WO2021005693A1 - Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device - Google Patents

Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device Download PDF

Info

Publication number
WO2021005693A1
WO2021005693A1 PCT/JP2019/027033 JP2019027033W WO2021005693A1 WO 2021005693 A1 WO2021005693 A1 WO 2021005693A1 JP 2019027033 W JP2019027033 W JP 2019027033W WO 2021005693 A1 WO2021005693 A1 WO 2021005693A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
sulfur
porous material
silica
compound
Prior art date
Application number
PCT/JP2019/027033
Other languages
French (fr)
Japanese (ja)
Inventor
ベヘナム ラーマンルー
メイサン アラキ
アレン ナイミ
Original Assignee
株式会社ジェーエフシーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェーエフシーテック filed Critical 株式会社ジェーエフシーテック
Priority to JP2021530381A priority Critical patent/JPWO2021005693A1/ja
Priority to PCT/JP2019/027033 priority patent/WO2021005693A1/en
Publication of WO2021005693A1 publication Critical patent/WO2021005693A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds

Definitions

  • the present invention relates to a novel technique for extremely removing sulfur by a synthesized functional porous silica base used as an adsorbent in petroleum and petroleum chemical fuels.
  • Catalytic adsorbents remove sulfur from hydrocarbon fuels by superficial absorption processes or oxidation and absorption.
  • a wide range of adsorbent bases are available worldwide.
  • Patent Documents 1 and 2 describe alumina bases, copper oxide, zinc oxide and manganese.
  • Patent Document 5 discloses that zeolites X and Y containing nickel (Ni) or molybdenum (Mo) can be used to remove sulfur compounds from a hydrocarbon stream. In a typical adsorption process, the desorption cycle is used to adsorb contaminants from the feedstock and then separate them from the adsorbent (Patent Documents 6-8).
  • Zeolite powder as a strong hygroscopic agent for 3A, 4A and 5A and Zeolite 13X suitable for molecular adsorption are one of the zeolites consumed very much in the laboratory.
  • porous materials are divided into three categories (types) based on their pore size ( ⁇ ). When the pore size ⁇ 20 ⁇ , it is a micropore type, when 20 ⁇ > pore diameter> 500 ⁇ , it is a mesopore, and when the pore diameter> 500 ⁇ , it is a macropore.
  • Patent Document 9 high silica zeolite is used to remove sulfur from the naphtha stream.
  • the amount of sulfur is reduced by using a porous zeolite-based catalyst with a different percentage of silica than the passage of naphtha flow.
  • the present invention further develops such a conventional catalytic adsorbent to produce an adsorbent capable of removing sulfur compounds in a hydrocarbon fuel at room temperature and ambient pressure (atmospheric pressure), and an adsorbent capable of easily producing an adsorbent. It is an object of the present invention to provide a method, a manufacturing apparatus, a removing method and a removing apparatus for removing a sulfur compound in a hydrocarbon fuel at room temperature and ambient pressure (atmospheric pressure) using this adsorbent.
  • a new super adsorbent synthesized by using a porous nanosilica adsorbent having different pore size distributions by the coprecipitation method was formed.
  • Surface modifiers used to form porous and functional groups are used to adsorb sulfur from petroleum compounds.
  • These new super adsorbents can adsorb categories of sulfone petroleum compounds, including naphtha, gasoline, gasoline and the like. These adsorbents are synthesized in one step and do not require sophisticated equipment.
  • the adsorption properties of the porous silica base and the presence of fragile sulfur functional groups on the surface of the adsorbent are simultaneously used to remove sulfur compounds from petroleum compounds at ambient temperature.
  • the adsorbent of the present invention is produced by a coprecipitation method and a surface porous organic modifier with various zeolites and silicate compounds having high porosity and ability to remove sulfur compounds.
  • the surface of the porous material containing silica is functionalized to form a catalyst, which produces naphtha, diesel fuel, gasoline, jet fuel oil and coal liquor (condensate) and sulfur.
  • a liquid hydrocarbon fuel containing similar petroleum products is used as the liquid fuel to be treated.
  • the adsorbent has the ability to break the mercaptan and thiol bonds in the liquid hydrocarbon fuel by the catalyst, convert them into oxides, and adsorb the sulfur compounds remaining from the surface.
  • the presence of thiol and mercaptan functional groups in the fuel produces a silica-based compound adsorbent suitable for adsorbing them on the surface, depending on the fuel concentration and density.
  • the release of the fuel sulfur compound in the form of an oxide and the catalytic adsorption of the residual compound on a porous silica-based nanoadsorbent base significantly reduces the unwanted odor caused by the sulfur compound.
  • adsorbents can adsorb sulfur atoms from compounds found in hydrocarbon fuels such as thiophene and thiols at ambient temperature and standard pressure (atmospheric pressure). They can be easily added and separated from hydrocarbon fuels in a simple way.
  • the level of sulfur reduction in hydrocarbon fuels depends on the concentration of sulfur and the amount of adsorbent (more adsorbent if there is more silica in the structure), but the chemistry and fluidity of the fuel. The nature is different.
  • a multi-feeder tank (first feeder 14, second feeder 15) having a liquid injection capacity into a main tank (reaction vessel 11) is used.
  • the main tank is equipped with a stirrer (operating speed: 100 to 700 rpm) 16 capable of making its blades spiral or disk-shaped.
  • the surface modifier is added to the system (water supply pipe 13) after mixing with water, with reference to FIG. 1, and the synthesis process is carried out according to the filling level in the synthesis reservoir (main tank). After washing and drying the sample in the second tank, a second surface modifier (hydrogen peroxide, CTAB, M2P (C 6 H 16 O 12 P 12) to functionalize the surface of the porous silica ), MP (C 24 N 4 O 15 H 54 ), sulfuric acid, urea, thiourea, mercaptopropionic acid, 3-ethanolamine, etc.) followed by impregnation. In the next step, the sample is transferred to the dryer. The resulting vapor is collected by submersion or redistillation to prevent air pollution. It is recommended to use preheated adsorbents in hydrocarbon fuels, as drying of the applied adsorbent is one of the most important issues.
  • the preheating temperature is in the range of 60 ° C to 250 ° C, which depends on the ambient humidity at this stage.
  • a mixer to shorten the adsorption process period.
  • This mixer can be used as a continuous cycle or rotary mixer.
  • the process of adsorbing sulfur from the hydrocarbon fuel is followed by the separation of the adsorbent from the fuel. Two separation methods are implemented for this purpose.
  • the adsorbent settles to the bottom of the tank 31 due to its own weight over time, and the fuel is placed on it.
  • the pump 32 can easily separate the fuel.
  • the adsorbent is separated from the fuel by filtration and transferred to a recycling or burial stage. Then, after the adsorption step is complete, after the adsorption step, the adsorbent returns to the working cycle again by the reduction step with acetone or citric acid, nitric acid, formic acid, hydrochloric acid, sulfuric acid and hydrogen peroxide or even amine.
  • Compounds such as triethanolamine have a 1: 2 and 1: 1 ratio. After re-reduction, the initial efficiency of the adsorbent will not be achieved.
  • the sulfur-containing fuel is pumped onto a porous filter (called an adsorption screen) manufactured from the adsorbent and passed through a pressure pump.
  • adsorption screen is fixed and the fuel moves between these ceramic functionalized filters to separate sulfur. After a period of time, these filters are replaced and reused in the previous process.
  • a porous nanosilica catalyst adsorbent was produced by the coprecipitation method.
  • surface modifiers such as hydrogen peroxide, CTAB, M2P, MP, sulfuric acid, urea, thiourea, mercaptopropionic acid and 3-ethanolamine
  • the modified surface is functionalized and catalyzed.
  • the sulfur compound was functionalized to adsorb and remove the sulfuric acid compound from the hydrocarbon fuel.
  • the adsorption efficiency of the catalyst can be increased.
  • adsorbent An inexpensive material and a commercially available silica precursor were used to manufacture this product (adsorbent).
  • the functional groups on the silica base of the porous nanosilica were formed by using acidic and oxidizing and amino solutions to improve the adsorptive capacity.
  • the obtained adsorbent can adsorb sulfur compounds from hydrocarbon fuels.
  • the highest level of sulfur adsorption from sulfur-containing hydrocarbon fuels was about 79-100 mg per liter of adsorbent for the intended catalyst (when the adsorbent was filled in a 1 liter container). This catalyst was able to function at ambient temperature and atmospheric pressure.
  • the adsorbent is effectively mixed with the hydrocarbon fuel by using an industrial mixer and mixer.
  • the catalyst adsorbent
  • the catalyst was easily separated from the hydrocarbon fuel by filtering and depositing at the bottom of the tank (see Figure 2).
  • adsorbents according to the invention provide zeolite nanoparticles with an acidic surface that oxidizes sulfur compounds.
  • the properties of this acidic surface were made by surface functionalizing the nanoparticles with specific hydrogen peroxide and various acid ratios.
  • the acidity of the surface depends on the preparation method, dehydration temperature, structure and Si / Al ratio.
  • Sodium cations are often replaced with ammonium cations to form Bronsted sites (acid spots) by the ion transfer method.
  • ammonium gas is extracted from the zeolite, and protons remain and are converted into Bronsted-acid sites. These Bronsted acid points are unstable and are converted to temporary Bronsted acid points when dehydrated at temperatures above 550 ° C.
  • the adsorbent according to the invention covers all mesoporous and aluminate-based adsorbents such as zeolite X-type, Y-type, and (Me) xSiOy compounds.
  • the catalyst surface of these adsorbents can adsorb active metals such as iron, silver, molybdenum, nickel and copper.
  • the adsorbent may be referred to as a catalyst, and both may be described together.
  • the surface modifier may be referred to as a surfactant, and both may be described together.
  • FIG. 6 is a synthetic adsorbent-based X-ray diffraction pattern diagram in an amorphous phase. Scanning electron microscope (SEM) photograph of the adsorbent. Scanning electron microscope (SEM) photograph in the form of zeolite nanoparticles impregnated with silver ions.
  • FIG. 1 is a block diagram having a schematic configuration showing an embodiment of an adsorbent manufacturing apparatus.
  • the manufacturing apparatus 10 supplies the water in the water storage tank 12, for example, deionized water, to the reaction vessel 11 via the water supply pipe 13.
  • the first feeder 14 contains a porous material containing silica, for example, porous nanosilica
  • the second feeder 15 contains a surface modifier.
  • supply pipes 14a and 15b are connected to the water supply pipe 13, respectively.
  • a predetermined amount of silica is supplied from the first feeder 14 to the reaction vessel 11 to which the ionized water is supplied from the supply pipe 14a via the water supply pipe 13 and mixed, and the water and silica filled in the reaction vessel 11 are mixed. Is stirred by the stirrer 16.
  • the second feeder 15 supplies the surface modifier to the reaction vessel 11 via the water supply pipe 13 via the supply pipe 15b, mixes and stirs.
  • the adsorbent is synthesized in the stirred and mixed solution in the reaction vessel 11, and the surface is functionalized.
  • the synthesized adsorbent is moved to the dryer 19 by the liquid feed pump 17 via the liquid supply pipe 18.
  • a one-way valve 20 that allows liquid to be fed to the dryer 19 but prevents backflow is arranged between the liquid feed pump 17 and the dryer 19.
  • the dryer 19 allows the solution to be circulated to the dryer 19 by the bypass pipe 21.
  • the dried adsorbent is transferred to the storage tank 22.
  • a feeder (not shown) for accommodating the acid may be provided, and a supply pipe (not shown) may be connected to, for example, a water supply pipe 13 to add the acid to the reaction vessel 11.
  • FIG. 2 is a block diagram showing an embodiment of a removal device that mixes a hydrocarbon fuel adsorbent and a hydrocarbon fuel to remove sulfur compounds.
  • the mixing device 30, which is a removing device, has a fuel tank 31 for accommodating hydrocarbon fuel, a mixing pump 32, and an adsorbent feeder 33 for accommodating an adsorbent.
  • the mixing pump 32 is arranged at the lowest stage position
  • the adsorbent feeder 33 is arranged at the uppermost stage position
  • the fuel tank 31 is arranged at the middle stage position.
  • the lower part of the fuel tank 31 and the mixing pump 32 are connected by the first pipe 34
  • the mixing pump 32 and the adsorbent feeder 33 are connected by the second pipe 35
  • the fuel tank 31 and the adsorbent feeder 33 are connected by the third pipe 36. Connect with to form a circulation path.
  • the mixing pump 32 When the mixing pump 32 is started and the hydrocarbon fuel and the adsorbent are circulated in the circulation path, the adsorbent and the hydrocarbon fuel are mixed, and the hydrocarbon is formed by a catalyst formed on the surface of the porous silica constituting the adsorbent. Hydrocarbon compounds in the fuel are converted to oxides and adsorb the remaining hydrocarbon compounds.
  • TEOS tetraethyl orthosilicate: tetraethyl orthosilicate
  • sodium silicate Sodiumsilicate
  • mineral silica mineral silica (mineralsilica)
  • An amorphous silica precursor is used as an initial material for forming the porous silica.
  • a fluoride compound such as sodium fluoride or lithium fluoride can be used to form pores on the silica base.
  • the advantages of using this method are the low cost of synthesis and the use of silica soil resources, but it should be considered that the resulting silica containing unexpected metal cation impurities was synthesized in a complex process. With this method, it was not possible to control the type and porosity using a combination of sodium hydroxide solution and Flora, and the adsorption efficiency was very low.
  • tetraethyl orthosilicate (TEOS) and sodium silicate can be applied to eliminate the above conventional drawbacks.
  • TEOS tetraethyl orthosilicate
  • the tetraethyl orthosilicate (TEOS) solution has maximum production efficiency. It is possible to produce 1 kg of high-purity silica from 1 kg of TEOS on a nanoscale. The formation of pores in silica made from TEOS is much easier and operably operational according to this combination terminology.
  • the method of the present invention it is carried out by using sodium silicate in mass production in order to achieve simultaneous control of material quality and porosity for synthesizing a porous adsorbent base.
  • the ratio of SiOx to NaO varies at a rate of 15-40%.
  • Using a precursor with the highest proportion of SiOx is more effective for the synthesis of silica.
  • the synthesis process was carried out by adding to a non-acidic metal tank (stainless steel L316) or a plastic tank in a non-stoichiometric ratio of a silica source and a different acid.
  • a non-acidic metal tank stainless steel L316
  • a plastic tank in a non-stoichiometric ratio of a silica source and a different acid.
  • different values of deionized water and silica sources were added to the tank in a ratio of 1: 1, 1: 2 to 1: 8 and in a velocity range of 300 to 1200 rpm. Stirred and mixed. After 15 minutes at 500 rpm at the optimum speed for mixing, the primary modifier was added to the above achieved solution.
  • cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide (CTAB), D-mannitol-1,6-diphosphate (M2P), MP, urea, thiourea, sodium dodecyl sulfate (SDS) and sodium hexametaphosphate (SHMP) ) Is the most common of the most important modifiers.
  • CAB hexadecyltrimethylammonium bromide
  • M2P D-mannitol-1,6-diphosphate
  • MP urea
  • thiourea sodium dodecyl sulfate
  • SHMP sodium hexametaphosphate
  • Mercaptopropionic acid and 3-ethanolamine can also be applied as supplements.
  • the approximate number of pores formed on the silica was determined by performing several tests with modifiers of various values in the range of 2.0-10% by weight. In some cases, both urea modifiers can be used in combination with others to control particle size, porosity and further reduce the amount of water consumed. The amount of urea used in this case can vary between 0.2-5% by weight of the raw material base, with the best percentage being about 2-3% by weight. Pentanols and propanols with different weight ratios ranging from 1 to 10 percent were used to improve and control the properties and size of the nanoparticles.
  • FIG. 3 is a silica synthetic adsorbent-based Fourier spectrum diagram with absorption bands of Si-O-Si (1099 cm -1 ), Si-OH (908 cm -1 ) asymmetric vibrations, and Si-O-Si (800 cm). It arises from the symmetrical vibration of -1 ). Adsorbed water (H-OH, expansion and contraction vibration), residual intermolecular water (H-OH bending vibration), and moisture (H-OH bending vibration) in the sample are 3500 to 3400 and 1600 (H-OH bending vibration). It belongs to the vibration of cm -1 ).
  • FIG. 4 is a synthetic adsorbent-based X-ray diffraction pattern diagram in an amorphous phase
  • FIG. 5 is a scanning electron microscope (SEM) photograph of a nanosilica-based catalyst.
