粒子誘導用送風制御が開始された後、所定の時間間隔にて、粒子検知処理部26が粒子検知処理を実行して、送風制御部23が粒子誘導用送風制御の実行要否を判定する。粒子誘導用送風制御の実行が要であると判定された場合、送風制御部23が粒子誘導用送風制御を継続する。他方、粒子誘導用送風制御の実行が不要であると判定された場合、送風制御部23が粒子誘導用送風制御を終了して、通信制御部31が作動停止指示制御を実行する。 After the particle guiding air blow control is started, the particle detection processing unit 26 executes the particle detection process at a predetermined time interval, and the air blow control unit 23 determines whether or not the particle guidance air blow control needs to be executed. When it is determined that the execution of the particle guiding blower control is necessary, the blower control unit 23 continues the particle guidance blower control. On the other hand, when it is determined that the execution of the particle guiding air blowing control is unnecessary, the air blowing control unit 23 ends the particle guiding air blowing control, and the communication control unit 31 executes the operation stop instruction control.
 送風制御部23、粒子検知処理部26及び通信制御部31により、制御装置100の要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19及び制御装置100により、室内機1の要部が構成されている。室内機1及び室外機2により、空気調和機200の要部が構成されている。 The main part of the control device 100 is composed of the blower control unit 23, the particle detection processing unit 26, and the communication control unit 31. The main part of the indoor unit 1 is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100. There is. The indoor unit 1 and the outdoor unit 2 form a main part of the air conditioner 200.
 次に、図8を参照して、制御装置100の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the control device 100 will be described with reference to FIG.
 図8Aに示す如く、制御装置100は、プロセッサ41及びメモリ42を有している。メモリ42には、送風制御部23、粒子検知処理部26及び通信制御部31の機能を実現するためのプログラムが記憶されている。当該記憶されているプログラムをプロセッサ41が読み出して実行することにより、送風制御部23、粒子検知処理部26及び通信制御部31の機能が実現される。 As shown in FIG. 8A, the control device 100 has a processor 41 and a memory 42. The memory 42 stores a program for realizing the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31. When the processor 41 reads out and executes the stored program, the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized.
 または、図8Bに示す如く、制御装置100は、処理回路43を有している。この場合、送風制御部23、粒子検知処理部26及び通信制御部31の機能が専用の処理回路43により実現される。 Alternatively, as shown in FIG. 8B, the control device 100 has a processing circuit 43. In this case, the functions of the ventilation control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized by the dedicated processing circuit 43.
 または、制御装置100は、プロセッサ41、メモリ42及び処理回路43を有している(不図示)。この場合、送風制御部23、粒子検知処理部26及び通信制御部31の機能のうちの一部の機能がプロセッサ41及びメモリ42により実現されるとともに、残余の機能が専用の処理回路43により実現される。 Alternatively, the control device 100 has a processor 41, a memory 42, and a processing circuit 43 (not shown). In this case, some of the functions of the blower control unit 23, the particle detection processing unit 26, and the communication control unit 31 are realized by the processor 41 and the memory 42, and the remaining functions are realized by the dedicated processing circuit 43. Will be done.
 プロセッサ41は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 41 is composed of one or a plurality of processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
 メモリ42は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ42は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)を用いたものである。 The memory 42 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 42 is composed of one or more non-volatile memories and one or more volatile memories. The individual volatile memories are, for example, those using RAM (Random Access Memory). The individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small Memory Disk (Erasable Digital Disk) Drive) is used.
 処理回路43は、1個又は複数個のデジタル回路により構成されている。または、処理回路43は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路43は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 43 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or a plurality of processing circuits. The individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
 次に、図9のフローチャートを参照して、制御装置100の動作について、粒子検知処理、作動開始指示制御、粒子誘導用送風制御及び作動停止指示制御を中心に説明する。 Next, with reference to the flowchart of FIG. 9, the operation of the control device 100 will be mainly described with particle detection processing, operation start instruction control, particle guidance ventilation control, and operation stop instruction control.
 例えば、送風制御部23が空気調和用送風制御を実行しているとき、ライダ17は、空気調和対象空間S1内を繰り返し走査する。ライダ17は、各回の走査において、複数個の視線方向Dの各々における距離-強度特性P(Z)を取得する。粒子検知処理部26は、例えば、ライダ17による各回の走査が終了したとき、ステップST1の処理を実行する。 For example, when the blower control unit 23 is executing the blower control for air conditioning, the rider 17 repeatedly scans the inside of the air conditioning target space S1. The rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D in each scan. The particle detection processing unit 26 executes the processing of step ST1 when, for example, each scanning by the rider 17 is completed.
 まず、ステップST1にて、粒子検知処理部26が粒子検知処理を実行する。粒子検知処理の具体例は上記のとおりであるため、再度の説明は省略する。粒子検知処理部26は、第2粒子密度分布情報を送風制御部23に出力する。 First, in step ST1, the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again. The particle detection processing unit 26 outputs the second particle density distribution information to the ventilation control unit 23.
 次いで、ステップST2にて、送風制御部23は、粒子検知処理部26により出力された第2粒子密度分布情報を用いて、粒子誘導用送風制御の実行要否を判定する。送風制御部23による判定方法の具体例は上記のとおりであるため、再度の説明は省略する。 Next, in step ST2, the blower control unit 23 determines whether or not the particle induction blower control needs to be executed by using the second particle density distribution information output by the particle detection processing unit 26. Since the specific example of the determination method by the blower control unit 23 is as described above, the description thereof will be omitted again.
 粒子誘導用送風制御の実行が要であると判定された場合(ステップST2“YES”)、ステップST3にて、通信制御部31が作動開始指示制御を実行する。次いで、ステップST4にて、送風制御部23は、粒子誘導用送風制御を開始する。粒子誘導用送風制御の具体例は上記のとおりであるため、再度の説明は省略する。このとき、送風制御部23は、空気調和用送風制御を実行中である場合、当該実行中の空気調和用送風制御を停止するものであっても良い。 When it is determined that it is necessary to execute the particle guidance ventilation control (step ST2 “YES”), the communication control unit 31 executes the operation start instruction control in step ST3. Next, in step ST4, the blower control unit 23 starts the blower control for particle guidance. Since the specific example of the blower control for particle induction is as described above, the description thereof will be omitted again. At this time, when the air-conditioning blower control is being executed, the air-conditioning control unit 23 may stop the air-conditioning blower control during the execution.
 ステップST4にて粒子誘導用送風制御が開始された後、ライダ17による走査が繰り返し実行される。ライダ17による各回の走査が終了したとき、ステップST5の処理が実行される。 After the particle induction ventilation control is started in step ST4, scanning by the rider 17 is repeatedly executed. When each scan by the rider 17 is completed, the process of step ST5 is executed.
 ステップST5にて、粒子検知処理部26が粒子検知処理を実行する。粒子検知処理の具体例は上記のとおりであるため、再度の説明は省略する。粒子検知処理部26は、第2粒子密度分布情報を送風制御部23に出力する。 In step ST5, the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again. The particle detection processing unit 26 outputs the second particle density distribution information to the ventilation control unit 23.
 次いで、ステップST6にて、送風制御部23は、粒子検知処理部26により出力された第2粒子密度分布情報を用いて、粒子誘導用送風制御の実行要否を判定する。送風制御部23による判定方法の具体例は上記のとおりであるため、再度の説明は省略する。 Next, in step ST6, the blower control unit 23 determines whether or not the particle induction blower control needs to be executed by using the second particle density distribution information output by the particle detection processing unit 26. Since the specific example of the determination method by the blower control unit 23 is as described above, the description thereof will be omitted again.
 粒子誘導用送風制御の実行が要であると判定された場合(ステップST6“NO”)、粒子誘導用送風制御が継続される。他方、粒子誘導用送風制御の実行が不要であると判定された場合(ステップST6“YES”)、ステップST7にて、送風制御部23が粒子誘導用送風制御を終了する。このとき、送風制御部23は、ステップST2“YES”のタイミングにて停止された空気調和用送風制御を再開するものであっても良い。次いで、ステップST8にて、通信制御部31が作動停止指示制御を実行する。 When it is determined that the execution of the particle guiding air blow control is necessary (step ST6 “NO”), the particle guiding air blow control is continued. On the other hand, when it is determined that the execution of the particle guiding air blowing control is unnecessary (step ST6 “YES”), the air blowing control unit 23 ends the particle guiding air blowing control in step ST7. At this time, the air-conditioning control unit 23 may restart the air-conditioning air-conditioning control that was stopped at the timing of step ST2 “YES”. Next, in step ST8, the communication control unit 31 executes the operation stop instruction control.
 このように、空気調和機200は、ライダ17を用いた粒子検知処理を実行する。粒子検知処理にライダ17を用いることにより、室内機1の設置位置に対する近傍の領域における検知対象粒子を早期に検知することができるのはもちろんのこと、当該設置位置に対する遠方の領域における検知対象粒子も早期に検知することができる。 In this way, the air conditioner 200 executes the particle detection process using the rider 17. By using the lidar 17 for the particle detection process, it is possible to detect the particles to be detected in the region near the installation position of the indoor unit 1 at an early stage, and the particles to be detected in the region far from the installation position. Can be detected early.
 また、粒子検知処理にライダ17を用いることにより、空気調和対象空間S1内の広範囲(例えば略全体)における密度値ρの分布状態を検知することができる。これにより、風向風速モデルテーブルTを用いて、検知対象粒子の除去に適した気流AFを発生させることができる。具体的には、例えば、検知対象粒子を換気装置300又は空気清浄機400に誘導する気流AFを発生させることができる。 Further, by using the rider 17 for the particle detection process, it is possible to detect the distribution state of the density value ρ in a wide range (for example, substantially the entire area) in the air conditioning target space S1. As a result, the airflow AF suitable for removing the particles to be detected can be generated by using the wind direction and speed model table T. Specifically, for example, an airflow AF that guides the particles to be detected to the ventilation device 300 or the air purifier 400 can be generated.
 なお、図10に示す如く、粒子除去システム500は、空気清浄機400を含まないものであっても良い。この場合、図11に示す如く、換気装置300の設置位置に対応する領域(図中A4_1)が粒子誘導対象領域A4に設定されるものであっても良い。 Note that, as shown in FIG. 10, the particle removal system 500 may not include the air purifier 400. In this case, as shown in FIG. 11, the region (A4-1 in the figure) corresponding to the installation position of the ventilation device 300 may be set in the particle induction target region A4.
 また、図12に示す如く、粒子除去システム500は、換気装置300を含まないものであっても良い。この場合、図13に示す如く、空気清浄機400の設置位置に対応する領域(図中A4_2)が粒子誘導対象領域A4に設定されるものであっても良い。 Further, as shown in FIG. 12, the particle removal system 500 may not include the ventilation device 300. In this case, as shown in FIG. 13, the region (A4_2 in the figure) corresponding to the installation position of the air purifier 400 may be set in the particle induction target region A4.
 また、粒子誘導用送風制御においては、検知対象粒子の種類毎に異なる風向風速モデルMが選択されるものであっても良い。これは、検知対象粒子が有する粘性、検知対象粒子に含まれる分子の重さ、及び検知対象粒子に含まれる分子のサイズなどに応じて、検知対象粒子の誘導に要する風速値V(すなわち検知対象粒子の誘導に要する送風風量V)などが異なり得るためである。 Further, in the air blow control for particle guidance, a different wind direction and speed model M may be selected for each type of particles to be detected. This viscosity has sense target particles, the weight of the molecules contained in the detection target particles, and depending on the size of the molecules contained in the detection target particles, wind velocity V M required for the induction of the detection target particles (i.e. detection This is because the amount of air blown air V B ) required to guide the target particles may differ.
 また、複数個の風向風速モデルMのうちの少なくとも一部の風向風速モデルMは、いわゆる「機械学習」による学習済みモデルを用いたものであっても良い。 Further, at least a part of the wind direction and wind speed models M among the plurality of wind direction and wind speed models M may use a trained model by so-called "machine learning".
 また、粒子検知処理部26は、第2粒子密度算出部25を有しないものであっても良い。この場合、粒子検知処理部26は、第1粒子密度分布情報を送風制御部23に出力するものであっても良い。送風制御部23は、第2密度値ρ2に代えて第1密度値ρ1を用いて、粒子誘導用送風制御の実行要否を判定するとともに、粒子誘導用送風制御を実行するものであっても良い。ただし、密度値ρと閾値ρth2との比較を安定させる観点から、すなわち検知対象粒子の検知を安定させる観点から、第2密度値ρ2を用いるのがより好適である。また、粒子誘導用送風制御による処理負荷を低減する観点からも、第2密度値ρ2を用いるのがより好適である。 Further, the particle detection processing unit 26 may not have the second particle density calculation unit 25. In this case, the particle detection processing unit 26 may output the first particle density distribution information to the ventilation control unit 23. The blower control unit 23 uses the first density value ρ1 instead of the second density value ρ2 to determine whether or not the particle guide blower control needs to be executed, and even if the particle guide blower control is executed. good. However, it is more preferable to use the second density value ρ2 from the viewpoint of stabilizing the comparison between the density value ρ and the threshold value ρth2, that is, from the viewpoint of stabilizing the detection of the particles to be detected. Further, it is more preferable to use the second density value ρ2 from the viewpoint of reducing the processing load due to the blow control for particle induction.
 また、送風制御部23には、風向風速モデルテーブルTに代えて、複数個の単位領域A5の各々における風向値Φ,Θのモデル(以下「風向モデル」という。)M’と、この風向モデルM’を実現するための送風方向Φ,Θとの対応関係を示すテーブル(以下「風向モデルテーブル」という。)T’が予め記憶されているものであっても良い。この場合、粒子誘導用送風制御における送風方向Φ,Θが選択された風向モデルM’に応じた値に設定される一方、粒子誘導用送風制御における送風風量Vは空気調和用送風制御における送風風量Vと同様の値に設定されるものであっても良い。ただし、粒子誘導用送風制御による誘導の精度を向上する観点から、風向風速モデルテーブルTを用いるのがより好適である。 Further, in the wind control unit 23, instead of the wind direction and wind speed model table T, a model of wind direction values Φ M and Θ M in each of the plurality of unit regions A5 (hereinafter referred to as “wind direction model”) M'and this. A table (hereinafter referred to as "wind direction model table") T'showing the correspondence between the blowing directions Φ B and Θ B for realizing the wind direction model M'may be stored in advance. In this case, the blowing directions Φ B and Θ B in the particle guiding blowing control are set to the values corresponding to the selected wind direction model M', while the blowing air volume V B in the particle guiding blowing control is the air conditioning blowing control. It may be set to the same value as the air volume V B in . However, it is more preferable to use the wind direction and speed model table T from the viewpoint of improving the accuracy of guidance by the blower control for particle guidance.
