WO2021004522A1 - 调度请求发送方法、调度请求接收方法、终端和网络设备 - Google Patents

调度请求发送方法、调度请求接收方法、终端和网络设备 Download PDF

Info

Publication number
WO2021004522A1
WO2021004522A1 PCT/CN2020/101292 CN2020101292W WO2021004522A1 WO 2021004522 A1 WO2021004522 A1 WO 2021004522A1 CN 2020101292 W CN2020101292 W CN 2020101292W WO 2021004522 A1 WO2021004522 A1 WO 2021004522A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
terminal
sending
trigger condition
new
Prior art date
Application number
PCT/CN2020/101292
Other languages
English (en)
French (fr)
Inventor
杨宇
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20836701.1A priority Critical patent/EP3998832A4/en
Priority to KR1020227004050A priority patent/KR20220030290A/ko
Priority to JP2022501344A priority patent/JP7289981B2/ja
Publication of WO2021004522A1 publication Critical patent/WO2021004522A1/zh
Priority to US17/571,865 priority patent/US11909490B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method for sending a dispatch request, a method for receiving a dispatch request, a terminal, and a network device.
  • the beam failure recovery (BFR) mechanism in related technologies includes the following four steps:
  • Beam failure detection Beam failure detection
  • the terminal measures the beam failure detection reference signal at the physical layer, and determines whether a beam failure event occurs according to the measurement result.
  • the new candidate beam identification (New candidate beam identification).
  • the physical layer of the terminal measures the beam identification reference signal (beam identification Reference signal) to find a new candidate beam (candidate beam). This step is not mandatory after the beam failure event occurs, but can also be before.
  • the terminal detects the response of the network device to the beam failure recovery request (UE monitors gNB response for beam failure recovery request).
  • a scheduling request (Scheduling Request, SR) can be used to trigger a network device to configure or instruct an uplink authorized resource for the terminal, and transmit BFRQ information on the uplink authorized resource.
  • SR scheduling request
  • the terminal will periodically send the SR, which will result in high resource overhead for the SR.
  • the embodiments of the present disclosure provide a method for sending a scheduling request, a method for receiving a scheduling request, a terminal, and a network device, so as to solve the problem in the related art that the SR is periodically sent after the SR trigger condition is satisfied, which causes a large resource overhead of the SR.
  • embodiments of the present disclosure provide a method for sending a scheduling request, which is applied to a terminal, and includes:
  • the embodiments of the present disclosure also provide a method for receiving a scheduling request, which is applied to a network device, including:
  • embodiments of the present disclosure also provide a terminal, including:
  • the sending module is configured to send a scheduling request SR to the network device when the first trigger condition is met; when the second trigger condition is met, cancel the sending of the SR or skip sending the SR N times, where N is An integer greater than 1.
  • the embodiments of the present disclosure also provide a network device, including:
  • the receiving module is configured to receive the scheduling request SR sent by the terminal when the first trigger condition is met; when the second trigger condition is met, stop receiving the SR or skip receiving the SR N times, N is an integer greater than 1.
  • embodiments of the present disclosure also provide a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is implemented when the processor is executed Steps in the above scheduling request sending method.
  • the embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • a network device including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the dispatch request sending method described above are implemented, or When the computer program is executed by a processor, the steps of the above scheduling request receiving method are realized.
  • the sending of the SR is cancelled or the sending of the SR is skipped N times. This reduces the number of times the SR is sent, thereby reducing the resource overhead of the SR. At the same time, the power consumption of the terminal is reduced, and the standby time of the terminal is extended.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for sending a scheduling request provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for receiving a scheduling request according to an embodiment of the present disclosure
  • Figure 4 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 5 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 6 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Fig. 7 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the scheduling request sending method, the scheduling request receiving method, the terminal, and the network device provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may employ the fifth generation (5 th generation, 5G) systems, Long Term Evolution or Evolved (Evolved Long Term Evolution, eLTE) system, or subsequent evolution of communication systems.
  • 5G fifth generation
  • eLTE Evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal or other terminal-side devices. , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable device (Wearable) Device) and other terminal-side devices.
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable device wearable device
  • the above-mentioned network device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or it is called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other words in the field, as long as the same technical effect is achieved, the network device is not limited to specific technical words.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a method for sending a scheduling request according to an embodiment of the present disclosure. The method is applied to a terminal. As shown in FIG. 2, it includes the following steps:
  • Step 201 When the first trigger condition is met, send a scheduling request SR to the network device;
  • Step 202 Cancel the transmission of the SR or skip the transmission of the SR N times when the second trigger condition is met, where N is an integer greater than 1.