  • the condensed phase of silica was dissolved and precipitated, and the pH of the solution was adjusted to acidic with various weight ratios of hydrochloric acid or acetic acid.
  • the addition of acid and acidity are directly related to the amount of silica particles produced.
  • the highest efficiency and particle size were due to chlorine (HCl) and small amounts of nitric acid, and for silica precursors due to a 1/2: 1 ratio. The best results occurred in a ratio of 1-1.
  • the presence of chlorine at this stage helped to adsorb sulfur compounds.
  • the obtained adsorbent was washed 3 to 5 times and dried at a temperature of about 80 to 120 ° C. This has the ability to adsorb sulfur from hydrocarbon fuels. Alkaline media can also be used to form silica precipitates, but this is not highly efficient.
  • the type of surface modifier was investigated based on the type of silicate-based synthesis.
  • the best precipitation conditions are hydrochloric acid and 2-4% by weight nitric acid.
  • the pH of the solution needs to be adjusted to about 2-5.
  • This synthetic method was performed for all surface modifiers.
  • Figure 1 shows the manufacturing method and manufacturing equipment for this catalyst.
  • a porous material containing silica such as porous nanosilica a synthetic porous material containing a surface organic metal surfactant (organic metal surfactant or amphoteric tenside), a surface modifier is added. No process is required and the catalyst is preformed on the surface.
  • This synthetic porous material includes organically modified silica containing any functionalizing material of any of methyl, amino and sulfone and carboxyl groups.
  • Example 1 Based on the above production method, steady-state silica having 2 to 15 wt% of surface modifier, hexadecyltrimethylammonium bromide (CTAB), was synthesized on a raw material basis.
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 1.
  • Example 1 a sulfur adsorption test was conducted using adsorbents having different amounts of CTAB (2%, 15%).
  • the adsorbent samples of sample numbers 1 to 4 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
  • Example 2 Based on the above production method, steady-state silica pregelatin having 2 to 15 wt% of surface modifier M2P on a raw material basis was synthesized.
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 2.
  • S sulfur
  • a sulfur adsorption test was conducted using adsorbents having different amounts of M2P (2%, 15%).
  • the adsorbent samples of sample numbers 21 to 24 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
  • Example 3 Based on the above production method, steady-state silica having 2 to 15 wt% urea, which is a surface modifier, was synthesized on a raw material basis.
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur.
  • S sulfur
  • Table 3 The test results are shown in Table 3.
  • a sulfur adsorption test was conducted using adsorbents having different amounts of urea (2%, 15%).
  • a sulfur adsorption test was performed on each of the adsorbent samples of sample numbers 31 to 34.
  • the adsorbent samples of sample numbers 31 to 34 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
  • Example 4 Based on the above production method, steady-state silica having 2 to 15 wt% of surface modifier thiourea on a raw material basis was synthesized.
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur.
  • S sulfur
  • Table 4 The test results are shown in Table 4.
  • a sulfur adsorption test was carried out using adsorbents having different amounts of thiourea (2%, 15%).
  • the adsorbent samples of sample numbers 41 to 44 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
  • Example 5 Based on the above production method, steady-state silica pregelatin having 2 to 15 wt% sodium dodecyl sulfate (SDS), which is a surface modifier, was synthesized on a raw material basis.
  • SDS sodium dodecyl sulfate
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 5.
  • S sulfur
  • a sulfur adsorption test was performed using adsorbents having different amounts of SDS (2%, 15%). For the samples of sample numbers 51 to 54, the amount (wt%) of the adsorbent was 2.0, 4.0, 8.0, 10.0.
  • Example 6 Based on the above production method, steady-state silica having 2 to 15 wt% of pentanol, which is a surface modifier, was synthesized on a raw material basis.
  • the adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur.
  • S sulfur
  • Table 6 The test results are shown in Table 6.
  • a sulfur adsorption test was conducted using adsorbents having different amounts of pentanol (2%, 15%). For the samples of sample numbers 61 to 64, the amount (wt%) of the adsorbent was 2.0, 4.0, 8.0, 10.0.
  • Zeolite nanocrystals are often synthesized using a homogeneous transparent solution.
  • the synthetic method results in the formation of a colloidal zeolite suspension with a uniform distribution and particle size of less than 100 nm.
  • Subcolloids or separate zeolite particles are present in clear solution and prior to zeolite suspension formation.
  • Appropriate hypersaturation conditions and spatial stability of the initial core are one of the factors that cause zeolite nanocrystals to form and avoid particle accumulation and grinding.
  • the synthesis of zeolite nanoparticles is first carried out by dissolving a stoichiometrically liquid sodium silicate with a higher value of TEOS in deionized water. This is used as the first solution.
  • a proportional amount of NaOH was dissolved in deionized water.
  • Different amounts of sodium aluminate (NaAlO 2 ) were added to this second solution.
  • the two solutions, the first solution and the second solution, were mixed and stirred using a magnetic stirrer for 30 minutes.
  • the obtained solution was transferred to an autoclave having a volume of 50 ml.
  • the resulting solution was stored in an oven at 120 ° C. for about 1 hour and used for synthesis in the next step.
  • Zeolite Y having a Si / Al ratio of 1.5 is an opaque gel with the following composition: 17 (Na 2 O): 1 (Al 2 O 3 ): 12.80 (SiO 2 ): 975 (H 2 O). Synthesized from. The gel was prepared by mixing with stirring NaOH, Al a (OH) 3 and H 2 O basic clear solution in colloidal nanosilica particles and polypropylene bottles.
  • FIG. 6 shows a micrograph (SEM) of synthetic zeolite, showing the morphology of zeolite nanoparticles impregnated with silver ions. Zeolite particles are spherical and have a size of less than 100 nanometers.
  • Addition of small amounts of material can affect nucleation and crystallization.
  • the addition of seeds to the reaction mixture improves the crystallization process.
  • the pores can be organized by adding colloidal particles such as polystyrene that act as a template and nucleating agent.
  • the particle size of polystyrene varies from 4 microns to 150 microns.
  • catalytically adsorbed sulfur compounds are measured for 100 ml fuel containing 100 ppm sulfur compound (S), such as thiols and mercaptans. did.
  • Example 7 By the above-mentioned production method (B), zeolite Y and zeolite X, which are adsorbents, were synthesized using 2 wt% of surface modifiers SDS, pentanol, M2P, urea, and CTAB on a raw material basis. The test results are shown in Table 7. This test was performed at ambient temperature and pressure for 20 minutes. The amounts of the adsorbents (catalysts) for Zeolite X and Zeolite Y were kept constant.
  • the best surfactant (surface modifier) for sulfur adsorption is CTAB, and there is no difference between the two types of zeolite, zeolite Y and zeolite X, which are adsorbents.
  • the obtained solution is refluxed at 80 to 100 ° C. for 2 to 5 hours to hydrolyze TEOS, and the liberated silica becomes a substantially metal cation.
  • Hydrochloric acid was used to initiate the condensation of sodium silicate.
  • pore formation was achieved by applying various amounts of pentanol, isopropanol, CTAB and sodium dodecyl sulfate.
  • the sample was dried over a temperature range of 100-250 ° C.
  • This method can also be carried out using other silicate sources such as sodium silicate.
  • Several experiments were planned and repeated under equivalent conditions to determine the adsorption percentage and to detect the best sample.
  • Example 8 In the experiment, 100 ml of fuel containing 100 ppm sulfur compound containing thiol and mercaptan was used. The experiment was carried out at ambient temperature and pressure for 20 minutes. The amount of adsorbent (catalyst amount) was constant in all tests. The test results are shown in Table 8. According to the experiments carried out, the average adsorption amount in the presence of urea, thiouric acid and M2P modifier was in the range of 30 to 32 mg per liter.
  • FIG. 2 shows a method of using an adsorbent (catalyst) composed of these silicate compounds.
  • a silicate) adsorbent is used as a sample, and as a surface modifier for each adsorbent, a sulfur compound (S) containing 2 wt% of a surface modifier (urea, pentanol, SDS, M2P, CTAB) on a raw material basis. The adsorption rate was measured. The test results are shown in Table 8.
  • the porous material containing silica is composed of a porous silicate compound, a zeolite compound shown in Example 14 described later, a forsterite compound, zinc silicate mineral (Zn 2 SiO 4 ), and a small amount of zinc ore. Willemite compounds can be used.
  • the adsorbent using CTAB as the surface modifier (surfactant) had a high adsorption rate for all the samples.
  • a new method for surface functionalization of silicate-based nanoadsorbents uses an oxidizing solution of the resulting porous nanosilica-based adsorbent (catalyst), such as hydrogen peroxide, sodium hydroxide and acidic solutions, such as sulfuric acid, nitric acid, and even acetic acid and amino compounds. It was used to increase the sulfur adsorbent level of porous silica after drying for the first time to improve and enhance adsorptivity.
  • catalyst an oxidizing solution of the resulting porous nanosilica-based adsorbent (catalyst), such as hydrogen peroxide, sodium hydroxide and acidic solutions, such as sulfuric acid, nitric acid, and even acetic acid and amino compounds. It was used to increase the sulfur adsorbent level of porous silica after drying for the first time to improve and enhance adsorptivity.
  • the surface of the adsorbent can be functionalized with an organic acid and an oxidizing agent such as hydrogen peroxide or hydrazine hydrate to form a -OH or Si-O-Si group.
  • an oxidizing agent such as hydrogen peroxide or hydrazine hydrate to form a -OH or Si-O-Si group.
  • the methods described above help break and adsorb thiol-mercaptan bonds in hydrocarbon fuels. That is, it transforms the surface of the catalyst into a small reactor to break and adsorb thiol bonds.
  • Sulfuric acid and hydrogen peroxide also oxidize sulfur compounds such as mercaptans and thiols.
  • Oxidation process occurs on the surface due to the reaction between the functional group and active oxygen.
  • the SOx gas generated from the hydrocarbon fuel is discharged as bubbles, and the odor of sulfur in the hydrocarbon fuel is significantly reduced.
  • the remaining sulfur is also adsorbed by the silicon-based porous nanoadsorbent (catalyst). If it is also possible to use certain substances to produce trivalent oxygen, the efficiency of adsorption and destruction of sulfur compounds can be increased in hydrocarbon fuels.
  • the drying temperature is 120 ° C to 150 ° C, and the ratio of oxidizing acids varies between 1 to 2 and 1 to 3 or 1 to 3.4.
  • the best efficiency in this method is for 1: 2 (1/2) (1/3), (2/1), (1/1), (3/1) combinations in acid and hydrogen peroxide compounds.
  • the resulting silica can be marketed in the industry as one of the important marketable adsorbents in the acid cleaning step.
  • Example 9 The test results of Example 9 are shown in Table 9.
  • a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C.
  • the concentration of unknown sulfur in the fuel is 100 mg / l.
  • the adsorbent samples numbers 70-79 of these proportions are different, the sulfur compounds in the fuel
  • An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of formic acid and hydrogen peroxide indicates wt% of the solution of formic acid and hydrogen peroxide.
  • Example 10 In Example 10, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 10. Sulfuric acid with a concentration of 60% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a concentration of 96% is used, and the adsorbents of sample numbers 80 to 89 having different ratios thereof are sulfur compounds in the fuel. An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of sulfuric acid to hydrogen peroxide indicates wt% of the solution of formic acid and hydrogen peroxide.
  • Example 11 In Example 11, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 11. Nitric acid with a purity of 99% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a purity of 96% is used, and the sulfur compounds in the fuel for the adsorbents of sample numbers 90 to 99 having different ratios thereof. An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of nitric acid and hydrogen peroxide indicates wt% of the solution of nitric acid and hydrogen peroxide.
  • Example 12 In Example 12, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 12. Using 99% pure triethanolamine as organic acids, also using the purity of 96% hydrogen peroxide (H 2 O 2), the adsorbent sample numbers 100-109 that these proportions are different, the fuel of the An experiment was conducted to measure the adsorption ratio of the sulfur compound (S) at 100 ppm. The ratio of triethanolamine and hydrogen peroxide indicates wt% of the solution of triethanolamine and hydrogen peroxide.
  • Example 13 In Example 13, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 13. Hydrochloric acid with a purity of 37% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a purity of 96% is used. A test was conducted to measure the adsorption rate of (S) at 100 ppm. The ratio of hydrochloric acid and hydrogen peroxide indicates wt% of the solution of hydrochloric acid and hydrogen peroxide.
  • Example 14 Test Example 14 was performed to determine the optimal ratio SiO 4 silicate-based. Zeolite nanocatalyst and silicate-based efficiency level measurements were achieved by using optimal ratios obtained under equal and similar conditions. The test results of Example 14 are shown in Table 14. The test took constant catalyst samples at 60 minutes and 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l.
  • Table 14 shows a combination of zeolite XY (ZeoliteXY) (complex), a combination of barium (Ba) and orthosilicate (SrSiO 4 ) (complex), and magnesium (composite) as adsorbent samples of the Keisan salt base (SiO 4 ). It is a combination of Mg), zinc (Zn) and zircon (Zr).
  • hydrochloric acid and H 2 O 2 are sample 115
  • sulfuric acid and H 2 O 2 are sample 83
  • nitric acid and H 2 O 2 are sample 99, and triethanolamine.
  • H 2 O 2 are used as sample 105, and the one having the best adsorption rate in each experimental example is used.
  • Table 14 shows that the best acid combination is sulfuric acid / H 2 O 2 with the highest adsorption in the Mg / Zn / ZrSiO 4 complex.
  • the fuel can be pumped through the synthetic catalyst in a fixed state.
  • This method does not require catalyst separation, but the catalyst efficiency is reduced and the sulfur adsorption process can be carried out in a period of 15-45 times.
  • Nanocatalyst-based waste silica recycling After absorbing sulfur from the fuel, the color of the catalyst changes from brown to black, depending on the amount of sulfur absorbed and the dye used in the fuel. After the porous silica-based nanocatalysts are completely saturated, they can be recycled and reused.
  • the waste nanocatalyst is transferred to the steel tank.
  • the catalyst can be reduced by heat treatment where the required temperature is about 180-250 ° C., and the annealing time after heating depends on the color of the catalyst and the amount of residual sulfur.
  • the tank material must be 316 low carbon steel grade.
  • the catalyst is usually slowly cooled until the color of the catalyst turns white. This method releases a variety of dangerous gases, including SOx, which must be neutralized within the substrate of water. This can result in the production of by-products such as sulfuric acid at concentrations of 30-50%.
  • an acetone solution such as ethyl acetate, acetone, acetylacetone or a solution capable of dissolving sulfur can be used.
  • xylene and toluene is effective in current methods, but the acetone compound only removes sulfur from the catalyst surface instead of dissolving it.
  • recycled catalysts show low initial yields.
  • the catalyst can be functionalized and reused.
  • 1 kg of these nanocatalysts 1 kg of acetone or toluene is required.
  • the catalyst can be used after functionalization and drying. According to the experiments carried out, the yield of this product is high over up to 10 working cycles and then decreases.
  • these porous nanocatalysts can be used in a variety of industries, including agriculture, glass production, or the production of ceramic pieces and building materials.

Abstract

Provided is an absorption agent that uses a nanoparticle adsorption agent having a special functional porous silica base, removes undesirable sulfur hydrocarbon compounds, and is used at room temperature and ambient pressure. This adsorption agent is manufactured using a variety of zeolites and silicate compounds that use co-precipitation and surface porosity organic modifiers, have high porosity, and have sulfur compound-removing adsorption performance. In order to achieve unique surface modification, a catalyst has the capacity to destroy mercaptan and thiol bonds, convert same to an oxide, and adsorb residual sulfur compounds from the surface.