 また、送風風量制御部22による送風風量Vの制御方法は、駆動モータ16におけるロータの回転数を制御する方法に限定されるものではない。例えば、室内機1は、風量調節用のダンパ(不図示)を有するものであっても良い。送風風量制御部22は、当該ダンパを制御することにより、すなわちダクト抵抗曲線を変化させることにより、送風風量Vを制御するものであっても良い。 Further, the method of controlling the air volume V B by the air volume control unit 22 is not limited to the method of controlling the rotation speed of the rotor in the drive motor 16. For example, the indoor unit 1 may have a damper (not shown) for adjusting the air volume. The blast air volume control unit 22 may control the blast air volume V B by controlling the damper, that is, by changing the duct resistance curve.
 また、空気調和機200は空気調和用の機器であれば良く、エアコンに限定されるものではない。例えば、空気調和機200は、扇風機、送風機又はエアダクト装置により構成されているものであっても良い。 Further, the air conditioner 200 may be any device for air conditioning and is not limited to the air conditioner. For example, the air conditioner 200 may be composed of a fan, a blower, or an air duct device.
 また、粒子除去システム500は、複数台の空気調和機200を含むものであっても良い。この場合、当該複数台の空気調和機200が連携することにより、選択された風向風速モデルMによる粒子誘導用送風制御が実現されるものであっても良い。これにより、複雑な風向風速モデルMによる粒子誘導用送風制御を実現することができる。 Further, the particle removal system 500 may include a plurality of air conditioners 200. In this case, the blower control for particle guidance by the selected wind direction and speed model M may be realized by coordinating the plurality of air conditioners 200. As a result, it is possible to realize the blowing control for particle guidance by the complicated wind direction and speed model M.
 以上のように、実施の形態1に係る空気調和機200は、ライダ17を用いて、空気調和対象空間S1における検知対象粒子の密度値ρを算出する粒子検知処理部26と、密度値ρを用いて、空気調和対象空間S1に対する送風方向Φ,Θを制御する送風制御部23と、を備える。ライダ17を用いることにより、空気調和対象空間S1における密度値ρの分布状態を検知することができる。この結果、粒子誘導用送風制御において、検知対象粒子の除去に適した気流AFを発生させることができる。換言すれば、不要な気流が発生するのを抑制することができる。 As described above, the air conditioner 200 according to the first embodiment uses the rider 17 to set the density value ρ and the particle detection processing unit 26 for calculating the density value ρ of the detection target particles in the air conditioning target space S1. It is provided with a ventilation control unit 23 for controlling the ventilation directions Φ B and Θ B with respect to the air conditioning target space S1. By using the rider 17, the distribution state of the density value ρ in the air-conditioning target space S1 can be detected. As a result, it is possible to generate an airflow AF suitable for removing the particles to be detected in the blower control for particle guidance. In other words, it is possible to suppress the generation of unnecessary airflow.
 また、粒子検知処理部26は、複数個の第1粒子検知対象領域A1の各々における第1密度値ρ1を算出する第1粒子密度算出部24と、第1密度値ρ1を空間的に平均化することにより、複数個の第2粒子検知対象領域A2の各々における第2密度値ρ2を算出する第2粒子密度算出部25と、を有し、送風制御部23は、第2密度値ρ2を送風方向Φ,Θの制御に用いる。第2密度値ρ2を用いることにより、第1密度値ρ1を用いる場合に比して、検知対象粒子の検知を安定させることができる。また、送風制御部23による処理負荷を低減することができる。 Further, the particle detection processing unit 26 spatially averages the first particle density calculation unit 24 for calculating the first density value ρ1 in each of the plurality of first particle detection target regions A1 and the first density value ρ1. By doing so, the second particle density calculation unit 25 for calculating the second density value ρ2 in each of the plurality of second particle detection target regions A2 is provided, and the ventilation control unit 23 sets the second density value ρ2. It is used to control the ventilation directions Φ B and Θ B. By using the second density value ρ2, it is possible to stabilize the detection of the particles to be detected as compared with the case where the first density value ρ1 is used. In addition, the processing load of the blower control unit 23 can be reduced.
 また、送風制御部23は、密度値ρを用いて、送風方向Φ,Θ及び空気調和対象空間S1に対する送風風量Vを制御する。送風方向Φ,Θに加えて送風風量Vを制御対象に含めることにより、粒子誘導用送風制御による誘導の精度を向上することができる。 Further, the blower control unit 23 controls the blower air volume V B with respect to the blower directions Φ B , Θ B and the air conditioning target space S1 by using the density value ρ. Blowing direction [Phi B, by including in addition to the controlled object the blowing air volume V B to theta B, it is possible to improve the accuracy of induction by blowing control particles induction.
 また、粒子検知処理部26は、複数個の第1粒子検知対象領域A1の各々における第1密度値ρ1を算出する第1粒子密度算出部24と、第1密度値ρ1を空間的に平均化することにより、複数個の第2粒子検知対象領域A2の各々における第2密度値ρ2を算出する第2粒子密度算出部25と、を有し、送風制御部23は、第2密度値ρ2を送風方向Φ,Θ及び送風風量Vの制御に用いる。第2密度値ρ2を用いることにより、第1密度値ρ1を用いる場合に比して、検知対象粒子の検知を安定させることができる。また、送風制御部23による処理負荷を低減することができる。 Further, the particle detection processing unit 26 spatially averages the first particle density calculation unit 24 for calculating the first density value ρ1 in each of the plurality of first particle detection target regions A1 and the first density value ρ1. By doing so, the second particle density calculation unit 25 for calculating the second density value ρ2 in each of the plurality of second particle detection target regions A2 is provided, and the ventilation control unit 23 sets the second density value ρ2. It is used to control the ventilation direction Φ B , Θ B and the ventilation air volume V B. By using the second density value ρ2, it is possible to stabilize the detection of the particles to be detected as compared with the case where the first density value ρ1 is used. In addition, the processing load of the blower control unit 23 can be reduced.
 また、送風制御部23は、送風方向Φ,Θを制御することにより、検知対象粒子を空気調和対象空間S1における粒子誘導対象領域A4に誘導する。これにより、例えば、換気装置300の設置位置に対応する領域、又は空気清浄機400の設置位置に対応する領域に検知対象粒子を誘導することができる。 Further, the ventilation control unit 23 guides the detection target particles to the particle guidance target region A4 in the air conditioning target space S1 by controlling the ventilation directions Φ B and Θ B. Thereby, for example, the particles to be detected can be guided to the region corresponding to the installation position of the ventilation device 300 or the region corresponding to the installation position of the air purifier 400.
 また、送風制御部23は、送風方向Φ,Θ及び送風風量Vを制御することにより、検知対象粒子を空気調和対象空間S1における粒子誘導対象領域A4に誘導する。これにより、例えば、換気装置300の設置位置に対応する領域、又は空気清浄機400の設置位置に対応する領域に検知対象粒子を誘導することができる。 Further, the blast control unit 23 guides the particles to be detected to the particle guidance target region A4 in the air conditioning target space S1 by controlling the blast directions Φ B , Θ B and the blast air volume V B. Thereby, for example, the particles to be detected can be guided to the region corresponding to the installation position of the ventilation device 300 or the region corresponding to the installation position of the air purifier 400.
 また、送風制御部23は、空気調和対象空間S1における換気装置300の設置位置に対応する領域を粒子誘導対象領域A4に設定する。これにより、換気装置300による検知対象粒子の除去を実現することができる。 Further, the ventilation control unit 23 sets the region corresponding to the installation position of the ventilation device 300 in the air conditioning target space S1 to the particle guidance target region A4. As a result, it is possible to realize the removal of the detection target particles by the ventilation device 300.
 また、送風制御部23は、空気調和対象空間S1における空気清浄機400の設置位置に対応する領域を粒子誘導対象領域A4に設定する。これにより、空気清浄機400による検知対象粒子の除去を実現することができる。 Further, the blower control unit 23 sets the region corresponding to the installation position of the air purifier 400 in the air conditioning target space S1 to the particle guidance target region A4. As a result, it is possible to realize the removal of the particles to be detected by the air purifier 400.
 また、実施の形態1に係る粒子除去システム500は、空気調和機200と、換気装置300と、を備える。これにより、換気装置300による検知対象粒子の除去を実現することができる。 Further, the particle removal system 500 according to the first embodiment includes an air conditioner 200 and a ventilation device 300. As a result, it is possible to realize the removal of the detection target particles by the ventilation device 300.
 また、実施の形態1に係る粒子除去システム500は、空気調和機200と、空気清浄機400と、を備える。これにより、空気清浄機400による検知対象粒子の除去を実現することができる。 Further, the particle removal system 500 according to the first embodiment includes an air conditioner 200 and an air purifier 400. As a result, it is possible to realize the removal of the particles to be detected by the air purifier 400.
 また、実施の形態1に係る制御方法は、空気調和機200の制御方法であって、粒子検知処理部26が、ライダ17を用いて、空気調和対象空間S1における検知対象粒子の密度値ρを算出して、送風制御部23が、密度値ρを用いて、空気調和対象空間S1に対する送風方向Φ,Θを制御する。これにより、空気調和機200による上記効果と同様の効果を得ることができる。 Further, the control method according to the first embodiment is a control method of the air conditioner 200, in which the particle detection processing unit 26 uses the rider 17 to set the density value ρ of the detection target particles in the air conditioning target space S1. After calculation, the ventilation control unit 23 controls the ventilation directions Φ B and Θ B with respect to the air conditioning target space S1 by using the density value ρ. Thereby, the same effect as the above effect by the air conditioner 200 can be obtained.
実施の形態2.
 図14は、実施の形態2に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。図15は、実施の形態2に係る空気調和機の室内機の要部を示すブロック図である。図14及び図15を参照して、実施の形態2に係る空気調和機を含む粒子除去システムについて説明する。
Embodiment 2.
FIG. 14 is a block diagram showing a main part of the particle removal system including the air conditioner according to the second embodiment. FIG. 15 is a block diagram showing a main part of the indoor unit of the air conditioner according to the second embodiment. A particle removal system including an air conditioner according to a second embodiment will be described with reference to FIGS. 14 and 15.
 なお、図14において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図15において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 Note that, in FIG. 14, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 15, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 図14に示す如く、空気調和機200a、換気装置300及び空気清浄機400により、粒子除去システム500aの要部が構成されている。 As shown in FIG. 14, the main part of the particle removal system 500a is composed of the air conditioner 200a, the ventilation device 300, and the air purifier 400.
 実施の形態1にて説明したとおり、ライダ17は、空気調和対象空間S1内を走査することにより、複数個の視線方向Dの各々における距離-強度特性P(Z)を取得するものである。これに加えて、ライダ17は、当該走査により、複数個の視線方向Dの各々における、少なくとも1個の距離値Z(i)に対応する地点(以下「風計測対象地点」という。)Prにおける、視線方向Dに対する風速値(以下「視線方向風速値」という。)Vrを取得するものである。各方式のライダによる視線方向風速値Vrの取得方法は公知であるため、詳細な説明は省略する。ライダ17は、角度値θ,φ及び視線方向風速値Vrを含む情報(以下「視線方向風速情報」という。)を風計測処理部29に出力するものである。 As described in the first embodiment, the rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning in the air-conditioning target space S1. In addition to this, the rider 17 is subjected to the scanning at a point corresponding to at least one distance value Z (i) in each of the plurality of line-of-sight directions D (hereinafter referred to as “wind measurement target point”) Pr. , The wind speed value for the line-of-sight direction D (hereinafter referred to as "line-of-sight direction wind speed value") Vr is acquired. Since the method of acquiring the wind speed value Vr in the line-of-sight direction by the rider of each method is known, detailed description thereof will be omitted. The rider 17 outputs information including the angle values θ and φ and the line-of-sight direction wind speed value Vr (hereinafter referred to as “line-of-sight direction wind speed information”) to the wind measurement processing unit 29.
 風計測処理部29は、ライダ17により出力された視線方向風速情報を用いて、空気調和対象空間S1内のN個の領域(以下「風計測対象領域」という。)A6の各々における、方位角方向に対する風向値(すなわち第1風向値)Φ、仰俯角方向に対する風向値(すなわち第2風向値)Θ、及び風速値Vを算出するものである。N個の風計測対象領域A6の各々は、例えば、複数個の風計測対象地点Prのうちの対応するM個の風計測対象地点Prにより囲まれた領域である。ここで、Nは2以上の任意の整数であり、Mは3以上の任意の整数である。 The wind measurement processing unit 29 uses the line-of-sight direction wind speed information output by the rider 17 to azimuth angles in each of the N regions (hereinafter referred to as “wind measurement target regions”) A6 in the air conditioning target space S1. The wind direction value (that is, the first wind direction value) Φ L with respect to the direction, the wind direction value (that is, the second wind direction value) Θ L with respect to the elevation / depression angle direction, and the wind speed value VL are calculated. Each of the N wind measurement target areas A6 is, for example, an area surrounded by the corresponding M wind measurement target points Pr among the plurality of wind measurement target points Pr. Here, N is an arbitrary integer of 2 or more, and M is an arbitrary integer of 3 or more.
 すなわち、風向値Φ,Θを算出する風向値算出部27、及び風速値Vを算出する風速値算出部28により、風計測処理部29が構成されている。以下、風向値算出部27が風向値Φ,Θを算出する処理及び風速値算出部28が風速値Vを算出する処理を総称して「風計測処理」という。 That is, the wind measurement processing unit 29 is composed of the wind direction value calculation unit 27 that calculates the wind direction values Φ L and Θ L , and the wind speed value calculation unit 28 that calculates the wind speed value VL . Hereinafter, the process in which the wind direction value calculation unit 27 calculates the wind direction values Φ L and Θ L and the process in which the wind speed value calculation unit 28 calculates the wind speed value VL are collectively referred to as “wind measurement process”.