  • the above-mentioned SR can be used to trigger network device configuration or indicate an uplink authorized resource, on which BFRQ information can be transmitted.
  • the above-mentioned size of N can be set according to actual needs. In this embodiment, the size of N can be agreed through a protocol or notified by a network device.
  • SR and BFRQ information can be triggered when a beam failure event is sent, and the sending of SR can be restricted by a preset second trigger condition. For example, when the second trigger condition is met, the sending of SR can be cancelled.
  • the sending of N SRs can be skipped directly, and the size of N can be set according to actual needs, which is not further limited here.
  • the above SR is in a pending state after being generated.
  • the terminal can send the SR.
  • the sending of the SR is cancelled or the sending of the SR is skipped N times. This reduces the number of times the SR is sent, thereby reducing the resource overhead of the SR. At the same time, the power consumption of the terminal is reduced, and the standby time of the terminal is extended.
  • the foregoing SR may be an SR dedicated to beam failure recovery (hereinafter referred to as dedicated SR, namely dedicated SR) or other SR (hereinafter referred to as related technology SR, that is, SR in related technology).
  • the dedicated SR is used to notify the network device to send BFRQ information to the network device, that is, the dedicated SR is used to trigger the first uplink authorized resource indicated by the network device, and the first uplink authorized resource is dedicated to the transmission of BFRQ information.
  • the related technology SR can be used to notify the network device that there is other uplink information to be sent.
  • the network device can configure or instruct the second uplink authorized resource for the terminal according to the related technology SR.
  • the above-mentioned BFRQ information can be multiplexed with other uplink information in the second Transmission on uplink authorized resources.
  • the method further includes:
  • the uplink authorized resource configured or instructed by the network device may include the foregoing first uplink authorized resource or the most recently available second uplink authorized resource.
  • the second uplink authorized resource includes at least one of the following:
  • Dynamic grant (dynamic grant) uplink authorized resources
  • the random access process may specifically refer to a 2-step random access process or a 4-step random access process.
  • the second uplink authorized resource refers to the PUSCH in a 2-step random access (2-step RA) process or the PUSCH in a 4-step random access (4-step RA) process.
  • the aforementioned BFRQ information may be carried by a Medium Access Control Control Element (MAC CE).
  • MAC CE Medium Access Control Control Element
  • different BFRQ information can be on different MAC CEs, and one MAC CE is used to transmit part or all of one BFRQ information, or one MAC CE can transmit multiple or all BFRQ information.
  • the method further includes:
  • the second trigger condition is set as the trigger condition for canceling the transmission of the BFRQ information
  • the number of repeated transmissions of the BFRQ information can be reduced. In this way, the amount of data sent can be further reduced, so resource overhead can be reduced, the power consumption of the terminal can be reduced, and the standby time of the terminal can be extended.
  • the foregoing first trigger condition may be specifically set according to actual needs.
  • the foregoing first trigger condition may include at least one of the following:
  • a beam failure is detected
  • a beam failure is detected and a new beam is identified
  • the detected beam failure includes at least one of the following:
  • a beam failure is detected in the cell
  • a beam failure is detected in the Bandwidth Part (BWP);
  • a beam failure is detected in the TRP at the transmitting and receiving point.
  • the foregoing detection of beam failure and the identification of a new beam includes at least one of the following:
  • a beam failure is detected in the cell, and a new beam is identified on the cell where the beam failure is detected;
  • a beam failure is detected in the BWP in the bandwidth part, and a new beam is identified on the BWP where the beam failure is detected;
  • a beam failure is detected in the TRP at the transmitting and receiving point, and a new beam is recognized on the TRP where the beam failure is detected.
  • the terminal can measure the beam failure detection reference signal (Beam Failure Detection Reference Signal, BFD RS). According to the measurement result, it is determined whether a beam failure event occurs in at least one target object, the target object being a cell, a BWP, or a TRP. In addition, the terminal can determine whether a new beam is found on the cell, BWP, or TRP where the beam failure occurs by measuring the downlink reference signal used for identification of the new candidate beam.
  • BFD RS Beam Failure Detection Reference Signal
  • BFRQ information there is BFRQ information to be sent, and there are no available uplink resources to send the BFRQ information to be sent.
  • it can be understood as: when there is a MAC CE (MAC CE for BFRQ) used to transmit BFRQ information If there is no physical uplink shared channel (PUSCH) resource for new transmission, or even if there are uplink resources, according to the logical channel priority relationship, the MAC CE for BFRQ has a lower priority and cannot be used The uplink resource.