Description

炭化水素燃料から硫黄化合物を除去する吸着剤、吸着剤の製造方法、吸着剤の製造装置、硫黄化合物の除去方法および除去装置Adsorbents that remove sulfur compounds from hydrocarbon fuels, adsorbent manufacturing methods, adsorbent manufacturing equipment, sulfur compound removal methods and removal equipment
 本発明は、石油および石油化学燃料中で吸着剤として使用する合成した機能性多孔質シリカベースによる硫黄を極度に除去する新規な技術に関する。 The present invention relates to a novel technique for extremely removing sulfur by a synthesized functional porous silica base used as an adsorbent in petroleum and petroleum chemical fuels.
 長年、ディーゼル、ガソリン、灯油などの炭化水素系燃料に硫黄を含む化合物が存在することによる環境汚染の懸念が高まっているため、脱硫技術の調査が拡大している。燃料中の高レベルの硫黄は、硫黄含有化合物の燃焼からのSOxの生成のために望ましくない。SOxは酸性雨を形成し、建物への広範な損害をもたらし、生態系の微妙なバランスを乱す。さらに、燃料中の硫黄化合物は、自動車の触媒コンバータに使用される貴金属触媒を害し、燃料が不完全燃焼する原因となり、不完全燃焼した炭化水素、一酸化炭素、自動車排ガス中の窒素酸化物が排出され、これらは産業スモッグの先駆けとなる。 For many years, there has been growing concern about environmental pollution due to the presence of sulfur-containing compounds in hydrocarbon fuels such as diesel, gasoline, and kerosene, so research into desulfurization technology is expanding. High levels of sulfur in the fuel are undesirable due to the production of SOx from the combustion of sulfur-containing compounds. SOx forms acid rain, causing widespread damage to buildings and disturbing the delicate balance of ecosystems. In addition, sulfur compounds in fuel damage the noble metal catalysts used in automotive catalytic converters, causing incomplete combustion of fuel, resulting in incompletely burned hydrocarbons, carbon monoxide, and nitrogen oxides in automobile exhaust gas. Emissions, these pioneer industrial smog.
 ガソリン等の炭化水素燃料から硫黄化合物を除去する触媒吸着剤が提案されている。触媒吸着剤は、表面的吸収プロセスまたは酸化および吸収によって炭化水素燃料から硫黄を除去する。広い範囲の吸着剤ベースが世界中で利用可能である。特許文献1、2にはアルミナ塩基、酸化銅、酸化亜鉛及びマンガンについて記載されている。 A catalyst adsorbent that removes sulfur compounds from hydrocarbon fuels such as gasoline has been proposed. Catalytic adsorbents remove sulfur from hydrocarbon fuels by superficial absorption processes or oxidation and absorption. A wide range of adsorbent bases are available worldwide. Patent Documents 1 and 2 describe alumina bases, copper oxide, zinc oxide and manganese.
 石油化合物から硫黄を吸着させるために、鉄および亜鉛のような石油化合物が、特許文献3に開示の発明と同様の技術で適用されている。 In order to adsorb sulfur from petroleum compounds, petroleum compounds such as iron and zinc are applied by the same technique as the invention disclosed in Patent Document 3.
 モレキュラーシーブ構造の適用は、主に、特許文献4で検討されている近年における高い吸収効率を有するゼオライト系に焦点を当てた。 The application of the molecular sieve structure was mainly focused on the zeolite system having high absorption efficiency in recent years, which is being studied in Patent Document 4.
 特許文献5には、炭化水素流から硫黄化合物を除去するためにニッケル(Ni)またはモリブデン(Mo)を含有するゼオライトXおよびYを使用できることが開示されている。典型的な吸着プロセスでは、脱着サイクルを使用することによって、混入物が供給材料から吸着され、次いで吸着剤から分離される(特許文献6~8)。 Patent Document 5 discloses that zeolites X and Y containing nickel (Ni) or molybdenum (Mo) can be used to remove sulfur compounds from a hydrocarbon stream. In a typical adsorption process, the desorption cycle is used to adsorb contaminants from the feedstock and then separate them from the adsorbent (Patent Documents 6-8).
 3A、4A及び5Aの強吸湿剤としてのゼオライト粉末及び分子吸着に適したゼオライト13Xは、研究室で非常に消費されたゼオライトの1つである。IUPAC分類によれば、多孔質材料は、孔径(Pore size:Å)に基づいて3つのカテゴリ(type)に分けられる。孔径<20Åでは微細孔(Micropore)タイプ、20Å>孔径>500Åではメソ細孔(Mesopore)、孔径>500Åではマクロポア(Macropore)である。 Zeolite powder as a strong hygroscopic agent for 3A, 4A and 5A and Zeolite 13X suitable for molecular adsorption are one of the zeolites consumed very much in the laboratory. According to the IUPAC classification, porous materials are divided into three categories (types) based on their pore size (Å). When the pore size <20 Å, it is a micropore type, when 20 Å> pore diameter> 500 Å, it is a mesopore, and when the pore diameter> 500 Å, it is a macropore.
 特許文献9では、高シリカゼオライトを用いてナフサ流から硫黄を除去する。ナフサ流の通過とシリカのパーセンテージが異なる多孔質ゼオライト系触媒を用いることにより、硫黄の量を減らしている。 In Patent Document 9, high silica zeolite is used to remove sulfur from the naphtha stream. The amount of sulfur is reduced by using a porous zeolite-based catalyst with a different percentage of silica than the passage of naphtha flow.
米国特許第5302470号明細書U.S. Pat. No. 5,302,470 米国特許第5800798号明細書U.S. Pat. No. 5800798 米国特許第5928980号明細書U.S. Pat. No. 5,928,980 米国特許第6083379号明細書U.S. Pat. No. 6,083,379 米国特許第5807475号明細書U.S. Pat. No. 5,807,475 米国特許第5047221号明細書U.S. Pat. No. 5,047,221 米国特許第4123230号明細書U.S. Pat. No. 4,123,230 米国特許第3595778号明細書U.S. Pat. No. 3,595,778 米国特許公開第2002/0084223号明細書U.S. Patent Publication No. 2002/0084223
 本発明は、このような従来の触媒吸着剤をさらに発展させ、室温および周囲圧力(大気圧)で炭化水素燃料中の硫黄化合物を除去できる吸着剤、簡単に吸着剤を製造できる吸着剤の製造方法、製造装置、この吸着剤を使用して炭化水素燃料中の硫黄化合物を室温および周囲圧力(大気圧)で除去する除去方法および除去装置を提供することを目的とするものである。 The present invention further develops such a conventional catalytic adsorbent to produce an adsorbent capable of removing sulfur compounds in a hydrocarbon fuel at room temperature and ambient pressure (atmospheric pressure), and an adsorbent capable of easily producing an adsorbent. It is an object of the present invention to provide a method, a manufacturing apparatus, a removing method and a removing apparatus for removing a sulfur compound in a hydrocarbon fuel at room temperature and ambient pressure (atmospheric pressure) using this adsorbent.
 本発明では、共沈法によって異なる孔径分布を有する多孔質ナノシリカ吸着剤を使用することによって合成された新スーパー吸着剤を形成した。多孔性および官能基の形成に使用される表面改質剤は、石油化合物から硫黄を吸着するために使用される。これらの新スーパー吸着剤は、ナフサ、ガソリン、ガソリンなどを含むスルフォン系石油化合物のカテゴリーを吸着することができる。これらの吸着剤は一段階で合成され、高度な装置は必要としない。本発明において、多孔質シリカベースの吸着特性および吸着剤表面上の脆弱な硫黄官能基の存在は、周囲温度で石油化合物から硫黄化合物を除去するために同時に使用される。 In the present invention, a new super adsorbent synthesized by using a porous nanosilica adsorbent having different pore size distributions by the coprecipitation method was formed. Surface modifiers used to form porous and functional groups are used to adsorb sulfur from petroleum compounds. These new super adsorbents can adsorb categories of sulfone petroleum compounds, including naphtha, gasoline, gasoline and the like. These adsorbents are synthesized in one step and do not require sophisticated equipment. In the present invention, the adsorption properties of the porous silica base and the presence of fragile sulfur functional groups on the surface of the adsorbent are simultaneously used to remove sulfur compounds from petroleum compounds at ambient temperature.
 すなわち、本発明の吸着剤は、共沈法および表面多孔性有機改質剤を使用して、高い多孔度および硫黄化合物を除去する吸収能力を有する様々なゼオライトおよびシリケート化合物により製造される。詳しくは、独自の表面改質のために、シリカを含む多孔質材料の表面が官能化されて触媒が形成され、ナフサ、ディーゼル燃料、ガソリン、ジェット燃料油および石炭液(凝縮液)および硫黄を含有する類似の石油製品からなる液体炭化水素燃料を被処理液体燃料とする。 That is, the adsorbent of the present invention is produced by a coprecipitation method and a surface porous organic modifier with various zeolites and silicate compounds having high porosity and ability to remove sulfur compounds. Specifically, for a unique surface modification, the surface of the porous material containing silica is functionalized to form a catalyst, which produces naphtha, diesel fuel, gasoline, jet fuel oil and coal liquor (condensate) and sulfur. A liquid hydrocarbon fuel containing similar petroleum products is used as the liquid fuel to be treated.
 吸着剤は、触媒により、液体炭化水素燃料中のメルカプタンおよびチオール結合を破壊し、それらを酸化物に変換し、表面から残留する硫黄化合物を吸着する能力を有する。燃料中にチオールおよびメルカプタン官能基が存在することにより、燃料濃度および密度に依存して、それらを表面上に吸着させるのに適したシリカベース化合物の吸着剤が製造される。酸化物の形で燃料硫黄化合物を放出し、触媒によって残留化合物を多孔質シリカベースのナノ吸着剤ベースで吸着させることは、硫黄化合物によって引き起こされる好ましくない臭気を著しく減少させる。 The adsorbent has the ability to break the mercaptan and thiol bonds in the liquid hydrocarbon fuel by the catalyst, convert them into oxides, and adsorb the sulfur compounds remaining from the surface. The presence of thiol and mercaptan functional groups in the fuel produces a silica-based compound adsorbent suitable for adsorbing them on the surface, depending on the fuel concentration and density. The release of the fuel sulfur compound in the form of an oxide and the catalytic adsorption of the residual compound on a porous silica-based nanoadsorbent base significantly reduces the unwanted odor caused by the sulfur compound.
 これらの吸着剤は、周囲温度および標準圧力(大気圧)でチオフェンおよびチオールのような炭化水素燃料中に見出される化合物からの硫黄原子を吸着することができる。 それらは簡単な方法で容易に添加しそして炭化水素燃料から分離することができる。 炭化水素燃料中の硫黄の減少レベルは、硫黄の濃度および吸着剤の量に依存するが(構造中により多くのシリカを有すれば多くの吸着能力を有する)、燃料の化学的性質および流動学的性質は異なる。 These adsorbents can adsorb sulfur atoms from compounds found in hydrocarbon fuels such as thiophene and thiols at ambient temperature and standard pressure (atmospheric pressure). They can be easily added and separated from hydrocarbon fuels in a simple way. The level of sulfur reduction in hydrocarbon fuels depends on the concentration of sulfur and the amount of adsorbent (more adsorbent if there is more silica in the structure), but the chemistry and fluidity of the fuel. The nature is different.
 工業的規模で吸着剤(触媒)を合成するには、図1を参照すると、主タンク(反応容器11)への液体注入能力を有するマルチフィーダータンク(第1フィーダ14、第2フィーダ15)が必要である。主タンクには、その羽根を螺旋状または円盤状にすることができる攪拌機(操作速度:100~700rpm)16が装備されている。 In order to synthesize an adsorbent (catalyst) on an industrial scale, referring to FIG. 1, a multi-feeder tank (first feeder 14, second feeder 15) having a liquid injection capacity into a main tank (reaction vessel 11) is used. is necessary. The main tank is equipped with a stirrer (operating speed: 100 to 700 rpm) 16 capable of making its blades spiral or disk-shaped.
 合成中に触媒が凝集するのを防ぐために高い乱流を発生させることは重要なパラメータと見なされている。表面改質剤は、図1を参照すると、水と混合した後に系(給水管13)に添加され、そして合成プロセスは、合成リザーバー(主タンク)中の充填レベルに従って行われる。第2タンク中の試料の洗浄および乾燥処理の後に、多孔質シリカの表面を官能化するために、第2の表面改質剤(過酸化水素、CTAB、M2P(C161212)、MP(C241554)、硫酸、尿素、チオ尿素、メルカプトプロピオン酸および3-エタノールアミン等)を用いた含浸が続く。次の段階で、サンプルは乾燥機に移される。生じた蒸気は、大気汚染を防ぐために水中埋設または再蒸留によって集められる。適用された吸着剤の乾燥は最も重要な問題の一つであるので、炭化水素燃料中で予熱された吸着剤を使用することが推奨される。 Generating high turbulence to prevent catalyst agglutination during synthesis is considered an important parameter. The surface modifier is added to the system (water supply pipe 13) after mixing with water, with reference to FIG. 1, and the synthesis process is carried out according to the filling level in the synthesis reservoir (main tank). After washing and drying the sample in the second tank, a second surface modifier (hydrogen peroxide, CTAB, M2P (C 6 H 16 O 12 P 12) to functionalize the surface of the porous silica ), MP (C 24 N 4 O 15 H 54 ), sulfuric acid, urea, thiourea, mercaptopropionic acid, 3-ethanolamine, etc.) followed by impregnation. In the next step, the sample is transferred to the dryer. The resulting vapor is collected by submersion or redistillation to prevent air pollution. It is recommended to use preheated adsorbents in hydrocarbon fuels, as drying of the applied adsorbent is one of the most important issues.
 予熱温度は60℃から250℃の範囲で、これはこの段階での周囲湿度に依存する。吸着剤を燃料に添加した後、混合器を使用してさらに混合し、吸着プロセス期間を短縮する。この混合器は、連続サイクルまたは回転ミキサーとして使用できる。炭化水素燃料からの硫黄の吸着プロセスの後に、燃料からの吸着剤の分離が続く。この目的のために、2つの分離方法が実施される。 The preheating temperature is in the range of 60 ° C to 250 ° C, which depends on the ambient humidity at this stage. After adding the adsorbent to the fuel, it is further mixed using a mixer to shorten the adsorption process period. This mixer can be used as a continuous cycle or rotary mixer. The process of adsorbing sulfur from the hydrocarbon fuel is followed by the separation of the adsorbent from the fuel. Two separation methods are implemented for this purpose.
 図2に示す第1の分離方法では、時間とともに自重のために吸着剤がタンク31の底に沈殿し、そして燃料がその上に置かれる。この場合、ポンプ32は容易に燃料を分離できる。この第1の分離方法では、吸着剤は濾過することによって燃料から分離され、リサイクルまたは埋設段階に移される。次いで、吸着工程が完了した後、吸着段階の後に、吸着剤はアセトンまたはクエン酸、硝酸、ギ酸、塩酸、硫酸および過酸化水素またはさらにはアミンと一緒に還元工程によって再び作動サイクルに戻る。トリエタノールアミンのような化合物は、1対2および1対1の比である。再還元後、吸着剤の初期効率は達成されないだろう。 In the first separation method shown in FIG. 2, the adsorbent settles to the bottom of the tank 31 due to its own weight over time, and the fuel is placed on it. In this case, the pump 32 can easily separate the fuel. In this first separation method, the adsorbent is separated from the fuel by filtration and transferred to a recycling or burial stage. Then, after the adsorption step is complete, after the adsorption step, the adsorbent returns to the working cycle again by the reduction step with acetone or citric acid, nitric acid, formic acid, hydrochloric acid, sulfuric acid and hydrogen peroxide or even amine. Compounds such as triethanolamine have a 1: 2 and 1: 1 ratio. After re-reduction, the initial efficiency of the adsorbent will not be achieved.
 第二の分離方法では、硫黄含有燃料を前記吸着剤から製造された多孔質フィルター(吸着スクリーンと称す)上にポンプ輸送しそして圧力ポンプを通過させる。この場合、吸着スクリーンは固定され、燃料はこれらのセラミック官能化フィルター間を移動して硫黄を分離する。一定期間が過ぎると、これらのフィルターは交換されて前のプロセスで再利用される。 In the second separation method, the sulfur-containing fuel is pumped onto a porous filter (called an adsorption screen) manufactured from the adsorbent and passed through a pressure pump. In this case, the adsorption screen is fixed and the fuel moves between these ceramic functionalized filters to separate sulfur. After a period of time, these filters are replaced and reused in the previous process.
 本発明では、共沈法により多孔質ナノシリカ触媒吸着剤を製造した。過酸化水素、CTAB、M2P、MP、硫酸、尿素、チオ尿素、メルカプトプロピオン酸および3‐エタノールアミンのような表面改質剤を使用することによって、改質された表面は官能化して触媒となり、硫黄化合物官能化して炭化水素燃料から硫酸化合物を吸着除去した。前記官能基は、硫黄化合物を除去する対象の炭化水素燃料の種類に基づいて選択することにより、触媒の吸着効率を高めることができる。 In the present invention, a porous nanosilica catalyst adsorbent was produced by the coprecipitation method. By using surface modifiers such as hydrogen peroxide, CTAB, M2P, MP, sulfuric acid, urea, thiourea, mercaptopropionic acid and 3-ethanolamine, the modified surface is functionalized and catalyzed. The sulfur compound was functionalized to adsorb and remove the sulfuric acid compound from the hydrocarbon fuel. By selecting the functional group based on the type of hydrocarbon fuel to be removed from the sulfur compound, the adsorption efficiency of the catalyst can be increased.
 この製品(吸着剤)の製造には、安価な材料と市販のシリカ前駆体を使用した。多孔質ナノシリカのシリカベース上の官能基は、吸着能力を向上させるために、酸性および酸化性およびアミノ溶液を使用することによって形成した。得られた吸着剤は炭化水素燃料から硫黄化合物を吸着することができる。 An inexpensive material and a commercially available silica precursor were used to manufacture this product (adsorbent). The functional groups on the silica base of the porous nanosilica were formed by using acidic and oxidizing and amino solutions to improve the adsorptive capacity. The obtained adsorbent can adsorb sulfur compounds from hydrocarbon fuels.
 硫黄含有の炭化水素燃料からの最高レベルの硫黄吸着は、意図した触媒に対する吸着剤1リットル当たり(1リットルの容器満杯に吸着材を充填した際に)、約79~100mgであった。この触媒は周囲温度および大気圧で機能することができた。 The highest level of sulfur adsorption from sulfur-containing hydrocarbon fuels was about 79-100 mg per liter of adsorbent for the intended catalyst (when the adsorbent was filled in a 1 liter container). This catalyst was able to function at ambient temperature and atmospheric pressure.
 吸着剤は、工業用混合器およびミキサーを使用することによって炭化水素燃料に効果的に混合される。硫黄吸着のプロセスが60~90分以内に完了したとき、触媒(吸着剤)はタンクの底で濾過し、かつ堆積させることによって炭化水素燃料から容易に分離された(図2参照)。 The adsorbent is effectively mixed with the hydrocarbon fuel by using an industrial mixer and mixer. When the sulfur adsorption process was completed within 60-90 minutes, the catalyst (adsorbent) was easily separated from the hydrocarbon fuel by filtering and depositing at the bottom of the tank (see Figure 2).
 本発明による他の吸着剤は、硫黄化合物を酸化させる酸性表面を有するゼオライトナノ粒子を提供する。この酸性表面の有する特性は、特定の過酸化水素と様々な酸比を用いたナノ粒子の表面官能化によってなされた。表面の酸性度は、調製方法、脱水温度、構造およびSi/Al比に依存する。イオン移動法によるブレンステッドサイト(酸点)を形成するために、ナトリウムカチオンはしばしばアンモニウムカチオンで置き換えられる。続いて焼成により、ゼオライトからアンモニウムガスが抽出され、プロトンが残ってブレンステッド酸点(Bronsted-acid sites)に変換される。これらのブレンステッド酸点は不安定であり、550℃より高い温度で脱水すると一時的なブレンステッド酸点に変換される。 Other adsorbents according to the invention provide zeolite nanoparticles with an acidic surface that oxidizes sulfur compounds. The properties of this acidic surface were made by surface functionalizing the nanoparticles with specific hydrogen peroxide and various acid ratios. The acidity of the surface depends on the preparation method, dehydration temperature, structure and Si / Al ratio. Sodium cations are often replaced with ammonium cations to form Bronsted sites (acid spots) by the ion transfer method. Subsequently, by firing, ammonium gas is extracted from the zeolite, and protons remain and are converted into Bronsted-acid sites. These Bronsted acid points are unstable and are converted to temporary Bronsted acid points when dehydrated at temperatures above 550 ° C.