 ここで、図16及び図17を参照して、風計測処理部29による風計測処理の具体例について説明する。以下、N個の風計測対象領域A6のうちの第nの風計測対象領域A6に係る各符号に「_n」を付すことがある(1≦n≦N)。また、第nの風計測対象領域A6に対応するM個の風計測対象地点Prのうちの第mの風計測対象地点Prに係る各符号に「_n_m」を付すことがある(1≦m≦M)。 Here, a specific example of the wind measurement processing by the wind measurement processing unit 29 will be described with reference to FIGS. 16 and 17. Hereinafter, "_n" may be added to each code related to the nth wind measurement target area A6 of the N wind measurement target areas A6 (1 ≦ n ≦ N). Further, "_n_m" may be added to each code related to the mth wind measurement target point Pr among the M wind measurement target points Pr corresponding to the nth wind measurement target area A6 (1 ≦ m ≦). M).
 図16に示す如く、角度値φ_1_1,θ_1_1に対応する視線方向D_1_1、角度値φ_1_2,θ_1_2に対応する視線方向D_1_2、及び角度値φ_1_3,θ_1_3に対応する視線方向D_1_3の各々にライダ17がレーザ光Lを出力したものとする。これにより、3個の風計測対象地点Pr_1_1,Pr_1_2,Pr_1_3における3個の視線方向風速値Vr_1_1,Vr_1_2,Vr_1_3がそれぞれ取得される。 As shown in FIG. 16, the rider 17 emits laser light in each of the line-of-sight direction D_1, which corresponds to the angle values φ_1 and θ_1, the line-of-sight direction D_1, which corresponds to the angle values φ_1, and θ_1, and the line-of-sight direction D_1, which corresponds to the angle values φ_1, and θ_1. It is assumed that L is output. As a result, the three wind speed values in the line-of-sight direction Vr_1_1, Vr_1_2, and Vr_1_3 at the three wind measurement target points Pr_1, Pr_1_2, and Pr_1_3 are acquired, respectively.
 ここで、個々の風計測対象地点Prにおける視線方向風速値Vrは、以下の式(4)により表される。Vuは、対応する風計測対象地点Prにおけるx方向に対する風速値である。Vvは、対応する風計測対象地点Prにおけるy方向に対する風速値である。Vwは、対応する風計測対象地点Prにおけるz方向に対する風速値である。 Here, the line-of-sight direction wind speed value Vr at each wind measurement target point Pr is expressed by the following equation (4). Vu is a wind speed value in the x direction at the corresponding wind measurement target point Pr. Vv is a wind speed value in the y direction at the corresponding wind measurement target point Pr. Vw is a wind speed value in the z direction at the corresponding wind measurement target point Pr.
 Vr=Vu×sinφ×cosθ
   +Vv×cosφ×cosθ
   +Vw×sinθ       (4)
Vr = Vu × sinφ × cosθ
+ Vv × cosφ × cosθ
+ Vw × sinθ (4)
 角度値φ_1_1,φ_1_2,φ_1_3,θ_1_1,θ_1_2,θ_1_3、及び視線方向風速値Vr_1_1,Vr_1_2,Vr_1_3を上記式(4)に代入することにより、3個の変数Vu,Vv,Vwを含む三元連立方程式が得られる。風計測処理部29は、この三元連立方程式を解くことにより、第1の風計測対象領域A6_1における風速値Vu_1,Vv_1,Vw_1を算出する。図16に示す如く、第1の風計測対象領域A6_1は、3個の風計測対象地点Pr_1_1,Pr_1_2,Pr_1_3により囲まれた領域である。 By substituting the angle values φ_1, φ_1, φ_1, θ_1, θ_1, θ_1, and the wind speed values in the line-of-sight direction Vr_1, Vr_1, Vr_1_3 into the above equation (4), a ternary system including three variables Vu, Vv, and Vw. The equation is obtained. The wind measurement processing unit 29 calculates the wind speed values Vu_1, Vv_1, Vw_1 in the first wind measurement target region A6_1 by solving this ternary simultaneous equation. As shown in FIG. 16, the first wind measurement target area A6_1 is an area surrounded by three wind measurement target points Pr_1_1, Pr_1_2, and Pr_1-3.
 次いで、風向値算出部27は、上記式(4)により算出された風速値Vu_1,Vv_1を用いて、以下の式(5)により、第1の風計測対象領域A6_1における風向値Φを算出する。また、風向値算出部27は、上記式(4)により算出された風速値Vu_1,Vv_1,Vw_1を用いて、以下の式(6)により、第1の風計測対象領域A6_1における風向値Θを算出する。また、風速値算出部28は、上記式(4)により算出された風速値Vu_1,Vv_1,Vw_1を用いて、以下の式(7)により、第1の風計測対象領域A6_1における風速値Vを算出する。 Next, the wind direction value calculation unit 27 calculates the wind direction value Φ L in the first wind measurement target region A6-1 by the following formula (5) using the wind speed values Vu_1 and Vv_1 calculated by the above formula (4). To do. Further, the wind direction value calculation unit 27 uses the wind speed values Vu_1, Vv_1, Vw_1 calculated by the above equation (4), and the wind direction value Θ L in the first wind measurement target region A6_1 by the following equation (6). Is calculated. Moreover, wind speed value calculation unit 28, the equation (4) wind velocity values calculated by Vu_1, Vv_1, using VW_1, the following equation (7), the wind speed value in the first wind measurement target region A6_1 V L Is calculated.
 Φ=atan(Vu/Vv)          (5)
 Θ=atan{Vw/√(Vu+Vv)}  (6)
 V=√(Vu+Vv+Vw)       (7)
Φ L = atan (Vu / Vv) (5)
Θ L = atan {Vw / √ (Vu 2 + Vv 2 )} (6)
VL = √ (Vu 2 + Vv 2 + Vw 2 ) (7)
 以下、ライダ17が空気調和対象空間S1内を走査しながら、上記と同様の処理が繰り返し実行される。最終的に、第Nの風計測対象領域A6_Nにおける風向値Φ,Θ及び風速値Vが算出される(図17参照)。 Hereinafter, the same processing as described above is repeatedly executed while the rider 17 scans in the air conditioning target space S1. Finally, wind direction value [Phi L, theta L and wind speed V L is calculated in the wind measurement target region A6_N of the N (see FIG. 17).
 すなわち、風向値算出部27は、個々の風計測対象領域A6内の風向及び風速が一様であるものとみなして、個々の風計測対象領域A6における風向値Φ,Θ及び風速値Vを算出するものである。したがって、個々の風計測対象領域A6のサイズは、個々の風計測対象領域A6内の風向及び風速が一様であるとみなすことができる程度に小さい値に設定するのが好適である。 That is, the wind direction value calculation unit 27 considers that the wind direction and the wind speed in each wind measurement target area A6 are uniform, and the wind direction values Φ L , Θ L and the wind speed value V in each wind measurement target area A6. L is calculated. Therefore, it is preferable to set the size of each wind measurement target region A6 to a value small enough to be considered to have uniform wind direction and speed in each wind measurement target region A6.
 例えば、M個の角度値φ_n_1~φ_n_Mのうちの各2個の角度値φ_n間の差分値は、第nの風計測対象領域A6_nのサイズに応じた値(例えば2度)に設定されている。また、M個の角度値θ_n_1~θ_n_Mのうちの各2個の角度値θ_n間の差分値は、第nの風計測対象領域A6_nのサイズに応じた値(例えば2度)に設定されている。 For example, the difference value between each of the two angle values φ_n among the M angle values φ_n_1 to φ_n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target region A6_n. .. Further, the difference value between each of the two angle values θ_n among the M angle values θ_n_1 to θ_n_M is set to a value (for example, 2 degrees) according to the size of the nth wind measurement target region A6_n. ..
 送風制御部23aは、空気調和用送風制御及び粒子誘導用送風制御を実行するものである。実施の形態1にて説明したとおり、粒子誘導用送風制御には、複数個の風向風速モデルMのうちの選択された風向風速モデルMが用いられる。以下、当該選択された風向風速モデルMを「選択風向風速モデル」という。また、当該選択された風向風速モデルMに対応する風向風速モデルテーブルTを「選択風向風速モデルテーブル」という。 The blast control unit 23a executes blast control for air conditioning and blast control for particle induction. As described in the first embodiment, the wind direction wind speed model M selected from the plurality of wind direction wind speed models M is used for the air blow control for particle guidance. Hereinafter, the selected wind direction / wind speed model M is referred to as a “selected wind direction / wind speed model”. Further, the wind direction / wind speed model table T corresponding to the selected wind direction / wind speed model M is referred to as a “selected wind direction / wind speed model table”.
 ここで、送風制御部23aは、風計測処理部29により算出された風向値Φ,Θ及び風速値Vを用いて、選択風向風速モデルテーブルTが示す送風方向Φ,Θ及び送風風量Vに対して、粒子誘導用送風制御における送風方向Φ,Θ及び送風風量Vを修正(すなわち補正)する機能を有している。以下、送風方向制御部21aが第1送風方向Φを修正する制御、送風方向制御部21aが第2送風方向Θを修正する制御、及び送風風量制御部22aが送風風量Vを修正する制御を総称して「補正制御」という。補正制御の具体例は以下のとおりである。 Here, the blower control unit 23a, the wind direction value calculated by the wind measurement processing unit 29 [Phi L, using a theta L and wind speed value V L, the blowing direction [Phi B indicated by selecting Wind model table T, theta B and against blowing air volume V B, and has a function to correct the blowing direction Φ B, Θ B and the blower air volume V B of the air blow control particle induction (i.e. corrected). Hereinafter, the blower direction control unit 21a controls to correct the first blower direction Φ B , the blower direction control unit 21a controls to correct the second blower direction Θ B , and the blower air volume control unit 22a corrects the blower air volume V B. The control is collectively called "correction control". Specific examples of correction control are as follows.
 まず、送風方向制御部21aは、個々の風計測対象領域A6における第1風向値Φと、選択風向風速モデルMにおける対応する単位領域A5における第1風向値Φとの差分値Φを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Φが算出される。 First, the blowing direction control unit 21a includes a first wind direction value [Phi L in each wind measurement target region A6, the difference value [Phi E between the first wind direction value [Phi M in the corresponding unit region A5 in selective Wind model M calculate. As a result, N difference values Φ E corresponding to N wind measurement target regions A6 on a one-to-one basis are calculated.
 また、送風方向制御部21aは、個々の風計測対象領域A6における第2風向値Θと、選択風向風速モデルMにおける対応する単位領域A5における第2風向値Θとの差分値Θを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Θが算出される。 Further, the blowing direction control unit 21a, a second wind direction values in individual wind measurement target region A6 theta L, the difference value theta E and the second wind direction value theta M in the corresponding unit region A5 in selective Wind model M calculate. As a result, N difference values Θ E corresponding one-to-one with the N wind measurement target regions A6 are calculated.
 また、送風風量制御部22aは、個々の風計測対象領域A6における風速値Vと、選択風向風速モデルMにおける対応する単位領域A5における風速値Vとの差分値Vを算出する。これにより、N個の風計測対象領域A6と一対一に対応するN個の差分値Vが算出される。 Further, blowing air volume control unit 22a calculates the wind velocity value V L in the individual wind measurement target region A6, the difference value V E of the wind speed V M at the corresponding unit area A5 in selective Wind model M. Thus, the N differential values V E corresponding one-to-one with the N wind measurement target region A6 is calculated.
 次いで、送風方向制御部21aは、N個の差分値Φのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Φを所定の閾値Φthと比較する。比較用差分値Φは、例えば、N個の差分値Φのうちの最も大きい差分値Φである。または、送風方向制御部21aは、N個の差分値ΦによるRMS(Root Mean Square)誤差ΦRMSEを算出して、当該算出されたRMS誤差ΦRMSEを所定の閾値Φthと比較する。比較用差分値Φ又はRMS誤差ΦRMSEが閾値Φth以上である場合、送風方向制御部21aは、第1送風方向Φの修正が要であると判定する。他方、比較用差分値Φ又はRMS誤差ΦRMSEが閾値Φth未満である場合、送風方向制御部21aは、第1送風方向Φの修正が不要であると判定する。 Then, the air blowing direction control section 21a, at least one of the difference values of the N difference values [Phi E (hereinafter referred to as "comparative difference value".) Compare [Phi E with a predetermined threshold Faith. The comparison difference value Φ E is, for example, the largest difference value Φ E among the N difference values Φ E. Alternatively, the ventilation direction control unit 21a calculates an RMS (Root Mean Square) error Φ RMSE based on N difference values Φ E , and compares the calculated RMS error Φ RMSE with a predetermined threshold value Φth. When the comparison difference value Φ E or the RMS error Φ RMSE is equal to or greater than the threshold value Φth, the ventilation direction control unit 21a determines that the first ventilation direction Φ B needs to be corrected. On the other hand, when the comparison difference value Φ E or the RMS error Φ RMSE is less than the threshold value Φth, the ventilation direction control unit 21a determines that the correction of the first ventilation direction Φ B is unnecessary.
 また、送風方向制御部21aは、N個の差分値Θのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Θを所定の閾値Θthと比較する。比較用差分値Θは、例えば、N個の差分値Θのうちの最も大きい差分値Θである。または、送風方向制御部21aは、N個の差分値ΘによるRMS誤差ΘRMSEを算出して、当該算出されたRMS誤差ΘRMSEを所定の閾値Θthと比較する。比較用差分値Θ又はRMS誤差ΘRMSEが閾値Θth以上である場合、送風方向制御部21aは、第2送風方向Θの修正が要であると判定する。他方、比較用差分値Θ又はRMS誤差ΘRMSEが閾値Θth未満である場合、送風方向制御部21aは、第2送風方向Θの修正が不要であると判定する。 Further, the blowing direction control section 21a, at least one of the difference values of the N difference values theta E (hereinafter referred to as "comparative difference value".) The theta E with a predetermined threshold value .theta.TH. The comparison difference value Θ E is, for example, the largest difference value Θ E among the N difference values Θ E. Or blowing direction control unit 21a calculates the RMS error theta RMSE by the N difference values theta E, compare the RMS error theta RMSE, which is the calculated to a predetermined threshold value .theta.TH. When the comparison difference value Θ E or the RMS error Θ RMSE is equal to or greater than the threshold value Θth, the blowing direction control unit 21a determines that the second blowing direction Θ B needs to be corrected. On the other hand, when the comparison difference value theta E or RMS error theta RMSE is smaller than the threshold .theta.TH, blowing direction control unit 21a determines that the second blowing direction theta B correction is not required.