  • PUSCH physical uplink shared channel
  • the method further includes:
  • the first MAC CE In the case of beam failure, trigger the first MAC CE, and the first MAC CE is used to transmit BFRQ information;
  • the first MAC CE is triggered, and the first MAC CE is used to transmit BFRQ information.
  • different first MAC CE (MAC CE used to transmit BFRQ information, that is, MAC CE for BFRQ) corresponding to different SRs may be different, for example, MAC CE for BFRQ of different secondary cell SCells correspond to different SRs .
  • the first MAC CE is in a pending state to be sent.
  • the terminal can send the first MAC CE.
  • the second trigger condition includes any one of the following:
  • Radio Resource Control Radio Resource Control
  • MAC CE Medium access control element
  • DCI Downlink Control Information
  • receiving at least one of RRC, MAC CE, and DCI sent by the network device can be understood as the network device passing at least one of RRC signaling, MAC CE command, and DCI signaling, Send scheduling signaling, beam training related signaling, release or deactivation signaling, handover signaling, etc., to the terminal.
  • the RRC signaling, MAC CE command, and DCI signaling may be transmitted on the target object where the beam failure has occurred, or may be transmitted on the target object where the beam failure has not occurred.
  • the following takes the target object associated with the BFRQ information as the cell and the BFRQ information is carried by the MAC CE as an example to describe the specific implementation process of the present disclosure in detail. Specifically, the following steps may be included:
  • Step 1 The terminal measures the BFD RS, and judges whether a beam failure event occurs in at least one target object according to the measurement result.
  • Step 2 The terminal measures a downlink reference signal (DL RS for new beam identification) used for new candidate beam identification, and determines whether a new beam (new beam) is found. This step 2 does not have a sequence relationship with step 1.
  • DL RS downlink reference signal
  • Step 3 The terminal triggers the generation of a MAC CE (ie MAC CE for BFRQ) used to transmit BFRQ information.
  • a MAC CE ie MAC CE for BFRQ
  • the MAC CE used for transmitting BFRQ information may be a MAC CE dedicated to transmitting BFRQ (the MAC CE is different from the MAC CE in related technologies), for example, a new logical channel header identifier is used.
  • the MAC CE used to transmit BFRQ information may also be a MAC CE used to transmit other uplink information. The newly defined value of reserved bits in the MAC CE is used to identify whether the MAC CE is used to transmit BFRQ information.
  • the generation of MAC CE for BFRQ is also triggered, and the MAC CE for BFRQ is also in the pending state; or, when the target object is detected to have a beam failure and the target is identified When the object has a new beam, it also triggers the generation of MAC CE for BFRQ, and the MAC CE for BFRQ is also in the pending state.
  • Step 4 If the first trigger condition is met, the terminal sends SR to the network device.
  • the SR can be an SR in related technologies; or, the SR is an SR dedicated to beam failure recovery, such as a dedicated SR.
  • the dedicated SR is used to notify the network to send BFRQ information to the network, that is, the dedicated SR is used It is used to trigger the uplink resource (PUSCH) used to send MAC CE for BFRQ.
  • PUSCH uplink resource
  • the SR is in the pending state.
  • the terminal periodically sends the SR to the network continuously.
  • Step 5 The terminal sends MAC CE for BFRQ to the network equipment
  • the MAC CE for BFRQ can be sent on the uplink resource triggered by the dedicated SR; that is, the network device indicates the uplink resource through the DCI after receiving the dedicated SR.
  • the MAC CE for BFRQ can be sent on the recently available uplink resources, such as the uplink resources corresponding to the recently available configured grant, dynamic grant or RA process.
  • the RA process may refer to a 2-step RA process or a 4-step RA process.
  • the most recently available uplink resource refers to the PUSCH in a 2-step random access (2-step RA) process or the PUSCH in a 4-step random access (4-step RA) process.
  • Step 6 When the second trigger condition is met, cancel the SR transmission or skip the SR transmission N times.
  • the second trigger condition includes any one of the following:
  • Radio resource control RRC Radio resource control RRC
  • medium access control control element MAC CE Medium access control control element
  • DCI downlink control information
  • the terminal may also cancel the sending of MAC CE for BFRQ.
  • FIG. 3 is a flowchart of a method for receiving a scheduling request according to an embodiment of the present disclosure. The method is applied to a network device. As shown in FIG. 3, it includes the following steps:
  • Step 301 Receive a scheduling request SR sent by the terminal when the first trigger condition is met;
  • Step 302 If the second trigger condition is met, stop receiving the SR or skip receiving the SR N times, where N is an integer greater than 1.