 本発明による吸着剤は、ゼオライトX型、Y型、および(Me)xSiOy化合物のような全てのメソポーラスケイ酸塩およびアルミン酸塩ベースの吸着剤を網羅する。これらの吸着剤の触媒である表面は、鉄、銀、モリブデン、ニッケルおよび銅などの活性金属を吸着することができる。 The adsorbent according to the invention covers all mesoporous and aluminate-based adsorbents such as zeolite X-type, Y-type, and (Me) xSiOy compounds. The catalyst surface of these adsorbents can adsorb active metals such as iron, silver, molybdenum, nickel and copper.
 この明細書において、吸着剤を触媒と称する場合があり、両者を併記する場合もある。また、表面改質剤を界面活性剤と称する場合があり、両者を併記する場合もある。 In this specification, the adsorbent may be referred to as a catalyst, and both may be described together. In addition, the surface modifier may be referred to as a surfactant, and both may be described together.
 本発明の効果は以下の通りである。
1.酸の洗浄方法および酸化触媒(ODS)およびモレキュラーシーブ吸着剤、例えばゼオライトを使用することに比べて、製造コストはそれほど高くはない。
2.輸出目的での大量生産の可能性がある。
3.吸着剤の製造工程中に過度の時間を費やし、高温をかける必要がない。
4.タンクの製造、合成、運転に複雑で高価な装置を使用する必要がない。
5.モレキュラーシーブ触媒の酸化および周囲圧力で吸着する能力とは異なり、吸着プロセス中に加熱の必要がない。
6.酸洗浄や、過酸化水素、ギ酸などの酸化性物質を吸着工程に使用する必要がない。
7.固定された状況で吸着剤として使用されるか、燃料と混合されるかの能力を有する。
8.燃料の化学的性質を再精製または変更する必要はない。
9.国際規格によれば、非常に低レベルの硫黄を有する石油化合物を製造することが可能である。
10.石油化合物からの硫黄の吸着プロセスに水酸化ナトリウムと苛性ソーダを使用する必要がない。
11.プロセスで再利用するために吸着剤を復元する。
12.鉛や鉄などの燃料から重金属元素を吸着する能力を有する。
The effects of the present invention are as follows.
1. 1. Manufacturing costs are not very high compared to acid cleaning methods and the use of oxidation catalysts (ODS) and molecular sieve adsorbents such as zeolites.
2. 2. There is a possibility of mass production for export purposes.
3. 3. Excessive time is spent during the adsorbent manufacturing process and there is no need to apply high temperatures.
4. There is no need to use complicated and expensive equipment to manufacture, synthesize and operate tanks.
5. Unlike the ability of molecular sieve catalysts to oxidize and adsorb at ambient pressure, no heating is required during the adsorption process.
6. There is no need to use acid cleaning or oxidizing substances such as hydrogen peroxide and formic acid in the adsorption process.
7. It has the ability to be used as an adsorbent in fixed situations or mixed with fuel.
8. There is no need to rerefining or alter the chemistry of the fuel.
9. According to international standards, it is possible to produce petroleum compounds with very low levels of sulfur.
10. There is no need to use sodium hydroxide and caustic soda in the process of adsorbing sulfur from petroleum compounds.
11. Restore the adsorbent for reuse in the process.
12. It has the ability to adsorb heavy metal elements from fuels such as lead and iron.
本発明による吸着剤の製造装置の実施形態を示すブロック図。The block diagram which shows the embodiment of the adsorbent manufacturing apparatus by this invention. 本発明による吸着剤と炭化水素燃料を混合して除去する除去装置としての混合装置の実施形態を示すブロック図。The block diagram which shows the embodiment of the mixing apparatus as the removing apparatus which mixes and removes an adsorbent and a hydrocarbon fuel by this invention. シリカ合成吸着剤ベースのフーリエスペクトル図。Silica synthetic adsorbent-based Fourier spectrum diagram. 非晶質相における合成吸着剤ベースのX線回折パターン図。FIG. 6 is a synthetic adsorbent-based X-ray diffraction pattern diagram in an amorphous phase. 吸着剤の走査型電子顕微鏡(SEM)写真。Scanning electron microscope (SEM) photograph of the adsorbent. 銀イオンを含浸したゼオライトナノ粒子の形態の走査型電子顕微鏡(SEM)写真。Scanning electron microscope (SEM) photograph in the form of zeolite nanoparticles impregnated with silver ions.
 以下、本発明を実施形態に基づいて説明する。
 図1は吸着剤の製造装置の実施形態を示す概略構成のブロック図である。
Hereinafter, the present invention will be described based on the embodiments.
FIG. 1 is a block diagram having a schematic configuration showing an embodiment of an adsorbent manufacturing apparatus.
 図1において、製造装置10は、反応容器11に対し、貯水タンク12内の水、例えば脱イオン水が給水管13を介して供給される。第1フィーダ14はシリカを含む多孔質材料、例えば多孔質ナノシリカを収容し、第2フィーダ15に表面改質剤を収容する。第1フィーダ14と第2フィーダ15はそれぞれ供給管14a、15bが給水管13に接続される。イオン水が給水された反応容器11には、先ず、第1フィーダ14から供給管14aから給水管13を介してシリカを所定量供給して混合し、反応容器11内に充填された水とシリカを撹拌機16で撹拌する。 In FIG. 1, the manufacturing apparatus 10 supplies the water in the water storage tank 12, for example, deionized water, to the reaction vessel 11 via the water supply pipe 13. The first feeder 14 contains a porous material containing silica, for example, porous nanosilica, and the second feeder 15 contains a surface modifier. In the first feeder 14 and the second feeder 15, supply pipes 14a and 15b are connected to the water supply pipe 13, respectively. First, a predetermined amount of silica is supplied from the first feeder 14 to the reaction vessel 11 to which the ionized water is supplied from the supply pipe 14a via the water supply pipe 13 and mixed, and the water and silica filled in the reaction vessel 11 are mixed. Is stirred by the stirrer 16.
 次いで、第2フィーダ15は供給管15bを介して給水管13を介して反応容器11に表面改質剤を供給し、混合して撹拌する。反応容器11内の撹拌混合された溶液内で吸着剤の合成が行われ、表面が官能化される。合成された吸着剤は、送液ポンプ17により給液管18を介して乾燥機19に移動する。送液ポンプ17と乾燥機19との間に、乾燥機19への送液を許容するが逆流を阻止する一方向弁20が配置される。乾燥機19は、バイパス管21により溶液を乾燥機19に対して循環可能とする。乾燥された吸着剤を貯蔵タンク22に移動する。なお、酸を収容するフィーダ(不図示)を設け、不図示の供給管を例えば給水管13に接続し、反応容器11に酸を加えるようにしても良い。 Next, the second feeder 15 supplies the surface modifier to the reaction vessel 11 via the water supply pipe 13 via the supply pipe 15b, mixes and stirs. The adsorbent is synthesized in the stirred and mixed solution in the reaction vessel 11, and the surface is functionalized. The synthesized adsorbent is moved to the dryer 19 by the liquid feed pump 17 via the liquid supply pipe 18. A one-way valve 20 that allows liquid to be fed to the dryer 19 but prevents backflow is arranged between the liquid feed pump 17 and the dryer 19. The dryer 19 allows the solution to be circulated to the dryer 19 by the bypass pipe 21. The dried adsorbent is transferred to the storage tank 22. A feeder (not shown) for accommodating the acid may be provided, and a supply pipe (not shown) may be connected to, for example, a water supply pipe 13 to add the acid to the reaction vessel 11.
 図2は炭化水素燃料吸着材と炭化水素燃料を混合し、硫黄化合物を除去する除去装置の実施形態を示すブロック図である。 FIG. 2 is a block diagram showing an embodiment of a removal device that mixes a hydrocarbon fuel adsorbent and a hydrocarbon fuel to remove sulfur compounds.
 除去装置である混合装置30は、炭化水素燃料が収容される燃料タンク31と、混合ポンプ32と、吸着剤を収容する吸着剤フィーダ33を有する。混合ポンプ32を最下段位置に配置し、最上段位置に吸着剤フィーダ33を配置し、中段位置に燃料タンク31を配置する。燃料タンク31の下部と混合ポンプ32とを第1パイプ34により接続し、混合ポンプ32と吸着剤フィーダ33とを第2パイプ35により接続し、燃料タンク31と吸着剤フィーダ33を第3パイプ36で接続し、循環経路を構成する。 The mixing device 30, which is a removing device, has a fuel tank 31 for accommodating hydrocarbon fuel, a mixing pump 32, and an adsorbent feeder 33 for accommodating an adsorbent. The mixing pump 32 is arranged at the lowest stage position, the adsorbent feeder 33 is arranged at the uppermost stage position, and the fuel tank 31 is arranged at the middle stage position. The lower part of the fuel tank 31 and the mixing pump 32 are connected by the first pipe 34, the mixing pump 32 and the adsorbent feeder 33 are connected by the second pipe 35, and the fuel tank 31 and the adsorbent feeder 33 are connected by the third pipe 36. Connect with to form a circulation path.
 混合ポンプ32を起動し、炭化水素燃料及び吸着剤を前記循環経路内で循環すると、吸着剤と炭化水素燃料が混合し、吸着剤を構成する多孔質シリカの表面に形成された触媒により炭化水素燃料中の硫黄化合物が酸化物に変換し、残留する硫黄化合物を吸着する。 When the mixing pump 32 is started and the hydrocarbon fuel and the adsorbent are circulated in the circulation path, the adsorbent and the hydrocarbon fuel are mixed, and the hydrocarbon is formed by a catalyst formed on the surface of the porous silica constituting the adsorbent. Hydrocarbon compounds in the fuel are converted to oxides and adsorb the remaining hydrocarbon compounds.
 次に、吸着剤の製造方法を説明する。
 (A)共沈法による多孔質ナノシリカ吸着剤の合成方法
 この合成方法では、一連の技術的および科学的成果が、炭化水素燃料から硫黄(硫黄化合物)を吸着する能力を有する吸着剤の合成に至った。
Next, a method for producing the adsorbent will be described.
(A) Method for synthesizing a porous nanosilica adsorbent by the coprecipitation method In this synthesis method, a series of technical and scientific results are used to synthesize an adsorbent having the ability to adsorb sulfur (sulfur compound) from a hydrocarbon fuel. I arrived.
 この場合、TEOS(テトラエチルオルトシリケート(オルトケイ酸テトラエチル):tetraethyl orthosilicate)、ポリ(ジメチルシロキサン:(poly (dimethyl siloxane)))、ケイ酸ナトリウム(Sodium silicate)またはミネラルシリカ(mineral silica)を用いて行われる多孔質シリカを形成するための初期材料として、非晶質シリカ前駆体が使用される。 In this case, TEOS (tetraethyl orthosilicate: tetraethyl orthosilicate), poly (dimethylsiloxane: (poly (dimethyl olefin))), sodium silicate (Sodiumsilicate) or mineral silica (mineralsilica) is used. An amorphous silica precursor is used as an initial material for forming the porous silica.
 ミネラルシリカを使用する場合は、最初にシリカを80℃の塩酸で1日以上洗浄した後、1モルのNaOH溶液を用いて60℃以上80℃以下の温度範囲で約1~5時間の表面清浄化処理を行う。 When using mineral silica, first wash the silica with hydrochloric acid at 80 ° C for 1 day or more, and then use 1 mol of NaOH solution to clean the surface with a temperature range of 60 ° C or more and 80 ° C or less for about 1 to 5 hours. Perform the conversion process.
 従来の方法では、フッ化ナトリウムやフッ化リチウムなどのフッ化物化合物を使用して、シリカベース上に細孔を形成することができる。この方法を用いる利点は、合成の低コストとシリカ土壌資源の使用であるが、予想外の金属カチオン不純物を含む得られたシリカが複雑なプロセスで合成されたと考えられるべきである。この方法では、水酸化ナトリウム溶液およびフローラ(Flora)の組み合わせを用いてタイプおよび気孔率を制御することは不可能であり、吸着効率は非常に低かった。 In the conventional method, a fluoride compound such as sodium fluoride or lithium fluoride can be used to form pores on the silica base. The advantages of using this method are the low cost of synthesis and the use of silica soil resources, but it should be considered that the resulting silica containing unexpected metal cation impurities was synthesized in a complex process. With this method, it was not possible to control the type and porosity using a combination of sodium hydroxide solution and Flora, and the adsorption efficiency was very low.
 本発明では、テトラエチルオルトシリケート(TEOS)およびケイ酸ナトリウムのような他のシリカ前駆体を、上記従来の欠点を解消するために適用することができる。テトラエチルオルトシリケート(TEOS)溶液は最大生産効率を有する。1kgのTEOSの中から1kgの高純度のシリカをナノスケールで製造することが可能である。TEOSから製造されたシリカ中の気孔の形成は、この組み合わせの用語によればはるかに容易で操作上可能である。 In the present invention, other silica precursors such as tetraethyl orthosilicate (TEOS) and sodium silicate can be applied to eliminate the above conventional drawbacks. The tetraethyl orthosilicate (TEOS) solution has maximum production efficiency. It is possible to produce 1 kg of high-purity silica from 1 kg of TEOS on a nanoscale. The formation of pores in silica made from TEOS is much easier and operably operational according to this combination terminology.
 本発明方法において、多孔質の吸着剤ベースを合成するための材料品質と多孔度の同時制御を達成するために、大量生産においてケイ酸ナトリウムを使用することによって行われる。この溶液において、SiOx対NaOの比は、15~40%の割合で変化する。最も高い割合のSiOxを有する前駆体を用いることは、シリカの合成にとってより有効である。 In the method of the present invention, it is carried out by using sodium silicate in mass production in order to achieve simultaneous control of material quality and porosity for synthesizing a porous adsorbent base. In this solution, the ratio of SiOx to NaO varies at a rate of 15-40%. Using a precursor with the highest proportion of SiOx is more effective for the synthesis of silica.
 合成プロセスは、非酸性金属タンク(ステンレス鋼L316)またはプラスチックタンクに、シリカ源と異なる酸との非化学量論比で添加することによって実施した。望ましい量の気孔率および粒子サイズを達成するために、異なる値の脱イオン水およびシリカ源を1:1,1:2~1:8の比でタンクに添加し、300~1200rpmの速度範囲で撹拌し、混合した。500rpmがミキシングに最適なスピードで、15分後、一次改質剤を上記の達成された溶液に添加した。 The synthesis process was carried out by adding to a non-acidic metal tank (stainless steel L316) or a plastic tank in a non-stoichiometric ratio of a silica source and a different acid. To achieve the desired amount of porosity and particle size, different values of deionized water and silica sources were added to the tank in a ratio of 1: 1, 1: 2 to 1: 8 and in a velocity range of 300 to 1200 rpm. Stirred and mixed. After 15 minutes at 500 rpm at the optimum speed for mixing, the primary modifier was added to the above achieved solution.
 これらの信頼できる表面改質剤(confidants’modifiers)は、要件(鉱物または高分子タイプ)によって異なる場合がある。臭化セチルトリメチルアンモニウムや臭化ヘキサデシルトリメチルアンモニウム(CTAB)、D-マンニトール-1,6-二リン酸(M2P)、MP、尿素、チオ尿素、ドデシル硫酸ナトリウム(SDS)およびヘキサメタリン酸ナトリウム(SHMP)が最も重要な改質剤の中で最も一般的である。メルカプトプロピオン酸および3-エタノールアミンも補充剤として適用することができる。 These reliable surface modifiers (confidants' modifiers) may vary depending on the requirements (mineral or polymer type). Cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide (CTAB), D-mannitol-1,6-diphosphate (M2P), MP, urea, thiourea, sodium dodecyl sulfate (SDS) and sodium hexametaphosphate (SHMP) ) Is the most common of the most important modifiers. Mercaptopropionic acid and 3-ethanolamine can also be applied as supplements.
 シリカ上に形成された細孔のおおよその数は、2.0~10重量%の範囲の様々な値の改質剤を用いていくつかの試験を実施することによって決定された。場合によっては、両方の尿素改質剤を他のものと一緒に使用して、粒径、多孔度を制御し、さらに消費される水の量を減らすこともできる。この場合に使用される尿素の量は、原料ベースの0.2~5重量%の間で変動し得るが、最良の百分率は約2~3重量%である。異なる重量比が1から10パーセントの範囲のペンタノールおよびプロパノールを使用して、ナノ粒子の特性およびサイズを改善および制御した。 The approximate number of pores formed on the silica was determined by performing several tests with modifiers of various values in the range of 2.0-10% by weight. In some cases, both urea modifiers can be used in combination with others to control particle size, porosity and further reduce the amount of water consumed. The amount of urea used in this case can vary between 0.2-5% by weight of the raw material base, with the best percentage being about 2-3% by weight. Pentanols and propanols with different weight ratios ranging from 1 to 10 percent were used to improve and control the properties and size of the nanoparticles.
 図3は、シリカ合成吸着剤ベースのフーリエスペクトル図で、吸収帯は、Si-O-Si(1099cm-1)、Si-OH(908cm-1)の非対称振動、およびSi-O-Si(800cm-1)の対称振動から生じる。試料中の吸着水(H-OH、伸縮振動)、残留分子間水(H-OH屈曲振動(bending vibration))、水分(H-OH屈曲振動(bending vibration))は、3500~3400および1600(cm-1)の振動に帰属する。 FIG. 3 is a silica synthetic adsorbent-based Fourier spectrum diagram with absorption bands of Si-O-Si (1099 cm -1 ), Si-OH (908 cm -1 ) asymmetric vibrations, and Si-O-Si (800 cm). It arises from the symmetrical vibration of -1 ). Adsorbed water (H-OH, expansion and contraction vibration), residual intermolecular water (H-OH bending vibration), and moisture (H-OH bending vibration) in the sample are 3500 to 3400 and 1600 (H-OH bending vibration). It belongs to the vibration of cm -1 ).
 図4は、非晶質相における合成吸着剤ベースのX線回折パターン図、図5はナノシリカベース触媒の走査型電子顕微鏡(SEM)写真である。 FIG. 4 is a synthetic adsorbent-based X-ray diffraction pattern diagram in an amorphous phase, and FIG. 5 is a scanning electron microscope (SEM) photograph of a nanosilica-based catalyst.
 シリカの凝縮相を溶解し、沈殿させ、溶液のpHを種々の重量比の塩酸または酢酸を用いて酸性に調整した。酸の添加および酸性度は、製造されるシリカ粒子の量に直接関連する。最高の効率および粒径は、塩素(HCl)および少量の硝酸に起因し、シリカ前駆体については1/2対1の比に起因した。最良の結果は1-1の比率で生じた。この段階での塩素の存在は、硫黄化合物を吸着するのに役立った。得られた吸着剤を3~5回洗浄し、約80~120℃の温度で乾燥させた。これにより、炭化水素燃料から硫黄を吸着する能力を有する。アルカリ性媒体を使用してシリカ沈殿物を生成することもできるが、それは高効率ではない。 The condensed phase of silica was dissolved and precipitated, and the pH of the solution was adjusted to acidic with various weight ratios of hydrochloric acid or acetic acid. The addition of acid and acidity are directly related to the amount of silica particles produced. The highest efficiency and particle size were due to chlorine (HCl) and small amounts of nitric acid, and for silica precursors due to a 1/2: 1 ratio. The best results occurred in a ratio of 1-1. The presence of chlorine at this stage helped to adsorb sulfur compounds. The obtained adsorbent was washed 3 to 5 times and dried at a temperature of about 80 to 120 ° C. This has the ability to adsorb sulfur from hydrocarbon fuels. Alkaline media can also be used to form silica precipitates, but this is not highly efficient.
 シリケートベース合成のタイプに基づいて、表面改質剤のタイプを調べた。最良の沈殿条件は、塩酸と2~4重量%の硝酸を用いる。溶液のpHは約2~5に調整する必要がある。シリカの沈殿終了後、余分な水で繰り返し洗浄し、pHを約6~8に調整した。この合成方法を全ての表面改質剤について行った。この触媒の製法および製造設備を図1に示す。 The type of surface modifier was investigated based on the type of silicate-based synthesis. The best precipitation conditions are hydrochloric acid and 2-4% by weight nitric acid. The pH of the solution needs to be adjusted to about 2-5. After the silica was precipitated, it was washed repeatedly with excess water to adjust the pH to about 6-8. This synthetic method was performed for all surface modifiers. Figure 1 shows the manufacturing method and manufacturing equipment for this catalyst.