 また、送風風量制御部22aは、N個の差分値Vのうちの少なくとも1個の差分値(以下「比較用差分値」という。)Vを所定の閾値Vthと比較する。比較用差分値Vは、例えば、N個の差分値Vのうちの最も大きい差分値Vである。または、送風風量制御部22aは、N個の差分値VによるRMS誤差VRMSEを算出して、当該算出されたRMS誤差VRMSEを所定の閾値Vthと比較する。比較用差分値V又はRMS誤差VRMSEが閾値Vth以上である場合、送風風量制御部22aは、送風風量Vの修正が要であると判定する。他方、比較用差分値V又はRMS誤差VRMSEが閾値Vth未満である場合、送風風量制御部22aは、送風風量Vの修正が不要であると判定する。 Further, blowing air volume control section 22a, at least one of the difference values of the N difference values V E (hereinafter referred to as "comparative difference value".) Compare V E with a predetermined threshold Vth. Comparative difference value V E is, for example, the largest difference value V E of the N difference values V E. Or, blow air volume control unit 22a calculates the RMS error V RMSE by the N difference values V E, compare the RMS error V RMSE, which is the calculated to a predetermined threshold value Vth. If the comparison difference value V E or RMS error V RMSE is equal to or greater than the threshold Vth, blowing air volume control unit 22a determines that the correction of the blowing air volume V B is essential. On the other hand, when the comparison difference value V E or RMS error V RMSE is smaller than the threshold value Vth, blowing air volume control unit 22a determines that the correction of the blowing air volume V B is not required.
 第1送風方向Φの修正が要であると判定された場合、送風方向制御部21aは、N個の差分値Φのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Φに応じた補正値Φを算出する。補正用差分値Φは、例えば、N個の差分値Φのうちの最も大きい差分値Φである。送風方向制御部21aは、当該算出された補正値Φに基づき、選択風向風速モデルテーブルTが示す第1送風方向Φに対して、粒子誘導用送風制御における第1送風方向Φを修正する。 When it is determined that the correction of the first blowing direction Φ B is necessary, the blowing direction control unit 21a receives at least one of the N difference values Φ E (hereinafter referred to as “correction difference value”). .) Calculate the correction value Φ C according to Φ E. The correction difference value Φ E is, for example, the largest difference value Φ E among the N difference values Φ E. Airflow direction control unit 21a on the basis of the correction value [Phi C which is the calculated, corrected for the first blowing direction [Phi B indicated by selecting Wind model table T, the first blowing direction [Phi B in blast control particles derived To do.
 また、第2送風方向Θの修正が要であると判定された場合、送風方向制御部21aは、N個の差分値Θのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Θに応じた補正値Θを算出する。補正用差分値Θは、例えば、N個の差分値Θのうちの最も大きい差分値Θである。送風方向制御部21aは、当該算出された補正値Θに基づき、選択風向風速モデルテーブルTが示す第2送風方向Θに対して、粒子誘導用送風制御における第2送風方向Θを修正する。 Further, when it is determined that the correction of the second blowing direction Θ B is necessary, the blowing direction control unit 21a sends the difference value of at least one of the N difference values Θ E (hereinafter, “correction difference value”). ”.) Calculate the correction value Θ C according to Θ E. The correction difference value Θ E is, for example, the largest difference value Θ E among the N difference values Θ E. Airflow direction control unit 21a, based on the correction value theta C which is the calculated, corrected for the second blowing direction theta B indicated by selecting Wind model table T, a second blowing direction theta B in the particle-induced blower control To do.
 また、送風風量Vの修正が要であると判定された場合、送風風量制御部22aは、N個の差分値Vのうちの少なくとも1個の差分値(以下「補正用差分値」という。)Vに応じた補正値Vを算出する。補正用差分値Vは、例えば、N個の差分値Vのうちの最も大きい差分値Vである。送風風量制御部22aは、当該算出された補正値Vに基づき、選択風向風速モデルテーブルTが示す送風風量Vに対して、粒子誘導用送風制御における送風風量Vを修正する。 Further, if the correction of the blowing air volume V B is determined to be needed, blowing air volume control section 22a, at least one of the difference values of the N difference values V E (hereinafter referred to as "correction difference value" .) and calculates a correction value V C corresponding to V E. Correction difference value V E is, for example, the largest difference value V E of the N difference values V E. Blowing air volume control unit 22a, based on the correction value V C, which is the calculated, relative to the blowing air volume V B indicated selection Wind model table T, corrects the blowing air volume V B of the air blow control particle induction.
 空気調和対象空間S1内の風向及び風速に関して、空気調和対象空間S1内の家具等の設置状況により、目標値(すなわちΦ,Θ,V)に対する計測値(すなわちΦ,Θ,V)の誤差が生ずることがある。このとき、送風制御部23aが補正制御を実行することにより、かかる誤差を小さくすることができる。この結果、粒子誘導用送風制御による誘導の精度を向上することができる。 Respect wind direction and wind speed of the air-conditioning target space S1, the installation situation of furniture within the air-conditioning target space S1, the target value (i.e. Φ M, Θ M, V M ) measured values for (i.e. Φ L, Θ L, An error of VL ) may occur. At this time, the error can be reduced by executing the correction control by the blower control unit 23a. As a result, the accuracy of induction by the blower control for particle induction can be improved.
 なお、粒子誘導用送風制御の実行中に、ライダ17が空気調和対象空間S1内を複数回走査して、風計測処理及び補正制御が複数回実行されるものであっても良い。これにより、上記誤差を次第に小さくすることができる。すなわち、補正制御は、いわゆる「フィードバック制御」によるものであっても良い。 It should be noted that the rider 17 may scan the air conditioning target space S1 a plurality of times during the execution of the particle guidance ventilation control, and the wind measurement process and the correction control may be executed a plurality of times. Thereby, the above error can be gradually reduced. That is, the correction control may be by so-called "feedback control".
 送風制御部23a、粒子検知処理部26、風計測処理部29及び通信制御部31により、制御装置100aの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19及び制御装置100aにより、室内機1aの要部が構成されている。室内機1a及び室外機2により、空気調和機200aの要部が構成されている。 The main part of the control device 100a is composed of the air blow control unit 23a, the particle detection processing unit 26, the wind measurement processing unit 29, and the communication control unit 31. The main part of the indoor unit 1a is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100a. There is. The indoor unit 1a and the outdoor unit 2 form a main part of the air conditioner 200a.
 制御装置100aの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23a、粒子検知処理部26、風計測処理部29及び通信制御部31の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。 Since the hardware configuration of the main part of the control device 100a is the same as that described with reference to FIG. 8 in the first embodiment, the illustration and description will be omitted. That is, the functions of the air blow control unit 23a, the particle detection processing unit 26, the wind measurement processing unit 29, and the communication control unit 31 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be realized.
 次に、図18のフローチャートを参照して、制御装置100aの動作について、風計測処理及び補正制御を中心に説明する。 Next, with reference to the flowchart of FIG. 18, the operation of the control device 100a will be described focusing on the wind measurement process and the correction control.
 粒子誘導用送風制御の実行中、すなわち図9に示すステップST4,ST7間にて、ライダ17は空気調和対象空間S1内を繰り返し走査する。粒子誘導用送風制御の実行中、ライダ17による走査に応じて、風計測処理及び補正制御が繰り返し実行される。 The rider 17 repeatedly scans the air conditioning target space S1 during the execution of the particle induction ventilation control, that is, between steps ST4 and ST7 shown in FIG. During the execution of the particle guidance blower control, the wind measurement process and the correction control are repeatedly executed according to the scanning by the rider 17.
 すなわち、ステップST11にて、風計測処理部29が風計測処理を実行する。風計測処理の具体例は上記のとおりであるため、再度の説明は省略する。ステップST11の風計測処理により、N個の風計測対象領域A6の各々における風向値Φ,Θ及び風速値Vが算出される。 That is, in step ST11, the wind measurement processing unit 29 executes the wind measurement processing. Since the specific example of the wind measurement process is as described above, the description thereof will be omitted again. The wind measurement process in step ST11, wind direction value [Phi L in each of the N wind measurement target region A6, theta L and wind speed V L is calculated.
 次いで、ステップST12にて、送風方向制御部21aは、ステップST11の風計測処理により算出されたN個の第1風向値Φを用いて、第1送風方向Φの修正の要否を判定する。また、ステップST13にて、送風方向制御部21aは、ステップST11の風計測処理により算出されたN個の第2風向値Θを用いて、第2送風方向Θの修正の要否を判定する。また、ステップST14にて、送風風量制御部22aは、ステップST11の風計測処理により算出されたN個の風速値Vを用いて、送風風量Vの修正の要否を判定する。これらの判定方法の具体例は上記のとおりであるため、再度の説明は省略する。 Then, at step ST12, the blowing direction control unit 21a uses the first wind direction value [Phi L of N calculated by the wind measurement process in step ST11, determines the necessity of the first blowing direction [Phi B fixes To do. Further, at step ST13, the blowing direction control unit 21a uses the second wind direction value theta L of N calculated by the wind measurement process in step ST11, determines the necessity of the second blowing direction theta B fixes To do. Further, in step ST14, the blast air volume control unit 22a determines whether or not the blast air volume V B needs to be corrected by using the N wind speed values VL calculated by the wind measurement process in step ST11. Since specific examples of these determination methods are as described above, the description thereof will be omitted again.
 第1送風方向Φの修正が要であると判定された場合(ステップST12“YES”)、ステップST15にて、送風方向制御部21aは、ステップST4における選択風向風速モデルテーブルTが示す第1送風方向Φに対して、粒子誘導用送風制御における第1送風方向Φを修正する。他方、第1送風方向Φの修正が不要であると判定された場合(ステップST12“NO”)、ステップST15の処理はスキップされる。 When it is determined that the correction of the first air blowing direction Φ B is necessary (step ST12 “YES”), in step ST15, the air blowing direction control unit 21a is the first indicated by the selected wind direction wind speed model table T in step ST4. relative airflow direction [Phi B, modifying the first blowing direction [Phi B in blast control particles induction. On the other hand, when it is determined that the correction of the first blowing direction Φ B is unnecessary (step ST12 “NO”), the processing of step ST15 is skipped.
 また、第2送風方向Θの修正が要であると判定された場合(ステップST13“YES”)、ステップST16にて、送風方向制御部21aは、ステップST4における選択風向風速モデルテーブルTが示す第2送風方向Θに対して、粒子誘導用送風制御における第2送風方向Θを修正する。他方、第2送風方向Θの修正が不要であると判定された場合(ステップST13“NO”)、ステップST16の処理はスキップされる。 Further, when it is determined that the correction of the second blowing direction Θ B is necessary (step ST13 “YES”), in step ST16, the blowing direction control unit 21a is shown by the selected wind direction and wind speed model table T in step ST4. The second blowing direction Θ B in the particle guiding blowing control is modified with respect to the second blowing direction Θ B. On the other hand, when it is determined that the correction of the second blowing direction Θ B is unnecessary (step ST13 “NO”), the processing of step ST16 is skipped.
 また、送風風量Vの修正が要であると判定された場合(ステップST14“YES”)、ステップST17にて、送風風量制御部22aは、ステップST4における選択風向風速モデルテーブルTが示す送風風量Vに対して、粒子誘導用送風制御における送風風量Vを修正する。他方、送風風量Vの修正が不要であると判定された場合(ステップST14“NO”)、ステップST17の処理はスキップされる。 When it is determined that the air volume V B needs to be corrected (step ST14 “YES”), in step ST17, the air volume control unit 22a uses the air volume control unit 22a to indicate the air volume indicated by the selected wind direction and speed model table T in step ST4. For V B , the air volume V B in the air blow control for particle induction is corrected. On the other hand, when it is determined that the correction of the air volume V B is unnecessary (step ST14 “NO”), the process of step ST17 is skipped.
 すなわち、ステップST15~ST17にて、送風制御部23aが補正制御を実行する。補正制御の具体例は上記のとおりであるため、再度の説明は省略する。 That is, in steps ST15 to ST17, the ventilation control unit 23a executes the correction control. Since the specific example of the correction control is as described above, the description thereof will be omitted again.
 なお、送風方向制御部21aは、RMS誤差ΦRMSEに代えて、N個の差分値Φの平均値を所定の閾値Φthと比較するものであっても良い。送風方向制御部21aは、RMS誤差ΘRMSEに代えて、N個の差分値Θの平均値を所定の閾値Θthと比較するものであっても良い。送風風量制御部22aは、RMS誤差VRMSEに代えて、N個の差分値Vの平均値を所定の閾値Vthと比較するものであっても良い。 Incidentally, the blowing direction control unit 21a, instead of the RMS error [Phi RMSE, may be configured to compare the average value of N difference values [Phi E with a predetermined threshold Faith. Airflow direction control unit 21a, instead of the RMS error theta RMSE, may be configured to compare the average value of N difference values theta E with a predetermined threshold .theta.TH. Blowing air volume control unit 22a, instead of the RMS error V RMSE, may be configured to compare the average value of N difference values V E with a predetermined threshold Vth.
 また、補正制御は、送風方向Φ,Θのみを対象とするものであっても良い。すなわち、送風風量Vは、補正制御の対象から除外されたものであっても良い。この場合、風計測処理における風速値Vの算出は不要である。また、図18に示すステップST14,ST17の処理は不要である。ただし、粒子誘導用送風制御による誘導の精度を向上する観点から、送風風量Vを補正制御の対象に含めるのがより好適である。 Further, the correction control may be intended only for the ventilation directions Φ B and Θ B. That is, the air volume V B may be excluded from the target of correction control. In this case, it is not necessary to calculate the wind speed value VL in the wind measurement process. Further, the processing of steps ST14 and ST17 shown in FIG. 18 is unnecessary. However, from the viewpoint of improving the accuracy of guidance by the blower control for particle guidance, it is more preferable to include the blower air volume V B in the correction control target.
 また、補正制御は、第1送風方向Φのみを対象とするものであっても良い。すなわち、第2送風方向Θ及び送風風量Vは、補正制御の対象から除外されたものであっても良い。この場合、上記式(4)におけるVw×sinθの項は不要である。これにより、上記式(4)における変数の個数が2個になるため(すなわちVu及びVv)、個々の風計測対象領域A6に対応する風計測対象地点Prの個数は2個であっても良い(すなわちM=2)。ただし、粒子誘導用送風制御による誘導の精度を向上する観点から、第2送風方向Θ及び送風風量Vを補正制御の対象に含めるのがより好適である。 Further, the correction control may be intended only for the first blowing direction Φ B. That is, the second blowing direction Θ B and the blowing air volume V B may be excluded from the target of the correction control. In this case, the term of Vw × sinθ in the above equation (4) is unnecessary. As a result, the number of variables in the above equation (4) becomes two (that is, Vu and Vv), so that the number of wind measurement target points Pr corresponding to the individual wind measurement target regions A6 may be two. (That is, M = 2). However, from the viewpoint of improving the accuracy of induction by blowing control particles derived, it is more preferable to include a second blowing direction theta B and the blower air volume V B to be corrected control.