  • the first trigger condition includes at least one of the following:
  • the terminal detects that a beam failure occurs
  • the terminal detects that the beam fails and recognizes a new beam
  • the terminal has beam failure recovery request BFRQ information to be sent, and there is no available uplink resource to send the BFRQ information to be sent.
  • the detection of the occurrence of beam failure by the terminal includes at least one of the following:
  • the terminal detects that beam failure occurs in the cell
  • the terminal detects that a beam failure occurs in the BWP of the bandwidth part
  • the terminal detects that a beam failure occurs at the TRP at the sending and receiving point.
  • the terminal detects that a beam failure occurs, and recognizes that a new beam includes at least one of the following:
  • the terminal detects that a beam failure occurs in a cell, and recognizes a new beam on the cell where the beam failure is detected;
  • the terminal detects that a beam failure occurs in the BWP of the bandwidth part, and recognizes a new beam on the BWP where the beam failure is detected;
  • the terminal detects that a beam failure occurs in the TRP at the transmitting and receiving point, and recognizes a new beam on the TRP where the beam failure is detected.
  • the second trigger condition includes any one of the following:
  • Radio resource control RRC Sending at least one of radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI to the terminal;
  • the method further includes:
  • the BFRQ information is carried by MAC CE.
  • the SR is an SR dedicated to beam failure recovery.
  • this embodiment is used as an implementation manner of a network device corresponding to the embodiment shown in FIG. 2.
  • FIG. 4 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 4, the terminal 400 includes:
  • the sending module 401 is configured to send a scheduling request SR to the network device when the first trigger condition is met; when the second trigger condition is met, cancel the sending of the SR or skip sending the SR N times, N Is an integer greater than 1.
  • the first trigger condition includes at least one of the following:
  • a beam failure is detected
  • a beam failure is detected and a new beam is identified
  • the terminal 400 further includes:
  • the first triggering module is used to trigger the first MAC CE in the case of a beam failure, and the first MAC CE is used to transmit BFRQ information; or, when a beam failure is detected and a new beam is identified , Trigger the first MAC CE, and the first MAC CE is used to transmit BFRQ information.
  • the detected beam failure occurrence includes at least one of the following:
  • a beam failure is detected in the cell
  • a beam failure is detected in the BWP of the bandwidth part
  • a beam failure is detected in the TRP at the transmitting and receiving point.
  • the detecting that a beam failure occurs and identifying a new beam includes at least one of the following:
  • a beam failure is detected in the cell, and a new beam is identified on the cell where the beam failure is detected;
  • a beam failure is detected in the BWP in the bandwidth part, and a new beam is identified on the BWP where the beam failure is detected;
  • a beam failure is detected in the TRP at the transmitting and receiving point, and a new beam is identified on the TRP where the beam failure is detected.
  • the first MAC CE is in a pending state.
  • the second trigger condition includes any one of the following:
  • Radio resource control RRC Radio resource control RRC
  • medium access control control element MAC CE Medium access control control element
  • DCI downlink control information
  • the sending module 401 is further configured to send BFRQ information to the network device on an uplink authorized resource configured or instructed by the network device.
  • the BFRQ information is carried by MAC CE.
  • the sending module 401 is further configured to cancel the sending of the BFRQ information when the second trigger condition is met.
  • the SR is an SR dedicated to beam failure recovery.
  • the terminal provided in the embodiment of the present disclosure can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 5 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 5, the network device 500 includes:
  • the receiving module 501 is configured to receive the scheduling request SR sent by the terminal when the first trigger condition is met; when the second trigger condition is met, stop receiving the SR or skip receiving the SR N times , N is an integer greater than 1.
  • the first trigger condition includes at least one of the following:
  • the terminal detects that a beam failure occurs
  • the terminal detects that the beam fails and recognizes a new beam
  • the terminal has beam failure recovery request BFRQ information to be sent, and there is no available uplink resource to send the BFRQ information to be sent.
  • the detection of the occurrence of beam failure by the terminal includes at least one of the following:
  • the terminal detects that beam failure occurs in the cell
  • the terminal detects that a beam failure occurs in the BWP of the bandwidth part
  • the terminal detects that a beam failure occurs at the TRP at the sending and receiving point.