 一方、多孔質ナノシリカ等のシリカを含む多孔質材料が表面有機金属界面活性剤(有機金属界面活性剤または両性界面活性剤)を含む合成多孔質材料とすることにより、表面改質剤を加える合成プロセスを不要とし、表面に前記触媒が予め形成される。この合成多孔質材料は、メチル基、アミノ基およびスルフォン基およびカルボキシル基のいずれかの官能化材料を含む有機変性シリカを含む。 On the other hand, by making a porous material containing silica such as porous nanosilica a synthetic porous material containing a surface organic metal surfactant (organic metal surfactant or amphoteric tenside), a surface modifier is added. No process is required and the catalyst is preformed on the surface. This synthetic porous material includes organically modified silica containing any functionalizing material of any of methyl, amino and sulfone and carboxyl groups.
 実施例1
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤である臭化ヘキサデシルトリメチルアンモニウム(CTAB)を有する定常状態シリカを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表1に示す。
Example 1
Based on the above production method, steady-state silica having 2 to 15 wt% of surface modifier, hexadecyltrimethylammonium bromide (CTAB), was synthesized on a raw material basis. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 1.
 実施例1では、CTAB量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。サンプル番号1~4の吸着剤サンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。 In Example 1, a sulfur adsorption test was conducted using adsorbents having different amounts of CTAB (2%, 15%). The adsorbent samples of sample numbers 1 to 4 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 1, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 実施例2
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤であるM2Pを有する定常状態シリカプレゼラチンを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表2に示す。実施例2では、M2P量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。サンプル番号21~24の吸着剤サンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。
Example 2
Based on the above production method, steady-state silica pregelatin having 2 to 15 wt% of surface modifier M2P on a raw material basis was synthesized. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 2. In Example 2, a sulfur adsorption test was conducted using adsorbents having different amounts of M2P (2%, 15%). The adsorbent samples of sample numbers 21 to 24 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 2, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 実施例3
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤である尿素を有する定常状態シリカを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表3に示す。実施例3では、尿素量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。硫黄吸着試験をサンプル番号31~34の各吸着剤サンプルについて行った。サンプル番号31~34の吸着剤サンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。
Example 3
Based on the above production method, steady-state silica having 2 to 15 wt% urea, which is a surface modifier, was synthesized on a raw material basis. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 3. In Example 3, a sulfur adsorption test was conducted using adsorbents having different amounts of urea (2%, 15%). A sulfur adsorption test was performed on each of the adsorbent samples of sample numbers 31 to 34. The adsorbent samples of sample numbers 31 to 34 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 3, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 実施例4
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤であるチオ尿酸(TiOurea)を有する定常状態シリカを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表4に示す。実施例4では、チオ尿酸(TiOurea)量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。サンプル番号41~44の吸着剤サンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。
Example 4
Based on the above production method, steady-state silica having 2 to 15 wt% of surface modifier thiourea on a raw material basis was synthesized. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 4. In Example 4, a sulfur adsorption test was carried out using adsorbents having different amounts of thiourea (2%, 15%). The adsorbent samples of sample numbers 41 to 44 had adsorbent amounts (wt%) of 2.0, 4.0, 8.0, and 10.0.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 4, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 実施例5
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤であるドデジル硫酸ナトリウム(SDS)を有する定常状態シリカプレゼラチンを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表5に示す。実施例5では、SDS量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。サンプル番号51~54のサンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。
Example 5
Based on the above production method, steady-state silica pregelatin having 2 to 15 wt% sodium dodecyl sulfate (SDS), which is a surface modifier, was synthesized on a raw material basis. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 5. In Example 5, a sulfur adsorption test was performed using adsorbents having different amounts of SDS (2%, 15%). For the samples of sample numbers 51 to 54, the amount (wt%) of the adsorbent was 2.0, 4.0, 8.0, 10.0.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 5, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 実施例6
 上記の製造方法に基づいて、原料ベースで2~15wt%の表面改質剤であるペンタノールを有する定常状態シリカを合成した。上記の製造方法から得られた吸着剤を、100mgの硫黄を含有する100ccの燃料を用いて周囲温度で硫黄(S)の吸着試験を行った。試験結果を表6に示す。実施例6では、ペンタノール量が異なる(2%、15%)吸着剤により硫黄吸着試験を行った。サンプル番号61~64のサンプルは、吸着剤の量(wt%)を2.0、4.0、8.0、10.0とした。
Example 6
Based on the above production method, steady-state silica having 2 to 15 wt% of pentanol, which is a surface modifier, was synthesized on a raw material basis. The adsorbent obtained from the above production method was subjected to a sulfur (S) adsorption test at an ambient temperature using 100 cc of fuel containing 100 mg of sulfur. The test results are shown in Table 6. In Example 6, a sulfur adsorption test was conducted using adsorbents having different amounts of pentanol (2%, 15%). For the samples of sample numbers 61 to 64, the amount (wt%) of the adsorbent was 2.0, 4.0, 8.0, 10.0.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、硫黄化合物(S)の吸着は、吸着剤、表面改質剤(界面活性剤)の増加とともにそれぞれ増加した。 As shown in Table 6, the adsorption of the sulfur compound (S) increased with the increase of the adsorbent and the surface modifier (surfactant), respectively.
 (B)表面改質剤を用いた多孔質ゼオライトナノ粒子(アルミノシリケート)の合成方法
 反応環境において、耐久性のあるコアの増加は、最終的な結晶の大きさの減少をもたらす。したがって、ナノゼオライトの形成には、核形成プロセスが粒子成長にとって支配的な条件が必要である。ゼオライト懸濁液を数回高速で遠心分離し、超音波技術を用いて液体中に分散させて、粒子蓄積量が最も少ない微粉末を得る。
(B) Method for Synthesizing Porous Zeolite Nanoparticles (Aluminosilicate) Using Surface Modifier In a reaction environment, an increase in durable cores results in a decrease in final crystal size. Therefore, the formation of nanozeolites requires conditions under which the nucleation process dominates particle growth. The zeolite suspension is centrifuged several times at high speed and dispersed in a liquid using ultrasonic technology to obtain a fine powder with the least amount of accumulated particles.
 ゼオライトナノ結晶の合成は、しばしば均質な透明溶液を用いて行われる。本合成方法は、100nm未満の均一な分布および粒度を有するコロイド状ゼオライト懸濁液の形成をもたらす。透明な溶液中およびゼオライト懸濁液形成の前に、サブコロイドまたは別個のゼオライト粒子が存在する。適切な超飽和条件および初期コアの空間安定性は、ゼオライトナノ結晶を形成させ、粒子の蓄積および粉砕を回避する要因の1つである。 Zeolite nanocrystals are often synthesized using a homogeneous transparent solution. The synthetic method results in the formation of a colloidal zeolite suspension with a uniform distribution and particle size of less than 100 nm. Subcolloids or separate zeolite particles are present in clear solution and prior to zeolite suspension formation. Appropriate hypersaturation conditions and spatial stability of the initial core are one of the factors that cause zeolite nanocrystals to form and avoid particle accumulation and grinding.
 これらの条件は、負電荷を有する超微細アルミノケイ酸塩粒子の蓄積を避けるために、多量の方向性種が使用され、アルカリ性カチオンの濃度が低い場合に提供される。さらに、最終結晶サイズを最小にするために低温が適用される。 These conditions are provided when large amounts of directional species are used and the concentration of alkaline cations is low to avoid the accumulation of negatively charged ultrafine aluminosilicate particles. In addition, low temperatures are applied to minimize the final crystal size.
 結晶を成長させるのに必要な活性化エネルギーは、しばしば核生成に必要なエネルギーよりも高い。したがって、低温は核生成を増加させる。言及された全てのパラメータは、正確な反応物質選択および合成のための適切な式と共に、安定した透明な溶液調製をもたらす。 The activation energy required to grow a crystal is often higher than the energy required for nucleation. Therefore, low temperatures increase nucleation. All the parameters mentioned, along with appropriate formulas for accurate reactant selection and synthesis, result in stable clear solution preparation.
 ゼオライトナノ粒子の合成は、化学量論比の液体ケイ酸ナトリウムをより高い値のTEOSと共に脱イオン水中に溶解することによって最初に行われる。これを第1溶液とする。第2溶液については、比例量のNaOHを脱イオン水に溶解した。この第2溶液に異なる量のアルミン酸ナトリウム(NaAlO)を添加した。第1溶液および第2溶液の2つの溶液を混合し、マグネチックスターラーを用いて30分間撹拌した。 The synthesis of zeolite nanoparticles is first carried out by dissolving a stoichiometrically liquid sodium silicate with a higher value of TEOS in deionized water. This is used as the first solution. For the second solution, a proportional amount of NaOH was dissolved in deionized water. Different amounts of sodium aluminate (NaAlO 2 ) were added to this second solution. The two solutions, the first solution and the second solution, were mixed and stirred using a magnetic stirrer for 30 minutes.
 得られた溶液を容量50mlのオートクレーブに移した。得られた溶液を120℃のオーブン中で約1時間保存して次の工程の合成に使用した。 The obtained solution was transferred to an autoclave having a volume of 50 ml. The resulting solution was stored in an oven at 120 ° C. for about 1 hour and used for synthesis in the next step.
 すべての試料を100~180℃の温度で乾燥させた。CTAB、SDS、ペンタノールおよびプロパノールを用いて多孔度を改善した。プロパノールとペンタノールの比率は、全触媒の2~21重量%とすることができる。 All samples were dried at a temperature of 100-180 ° C. Porability was improved with CTAB, SDS, pentanol and propanol. The ratio of propanol to pentanol can be 2-21% by weight of the total catalyst.
 1.5のSi/Al比を有するゼオライトYを、以下の組成:17(NaO):1(Al):12.80(SiO):975(HO)の不透明ゲルから合成した。ゲルは、NaOH、Al(OH)及びHOの塩基性透明溶液をコロイドナノシリカ粒子とポリプロピレン製ボトル中で攪拌しながら混合することによって調製した。 Zeolite Y having a Si / Al ratio of 1.5 is an opaque gel with the following composition: 17 (Na 2 O): 1 (Al 2 O 3 ): 12.80 (SiO 2 ): 975 (H 2 O). Synthesized from. The gel was prepared by mixing with stirring NaOH, Al a (OH) 3 and H 2 O basic clear solution in colloidal nanosilica particles and polypropylene bottles.
 得られた不透明ゲルを室温で3~18時間撹拌しながら熟成させた。熟成したゲルをオートクレーブに移し、そこで100~185℃の異なる温度に加熱した。8時間で150℃は、ゼオライトの球形形態をナノメートルスケールで提供するのに最適な温度である。図6は合成ゼオライトの顕微鏡写真(SEM)を示し、銀イオンを含浸させたゼオライトナノ粒子の形態を示す。ゼオライト粒子は球形で100ナノメートル未満のサイズを有する。 The obtained opaque gel was aged at room temperature for 3 to 18 hours with stirring. The aged gel was transferred to an autoclave where it was heated to different temperatures from 100 to 185 ° C. 150 ° C. in 8 hours is the optimum temperature for providing the spherical form of zeolite on the nanometer scale. FIG. 6 shows a micrograph (SEM) of synthetic zeolite, showing the morphology of zeolite nanoparticles impregnated with silver ions. Zeolite particles are spherical and have a size of less than 100 nanometers.
 少量の材料の添加は、核形成および結晶化に影響を及ぼし得る。反応混合物への種子(seeds)の添加は、結晶化プロセスを向上させる。孔は、鋳型および核形成剤として作用するポリスチレンのようなコロイド粒子を添加することによって組織化することができる。ポリスチレンの粒径は4ミクロンから150ミクロンまでさまざまである。ゼオライトの核形成後、ポリマー床上で、試料を600~850℃の温度で1~3時間熱処理してポリマー材料を除去する。 Addition of small amounts of material can affect nucleation and crystallization. The addition of seeds to the reaction mixture improves the crystallization process. The pores can be organized by adding colloidal particles such as polystyrene that act as a template and nucleating agent. The particle size of polystyrene varies from 4 microns to 150 microns. After nucleation of the zeolite, the sample is heat treated on the polymer floor at a temperature of 600-850 ° C. for 1-3 hours to remove the polymer material.
 ゼオライトXの吸着特性を改善するために、より高濃度のシリカを適用した。これらのゼオライトは少量のAlを含むが、このタイプに関連する酸性度は炭化水素触媒プロセスにとって十分である。これらの条件は、Si/Al比の低い生成物の形成をもたらす。アルカリ金属種は構造指向であることが示唆されている。すべての試料を80℃のオーブンで乾燥させて、さらなる工程のために調整した。 A higher concentration of silica was applied to improve the adsorption characteristics of Zeolite X. Although these zeolites contain small amounts of Al, the acidity associated with this type is sufficient for hydrocarbon catalytic processes. These conditions result in the formation of products with low Si / Al ratios. Alkali metal species have been suggested to be structure oriented. All samples were dried in an oven at 80 ° C. and prepared for further steps.
 最良の改質剤を用いて合成サンプル上の吸着速度を決定するために、触媒基準での硫黄化合物の吸着を、100ppmの硫黄化合物(S)、例えばチオールおよびメルカプタンを含有する100mlの燃料について測定した。 To determine the rate of adsorption on synthetic samples with the best modifiers, catalytically adsorbed sulfur compounds are measured for 100 ml fuel containing 100 ppm sulfur compound (S), such as thiols and mercaptans. did.
 この試験は周囲温度および圧力で20分間行った。触媒量は一定とした。 This test was performed at ambient temperature and pressure for 20 minutes. The amount of catalyst was constant.
 実施例7
 上記した(B)の製造方法により、原料ベースで2wt%の表面改質剤であるSDS、ペンタノール、M2P、尿素、CTABを用いて吸着剤であるゼオライトY、ゼオライトXを合成した。試験結果を表7に示す。この試験は、周囲温度および圧力で20分間行った。ゼオライトX、ゼオライトYの吸着剤(触媒)の量は一定とした。
Example 7
By the above-mentioned production method (B), zeolite Y and zeolite X, which are adsorbents, were synthesized using 2 wt% of surface modifiers SDS, pentanol, M2P, urea, and CTAB on a raw material basis. The test results are shown in Table 7. This test was performed at ambient temperature and pressure for 20 minutes. The amounts of the adsorbents (catalysts) for Zeolite X and Zeolite Y were kept constant.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、硫黄吸着のための最良の界面活性剤(表面改質剤)はCTABであり、吸着剤であるゼオライトYとゼオライトXの2つのタイプのゼオライトの間に違いはない。 As shown in Table 7, the best surfactant (surface modifier) for sulfur adsorption is CTAB, and there is no difference between the two types of zeolite, zeolite Y and zeolite X, which are adsorbents.
 (C)テトラエチルオルトシリケート(TEOS)源からの共沈法による多孔質ケイ酸塩ベースのナノ粒子の合成
 この合成プロセスは、バリウム(Barium)、ストロンチウム(Strontium)、ジルコニウム(Zirconium)、カルシウム(Calcium)、亜鉛(Zinc)、および硝酸マグネシウムのような種々の金属硝酸塩を化学量論比で脱イオン水に溶解することによって行った。先の方法と同様に、化学量論比のTEOSまたは4~10当量のエタノールを含むケイ酸ナトリウムを前記第1溶液に添加した。pHをアルカリ性領域(8-10)に調整した。この方法では、特定量のケイ酸ナトリウムをケイ酸塩源として使用する。
(C) Synthesis of porous silicate-based nanoparticles by coprecipitation from a tetraethyl orthosilicate (TEOS) source This synthetic process involves Barium, Strontium, Zirconium, and Calcium. ), Zinc, and various metal nitrates such as magnesium nitrate were dissolved in deionized water in a chemical ratio. Similar to the previous method, a stoichiometric ratio of TEOS or sodium silicate containing 4-10 equivalents of ethanol was added to the first solution. The pH was adjusted to the alkaline range (8-10). This method uses a specific amount of sodium silicate as the silicate source.
 材料を高速ミキサーで混合した後、得られた溶液を80~100℃で2~5時間還流してTEOSを加水分解し、遊離したシリカが略金属カチオンになる。ケイ酸ナトリウムの縮合を開始させるために、塩酸を使用した。これらのサンプルでは、様々な量のペンタノール、イソプロパノール、CTABおよびドデシル硫酸ナトリウムを適用することによって細孔の形成を達成した。 After mixing the materials with a high-speed mixer, the obtained solution is refluxed at 80 to 100 ° C. for 2 to 5 hours to hydrolyze TEOS, and the liberated silica becomes a substantially metal cation. Hydrochloric acid was used to initiate the condensation of sodium silicate. In these samples, pore formation was achieved by applying various amounts of pentanol, isopropanol, CTAB and sodium dodecyl sulfate.
 上記プロセスの後に沈殿プロセスが生じた。サンプルを100~250℃の温度範囲で乾燥させた。この方法は、ケイ酸ナトリウムのような他のケイ酸塩源を用いても実施することができる。吸着パーセンテージを決定しそして最良のサンプルを検出するために、同等の条件でのいくつかの実験を計画し、繰り返した。 A precipitation process occurred after the above process. The sample was dried over a temperature range of 100-250 ° C. This method can also be carried out using other silicate sources such as sodium silicate. Several experiments were planned and repeated under equivalent conditions to determine the adsorption percentage and to detect the best sample.
 実施例8
 実験では、チオールおよびメルカプタンを含む100ppmの硫黄化合物を含む100mlの燃料を使用した。実験は環境温度および圧力で20分間行った。吸着剤量(触媒量)はすべての試験で一定であった。試験結果を表8に示す。
実施した実験によれば、尿素、チオ尿酸およびM2P改質剤の存在下での平均吸着量は、1リットルあたり30~32mgの範囲であった。これらのケイ酸塩化合物からなる吸着剤(触媒)の使用方法を図2に示す。
Example 8