 また、送風制御部23aは、第2粒子密度算出部25により出力された第2粒子密度分布情報を用いて、高密度の検知対象粒子が存在する領域(すなわち閾値ρth2以上の第2密度値ρ2を有する第2粒子検知対象領域A2に対応する領域)を風計測対象領域A6に設定するものであっても良い。これにより、高密度の検知対象粒子が存在する領域における風向値Φ,Θ及び風速値Vに基づく補正制御を実行することができる。 Further, the ventilation control unit 23a uses the second particle density distribution information output by the second particle density calculation unit 25 to use the region in which the high-density detection target particles exist (that is, the second density value ρ2 having a threshold value ρth2 or more). The region corresponding to the second particle detection target region A2 having the above) may be set in the wind measurement target region A6. Thus, it is possible to perform the correction control based on the wind direction value [Phi L, theta L and wind speed value V L in the area where high density detection target particles are present.
 また、ライダ17は、パルス式のドップラーライダにより構成されているものであっても良い。これにより、ライダ17が1個の視線方向Dにレーザ光Lを出力したとき、この視線方向Dに沿うように配列された複数個の風計測対象地点Prの各々における視線方向風速値Vrを取得することができる。したがって、図19に示す如く、この視線方向Dに沿うように配列された複数個の風計測対象領域A6を一度に設定することができる。 Further, the rider 17 may be configured by a pulse type Doppler lidar. As a result, when the rider 17 outputs the laser beam L in one line-of-sight direction D, the line-of-sight direction wind speed value Vr at each of the plurality of wind measurement target points Pr arranged along the line-of-sight direction D is acquired. can do. Therefore, as shown in FIG. 19, a plurality of wind measurement target regions A6 arranged along the line-of-sight direction D can be set at one time.
 そのほか、空気調和機200aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。また、粒子除去システム500aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 In addition, the air conditioner 200a can employ various modifications similar to those described in the first embodiment. Further, as the particle removing system 500a, various modifications similar to those described in the first embodiment can be adopted.
 以上のように、実施の形態2に係る空気調和機200aは、ライダ17を用いて、空気調和対象空間S1における風向値Φ,Θを算出する風計測処理部29を備え、送風制御部23aは、密度値ρ及び風向値Φ,Θを用いて、送風方向Φ,Θを制御する。送風方向Φ,Θを対象とする補正制御により、粒子誘導用送風制御による誘導の精度を向上することができる。 As described above, the air conditioner 200a according to the second embodiment includes a wind measurement processing unit 29 that calculates the wind direction values Φ L and Θ L in the air harmonization target space S1 by using the rider 17, and is a blow control unit. 23a controls the blowing directions Φ B and Θ B by using the density value ρ and the wind direction values Φ L and Θ L. The correction control for the blowing directions Φ B and Θ B can improve the accuracy of guidance by the blowing control for particle guidance.
 また、空気調和機200aは、ライダ17を用いて、空気調和対象空間S1における風向値Φ,Θ及び風速値Vを算出する風計測処理部29を備え、送風制御部23aは、密度値ρ並びに風向値Φ,Θ及び風速値Vを用いて、送風方向Φ,Θ及び送風風量Vを制御する。送風方向Φ,Θ及び送風風量Vを対象とする補正制御により、粒子誘導用送風制御による誘導の精度を更に向上することができる。 The air conditioner 200a, using the rider 17, with the wind measurement processing unit 29 for calculating the air-conditioning target space S1 wind direction value [Phi L, a theta L and wind speed value V L, the blower control unit 23a, the density The blowing direction Φ B , Θ B and the blowing air volume V B are controlled by using the value ρ, the wind direction value Φ L , Θ L, and the wind speed value VL . By the correction control for the blowing direction Φ B , Θ B and the blowing air volume V B , the accuracy of the guidance by the blowing control for particle guidance can be further improved.
実施の形態3.
 図20は、実施の形態3に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。図21は、実施の形態3に係る空気調和機の室内機の要部を示すブロック図である。図20及び図21を参照して、実施の形態3に係る空気調和機を含む粒子除去システムについて説明する。
Embodiment 3.
FIG. 20 is a block diagram showing a main part of the particle removal system including the air conditioner according to the third embodiment. FIG. 21 is a block diagram showing a main part of the indoor unit of the air conditioner according to the third embodiment. A particle removal system including an air conditioner according to a third embodiment will be described with reference to FIGS. 20 and 21.
 なお、図20において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図21において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 In FIG. 20, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 21, the same blocks as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 図20に示す如く、空気調和機200b、換気装置300及び空気清浄機400により、粒子除去システム500bの要部が構成されている。 As shown in FIG. 20, the main part of the particle removal system 500b is composed of the air conditioner 200b, the ventilation device 300, and the air purifier 400.
 実施の形態1にて説明したとおり、ライダ17は、空気調和対象空間S1内を走査することにより、複数個の視線方向Dの各々における距離-強度特性P(Z)を取得するものである。これに加えて、ライダ17は、当該走査により、いわゆる「強度画像」及び「距離画像」を取得するものである。強度画像における各画素は、当該画素に対応する視線方向Dにレーザ光Lを出力することにより得られた受信信号の強度値(例えば受信強度P)を示すものである。距離画像における各画素は、当該画素に対応する視線方向Dにレーザ光Lを出力することにより得られた距離値を示すものである。ライダ17は、当該取得された強度画像を示す画像情報(以下「強度画像情報」という。)、及び当該取得された距離画像を示す画像情報(以下「距離画像情報」)を出力するものである。以下、ライダ17により取得される画像を総称して「ライダ画像」ということがある。 As described in the first embodiment, the rider 17 acquires the distance-intensity characteristic P (Z) in each of the plurality of line-of-sight directions D by scanning in the air-conditioning target space S1. In addition to this, the rider 17 acquires so-called "intensity image" and "distance image" by the scanning. Each pixel in the intensity image indicates an intensity value (for example, reception intensity P) of a received signal obtained by outputting the laser beam L in the line-of-sight direction D corresponding to the pixel. Each pixel in the distance image indicates a distance value obtained by outputting the laser beam L in the line-of-sight direction D corresponding to the pixel. The rider 17 outputs image information indicating the acquired intensity image (hereinafter referred to as “intensity image information”) and image information indicating the acquired distance image (hereinafter referred to as “distance image information”). .. Hereinafter, the images acquired by the rider 17 may be collectively referred to as “rider images”.
 物体検知処理部30は、ライダ17により出力された強度画像情報及び距離画像情報を用いて、空気調和対象空間S1における物体Oを検知する処理(以下「物体検知処理」という。)を実行するものである。検知対象となる物体Oは、例えば、人及び家具を含むものである。物体検知処理の具体例は以下のとおりである。 The object detection processing unit 30 executes a process of detecting an object O in the air harmonized target space S1 (hereinafter referred to as “object detection process”) using the intensity image information and the distance image information output by the rider 17. Is. The object O to be detected includes, for example, a person and furniture. Specific examples of the object detection process are as follows.
 物体Oは、いわゆる「ハードターゲット」である。そこで、まず、物体検知処理部30は、強度画像に対する閾値処理を実行することにより、ライダ画像におけるハードターゲットに対応する画素群を抽出する。通常、ハードターゲットに対応する画素群に含まれる個々の画素の強度値は、他の画素の強度値に対して10倍程度大きいものである。このため、強度画像に対する閾値処理を実行することにより、ライダ画像におけるハードターゲットに対応する画素群を抽出することができる。 The object O is a so-called "hard target". Therefore, first, the object detection processing unit 30 extracts the pixel group corresponding to the hard target in the rider image by executing the threshold value processing on the intensity image. Usually, the intensity value of each pixel included in the pixel group corresponding to a hard target is one of about 104 times larger than the intensity values of other pixels. Therefore, by executing the threshold processing on the intensity image, the pixel group corresponding to the hard target in the rider image can be extracted.
 物体検知処理部30は、ライダ画像における当該抽出された画素群の座標値、及び距離画像における当該抽出された画素群の距離値に基づき、空気調和対象空間S1における個々の物体Oの三次元位置を算出する。すなわち、強度画像に加えて距離画像を用いることにより、x方向及びz方向に対する物体Oの位置を算出することができるのはもちろんのこと、y方向に対する物体Oの位置を算出することができる。 The object detection processing unit 30 is based on the coordinate values of the extracted pixel group in the rider image and the distance value of the extracted pixel group in the distance image, and the three-dimensional position of each object O in the air conditioning target space S1. Is calculated. That is, by using the distance image in addition to the intensity image, it is possible to calculate the position of the object O in the x direction and the z direction, as well as the position of the object O in the y direction.
 次いで、物体検知処理部30は、強度画像又は距離画像に対するパターンマッチング処理を実行することにより、当該抽出された画素群が人に対応するものであるか否かを判定する。これにより、個々の物体Oが人であるか否かが判別される。また、物体検知処理部30は、強度画像又は距離画像に対するパターンマッチング処理を実行することにより、当該抽出された画素群が家具に対応するものであるか否かを判定する。これにより、個々の物体Oが家具であるか否かが判別される。 Next, the object detection processing unit 30 determines whether or not the extracted pixel group corresponds to a person by executing pattern matching processing on the intensity image or the distance image. As a result, it is determined whether or not each object O is a person. Further, the object detection processing unit 30 determines whether or not the extracted pixel group corresponds to furniture by executing pattern matching processing on the intensity image or the distance image. As a result, it is determined whether or not each object O is furniture.
 物体検知処理部30は、物体検知処理の結果を示す情報(以下「物体検知結果情報」という。)を送風制御部23に出力する。送風制御部23は、物体検知処理部30により出力された物体検知結果情報を粒子誘導用送風制御に用いる。より具体的には、送風制御部23は、当該出力された物体検知結果情報を風向風速モデルMの選択に用いる。 The object detection processing unit 30 outputs information indicating the result of the object detection processing (hereinafter referred to as “object detection result information”) to the ventilation control unit 23. The blast control unit 23 uses the object detection result information output by the object detection processing unit 30 for the particle guidance blast control. More specifically, the blower control unit 23 uses the output object detection result information for selecting the wind direction and speed model M.
 例えば、物体検知処理部30は、空気調和対象空間S1内に人がいる場合、粒子誘導用送風制御において、当該人を回避するような気流AFを実現可能な風向風速モデルMを選択する。当該選択された風向風速モデル(すなわち選択風向風速モデル)Mに対応する風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく粒子誘導用送風制御により、図22に示す如く、当該人(図中H)を回避する気流AFが発生する。これにより、検知対象粒子(図中PM)が当該人により吸入されるのを回避することができる。 For example, when a person is in the air-conditioning target space S1, the object detection processing unit 30 selects a wind direction and speed model M capable of realizing an airflow AF that avoids the person in the particle guidance ventilation control. As shown in FIG. 22, the person (FIG. 22) is controlled by blowing air for particle guidance based on the wind direction wind speed model table (that is, the selected wind direction wind speed model table) T corresponding to the selected wind direction wind speed model (that is, the selected wind direction wind speed model) M. Airflow AF that avoids medium H) is generated. As a result, it is possible to prevent the particles to be detected (PM in the figure) from being inhaled by the person concerned.
 また、物体検知処理部30は、空気調和対象空間S1内に家具がある場合、粒子誘導用送風制御において、当該家具を回避するような気流AFを実現可能な風向風速モデルMを選択する。当該選択された風向風速モデル(すなわち選択風向風速モデル)Mに対応する風向風速モデルテーブル(すなわち選択風向風速モデルテーブル)Tに基づく粒子誘導用送風制御により、図22に示す如く、当該家具(図中F)を回避する気流AFが生成される。これにより、検知対象粒子(図中PM)が当該家具に付着するのを回避することができる。 Further, when the object detection processing unit 30 has furniture in the air harmonization target space S1, the object detection processing unit 30 selects the wind direction wind speed model M capable of realizing the airflow AF that avoids the furniture in the airflow control for particle guidance. As shown in FIG. 22, the furniture (FIG. 22) is controlled by blowing air for particle guidance based on the wind direction wind speed model table (that is, the selected wind direction wind speed model table) T corresponding to the selected wind direction wind speed model (that is, the selected wind direction wind speed model) M. An airflow AF that avoids middle F) is generated. As a result, it is possible to prevent the particles to be detected (PM in the figure) from adhering to the furniture.
 送風制御部23、粒子検知処理部26、物体検知処理部30及び通信制御部31により、制御装置100bの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19及び制御装置100bにより、室内機1bの要部が構成されている。室内機1b及び室外機2により、空気調和機200bの要部が構成されている。 The main part of the control device 100b is composed of the blast control unit 23, the particle detection processing unit 26, the object detection processing unit 30, and the communication control unit 31. The main part of the indoor unit 1b is composed of the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, and the control device 100b. There is. The indoor unit 1b and the outdoor unit 2 form a main part of the air conditioner 200b.
 制御装置100bの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23、粒子検知処理部26、物体検知処理部30及び通信制御部31の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。 Since the hardware configuration of the main part of the control device 100b is the same as that described with reference to FIG. 8 in the first embodiment, the illustration and description will be omitted. That is, the functions of the blower control unit 23, the particle detection processing unit 26, the object detection processing unit 30, and the communication control unit 31 may be realized by the processor 41 and the memory 42, or may be realized by the dedicated processing circuit 43. It may be realized.
 次に、図23のフローチャートを参照して、制御装置100bの動作について、粒子検知処理、作動開始指示制御、物体検知処理及び粒子誘導用送風制御を中心に説明する。なお、図23において、図9Aに示すステップと同様のステップには同一符号を付して説明を省略する。 Next, with reference to the flowchart of FIG. 23, the operation of the control device 100b will be described focusing on particle detection processing, operation start instruction control, object detection processing, and air blow control for particle guidance. In FIG. 23, the same steps as those shown in FIG. 9A are designated by the same reference numerals, and the description thereof will be omitted.