  • the terminal detects that a beam failure occurs, and recognizes that a new beam includes at least one of the following:
  • the terminal detects that a beam failure occurs in a cell, and recognizes a new beam on the cell where the beam failure is detected;
  • the terminal detects that a beam failure occurs in the BWP of the bandwidth part, and recognizes a new beam on the BWP where the beam failure is detected;
  • the terminal detects that a beam failure occurs in the TRP at the transmitting and receiving point, and recognizes a new beam on the TRP where the beam failure is detected.
  • the second trigger condition includes any one of the following:
  • Radio resource control RRC Sending at least one of radio resource control RRC, medium access control control element MAC CE, and downlink control information DCI to the terminal;
  • the method further includes:
  • the BFRQ information is carried by MAC CE.
  • the SR is an SR dedicated to beam failure recovery.
  • the network device provided by the embodiment of the present disclosure can implement each process implemented by the network device in the method embodiment of FIG. 3, and to avoid repetition, details are not described herein again.
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, and a power supply 611 and other components.
  • a radio frequency unit 601 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, and a power supply 611 and other components.
  • terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine some components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers
  • the radio frequency unit 601 is configured to: when the first trigger condition is met, send a scheduling request SR to the network device; when the second trigger condition is met, cancel the sending of the SR or skip sending the SR N times, N Is an integer greater than 1.
  • the sending of the SR is cancelled or the sending of the SR is skipped N times. This reduces the number of times the SR is sent, thereby reducing the resource overhead of the SR. At the same time, the power consumption of the terminal is reduced, and the standby time of the terminal is extended.
  • the radio frequency unit 601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 610; Uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 603 can convert the audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sounds. Moreover, the audio output unit 603 may also provide audio output related to a specific function performed by the terminal 600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used to receive audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 606.
  • the image frames processed by the graphics processor 6041 can be stored in the memory 609 (or other storage medium) or sent via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 601 for output in the case of a telephone call mode.
  • the terminal 600 also includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 6061 and/or when the terminal 600 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 606 is used to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • the touch panel 6071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 6071 or near the touch panel 6071. operating).