In the experiment, 100 ml of fuel containing 100 ppm sulfur compound containing thiol and mercaptan was used. The experiment was carried out at ambient temperature and pressure for 20 minutes. The amount of adsorbent (catalyst amount) was constant in all tests. The test results are shown in Table 8.
According to the experiments carried out, the average adsorption amount in the presence of urea, thiouric acid and M2P modifier was in the range of 30 to 32 mg per liter. FIG. 2 shows a method of using an adsorbent (catalyst) composed of these silicate compounds.
 フォルステライト化合物(ケイ酸塩化合物)であるMgSiO(苦土かんらん石)、ZnSiO、BaSiO(重晶石)、SrSiO(オルトケイ酸塩)、CaSiO、ZrSiO(ジルコン、ジルコニウムケイ酸塩)の吸着剤をサンプルとし、各吸着剤の表面改質剤として、原料ベースで2wt%の表面改質剤(尿素、ペンタノール、SDS、M2P、CTAB)での硫黄化合物(S)の吸着率を測定した。試験結果を表8に示す。 Forsterite compound (silicate compound) MgSiO 4 (bittersweet citrus), ZnSiO 4 , BaSiO 4 (ducrystal), SrSiO 4 (orthosilicate), CaSiO 4 , ZrSiO 4 (zircon, zirconium) A silicate) adsorbent is used as a sample, and as a surface modifier for each adsorbent, a sulfur compound (S) containing 2 wt% of a surface modifier (urea, pentanol, SDS, M2P, CTAB) on a raw material basis. The adsorption rate was measured. The test results are shown in Table 8.
 なお、シリカを含む多孔質材料は、多孔性ケイ酸塩化合物、後述する実施例14で示すゼオライト化合物、フォルステライト化合物、さらにはケイ酸亜鉛鉱物(ZnSiO)と少量の亜鉛鉱石からなるウィレマイト(willemite)化合物を用いることができる。 The porous material containing silica is composed of a porous silicate compound, a zeolite compound shown in Example 14 described later, a forsterite compound, zinc silicate mineral (Zn 2 SiO 4 ), and a small amount of zinc ore. Willemite compounds can be used.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、表面改質剤(界面活性剤)にCTABを用いた吸着剤がいずれのサンプルについても吸着率が高かった。 As shown in Table 8, the adsorbent using CTAB as the surface modifier (surfactant) had a high adsorption rate for all the samples.
 D)ケイ酸塩ベースのナノ吸着剤の表面官能化のための新しい方法(新世代法)。
 この新世代法は、得られた多孔質ナノシリカベース吸着剤(触媒)の酸化性溶液、例えば過酸化水素、水酸化ナトリウムおよび酸性溶液、例えば硫酸、硝酸、さらには酢酸およびアミノ化合物の酸化性溶液を改良し吸着性を高めるために初めて乾燥した後、多孔質シリカの硫黄吸着剤レベルを増加させるために使用された。
D) A new method for surface functionalization of silicate-based nanoadsorbents (new generation method).
This new generation method uses an oxidizing solution of the resulting porous nanosilica-based adsorbent (catalyst), such as hydrogen peroxide, sodium hydroxide and acidic solutions, such as sulfuric acid, nitric acid, and even acetic acid and amino compounds. It was used to increase the sulfur adsorbent level of porous silica after drying for the first time to improve and enhance adsorptivity.
 吸着剤(触媒)の表面は、有機酸および過酸化水素、ヒドラジン水和物などの酸化剤を使用して官能基化して、-OHまたはSi-O-Si基を形成することができる。上述の方法は、炭化水素燃料中のチオールとメルカプタンの結合を破壊しそして吸着するのを助ける。すなわち、それはチオール結合を切断しそして吸着するために触媒の表面を小さい反応器に変換する。硫酸と過酸化水素は、メルカプタンやチオールなどの硫黄化合物も酸化する。 The surface of the adsorbent (catalyst) can be functionalized with an organic acid and an oxidizing agent such as hydrogen peroxide or hydrazine hydrate to form a -OH or Si-O-Si group. The methods described above help break and adsorb thiol-mercaptan bonds in hydrocarbon fuels. That is, it transforms the surface of the catalyst into a small reactor to break and adsorb thiol bonds. Sulfuric acid and hydrogen peroxide also oxidize sulfur compounds such as mercaptans and thiols.
 官能基と活性酸素との間の反応によって表面上で酸化プロセスが起こる。炭化水素燃料から生成されたSOxガスは気泡として排出され、炭化水素燃料中の硫黄の臭いは著しく減少する。残りの硫黄もシリコンベースの多孔質ナノ吸着剤(触媒)によって吸着される。特定の物質を使用して三価の酸素を生成することも可能である場合、硫黄化合物の吸着および破壊の効率は炭化水素燃料中で高めることができる。 Oxidation process occurs on the surface due to the reaction between the functional group and active oxygen. The SOx gas generated from the hydrocarbon fuel is discharged as bubbles, and the odor of sulfur in the hydrocarbon fuel is significantly reduced. The remaining sulfur is also adsorbed by the silicon-based porous nanoadsorbent (catalyst). If it is also possible to use certain substances to produce trivalent oxygen, the efficiency of adsorption and destruction of sulfur compounds can be increased in hydrocarbon fuels.
 乾燥温度は120℃~150℃であり、酸化性酸の比率は1~2と1~3または1~3.4の間で変化する。この方法における最良の効率は、酸および過酸化水素化合物中の1対2(1/2)(1/3)、(2/1)、(1/1)、(3/1)の組み合わせに関連する。得られたシリカは、酸洗浄段階における重要な市場性のある吸着剤の1つとして業界で販売可能である。 The drying temperature is 120 ° C to 150 ° C, and the ratio of oxidizing acids varies between 1 to 2 and 1 to 3 or 1 to 3.4. The best efficiency in this method is for 1: 2 (1/2) (1/3), (2/1), (1/1), (3/1) combinations in acid and hydrogen peroxide compounds. Related. The resulting silica can be marketed in the industry as one of the important marketable adsorbents in the acid cleaning step.
 種々の実験を実施して、過酸化水素および有機酸の適切なパーセンテージを決定した。試験結果を以下の一定条件に従って示す。 Various experiments were performed to determine the appropriate percentages of hydrogen peroxide and organic acids. The test results are shown according to the following certain conditions.
 実施例9
 実施例9の試験結果を表9に示す。
 実施例9は、60分で採取された一定の触媒サンプルを、25℃の設定温度で60分で採取した。燃料中の未知の硫黄の濃度は100mg/lである。有機酸として純度60%のギ酸を使用し、また純度96%の過酸化水素(H)を使用し、これらの割合が異なるサンプル番号70~79の吸着剤について、燃料中の硫黄化合物(S)の100ppmにおける吸着割合を測定する実験を行った。ギ酸および過酸化水素の割合は、ギ酸と過酸化水素との溶液のwt%を示す。
Example 9
The test results of Example 9 are shown in Table 9.
In Example 9, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. Using the 60% pure formic acid as organic acid, also using the purity of 96% hydrogen peroxide (H 2 O 2), the adsorbent samples numbers 70-79 of these proportions are different, the sulfur compounds in the fuel An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of formic acid and hydrogen peroxide indicates wt% of the solution of formic acid and hydrogen peroxide.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例10
 実施例10は、60分で採取された一定の触媒サンプルを、25℃の設定温度で60分で採取した。燃料中の未知の硫黄の濃度は100mg/lである。試験結果を表10に示す。有機酸として濃度60%の硫酸を使用し、また濃度96%の過酸化水素(H)を使用し、これらの割合が異なるサンプル番号80~89の吸着剤について、燃料中の硫黄化合物(S)の100ppmにおける吸着割合を測定する実験を行った。硫酸と過酸化水素の割合は、ギ酸と過酸化水素との溶液のwt%を示す。
Example 10
In Example 10, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 10. Sulfuric acid with a concentration of 60% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a concentration of 96% is used, and the adsorbents of sample numbers 80 to 89 having different ratios thereof are sulfur compounds in the fuel. An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of sulfuric acid to hydrogen peroxide indicates wt% of the solution of formic acid and hydrogen peroxide.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例11
 実施例11は、60分で採取された一定の触媒サンプルを、25℃の設定温度で60分で採取した。燃料中の未知の硫黄の濃度は100mg/lである。試験結果を表11に示す。有機酸として純度99%の硝酸を使用し、また純度96%の過酸化水素(H)を使用し、これらの割合が異なるサンプル番号90~99の吸着剤について、燃料中の硫黄化合物(S)の100ppmにおける吸着割合を測定する実験を行った。硝酸および過酸化水素の割合は、硝酸と過酸化水素との溶液のwt%を示す。
Example 11
In Example 11, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 11. Nitric acid with a purity of 99% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a purity of 96% is used, and the sulfur compounds in the fuel for the adsorbents of sample numbers 90 to 99 having different ratios thereof. An experiment was conducted to measure the adsorption ratio of (S) at 100 ppm. The ratio of nitric acid and hydrogen peroxide indicates wt% of the solution of nitric acid and hydrogen peroxide.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例12
 実施例12は、60分で採取された一定の触媒サンプルを、25℃の設定温度で60分で採取した。燃料中の未知の硫黄の濃度は100mg/lである。試験結果を表12に示す。有機酸として純度99%のトリエタノールアミンを使用し、また純度96%の過酸化水素(H)を使用し、これらの割合が異なるサンプル番号100~109の吸着剤について、燃料中の硫黄化合物(S)の100ppmにおける吸着割合を測定する実験を行った。トリエタノールアミンおよび過酸化水素の割合は、トリエタノールアミンと過酸化水素との溶液のwt%を示す。
Example 12
In Example 12, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 12. Using 99% pure triethanolamine as organic acids, also using the purity of 96% hydrogen peroxide (H 2 O 2), the adsorbent sample numbers 100-109 that these proportions are different, the fuel of the An experiment was conducted to measure the adsorption ratio of the sulfur compound (S) at 100 ppm. The ratio of triethanolamine and hydrogen peroxide indicates wt% of the solution of triethanolamine and hydrogen peroxide.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例13
 実施例13は、60分で採取された一定の触媒サンプルを、25℃の設定温度で60分で採取した。燃料中の未知の硫黄の濃度は100mg/lである。試験結果を表13に示す。有機酸として純度37%の塩酸を使用し、また純度96%の過酸化水素(H)を使用し、これらの割合が異なるサンプル番号110~119の吸着剤について、燃料中の硫黄化合物(S)の100ppmにおける吸着率を測定する試験を行った。塩酸および過酸化水素の割合は、塩酸と過酸化水素との溶液のwt%を示す。
Example 13
In Example 13, a constant catalyst sample collected in 60 minutes was collected in 60 minutes at a set temperature of 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l. The test results are shown in Table 13. Hydrochloric acid with a purity of 37% is used as the organic acid, and hydrogen peroxide (H 2 O 2 ) with a purity of 96% is used. A test was conducted to measure the adsorption rate of (S) at 100 ppm. The ratio of hydrochloric acid and hydrogen peroxide indicates wt% of the solution of hydrochloric acid and hydrogen peroxide.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例14
 実施例14の試験は、SiOケイ酸塩ベースに対する最適比を決定するために行われた。なお、ゼオライトナノ触媒およびケイ酸塩ベースの効率レベル測定は、等しい条件および類似の条件において得られた最適比を用いることによって達成された。実施例14の試験結果を表14に示す。試験は一定の触媒サンプルを60分および25℃で採取した。燃料中の未知の硫黄の濃度は100mg/lである。
Example 14
Test Example 14 was performed to determine the optimal ratio SiO 4 silicate-based. Zeolite nanocatalyst and silicate-based efficiency level measurements were achieved by using optimal ratios obtained under equal and similar conditions. The test results of Example 14 are shown in Table 14. The test took constant catalyst samples at 60 minutes and 25 ° C. The concentration of unknown sulfur in the fuel is 100 mg / l.
 表14は、ケイサン塩ベース(SiO)の吸着剤サンプルとして、ゼオライトXY(ZeoliteXY)の組み合わせ(複合体)、バリウム(Ba)とオルトケイ酸塩(SrSiO)の組み合わせ(複合体)、マグネシウム(Mg)と亜鉛(Zn)とジルコン(Zr)の組み合わせとする。そして、酸と過酸化水素(H)の組み合わせは、塩酸とHがサンプル115、硫酸とHがサンプル83、硝酸とHがサンプル99、トリエタノールアミンとHがサンプル105とし、各実験例で最も良い吸着率のものを使用している。 Table 14 shows a combination of zeolite XY (ZeoliteXY) (complex), a combination of barium (Ba) and orthosilicate (SrSiO 4 ) (complex), and magnesium (composite) as adsorbent samples of the Keisan salt base (SiO 4 ). It is a combination of Mg), zinc (Zn) and zircon (Zr). As for the combination of acid and hydrogen peroxide (H 2 O 2 ), hydrochloric acid and H 2 O 2 are sample 115, sulfuric acid and H 2 O 2 are sample 83, nitric acid and H 2 O 2 are sample 99, and triethanolamine. And H 2 O 2 are used as sample 105, and the one having the best adsorption rate in each experimental example is used.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14は、最良の酸の組み合わせが、Mg/Zn/ZrSiO複合体において最も高い吸着を有する硫酸/Hであることを示している。 Table 14 shows that the best acid combination is sulfuric acid / H 2 O 2 with the highest adsorption in the Mg / Zn / ZrSiO 4 complex.
 E)炭化水素燃料との関連でシリカ系吸着剤を用いた多孔質ナノ吸着剤の運転方法
 硫黄化合物を含有する炭化水素燃料を貯蔵する貯蔵部(タンク)に吸着剤を充填するには、フィーダおよびミキサーまたはブレンダーが必要である。この場合、チオールおよびチオフェン硫黄の吸着は、この吸着剤を60~120分間にわたり周囲温度および圧力で使用することによって減少する。吸着が完了した後、吸着剤の色は、燃料の種類およびその中の硫黄の量に応じて暗くなる。
E) Operation method of porous nano-adsorbent using silica-based adsorbent in relation to hydrocarbon fuel To fill the adsorbent in the storage unit (tank) that stores the hydrocarbon fuel containing the sulfur compound, the feeder And a mixer or blender is required. In this case, the adsorption of thiol and thiophene sulfur is reduced by using this adsorbent at ambient temperature and pressure for 60-120 minutes. After the adsorption is complete, the color of the adsorbent darkens depending on the type of fuel and the amount of sulfur in it.
 このように撹拌を加速することにより、より短時間でより良好な吸着がもたらされる。 By accelerating the stirring in this way, better adsorption is brought about in a shorter time.
 この吸着剤を貯蔵するためには、この吸着剤中の水の吸着は、吸着効率を高めるための最も重要な課題の1つであることに言及すべきである。貯蔵タンクに充填する前に、90℃~150℃の温度で予熱することが望ましい。 In order to store this adsorbent, it should be mentioned that the adsorption of water in this adsorbent is one of the most important issues for increasing the adsorption efficiency. It is desirable to preheat at a temperature of 90 ° C to 150 ° C before filling the storage tank.
 一方、同様にして、燃料は、固定した状態の合成触媒をポンプにより通過させることができる。この方法は、触媒の分離を必要としないが、触媒効率が低下し、15~45回の期間に硫黄吸着プロセスを実施することができる。 On the other hand, in the same manner, the fuel can be pumped through the synthetic catalyst in a fixed state. This method does not require catalyst separation, but the catalyst efficiency is reduced and the sulfur adsorption process can be carried out in a period of 15-45 times.
 ナノ触媒に基づく廃シリカのリサイクル
 燃料から硫黄を吸収した後、触媒の色は、吸収された硫黄の量および燃料に使用される染料に依存して、褐色から黒色に変化する。多孔質シリカ系ナノ触媒を完全に飽和させた後、それらをリサイクルして再使用することが可能である。
Nanocatalyst-based waste silica recycling After absorbing sulfur from the fuel, the color of the catalyst changes from brown to black, depending on the amount of sulfur absorbed and the dye used in the fuel. After the porous silica-based nanocatalysts are completely saturated, they can be recycled and reused.
 この点で、廃棄物のナノ触媒はスチールタンクに移される。別の方法では、必要な温度が約180~250℃である熱処理によって触媒を還元することができ、加熱後の徐冷(annealing)時間は触媒の色および硫黄の残存量によって異なる。タンク材料は316低炭素鋼グレードでなければならない。触媒は通常、触媒の色が白色に変わるまで徐冷される。この方法では、水の基質内で中和されなければならないSOxを含む様々な危険なガスが放出される。これは、30~50%の濃度の硫酸のような副生成物の生成をもたらし得る。 At this point, the waste nanocatalyst is transferred to the steel tank. In another method, the catalyst can be reduced by heat treatment where the required temperature is about 180-250 ° C., and the annealing time after heating depends on the color of the catalyst and the amount of residual sulfur. The tank material must be 316 low carbon steel grade. The catalyst is usually slowly cooled until the color of the catalyst turns white. This method releases a variety of dangerous gases, including SOx, which must be neutralized within the substrate of water. This can result in the production of by-products such as sulfuric acid at concentrations of 30-50%.
 熱および汚染を除去するために、酢酸エチル、アセトン、アセチルアセトンなどのアセトン溶液または硫黄を溶解することができる溶液を使用することができる。現在の方法ではキシレンとトルエンの使用は有効であるが、アセトン化合物は溶解する代わりに触媒表面から硫黄を除去するだけである。リサイクルされた触媒は低い初期収率を示すのは当然である。しかし、触媒の官能化および再利用が可能である。これらのナノ触媒1kgをリサイクルするためには、1kgのアセトンまたはトルエンが必要である。官能化および乾燥後に触媒を使用することができる。実施された実験によれば、この製品の収率は最大10回の作業サイクルにわたって高く、次いで減少する。したがって、これらの多孔質ナノ触媒は、農業、ガラス製造、またはセラミック片および建材の製造を含む様々な産業で使用することができる。 To remove heat and contamination, an acetone solution such as ethyl acetate, acetone, acetylacetone or a solution capable of dissolving sulfur can be used. The use of xylene and toluene is effective in current methods, but the acetone compound only removes sulfur from the catalyst surface instead of dissolving it. Naturally, recycled catalysts show low initial yields. However, the catalyst can be functionalized and reused. To recycle 1 kg of these nanocatalysts, 1 kg of acetone or toluene is required. The catalyst can be used after functionalization and drying. According to the experiments carried out, the yield of this product is high over up to 10 working cycles and then decreases. Thus, these porous nanocatalysts can be used in a variety of industries, including agriculture, glass production, or the production of ceramic pieces and building materials.
 詳細な説明、図面、および特許請求の範囲に記載されている様々な視覚化は、例示的なものであり、限定を意味するものではない。本明細書に提示される主題の精神または範囲から逸脱することなく、他の視覚化が使用されてもよく、他の変更が行われてもよい。本明細書に一般的に記載され、図に示されているような、現在予約されていない態様は、多種多様な異なる構成で配置、置換、組み合わせ、分離、および設計され得ることが理解される。 The detailed description, drawings, and various visualizations described in the claims are exemplary and do not imply limitation. Other visualizations may be used and other modifications may be made without departing from the spirit or scope of the subject matter presented herein. It is understood that currently unreserved embodiments, as commonly described herein and shown in the figures, can be arranged, replaced, combined, separated, and designed in a wide variety of different configurations. ..
10:製造装置、11:反応容器、12:貯水タンク、13:給水管、14:第1フィーダ、15:第2フィーダ、16:撹拌機、17:送液ポンプ、18:給液管、19:乾燥機、20:一方向弁、21:バイパス管、22:貯蔵タンク、30:混合装置、31:燃料タンク、32:混合ポンプ、33:吸着剤フィーダ、34:第1パイプ、35:第2パイプ、36:第3パイプ 10: Manufacturing equipment, 11: Reaction vessel, 12: Water storage tank, 13: Water supply pipe, 14: 1st feeder, 15: 2nd feeder, 16: Stirrer, 17: Liquid feed pump, 18: Liquid supply pipe, 19 : Dryer, 20: One-way valve, 21: Bypass pipe, 22: Storage tank, 30: Mixing device, 31: Fuel tank, 32: Mixing pump, 33: Adsorbent feeder, 34: First pipe, 35: No. 2 pipes, 36: 3rd pipe