 まず、ステップST1,ST2の処理が実行される。ステップST2“YES”と判定された場合、ステップST3の処理が実行される。 First, the processes of steps ST1 and ST2 are executed. If it is determined that step ST2 is “YES”, the process of step ST3 is executed.
 次いで、ステップST21にて、物体検知処理部30が物体検知処理を実行する。物体検知処理の具体例は上記のとおりであるため、再度の説明は省略する。物体検知処理部30は、物体検知結果情報を送風制御部23に出力する。 Next, in step ST21, the object detection processing unit 30 executes the object detection process. Since the specific example of the object detection process is as described above, the description thereof will be omitted again. The object detection processing unit 30 outputs the object detection result information to the ventilation control unit 23.
 次いで、ステップST4aにて、送風制御部23が粒子誘導用送風制御を開始する。このとき、送風制御部23は、物体検知処理部30により出力された物体検知結果情報を風向風速モデルMの選択に用いる。粒子誘導用送風制御の具体例は上記のとおりであるため、再度の説明は省略する。 Next, in step ST4a, the blower control unit 23 starts the blower control for particle guidance. At this time, the blast control unit 23 uses the object detection result information output by the object detection processing unit 30 to select the wind direction and speed model M. Since the specific example of the blower control for particle induction is as described above, the description thereof will be omitted again.
 ステップST4aにて粒子誘導用送風制御が開始された後、ステップST5~ST8の処理が実行される。これらの処理については、実施の形態1にて図9Bを参照して説明したものと同様であるため、図示及び説明を省略する。 After the particle induction ventilation control is started in step ST4a, the processes of steps ST5 to ST8 are executed. Since these processes are the same as those described with reference to FIG. 9B in the first embodiment, illustration and description thereof will be omitted.
 なお、物体検知処理による検知対象となる物体Oは、人及び家具に限定されるものではない。例えば、物体検知処理部30は、物体検知処理を実行することにより、空気調和対象空間S1における壁を検知するとともに、当該壁における開放状態の窓を検知するものであっても良い。また、物体検知結果情報の用途は、風向風速モデルMの選択に限定されるものではない。例えば、送風制御部23は、物体検知結果情報を粒子誘導対象領域A4の設定に用いるものであっても良い。 The object O to be detected by the object detection process is not limited to people and furniture. For example, the object detection processing unit 30 may detect a wall in the air-conditioning target space S1 and also detect an open window in the wall by executing the object detection process. Further, the use of the object detection result information is not limited to the selection of the wind direction and wind speed model M. For example, the ventilation control unit 23 may use the object detection result information for setting the particle guidance target region A4.
 すなわち、図24に示す如く、空気調和機200bにより粒子除去システム500bの要部が構成されているものであっても良い。換言すれば、粒子除去システム500bに換気装置300が含まれておらず、かつ、粒子除去システム500bに空気清浄機400が含まれていないものであっても良い。このとき、図25に示す如く、送風制御部23は、物体検知結果情報を用いて、開放状態の窓(図中OW)に対応する領域(図中A4_3)を粒子誘導対象領域A4に設定するものであっても良い。 That is, as shown in FIG. 24, the main part of the particle removal system 500b may be configured by the air conditioner 200b. In other words, the particle removal system 500b may not include the ventilation device 300, and the particle removal system 500b may not include the air purifier 400. At this time, as shown in FIG. 25, the ventilation control unit 23 sets the region (A4_3 in the figure) corresponding to the open window (OW in the figure) to the particle guidance target region A4 by using the object detection result information. It may be a thing.
 また、図26又は図28に示す如く、制御装置100bは、風計測処理部29を有するものであっても良い。また、制御装置100bは、送風制御部23に代えて送風制御部23aを有するものであっても良い。この場合、送風制御部23aは、物体検知結果情報を風向風速モデルMの選択などに用いるものであっても良い。 Further, as shown in FIG. 26 or FIG. 28, the control device 100b may have a wind measurement processing unit 29. Further, the control device 100b may have a blast control unit 23a instead of the blast control unit 23. In this case, the blower control unit 23a may use the object detection result information for selecting the wind direction and speed model M and the like.
 また、図27又は図28に示す如く、室内機1bにカメラ18が設けられているものであっても良い。カメラ18は、空気調和対象空間S1内を撮像するものである。物体検知処理部30は、ライダ画像に代えて、カメラ18により撮像された画像(以下「カメラ画像」という。)を物体検知処理に用いるものであっても良い。 Further, as shown in FIG. 27 or FIG. 28, the camera 18 may be provided in the indoor unit 1b. The camera 18 images the inside of the air-conditioning target space S1. The object detection processing unit 30 may use an image captured by the camera 18 (hereinafter referred to as “camera image”) for the object detection processing instead of the rider image.
 ここで、カメラ18は、ステレオカメラ又は単眼カメラにより構成されている。カメラ18がステレオカメラにより構成されている場合、カメラ画像を用いてカメラ18と物体O間の距離を測定することができる。これにより、y方向に対する物体Oの位置を算出することができる。他方、カメラ18が単眼カメラにより構成されている場合、カメラ画像を用いるのに加えて、いわゆる「機械学習」の結果を用いることにより、カメラ18と物体O間の距離を測定することができる。これにより、y方向に対する物体Oの位置を算出することができる。 Here, the camera 18 is composed of a stereo camera or a monocular camera. When the camera 18 is composed of a stereo camera, the distance between the camera 18 and the object O can be measured using the camera image. As a result, the position of the object O with respect to the y direction can be calculated. On the other hand, when the camera 18 is composed of a monocular camera, the distance between the camera 18 and the object O can be measured by using the result of so-called "machine learning" in addition to using the camera image. As a result, the position of the object O with respect to the y direction can be calculated.
 また、室内機1bにカメラ18が設けられているとき、物体検知処理部30は、ライダ画像に加えてカメラ画像を物体検知処理に用いるものであっても良い。物体検知処理に用いられる画像の種類を増やすことにより、物体検知処理の精度を向上することができる。 Further, when the camera 18 is provided in the indoor unit 1b, the object detection processing unit 30 may use the camera image for the object detection processing in addition to the rider image. By increasing the types of images used in the object detection process, the accuracy of the object detection process can be improved.
 また、粒子検知処理部26は、物体検知結果情報を用いて、空気調和対象空間S1内の人の位置に対応する領域を、粒子検知処理の対象となる領域(すなわち第1粒子検知対象領域A1及び第2粒子検知対象領域A2)に設定するものであっても良い。これにより、当該人の位置に対応する領域における密度値ρを算出することができる。 Further, the particle detection processing unit 26 uses the object detection result information to set a region corresponding to the position of a person in the air harmonization target space S1 as a region to be subject to particle detection processing (that is, a first particle detection target region A1). And may be set in the second particle detection target area A2). As a result, the density value ρ in the region corresponding to the position of the person concerned can be calculated.
 また、制御装置100bが風計測処理部29を有するものである場合、風計測処理部29は、物体検知結果情報を用いて、空気調和対象空間S1内の人の位置に対応する領域を、風計測処理の対象となる領域(すなわち風計測対象領域A6)に設定するものであっても良い。これにより、当該人の位置に対応する領域における風向値Φ,Θ及び風速値Vを算出することができる。なお、空気調和対象空間S1内に複数人の人がいる場合、例えば、各人の位置を中心とする所定範囲(例えば半径1メートルの範囲)内の領域が風計測処理の対象に設定されるものであっても良い。 When the control device 100b has a wind measurement processing unit 29, the wind measurement processing unit 29 uses the object detection result information to create a region corresponding to the position of a person in the air conditioning target space S1. It may be set in the area to be measured (that is, the wind measurement target area A6). Thus, it is possible to calculate the wind direction value [Phi L, theta L and wind speed value V L in the region corresponding to the position of the person. When there are a plurality of people in the air conditioning target space S1, for example, a region within a predetermined range (for example, a range with a radius of 1 meter) centered on the position of each person is set as the target of the wind measurement process. It may be a thing.
 そのほか、空気調和機200bは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。例えば、粒子誘導用送風制御は、送風方向Φ,Θのみを対象とするものであっても良い。この場合、風計測処理は、風向値Φ,Θのみを対象とするものであっても良い。また、補正制御は、送風方向Φ,Θのみを対象とするものであっても良い。 In addition, the air conditioner 200b can employ various modifications similar to those described in the first and second embodiments. For example, the air blow control for particle induction may be intended only for the air blow directions Φ B and Θ B. In this case, the wind measurement process may be intended only for the wind direction values Φ L and Θ L. Further, the correction control may be intended only for the ventilation directions Φ B and Θ B.
 以上のように、実施の形態3に係る空気調和機200bは、ライダ17又はカメラ18を用いて、空気調和対象空間S1における物体Oの位置を算出するとともに、物体Oを判別する物体検知処理部30を備え、送風制御部23又は送風制御部23aは、物体検知処理部30による算出結果及び判別結果に基づき、送風方向Φ,Θを制御する。これにより、例えば、人及び家具を回避した気流AFを空気調和対象空間S1内に発生させることができる。 As described above, the air conditioner 200b according to the third embodiment uses the rider 17 or the camera 18 to calculate the position of the object O in the air conditioning target space S1 and the object detection processing unit for discriminating the object O. The blower control unit 23 or the blower control unit 23a controls the blower directions Φ B and Θ B based on the calculation result and the determination result by the object detection processing unit 30. Thereby, for example, the airflow AF avoiding people and furniture can be generated in the air conditioning target space S1.
 また、送風制御部23又は送風制御部23aは、物体検知処理部30により物体Oが人又は家具であると判別された場合、送風方向Φ,Θを制御することにより、検知対象粒子が物体Oを回避する気流AFを発生させる。これにより、検知対象粒子が人により吸入されるのを回避することができる。また、検知対象粒子が家具に付着するのを回避することができる。 Further, when the object detection processing unit 30 determines that the object O is a person or furniture, the airflow control unit 23 or the airflow control unit 23a controls the airflow directions Φ B and Θ B to detect the particles to be detected. An airflow AF that avoids the object O is generated. As a result, it is possible to prevent the particles to be detected from being inhaled by a person. In addition, it is possible to prevent the particles to be detected from adhering to the furniture.
 また、空気調和機200bは、ライダ17又はカメラ18を用いて、空気調和対象空間S1における物体Oの位置を算出するとともに、物体Oを判別する物体検知処理部30を備え、送風制御部23又は送風制御部23aは、物体検知処理部30による算出結果及び判別結果に基づき、送風方向Φ,Θ及び送風風量Vを制御する。これにより、例えば、人及び家具を回避した気流AFを空気調和対象空間S1内に発生させることができる。 Further, the air conditioner 200b includes an object detection processing unit 30 that calculates the position of the object O in the air conditioning target space S1 and discriminates the object O by using the rider 17 or the camera 18, and is provided with the blower control unit 23 or The blower control unit 23a controls the blower directions Φ B , Θ B and the blower air volume V B based on the calculation result and the determination result by the object detection processing unit 30. Thereby, for example, the airflow AF avoiding people and furniture can be generated in the air conditioning target space S1.
 また、送風制御部23又は送風制御部23aは、物体検知処理部30により物体Oが人又は家具であると判別された場合、送風方向Φ,Θ及び送風風量Vを制御することにより、検知対象粒子が物体Oを回避する気流AFを発生させる。これにより、検知対象粒子が人により吸入されるのを回避することができる。また、検知対象粒子が家具に付着するのを回避することができる。 Further, when the object detection processing unit 30 determines that the object O is a person or furniture, the airflow control unit 23 or the airflow control unit 23a controls the airflow directions Φ B , Θ B and the airflow amount V B. , The particles to be detected generate an airflow AF that avoids the object O. As a result, it is possible to prevent the particles to be detected from being inhaled by a person. In addition, it is possible to prevent the particles to be detected from adhering to the furniture.
 また、送風制御部23又は送風制御部23aは、空気調和対象空間S1における開放状態の窓に対応する領域を粒子誘導対象領域A4に設定する。これにより、粒子除去システム500bにおける換気装置300及び空気清浄機400を不要とすることができる。 Further, the blower control unit 23 or the blower control unit 23a sets the region corresponding to the open window in the air conditioning target space S1 to the particle guidance target region A4. As a result, the ventilation device 300 and the air purifier 400 in the particle removal system 500b can be eliminated.
実施の形態4.
 図29は、実施の形態4に係る空気調和機を含む粒子除去システムの要部を示すブロック図である。図30は、実施の形態4に係る空気調和機の室内機の要部を示すブロック図である。図29及び図30を参照して、実施の形態4に係る空気調和機を含む粒子除去システムについて説明する。
Embodiment 4.
FIG. 29 is a block diagram showing a main part of the particle removal system including the air conditioner according to the fourth embodiment. FIG. 30 is a block diagram showing a main part of the indoor unit of the air conditioner according to the fourth embodiment. A particle removal system including an air conditioner according to a fourth embodiment will be described with reference to FIGS. 29 and 30.
 なお、図29において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。また、図30において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。 Note that, in FIG. 29, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 30, the same reference numerals are given to blocks similar to the blocks shown in FIG. 2, and the description thereof will be omitted.
 図29に示す如く、空気調和機200c、換気装置300及び空気清浄機400により、粒子除去システム500cの要部が構成されている。 As shown in FIG. 29, the main part of the particle removal system 500c is composed of the air conditioner 200c, the ventilation device 300, and the air purifier 400.
 図30に示す如く、室内機1cに紫外線照射装置20が設けられている。紫外線照射装置20は、空気調和対象空間S1内に紫外線を照射するものである。紫外線照射装置20による紫外線の照射口は、例えば、室内機1cの前面部に設けられている。紫外線照射装置20は、紫外線の照射方向が可変なものである。 As shown in FIG. 30, the indoor unit 1c is provided with the ultraviolet irradiation device 20. The ultraviolet irradiation device 20 irradiates the inside of the air conditioning target space S1 with ultraviolet rays. The ultraviolet irradiation port by the ultraviolet irradiation device 20 is provided, for example, on the front surface of the indoor unit 1c. The ultraviolet irradiation device 20 has a variable ultraviolet irradiation direction.