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 6071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 607 may also include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the interface unit 608 is an interface for connecting an external device with the terminal 600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (input/output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 608 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 600 or can be used to communicate between the terminal 600 and the external device. Transfer data between.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 609, and calling data stored in the memory 609. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 600 may also include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 600 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 610, a memory 609, and a computer program stored on the memory 609 and running on the processor 610.
  • a terminal including a processor 610, a memory 609, and a computer program stored on the memory 609 and running on the processor 610.
  • the computer program is executed by the processor 610,
  • Each process of the foregoing scheduling request sending method embodiment is realized, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • FIG. 7 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the network device 700 includes a processor 701, a transceiver 702, a memory 703, and a bus interface, in which:
  • the transceiver 702 is configured to: receive the scheduling request SR sent by the terminal when the first trigger condition is satisfied; when the second trigger condition is satisfied, stop the reception of the SR or skip the reception of the SR N times , N is an integer greater than 1.
  • the sending of the SR is cancelled or the sending of the SR is skipped N times. This reduces the number of times the SR is sent, thereby reducing the resource overhead of the SR. At the same time, the power consumption of the terminal is reduced, and the standby time of the terminal is extended.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting internally required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the embodiment of the present disclosure further provides a network device, including a processor 701, a memory 703, a computer program stored in the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • a network device including a processor 701, a memory 703, a computer program stored in the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor
  • the embodiment of the method for receiving a dispatch request on the network device side provided by the embodiment of the present disclosure is implemented
  • the various processes of the method for sending a scheduling request on the terminal side provided by the embodiments of the present disclosure are implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present disclosure.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), digital signal processing equipment (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Described functions in other electronic units or combinations thereof.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种调度请求发送方法、调度请求接收方法、终端和网络设备,该调度请求发送方法包括:在满足第一触发条件的情况下,向网络设备发送调度请求SR;在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。

Description

调度请求发送方法、调度请求接收方法、终端和网络设备
相关申请的交叉引用
本申请主张在2019年7月11日在中国提交的中国专利申请号No.201910626768.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种调度请求发送方法、调度请求接收方法、终端和网络设备。
背景技术
在高频段通信***中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断。如果采用相关技术中的无线链路重建,则耗时较长,因此引入了波束失败恢复机制。相关技术中的波束失败恢复(Beam failure recovery,BFR)机制包括以下四个步骤:
第一,波束失败检测(Beam failure detection)。终端在物理层对波束失败检测参考信号(beam failure detection reference signal)进行测量,并根据测量结果来判断是否发生波束失败事件。