Claims (21)

  1.  硫黄化合物を含有する炭化水素燃料から前記硫黄化合物を吸着する吸着剤であって、
     シリカを含む多孔質材料の表面に前記硫黄化合物を酸化物に変換し前記硫黄化合物を吸着する触媒が形成されている吸着剤。
    An adsorbent that adsorbs the sulfur compound from a hydrocarbon fuel containing a sulfur compound.
    An adsorbent in which a catalyst for converting the sulfur compound into an oxide and adsorbing the sulfur compound is formed on the surface of a porous material containing silica.
  2.  請求項1に記載の吸着剤において、
     前記触媒は、表面改質剤により形成されていることを特徴とする吸着剤。
    In the adsorbent according to claim 1,
    The catalyst is an adsorbent characterized by being formed by a surface modifier.
  3.  請求項1に記載の吸着剤において、
     前記シリカを含む多孔質材料は、有機金属界面活性剤を有する合成多孔質材料であることを特徴とする吸着剤。
    In the adsorbent according to claim 1,
    The porous material containing silica is an adsorbent, which is a synthetic porous material having an organometallic surfactant.
  4.  請求項3に記載の吸着剤において、
     前記合成多孔質材料は、メチル基、アミノ基およびスルフォン基およびカルボキシル基のいずれかの官能化材料を含む有機変性シリカを含むことを特徴とする吸着剤。
    In the adsorbent according to claim 3,
    The synthetic porous material is an adsorbent containing an organically modified silica containing a functionalizing material of any one of a methyl group, an amino group and a sulfone group and a carboxyl group.
  5.  請求項1から4のいずれかに記載の吸着剤において、
     前記シリカを含む多孔質材料は、多孔質ナノシリカ、ゼオライト、多孔質ケイ酸塩化合物のいずれかであることを特徴とする吸着剤。
    In the adsorbent according to any one of claims 1 to 4,
    The adsorbent, wherein the porous material containing silica is any one of porous nanosilica, zeolite, and a porous silicate compound.
  6.  請求項5に記載の吸着剤において、
     前記多孔質ケイ酸塩化合物は、Mg/Zn/ZrSiO、Ba/SrSiO、MgSiO、BaSiO、SrSiO、CaSiO、ZrSiOのいずれかであることを特徴とする吸着剤。
    In the adsorbent according to claim 5,
    The adsorbent characterized in that the porous silicate compound is any one of Mg / Zn / ZrSiO 4 , Ba / SrSiO 4 , MgSiO 4 , BaSiO 4 , SrSiO 4 , CaSiO 4 , and ZrSiO 4 .
  7.  請求項2に記載の吸着剤において、
     前記表面改質剤は、臭化セチルトリメチルアンモニウムや臭化ヘキサデシルトリメチルアンモニウム(CTAB)、D-マンニトール-1,6-二リン酸(M2P)、MP、尿素、チオ尿素、ドデシル硫酸ナトリウム(SDS)、ヘキサメタリン酸ナトリウム(SHMP)のいずれかであることを特徴とする吸着剤。
    In the adsorbent according to claim 2,
    The surface modifiers include cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide (CTAB), D-mannitol-1,6-diphosphate (M2P), MP, urea, thiourea, and sodium dodecyl sulfate (SDS). ), Sodium hexametaphosphate (SHMP), an adsorbent.
  8.  請求項5に記載の吸着剤において、
     前記多孔質材料の表面は、-OHまたはSi-O-Si基が形成されていることを特徴とする吸着剤。
    In the adsorbent according to claim 5,
    An adsorbent characterized in that an —OH or Si—O—Si group is formed on the surface of the porous material.
  9.  炭化水素燃料から硫黄化合物を吸着する吸着剤の製造方法であって、
     シリカを含む多孔質材料を水と混合して撹拌した溶液に、表面改質剤を加えて撹拌して前記多孔質材料の表面を触媒として官能基化する合成プロセスと、前記合成プロセス後、合成された多孔質材料を乾燥する乾燥プロセスと、を有する吸着剤の製造方法。
    A method for producing an adsorbent that adsorbs a sulfur compound from a hydrocarbon fuel.
    A synthetic process in which a surface modifier is added to a stirred solution of a porous material containing silica mixed with water and stirred to functionalize the surface of the porous material as a catalyst, and synthesis after the synthetic process. A method for producing an adsorbent, which comprises a drying process for drying the porous material.
  10.  請求項9に記載の吸着剤の製造方法において、
     前記合成プロセスは、前記溶液に前記多孔質材料のシリカ源とは異なる酸が加えられて撹拌し混合した後に、前記表面改質剤を加えることを特徴とする吸着剤の製造方法。
    In the method for producing an adsorbent according to claim 9,
    The synthesis process is a method for producing an adsorbent, which comprises adding an acid different from the silica source of the porous material to the solution, stirring and mixing the solution, and then adding the surface modifier.
  11.  請求項9または10に記載の吸着剤の製造方法において、
     前記シリカを含む多孔質材料は、多孔性ケイ酸塩化合物、ゼオライト化合物、フォルステライト化合物、ウィレマイト(willemite)化合物のいずれかであることを特徴とする吸着剤の製造方法。
    In the method for producing an adsorbent according to claim 9 or 10.
    A method for producing an adsorbent, wherein the porous material containing silica is any one of a porous silicate compound, a zeolite compound, a forsterite compound, and a willemite compound.
  12.  請求項9から11のいずれかに記載の吸着剤の製造方法において、
     前記表面改質剤は、臭化セチルトリメチルアンモニウムや臭化ヘキサデシルトリメチルアンモニウム(CTAB)、D-マンニトール-1,6-二リン酸(M2P)、MP、尿素、チオ尿素、ドデシル硫酸ナトリウム(SDS)、ヘキサメタリン酸ナトリウム(SHMP)のいずれかであることを特徴とする吸着剤の製造方法。
    In the method for producing an adsorbent according to any one of claims 9 to 11.
    The surface modifiers include cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide (CTAB), D-mannitol-1,6-diphosphate (M2P), MP, urea, thiourea, and sodium dodecyl sulfate (SDS). ), A method for producing an adsorbent, which is one of sodium hexametaphosphate (SHMP).
  13.  請求項11に記載の吸着剤の製造方法において、
     前記シリカを含む多孔質材料が多孔質ナノシリカの場合、前記多孔質ナノシリカを形成する初期材料が非晶質シリカ前駆体であることを特徴とする吸着剤の製造方法。
    In the method for producing an adsorbent according to claim 11,
    A method for producing an adsorbent, wherein when the porous material containing silica is porous nanosilica, the initial material for forming the porous nanosilica is an amorphous silica precursor.
  14.  硫黄化合物を含有する炭化水素燃料から硫黄化合物を吸着する吸着剤の製造装置であって、
     シリカを含む多孔質材料を収容する第1フィーダと、前記多孔質材料の表面を官能化し前記硫黄化合物を吸着するための表面改質剤を収容する第2フィーダと、水を貯水する貯水タンクと、前記貯水タンクの水が給水されると共に前記第1フィーダ及び前記第2フィーダからそれぞれ前記多孔質材料、表面改質剤が供給される撹拌機を備え、前記多孔質材料と前記表面改質剤と前記水とを混合、撹拌して吸着剤を合成する反応容器と、前記反応容器で合成された吸着剤を乾燥する乾燥機と、を有する吸着剤の製造装置。
    An adsorbent manufacturing device that adsorbs sulfur compounds from hydrocarbon fuels containing sulfur compounds.
    A first feeder containing a porous material containing silica, a second feeder containing a surface modifier for functionalizing the surface of the porous material and adsorbing the sulfur compound, and a water storage tank for storing water. Provided with a stirrer to which the water in the water storage tank is supplied and the porous material and the surface modifier are supplied from the first feeder and the second feeder, respectively, the porous material and the surface modifier are provided. An adsorbent manufacturing apparatus comprising a reaction vessel for synthesizing an adsorbent by mixing and stirring the water and the water, and a dryer for drying the adsorbent synthesized in the reaction vessel.
  15.  硫黄化合物を含有する炭化水素燃料から硫黄化合物を吸着除去する除去方法であって、
     請求項1から8のいずれかに記載の吸着剤と前記炭化水素燃料を循環経路内で循環移動させながら混合し、前記吸着剤により前記硫黄化合物を吸着除去する除去方法。
    A removal method that adsorbs and removes sulfur compounds from hydrocarbon fuels that contain sulfur compounds.
    A removal method in which the adsorbent according to any one of claims 1 to 8 and the hydrocarbon fuel are mixed while being circulated in a circulation path, and the sulfur compound is adsorbed and removed by the adsorbent.
  16.  硫黄化合物を含有する炭化水素燃料から硫黄化合物を吸着除去する除去方法であって、
     請求項1から8のいずれかに記載の吸着剤から製造された吸着フィルターに前記炭化水素燃料を通過させ、前記吸着フィルターにより前記硫黄化合物を吸着除去する除去方法。
    A removal method that adsorbs and removes sulfur compounds from hydrocarbon fuels that contain sulfur compounds.
    A removal method in which the hydrocarbon fuel is passed through an adsorption filter produced from the adsorbent according to any one of claims 1 to 8, and the sulfur compound is adsorbed and removed by the adsorption filter.
  17.  請求項15または16に記載の除去方法において、
     前記吸着剤量を増やすと吸着量が増加することを特徴とする除去方法。
    In the removal method according to claim 15 or 16.
    A removal method characterized in that the amount of adsorbent increases as the amount of the adsorbent increases.
  18.  請求項15または16に記載の除去方法において、
     吸着剤に吸着した硫黄化合物をアセトン、トリエタノールアミン、トルエンのいずれかの溶媒により回収することを特徴とする除去方法。
    In the removal method according to claim 15 or 16.
    A removal method characterized by recovering a sulfur compound adsorbed on an adsorbent with a solvent of any one of acetone, triethanolamine, and toluene.
  19.  請求項15から18のいずれかに記載の除去方法において、
     硫黄化合物の吸着含量は、吸着剤1リットル当たり79~100mgであることを特徴とする除去方法。
    In the removal method according to any one of claims 15 to 18.
    A removal method characterized in that the adsorption content of the sulfur compound is 79 to 100 mg per liter of the adsorbent.
  20.  硫黄化合物を含有する炭化水素燃料から硫黄化合物を除去する除去装置であって、
     請求項1から8のいずれかに記載の吸着剤を供給する吸着剤供給部と、前記炭化水素燃料を収容する燃料タンク部と、循環ポンプと、前記吸着剤供給部と前記燃料タンク部と前記循環ポンプとを直列に接続して前記炭化水素燃料と前記吸着剤を前記循環ポンプにより循環移動させる循環経路部と、を有する除去装置。
    A removal device that removes sulfur compounds from hydrocarbon fuels that contain sulfur compounds.
    The adsorbent supply unit for supplying the adsorbent according to any one of claims 1 to 8, a fuel tank unit for accommodating the hydrocarbon fuel, a circulation pump, the adsorbent supply unit, the fuel tank unit, and the above. A removal device having a circulation path portion in which a circulation pump is connected in series and the hydrocarbon fuel and the adsorbent are circulated and moved by the circulation pump.
  21.  硫黄化合物を含有する炭化水素燃料から硫黄化合物を除去する除去装置であって、
     請求項1から8のいずれかに記載の吸着剤で形成された吸着フィルターと、前記炭化水素燃料を収容する燃料タンク部と、循環ポンプと、前記燃料タンク部と前記循環ポンプとを直列に接続して前記炭化水素燃料を前記循環ポンプにより循環移動させる循環経路部と、を有し、前記吸着フィルターを前記住管経路部内に固定配置した除去装置。
    A removal device that removes sulfur compounds from hydrocarbon fuels that contain sulfur compounds.
    The adsorption filter formed of the adsorbent according to any one of claims 1 to 8, the fuel tank portion accommodating the hydrocarbon fuel, the circulation pump, and the fuel tank portion and the circulation pump are connected in series. A removal device having a circulation path portion for circulating and moving the hydrocarbon fuel by the circulation pump, and the adsorption filter fixedly arranged in the living pipe path portion.
PCT/JP2019/027033 2019-07-08 2019-07-08 Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device WO2021005693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021530381A JPWO2021005693A1 (en) 2019-07-08 2019-07-08
PCT/JP2019/027033 WO2021005693A1 (en) 2019-07-08 2019-07-08 Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027033 WO2021005693A1 (en) 2019-07-08 2019-07-08 Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device