 紫外線照射制御部32は、第2粒子密度算出部25により出力された第2粒子密度分布情報を取得するものである。紫外線照射制御部32は、当該取得された第2粒子密度分布情報に基づき、紫外線照射装置20を用いて、空気調和対象空間S1における閾値ρth2以上の第2密度値ρ2を有する領域、すなわち空気調和対象空間S1における検知対象粒子が存在する領域に対して、紫外線を照射する制御(以下「紫外線照射制御」という。)を実行するものである。 The ultraviolet irradiation control unit 32 acquires the second particle density distribution information output by the second particle density calculation unit 25. Based on the acquired second particle density distribution information, the ultraviolet irradiation control unit 32 uses the ultraviolet irradiation device 20 to form a region having a second density value ρ2 equal to or higher than the threshold value ρth2 in the air harmonization target space S1, that is, air harmony. Control of irradiating the region where the detection target particles exist in the target space S1 with ultraviolet rays (hereinafter referred to as “ultraviolet irradiation control”) is executed.
 例えば、以下の参考文献2には、生物粒子の生存確率と生物粒子に照射された紫外線のエネルギー量との関係が記載されている。紫外線照射制御部32は、生存確率が所定値以下となるエネルギー量に基づき、紫外線照射装置20による紫外線の照射量を設定する。 For example, Reference 2 below describes the relationship between the survival probability of biological particles and the amount of energy of ultraviolet rays irradiated to the biological particles. The ultraviolet irradiation control unit 32 sets the amount of ultraviolet rays irradiated by the ultraviolet irradiation device 20 based on the amount of energy at which the survival probability is equal to or less than a predetermined value.
[参考文献2]
David Welch, Manuela Buonanno, Igor Shuryak, Gerhard Randers-Pehrson, Henry M. Spotnitz, and David J. Brenner, "Far-UVC light applications: sterilization of MRSA on a surface and inactivation of aerosolized influenza virus," Proceedings of SPIE, Vol.10479, 104791D, 2018.
[Reference 2]
David Welch, Manuela Buonanno, Igor Shuryak, Gerhard Randers-Pehrson, Henry M. Spotnitz, and David J. Brenner, "Far-UVC light applications: sterilization of MRSA on a surface and inactivation of aerosolized influenza virus," Proceedings of SPIE, Vol.10479, 104791D, 2018.
 また、紫外線照射制御部32は、第2粒子密度分布情報に基づき、紫外線照射装置20による紫外線の照射方向を、閾値ρth2以上の第2密度値ρ2を有する領域に紫外線が照射される方向に設定する。 Further, the ultraviolet irradiation control unit 32 sets the irradiation direction of the ultraviolet rays by the ultraviolet irradiation device 20 in the direction in which the ultraviolet rays are irradiated to the region having the second density value ρ2 of the threshold value ρth2 or more based on the second particle density distribution information. To do.
 紫外線照射装置20は、当該設定された照射量にて、当該設定された照射方向に紫外線を照射する。粒子検知処理により検知された粒子のうちの細菌、ウィルス及びカビなどに対して、かかる紫外線が照射されることにより、細菌、ウィルス又はカビなどの不活性化を図ることができる。 The ultraviolet irradiation device 20 irradiates ultraviolet rays in the set irradiation direction at the set irradiation amount. Bacteria, viruses, molds, etc. among the particles detected by the particle detection process can be inactivated by irradiating the ultraviolet rays.
 送風制御部23、粒子検知処理部26、通信制御部31及び紫外線照射制御部32により、制御装置100cの要部が構成されている。第1風向板11、第2風向板12、送風ファン13、駆動モータ14、駆動モータ15、駆動モータ16、ライダ17、通信装置19、紫外線照射装置20及び制御装置100cにより、室内機1cの要部が構成されている。室内機1c及び室外機2により、空気調和機200cの要部が構成されている。 The main part of the control device 100c is composed of the ventilation control unit 23, the particle detection processing unit 26, the communication control unit 31, and the ultraviolet irradiation control unit 32. The indoor unit 1c is required by the first wind direction plate 11, the second wind direction plate 12, the blower fan 13, the drive motor 14, the drive motor 15, the drive motor 16, the rider 17, the communication device 19, the ultraviolet irradiation device 20, and the control device 100c. The part is composed. The indoor unit 1c and the outdoor unit 2 form a main part of the air conditioner 200c.
 制御装置100cの要部のハードウェア構成は、実施の形態1にて図8を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送風制御部23、粒子検知処理部26、通信制御部31及び紫外線照射制御部32の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。 Since the hardware configuration of the main part of the control device 100c is the same as that described with reference to FIG. 8 in the first embodiment, the illustration and description will be omitted. That is, the functions of the ventilation control unit 23, the particle detection processing unit 26, the communication control unit 31, and the ultraviolet irradiation control unit 32 may be realized by the processor 41 and the memory 42, or by a dedicated processing circuit 43. It may be realized.
 次に、図31のフローチャートを参照して、制御装置100cの動作について、粒子検出処理及び紫外線照射処理を中心に説明する。 Next, with reference to the flowchart of FIG. 31, the operation of the control device 100c will be described focusing on the particle detection process and the ultraviolet irradiation process.
 まず、ステップST31にて、粒子検知処理部26が粒子検知処理を実行する。粒子検知処理の具体例は上記のとおりであるため、再度の説明は省略する。粒子検知処理部26は、第2粒子密度分布情報を紫外線照射制御部32に出力する。 First, in step ST31, the particle detection processing unit 26 executes the particle detection processing. Since the specific example of the particle detection process is as described above, the description thereof will be omitted again. The particle detection processing unit 26 outputs the second particle density distribution information to the ultraviolet irradiation control unit 32.
 次いで、ステップST32にて、紫外線照射制御部32は、粒子検知処理の結果に基づき、紫外線照射制御の実行要否を判定する。 Next, in step ST32, the ultraviolet irradiation control unit 32 determines whether or not the ultraviolet irradiation control needs to be executed based on the result of the particle detection process.
 例えば、閾値ρth2以上の第2密度値ρ2を有する第2粒子検知対象領域A2の個数が所定個(例えば1個)以上である場合、紫外線照射制御部32は、紫外線照射制御の実行が要であると判定する。他方、閾値ρth2以上の第2密度値ρ2を有する第2粒子検知対象領域A2の個数が所定個未満である場合、送風制御部23は、紫外線照射制御の実行が不要であると判定する。すなわち、紫外線照射制御の実行要否の判定基準は、粒子誘導用送風制御の実行要否の判定基準と同様の基準であっても良い。 For example, when the number of the second particle detection target regions A2 having the threshold value ρth2 or more and the second density value ρ2 is a predetermined number (for example, one) or more, the ultraviolet irradiation control unit 32 needs to execute the ultraviolet irradiation control. Judge that there is. On the other hand, when the number of the second particle detection target regions A2 having the threshold value ρth2 or more and the second density value ρ2 is less than a predetermined number, the ventilation control unit 23 determines that the execution of the ultraviolet irradiation control is unnecessary. That is, the criterion for determining the necessity of executing the ultraviolet irradiation control may be the same as the criterion for determining the necessity of executing the blower control for particle induction.
 紫外線照射制御の実行が要であると判定された場合(ステップST32“YES”)、ステップST33にて、紫外線照射制御が紫外線照射制御を実行する。紫外線照射制御の詳細については既に説明したとおりであるため、再度の説明は省略する。 When it is determined that the execution of the ultraviolet irradiation control is necessary (step ST32 “YES”), the ultraviolet irradiation control executes the ultraviolet irradiation control in step ST33. Since the details of the ultraviolet irradiation control have already been described, the description thereof will be omitted again.
 なお、図32又は図34に示す如く、制御装置100cは、風計測処理部29を有するものであっても良い。また、制御装置100cは、送風制御部23に代えて送風制御部23aを有するものであっても良い。 Note that, as shown in FIG. 32 or FIG. 34, the control device 100c may have a wind measurement processing unit 29. Further, the control device 100c may have a blast control unit 23a instead of the blast control unit 23.
 また、図33又は図34に示す如く、制御装置100cは、物体検知処理部30を有するものであっても良い。 Further, as shown in FIG. 33 or FIG. 34, the control device 100c may have an object detection processing unit 30.
 制御装置100cに物体検知処理部30が設けられている場合、紫外線照射制御部32は、物体検知結果情報を紫外線の照射方向の設定に用いるものであっても良い。具体的には、例えば、紫外線照射制御部32は、空気調和対象空間S1内に人がいるとき、紫外線照射装置20による紫外線の照射方向を、当該人を回避した方向に設定する。これにより、当該人に紫外線が照射されるのを回避することができる。 When the object detection processing unit 30 is provided in the control device 100c, the ultraviolet irradiation control unit 32 may use the object detection result information for setting the ultraviolet irradiation direction. Specifically, for example, when a person is in the air conditioning target space S1, the ultraviolet irradiation control unit 32 sets the direction of irradiation of ultraviolet rays by the ultraviolet irradiation device 20 in a direction avoiding the person. As a result, it is possible to prevent the person from being irradiated with ultraviolet rays.
 また、制御装置100cに物体検知処理部30が設けられている場合、制御装置100cにおいて、以下のような制御が実行されるものであっても良い。すなわち、紫外線照射装置20により紫外線が照射される場合において、空気調和対象空間S1内に人がいるとき、制御装置100cは、紫外線の照射を通知する音声又は退室を促す音声を、室内機1c又はリモコン3に設けられているスピーカ(不図示)に出力させる制御を実行する。または、このとき、制御装置100cは、かかる音声の出力を、通信装置19と通信自在な携帯情報端末(不図示)であって、空気調和機200cのユーザが所持している携帯情報端末に指示する制御を実行する。または、このとき、制御装置100cは、紫外線の照射を通知する画像又は退室を促す画像の表示を、当該携帯情報端末に指示する制御を実行する。当該人が退室することにより、当該人に紫外線が照射されるのを回避することができる。 Further, when the object detection processing unit 30 is provided in the control device 100c, the following control may be executed in the control device 100c. That is, when ultraviolet rays are irradiated by the ultraviolet irradiation device 20, when there is a person in the air harmonization target space S1, the control device 100c emits a sound notifying the irradiation of ultraviolet rays or a sound prompting to leave the room, or the indoor unit 1c or Control to output to a speaker (not shown) provided on the remote controller 3 is executed. Alternatively, at this time, the control device 100c instructs the mobile information terminal (not shown) capable of communicating with the communication device 19 and possessed by the user of the air conditioner 200c to output such voice. Perform control. Alternatively, at this time, the control device 100c executes a control instructing the mobile information terminal to display an image notifying the irradiation of ultraviolet rays or an image prompting the user to leave the room. By leaving the room, it is possible to prevent the person from being irradiated with ultraviolet rays.
 制御装置100cに物体検知処理部30が設けられている場合、室内機1cにカメラ18が設けられているものであっても良い(不図示)。物体検知処理部30は、ライダ画像に代えて又は加えてカメラ画像を物体検知処理に用いるものであっても良い。 When the object detection processing unit 30 is provided in the control device 100c, the camera 18 may be provided in the indoor unit 1c (not shown). The object detection processing unit 30 may use the camera image in place of or in addition to the rider image for the object detection processing.
 また、粒子検知処理部26は、第2粒子密度算出部25を有しないものであっても良い。この場合、粒子検知処理部26は、第1粒子密度分布情報を紫外線照射制御部32に出力するものであっても良い。紫外線照射制御部32は、第2密度値ρ2に代えて第1密度値ρ1を用いて、紫外線照射制御の実行要否を判定するとともに、紫外線照射制御を実行するものであっても良い。 Further, the particle detection processing unit 26 may not have the second particle density calculation unit 25. In this case, the particle detection processing unit 26 may output the first particle density distribution information to the ultraviolet irradiation control unit 32. The ultraviolet irradiation control unit 32 may use the first density value ρ1 instead of the second density value ρ2 to determine whether or not the ultraviolet irradiation control needs to be executed and to execute the ultraviolet irradiation control.
 そのほか、空気調和機200cは、実施の形態1~3にて説明したものと同様の種々の変形例を採用することができる。例えば、粒子誘導用送風制御は、送風方向Φ,Θのみを対象とするものであっても良い。この場合、風計測処理は、風向値Φ,Θのみを対象とするものであっても良い。また、補正制御は、送風方向Φ,Θのみを対象とするものであっても良い。 In addition, the air conditioner 200c can employ various modifications similar to those described in the first to third embodiments. For example, the air blow control for particle induction may be intended only for the air blow directions Φ B and Θ B. In this case, the wind measurement process may be intended only for the wind direction values Φ L and Θ L. Further, the correction control may be intended only for the ventilation directions Φ B and Θ B.
 以上のように、実施の形態4の空気調和機200cは、密度値ρに基づき、空気調和対象空間S1における検知対象粒子が存在する領域に紫外線を照射する。これにより、細菌、ウィルス又はカビなどの不活性化を図ることができる。 As described above, the air conditioner 200c of the fourth embodiment irradiates the region where the detection target particles exist in the air conditioning target space S1 with ultraviolet rays based on the density value ρ. This makes it possible to inactivate bacteria, viruses, molds and the like.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本発明の空気調和機、粒子除去システム及び制御方法は、ハウスダスト、塵、埃、細菌、ウィルス、カビ又はPM2.5などの除去に用いることができる。 The air conditioner, particle removal system and control method of the present invention can be used for removing house dust, dust, dust, bacteria, viruses, mold, PM2.5 and the like.
 1,1a,1b,1c 室内機、2 室外機、3 リモートコントローラ(リモコン)、11 第1風向板、12 第2風向板、13 送風ファン、14 駆動モータ、15 駆動モータ、16 駆動モータ、17 ライダ、18 カメラ、19 通信装置、20 紫外線照射装置、21,21a 送風方向制御部、22,22a 送風風量制御部、23,23a 送風制御部、24 第1粒子密度算出部、25 第2粒子密度算出部、26 粒子検知処理部、27 風向値算出部、28 風速値算出部、29 風計測処理部、30 物体検知処理部、31 通信制御部、32 紫外線照射制御部、41 プロセッサ、42 メモリ、43 処理回路、100,100a,100b,100c 制御装置、200,200a,200b,200c 空気調和機、300 換気装置、400 空気清浄機、500,500a,500b,500c 粒子除去システム。 1,1a, 1b, 1c Indoor unit, 2 Outdoor unit, 3 Remote controller (remote control), 11 1st wind direction plate, 12 2nd wind direction plate, 13 Blower fan, 14 drive motor, 15 drive motor, 16 drive motor, 17 Rider, 18 camera, 19 communication device, 20 ultraviolet irradiation device, 21 and 21a ventilation direction control unit, 22, 22a ventilation control unit, 23, 23a ventilation control unit, 24 first particle density calculation unit, 25 second particle density Calculation unit, 26 particle detection processing unit, 27 wind direction value calculation unit, 28 wind speed value calculation unit, 29 wind measurement processing unit, 30 object detection processing unit, 31 communication control unit, 32 ultraviolet irradiation control unit, 41 processor, 42 memory, 43 Processing circuit, 100, 100a, 100b, 100c control device, 200, 200a, 200b, 200c air conditioner, 300 ventilation device, 400 air purifier, 500, 500a, 500b, 500c particle removal system.