Publications (1)

Publication Number Publication Date
WO2021005693A1 true WO2021005693A1 (en) 2021-01-14

Family

ID=74114460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027033 WO2021005693A1 (en) 2019-07-08 2019-07-08 Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device

Country Status (2)

Country Link
JP (1) JPWO2021005693A1 (en)
WO (1) WO2021005693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340765A (en) * 2021-06-25 2021-09-03 西藏大学 Molecular sieve material adsorption performance detection device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147039A (en) * 1997-11-18 1999-06-02 Tonen Corp Hydrogenation catalyst and hydrogenation desulfurizing process using hydrogenation catalyst
JP2008501522A (en) * 2004-06-08 2008-01-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー FCC process using mesoporous catalyst
JP2011518101A (en) * 2008-03-31 2011-06-23 イエフペ エネルジ ヌヴェル Mesostructured aluminosilicate material made from spherical particles of specific size
JP2013521212A (en) * 2010-03-02 2013-06-10 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー High surface area fibrous silica nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147039A (en) * 1997-11-18 1999-06-02 Tonen Corp Hydrogenation catalyst and hydrogenation desulfurizing process using hydrogenation catalyst
JP2008501522A (en) * 2004-06-08 2008-01-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー FCC process using mesoporous catalyst
JP2011518101A (en) * 2008-03-31 2011-06-23 イエフペ エネルジ ヌヴェル Mesostructured aluminosilicate material made from spherical particles of specific size
JP2013521212A (en) * 2010-03-02 2013-06-10 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー High surface area fibrous silica nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, DANHONG ET AL.: "Oxidative desulfurization using ordered mesoporous silicas as catalysts", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 393, 12 June 2014 (2014-06-12), pages 47 - 55, XP029041289, DOI: 10.1016/j.molcata.2014.05.026 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340765A (en) * 2021-06-25 2021-09-03 西藏大学 Molecular sieve material adsorption performance detection device and method

Also Published As

Publication number Publication date
JPWO2021005693A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
Guan et al. Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin
RU2306177C2 (en) Method of production of the microporous materials with the coating made out of the rare-earth metal oxide
Candamano et al. Preparation of foamed and unfoamed geopolymer/NaX zeolite/activated carbon composites for CO2 adsorption
Chen et al. Ionic liquid-supported 3DOM silica for efficient heterogeneous oxidative desulfurization
WO2009049280A2 (en) Methods of making aluminosilicate coated alumina
Liou et al. Green synthesis of mesoporous graphene oxide/silica nanocomposites from rich husk ash: Characterization and adsorption performance
WO2020028054A1 (en) Catalysts containing iron, cobalt, and copper on mesoporous alumina-based supports, and their preparation method
CN111115651B (en) Nano molecular sieve, synthesis method and application thereof
CN111203190B (en) Preparation method of high-unsaturation coordination system trivalent cerium phosphorus removal adsorbent
WO2020028052A1 (en) Methods for catalytically converting petroleum hydrocarbons
Kamel et al. Composite beads of molybdenum oxide supported on textured silicon as an oxidative desulfurization nanocatalyst
WO2021005693A1 (en) Adsorption agent that removes sulfur compounds from hydrocarbon fuel, adsorption agent production method, adsorption agent production device, and sulfur compound removal method and removal device
KR0156811B1 (en) Alumina-based catalyst for the treatment of gases containing sulfur compounds, use of these catalysts for the treatment and processes for treatment of the said gases
EP3820832A1 (en) Methods for forming ethylbenzene from polystyrene
Liu et al. Monodispersed dendritic mesoporous silica/carbon nanospheres with enhanced active site accessibility for selective adsorptive desulfurization
JP6879680B2 (en) Method for producing high silica chabazite type zeolite and high silica chabazite type zeolite
Shaafi et al. Sulfated zirconium oxide-decorated magnetite KCC-1 as a durable and recyclable adsorbent for the efficient removal of asphaltene from crude oil
Zolfaghari et al. Surface modification of ordered nanoporous carbons CMK-3 via a chemical oxidation approach and its application in removal of lead pollution from water
EP0153911A1 (en) Catalytic exhaust emission control device and a method of making it
WO2022010888A1 (en) Method of producing a cracking catalyst
Mousa et al. Adsorptive Desulfurization of Iraqi Heavy Naphtha Using Different Metals over Nano Y Zeolite on Carbon Nanotube
Vilarrasa-García et al. Synthesis and characterization of metal-supported mesoporous silicas applied to the adsorption of benzothiophene
Srivastava et al. A facile method for production of amorphous silica from perlite under microwave irradiation
Lycourghiotis et al. The Influence of Calcination on the Physicochemical Properties of Acidactivated Natural Mordenite
Stanković et al. TiO2 modified with carbonized materials: Photocatalysis/adsorption of organic pollutants from aqueous solution: A short review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021530381

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19936913

Country of ref document: EP

Kind code of ref document: A1