Claims (19)

  1.  ライダを用いて、空気調和対象空間における検知対象粒子の密度値を算出する粒子検知処理部と、
     前記密度値を用いて、前記空気調和対象空間に対する送風方向を制御する送風制御部と、
     を備える空気調和機。
    A particle detection processing unit that calculates the density value of the particles to be detected in the air-conditioning target space using a rider,
    A blower control unit that controls the blower direction with respect to the air conditioning target space using the density value,
    Air conditioner equipped with.
  2.  前記ライダを用いて、前記空気調和対象空間における風向値を算出する風計測処理部を備え、
     前記送風制御部は、前記密度値及び前記風向値を用いて、前記送風方向を制御する
     ことを特徴とする請求項1記載の空気調和機。
    It is provided with a wind measurement processing unit that calculates the wind direction value in the air conditioning target space using the rider.
    The air conditioner according to claim 1, wherein the air blower control unit controls the air blower direction by using the density value and the wind direction value.
  3.  前記粒子検知処理部は、複数個の第1粒子検知対象領域の各々における第1密度値を算出する第1粒子密度算出部と、前記第1密度値を空間的に平均化することにより、複数個の第2粒子検知対象領域の各々における第2密度値を算出する第2粒子密度算出部と、を有し、
     前記送風制御部は、前記第2密度値を前記送風方向の制御に用いる
     ことを特徴とする請求項1又は請求項2記載の空気調和機。
    The particle detection processing unit is a plurality of first particle density calculation units that calculate the first density value in each of the plurality of first particle detection target regions, and a plurality of the first particle density value by spatially averaging the first density values. It has a second particle density calculation unit that calculates a second density value in each of the second particle detection target regions.
    The air conditioner according to claim 1 or 2, wherein the blower control unit uses the second density value for controlling the blower direction.
  4.  前記送風制御部は、前記密度値を用いて、前記送風方向及び前記空気調和対象空間に対する送風風量を制御することを特徴とする請求項1記載の空気調和機。 The air conditioner according to claim 1, wherein the air conditioner controls the amount of air blown to the air conditioning direction and the air conditioning target space by using the density value.
  5.  前記ライダを用いて、前記空気調和対象空間における風向値及び風速値を算出する風計測処理部を備え、
     前記送風制御部は、前記密度値並びに前記風向値及び前記風速値を用いて、前記送風方向及び前記送風風量を制御する
     ことを特徴とする請求項4記載の空気調和機。
    A wind measurement processing unit for calculating a wind direction value and a wind speed value in the air conditioning target space using the rider is provided.
    The air conditioner according to claim 4, wherein the air blowing control unit controls the blowing direction and the blowing air volume by using the density value, the wind direction value, and the wind speed value.
  6.  前記粒子検知処理部は、複数個の第1粒子検知対象領域の各々における第1密度値を算出する第1粒子密度算出部と、前記第1密度値を空間的に平均化することにより、複数個の第2粒子検知対象領域の各々における第2密度値を算出する第2粒子密度算出部と、を有し、
     前記送風制御部は、前記第2密度値を前記送風方向及び前記送風風量の制御に用いる
     ことを特徴とする請求項4又は請求項5記載の空気調和機。
    The particle detection processing unit is a plurality of first particle density calculation units that calculate the first density value in each of the plurality of first particle detection target regions, and a plurality of the first particle density value by spatially averaging the first density values. It has a second particle density calculation unit that calculates a second density value in each of the second particle detection target regions.
    The air conditioner according to claim 4 or 5, wherein the blower control unit uses the second density value for controlling the blower direction and the blower amount.
  7.  前記送風制御部は、前記送風方向を制御することにより、前記検知対象粒子を前記空気調和対象空間における粒子誘導対象領域に誘導することを特徴とする請求項1から請求項3のうちのいずれか1項記載の空気調和機。 Any one of claims 1 to 3, wherein the ventilation control unit guides the detection target particles to a particle guidance target region in the air conditioning target space by controlling the ventilation direction. The air conditioner according to item 1.
  8.  前記送風制御部は、前記送風方向及び前記送風風量を制御することにより、前記検知対象粒子を前記空気調和対象空間における粒子誘導対象領域に誘導することを特徴とする請求項4から請求項6のうちのいずれか1項記載の空気調和機。 The fourth to sixth aspects of the present invention, wherein the ventilation control unit guides the detection target particles to the particle guidance target region in the air conditioning target space by controlling the ventilation direction and the ventilation volume. The air conditioner described in any one of them.
  9.  前記送風制御部は、前記空気調和対象空間における換気装置の設置位置に対応する領域を前記粒子誘導対象領域に設定することを特徴とする請求項7又は請求項8記載の空気調和機。 The air conditioner according to claim 7 or 8, wherein the air blower control unit sets a region corresponding to an installation position of a ventilation device in the air conditioning target space in the particle guidance target region.
  10.  前記送風制御部は、前記空気調和対象空間における空気清浄機の設置位置に対応する領域を前記粒子誘導対象領域に設定することを特徴とする請求項7又は請求項8記載の空気調和機。 The air conditioner according to claim 7 or 8, wherein the air blower control unit sets a region corresponding to the installation position of the air purifier in the air conditioning target space in the particle guidance target region.
  11.  前記送風制御部は、前記空気調和対象空間における開放状態の窓に対応する領域を前記粒子誘導対象領域に設定することを特徴とする請求項7又は請求項8記載の空気調和機。 The air conditioner according to claim 7 or 8, wherein the air blower control unit sets a region corresponding to an open window in the air conditioning target space in the particle guidance target region.
  12.  前記ライダ又はカメラを用いて、前記空気調和対象空間における物体の位置を算出するとともに、前記物体を判別する物体検知処理部を備え、
     前記送風制御部は、前記物体検知処理部による算出結果及び判別結果に基づき、前記送風方向を制御する
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載の空気調和機。
    Using the rider or the camera, the position of the object in the air-conditioning target space is calculated, and the object detection processing unit for discriminating the object is provided.
    The air conditioner according to any one of claims 1 to 3, wherein the air blower control unit controls the air blower direction based on a calculation result and a determination result by the object detection processing unit. ..
  13.  前記送風制御部は、前記物体検知処理部により前記物体が人又は家具であると判別された場合、前記送風方向を制御することにより、前記検知対象粒子が前記物体を回避する気流を発生させることを特徴とする請求項12記載の空気調和機。 When the object detection processing unit determines that the object is a person or furniture, the ventilation control unit controls the ventilation direction to generate an air flow in which the detection target particles avoid the object. 12. The air conditioner according to claim 12.
  14.  前記ライダ又はカメラを用いて、前記空気調和対象空間における物体の位置を算出するとともに、前記物体を判別する物体検知処理部を備え、
     前記送風制御部は、前記物体検知処理部による算出結果及び判別結果に基づき、前記送風方向及び前記送風風量を制御する
     ことを特徴とする請求項4から請求項6のうちのいずれか1項記載の空気調和機。
    Using the rider or the camera, the position of the object in the air-conditioning target space is calculated, and the object detection processing unit for discriminating the object is provided.
    The invention according to any one of claims 4 to 6, wherein the air blowing control unit controls the air blowing direction and the air blowing amount based on the calculation result and the determination result by the object detection processing unit. Air conditioner.
  15.  前記送風制御部は、前記物体検知処理部により前記物体が人又は家具であると判別された場合、前記送風方向及び前記送風風量を制御することにより、前記検知対象粒子が前記物体を回避する気流を発生させることを特徴とする請求項14記載の空気調和機。 When the object detection processing unit determines that the object is a person or furniture, the air blowing control unit controls the air blowing direction and the air blowing amount so that the detection target particles avoid the object. The air conditioner according to claim 14, wherein the air conditioner is generated.
  16.  前記密度値に基づき、前記空気調和対象空間における前記検知対象粒子が存在する領域に紫外線を照射することを特徴とする請求項1から請求項15のうちのいずれか1項記載の空気調和機。 The air conditioner according to any one of claims 1 to 15, wherein the region where the detection target particles exist in the air conditioning target space is irradiated with ultraviolet rays based on the density value.
  17.  請求項9記載の空気調和機と、前記換気装置と、を備える粒子除去システム。 A particle removal system including the air conditioner according to claim 9 and the ventilation device.
  18.  請求項10記載の空気調和機と、前記空気清浄機と、を備える粒子除去システム。 A particle removal system including the air conditioner according to claim 10 and the air purifier.
  19.  空気調和機の制御方法であって、
     粒子検知処理部が、ライダを用いて、空気調和対象空間における検知対象粒子の密度値を算出して、
     送風制御部が、前記密度値を用いて、前記空気調和対象空間に対する送風方向を制御する
     ことを特徴とする制御方法。
    It is a control method for air conditioners.
    The particle detection processing unit uses a rider to calculate the density value of the particles to be detected in the air-conditioned space.
    A control method characterized in that the blower control unit controls the blower direction with respect to the air conditioning target space using the density value.
PCT/JP2019/027276 2019-07-10 2019-07-10 Air conditioner, particle removing system, and control method WO2021005736A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/027276 WO2021005736A1 (en) 2019-07-10 2019-07-10 Air conditioner, particle removing system, and control method
JP2020506850A JPWO2021005736A1 (en) 2019-07-10 2019-07-10 Air conditioner, particle removal system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027276 WO2021005736A1 (en) 2019-07-10 2019-07-10 Air conditioner, particle removing system, and control method

Publications (1)

Publication Number Publication Date
WO2021005736A1 true WO2021005736A1 (en) 2021-01-14

Family

ID=74114446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027276 WO2021005736A1 (en) 2019-07-10 2019-07-10 Air conditioner, particle removing system, and control method

Country Status (2)

Country Link
JP (1) JPWO2021005736A1 (en)
WO (1) WO2021005736A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09509340A (en) * 1993-12-22 1997-09-22 クレアン エー/エス Cleaning equipment including filters and UV radiation
JPH11133049A (en) * 1997-10-29 1999-05-21 National Institute For Environmental Studies Wind direction and wind velocity laser radar
JP2004245490A (en) * 2003-02-13 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2005331209A (en) * 2004-05-21 2005-12-02 Sharp Corp Prediction method for fine particle density distribution, analysis device, prediction program for fine particle density distribution, design method for building and method for constructing building
JP2010060266A (en) * 2008-08-07 2010-03-18 Panasonic Corp Dust collector
JP2011002166A (en) * 2009-06-19 2011-01-06 Panasonic Corp Air cleaning system
JP2016017688A (en) * 2014-07-08 2016-02-01 日立アプライアンス株式会社 Air conditioner
JP2016109414A (en) * 2014-11-28 2016-06-20 パナソニックIpマネジメント株式会社 Dust removal device and dust removal method
JP2017020775A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Intake device and intake method
JP2017026270A (en) * 2015-07-27 2017-02-02 パナソニックIpマネジメント株式会社 Dust collection system and dust collection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147624A (en) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp Ventilation system, ventilator, and ventilation function house
JP2009248029A (en) * 2008-04-09 2009-10-29 Panasonic Corp Dust collector
JP2011110508A (en) * 2009-11-27 2011-06-09 Panasonic Corp Room dust collector, and program for letting the same functionate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09509340A (en) * 1993-12-22 1997-09-22 クレアン エー/エス Cleaning equipment including filters and UV radiation
JPH11133049A (en) * 1997-10-29 1999-05-21 National Institute For Environmental Studies Wind direction and wind velocity laser radar
JP2004245490A (en) * 2003-02-13 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2005331209A (en) * 2004-05-21 2005-12-02 Sharp Corp Prediction method for fine particle density distribution, analysis device, prediction program for fine particle density distribution, design method for building and method for constructing building
JP2010060266A (en) * 2008-08-07 2010-03-18 Panasonic Corp Dust collector
JP2011002166A (en) * 2009-06-19 2011-01-06 Panasonic Corp Air cleaning system
JP2016017688A (en) * 2014-07-08 2016-02-01 日立アプライアンス株式会社 Air conditioner
JP2016109414A (en) * 2014-11-28 2016-06-20 パナソニックIpマネジメント株式会社 Dust removal device and dust removal method
JP2017020775A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Intake device and intake method
JP2017026270A (en) * 2015-07-27 2017-02-02 パナソニックIpマネジメント株式会社 Dust collection system and dust collection method

Also Published As

Publication number Publication date
JPWO2021005736A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
CN107314511B (en) Control method and device of air conditioning equipment and air conditioner
JP7002680B2 (en) Control method of air conditioning equipment, control device, air conditioning equipment and storage medium
CN106196408B (en) Control method, parameter controller and the air conditioner of the parameter of air conditioner
JP7058352B2 (en) Control method of air conditioning equipment, control device, air conditioning equipment and storage medium
WO2018150535A1 (en) Indoor unit and air conditioning device
US20140044558A1 (en) Air blower and control method thereof
JP6643633B2 (en) Intake device and intake method
US20170146248A1 (en) Ceiling cassette air conditioner
WO2017183083A1 (en) Air-conditioning system
CN108302729B (en) Human body detection method, human body detection equipment and air conditioner
JP2015190666A (en) Indoor machine of air conditioning machine, and air conditioning machine using the same
JP2007232269A (en) Air conditioner
WO2021005736A1 (en) Air conditioner, particle removing system, and control method
CN113272597B (en) Air conditioner and control method
JP2015068602A (en) Air conditioner
JPH01222135A (en) Air conditioning device
JP2010270999A (en) Air conditioner
CN113195980B (en) Air conditioner and control method
WO2020170289A1 (en) Air-conditioning device
KR20200013213A (en) Automatic angle-adjustable Air-conditioner system for people
JP2006183974A (en) Apparatus for automatically adjusting airflow blown out for air-conditioning and method for controlling airflow blown out for air-conditioning
WO2021065808A1 (en) Air circulation device
JP2016183806A (en) Air conditioner
JP3333951B2 (en) Control device for air conditioner
JP2011094826A (en) Human body detecting device and air conditioner using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506850

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937301

Country of ref document: EP

Kind code of ref document: A1