第二,新的候选波束识别(New candidate beam identification)。终端物理层测量波束识别参考信号(beam identification Reference signal),寻找新的候选波束(candidate beam)。本步骤不强制在beam failure event发生后,也可以在之前。
第三,传输波束失败恢复请求(Beam failure recovery request,BFRQ)信息。
第四,终端检测网络设备对波束失败恢复请求的响应(UE monitors gNB response for beam failure recovery request)。
在辅小区波束失败恢复(SCell BFR)过程中,可以通过调度请求(Scheduling Request,SR)触发网络设备为终端配置或者指示上行授权资源,在该上行授权资源上传输BFRQ信息。然而,相关技术中,满足SR的触发 条件后,终端将会周期性的发送SR,这将会导致SR的资源开销较大。
发明内容
本公开实施例提供一种调度请求发送方法、调度请求接收方法、终端和网络设备,以解决相关技术中,满足SR的触发条件后,周期性的发送SR,导致SR的资源开销较大问题。
第一方面,本公开实施例提供一种调度请求发送方法,应用于终端,包括:
在满足第一触发条件的情况下,向网络设备发送调度请求SR;
在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
第二方面,本公开实施例还提供一种调度请求接收方法,应用于网络设备,包括:
接收终端在满足第一触发条件的情况下,发送的调度请求SR;
在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
第三方面,本公开实施例还提供一种终端,包括:
发送模块,用于在满足第一触发条件的情况下,向网络设备发送调度请求SR;在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
第四方面,本公开实施例还提供一种网络设备,包括:
接收模块,用于接收终端在满足第一触发条件的情况下,发送的调度请求SR;在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
第五方面,本公开实施例还提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述调度请求发送方法中的步骤。
第六方面,本公开实施例还提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处 理器执行时实现上述调度请求接收方法中的步骤。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述调度请求发送方法的步骤,或者所述计算机程序被处理器执行时实现上述调度请求接收方法的步骤。
本公开实施例,通过设置第二触发条件,在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送。这样减少了SR的发送次数,从而降低了SR的资源开销。与此同时,降低了终端功耗,延长了终端的待机时长。
附图说明
图1是本公开实施例可应用的一种网络***的结构图;
图2是本公开实施例提供的一种调度请求发送方法的流程图;
图3是本公开实施例提供的一种调度请求接收方法的流程图;
图4是本公开实施例提供的一种终端的结构图;
图5是本公开实施例提供的一种网络设备的结构图;
图6是本公开实施例提供的另一种终端的结构图;
图7是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一, 例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的一种调度请求发送方法、调度请求接收方法、终端和网络设备可以应用于无线通信***中。该无线通信***可以为采用第五代(5 th generation,5G)***,或者演进型长期演进(Evolved Long Term Evolution,eLTE)***,或者后续演进通信***。
请参见图1,图1是本公开实施例可应用的一种网络***的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述网络设备12可以是5G基站,或者以后版本的基站,或者其他通信***中的基站,或者称之为节点B,演进节点B,或者发送接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开实施例提供的一种调度请求发送方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201,在满足第一触发条件的情况下,向网络设备发送调度请求SR;
步骤202,在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
上述SR可以用于触发网络设备配置或者指示上行授权资源,在该上行授权资源上可以传输BFRQ信息。上述N的大小可以根据实际需要进行设置, 在本实施例中,该N的大小可以通过协议约定,也可以由网络设备通知。
本公开实施例中,可以在发送波束失败事件时,触发SR和BFRQ信息,通过预先设置的第二触发条件限制SR的发送,例如,在满足第二触发条件时,可以取消SR的发送,也可以直接跳过N次SR的发送,N的大小可以根据实际需要进行设置,在此不做进一步的限定。
可选的,上述SR在生成后,处于待发送pending状态。在该pending状态下,终端可以对该SR进行发送。
本公开实施例,通过设置第二触发条件,在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送。这样减少了SR的发送次数,从而降低了SR的资源开销。与此同时,降低了终端功耗,延长了终端的待机时长。
可选的,上述SR可以为专用于波束失败恢复的SR(以下称之为专用SR,即dedicated SR)或其他SR(以下称之为相关技术SR,即相关技术中的SR)。其中,专用SR用于通知网络设备将有BFRQ信息发送给网络设备,也即该专用SR用于触发网络设备指示的第一上行授权资源,该第一上行授权资源专用于传输BFRQ信息。相关技术SR可以用于通知网络设备存在待发送的其他上行信息,网络设备可以根据该相关技术SR为终端配置或指示第二上行授权资源,上述BFRQ信息可以与其他上行信息复用在该第二上行授权资源上进行传输。
可选的,在一实施例中,上述步骤201之后,该方法还包括:
在网络设备配置或指示的上行授权资源上,向所述网络设备发送BFRQ信息。
本实施例中,网络设备配置或指示的上行授权资源可以包括上述第一上行授权资源或最近可用的第二上行授权资源。可选的,该第二上行授权资源包括以下至少一项:
配置授权(configured grant)的上行授权资源;
动态授权(dynamic grant)的上行授权资源;
随机接入(Random Access,RA)过程中的上行授权资源。
可选的,该随机接入过程具体可以指2步随机接入过程或者4步随机接 入过程。对应的,第二上行授权资源指:2步随机接入(2-step RA)过程的PUSCH或者4步随机接入(4-step RA)过程的PUSCH。
进一步的,上述BFRQ信息可以由媒体接入控制控制元素(Medium Access Control Control Element,MAC CE)承载。
本实施例中,可以是不同的BFRQ信息在不同的MAC CE上,且一个MAC CE用于传输一个BFRQ信息的部分或全部信息,也可以是一个MAC CE传输多个或所有BFRQ信息。
进一步的,在一可选实施例中,在满足第二触发条件的情况下,所述方法还包括:
取消所述BFRQ信息的发送。
本公开实施例中,由于将第二触发条件设置为取消BFRQ信息发送的触发条件,从而可以减少BFRQ信息重复发送的次数。这样,可以进一步减少数据发送量,因此可以降低资源开销,降低终端功耗,延长终端的待机时长。
应理解,上述第一触发条件具体可以根据实际需要进行设置,例如在一可选实施例中,上述第一触发条件可以包括以下至少一项:
检测到发生波束失败;
检测到发生波束失败,且识别到新的波束;
存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
其中,所述检测到发生波束失败包括以下至少一项:
检测到小区发生波束失败;
检测到带宽部分(Bandwidth Part,BWP)发生波束失败;
检测到发送接收点TRP发生波束失败。
上述检测到发生波束失败,且识别到新的波束包括以下至少一项:
检测到小区发生波束失败,且在检测到波束失败的小区上识别到新的波束;
检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
检测到发送接收点TRP发生波束失败,且在检测到波束失败的TRP上识 别到新的波束。
本实施例中,终端可以测量波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS)。根据测量结果判断在至少一个目标对象是否发生波束失败事件,该目标对象为小区、BWP或TRP。此外,终端可以通过测量用于新的候选波束识别的下行参考信号,确定发生波束失败的小区、BWP或TRP上是否找到新的波束。
本实施例中,存在待发送的BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息具体可以理解为:当存在用于传输BFRQ信息的MAC CE(MAC CE for BFRQ)的情况下,没有用于新传输的物理上行共享信道(Physical uplink shared channel,PUSCH)资源,或者即使存在上行资源,但根据逻辑信道优先级关系,该MAC CE for BFRQ的优先级较低,而不能使用该上行资源。
进一步的,所述向网络设备发送调度请求SR之前,所述方法还包括:
在发生波束失败的情况下,触发第一MAC CE,所述第一MAC CE用于传输BFRQ信息;
或者,检测到发生波束失败,且识别到新的波束的情况下,触发第一MAC CE,所述第一MAC CE用于传输BFRQ信息。
在本公开实施例中,不同第一MAC CE(用于传输BFRQ信息的MAC CE,即MAC CE for BFRQ)对应的SR可以不同,例如,不同的辅小区SCell的MAC CE for BFRQ对应不同的SR。
可选的,上述第一MAC CE生成后,该第一MAC CE处于待发送pending状态。在该pending状态下,终端可以发送该第一MAC CE。
应理解,本实施例中,在触发生成第一MAC CE后,即可理解为存在待发送的BFRQ信息。
进一步的,上述第二触发条件具体内容可以根据实际需要进行设置,在一可选实施例中,该第二触发条件包括以下任一项:
向所述网络设备发送BFRQ信息;
完成波束失败恢复;
接收到所述网络设备发送的无线资源控制(Radio Resource Control,RRC)、 媒体接入控制控制元素MAC CE和下行控制信息(Downlink Control Information,DCI)中的至少一项;
释放或去激活发生波束失败的小区;
释放或去激活发生波束失败的带宽部分BWP;
释放或去激活发生波束失败的发送接收点TRP;
切换到新的小区;
切换到新的带宽部分BWP;
切换到新的发送接收点TRP;
切换到新的波束。
在本公开实施例中,接收到所述网络设备发送的RRC、MAC CE和DCI中的至少一项,可以理解为网络设备通过RRC信令、MAC CE命令和DCI信令中的至少一项,向所述终端发送调度信令、波束训练的相关信令、释放或去激活信令、切换信令等。具体的,RRC信令、MAC CE命令和DCI信令可以是在发生波束失败的目标对象上传输的,也可以是在未发生波束失败的目标对象上传输的。
为了更好的理解本公开,以下以BFRQ信息关联的目标对象为小区,且BFRQ信息由MAC CE承载为例,对本公开的具体实现过程进行详细说明。具体的,可以包括以下步骤:
步骤1,终端测量BFD RS,根据测量结果判断在至少一个目标对象是否发生波束失败事件。
步骤2,终端测量用于新的候选波束识别的下行参考信号(DL RS for new beam identification),确定是否找到新的波束(new beam)。该步骤2与步骤1不存在先后关系。
步骤3,终端触发生成用于传输BFRQ信息的MAC CE(即MAC CE for BFRQ)。
用于传输BFRQ信息的MAC CE可以是专用于传输BFRQ的MAC CE(该MAC CE不同于相关技术中的MAC CE),例如使用新的逻辑信道头标识。用于传输BFRQ信息的MAC CE还可以是用于传输其他上行信息的MAC CE,通过该MAC CE中的预留bit新定义值来标识该MAC CE是否用于传输 BFRQ信息。
进一步的,在检测到目标对象发生波束失败的情况下,也触发生成MAC CE for BFRQ,该MAC CE for BFRQ也处于pending状态;或者,在检测到目标对象发生波束失败,且识别到所述目标对象存在新的波束时,也触发生成MAC CE for BFRQ,该MAC CE for BFRQ也处于pending状态。
步骤4,如满足第一触发条件,则终端向网络设备发送SR.
其中,该SR可以为相关技术中的SR;或者,该SR为专用于波束失败恢复的SR,如dedicated SR,该dedicated SR用于通知网络将有BFRQ信息发送给网络,也即该dedicated SR用于触发用来发送MAC CE for BFRQ的上行资源(PUSCH)。
可选的,该SR处于pending状态。
可选的,该SR由终端周期性持续向网络发送。
步骤5,终端向网络设备发送MAC CE for BFRQ
可选的,MAC CE for BFRQ可以在dedicated SR触发的上行资源上发送;即网络设备接收到dedicated SR后通过DCI指示上行资源。
可选的,MAC CE for BFRQ可以在最近可用的上行资源上发送,如在最近可用的configured grant、dynamic grant或RA过程所对应的上行资源。
进一步的,该RA过程可以指2-step RA过程或4-step RA过程。对应的,最近可用的上行资源指:2步随机接入(2-step RA)过程的PUSCH或者4步随机接入(4-step RA)过程的PUSCH。
步骤6,在满足第二触发条件时,取消SR的发送或者跳过N次SR的发送。
可选的,该第二触发条件包括以下任一项:
向所述网络设备发送BFRQ信息;
完成波束失败恢复;
接收到所述网络设备发送的无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
释放或去激活发生波束失败的小区;
释放或去激活发生波束失败的带宽部分BWP;
释放或去激活发生波束失败的发送接收点TRP;
切换到新的小区;
切换到新的带宽部分BWP;
切换到新的发送接收点TRP;
切换到新的波束。
应理解,当再次满足第一触发条件时,将会再次发送SR。
进一步的,在满足上述第二触发条件时,终端还可以取消MAC CE for BFRQ的发送。
请参见图3,图3是本公开实施例提供的一种调度请求接收方法的流程图,该方法应用于网络设备,如图3所示,包括以下步骤:
步骤301,接收终端在满足第一触发条件的情况下,发送的调度请求SR;
步骤302,在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
可选的,所述第一触发条件包括以下至少一项:
所述终端检测到发生波束失败;
所述终端检测到发生波束失败,且识别到新的波束;
所述终端存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
可选的,所述终端检测到发生波束失败包括以下至少一项:
所述终端检测到小区发生波束失败;
所述终端检测到带宽部分BWP发生波束失败;
所述终端检测到发送接收点TRP发生波束失败。
可选的,所述终端检测到发生波束失败,且识别到新的波束包括以下至少一项:
所述终端检测到小区发生波束失败,且在检测到波束失败的小区上识别到新的波束;
所述终端检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
所述终端检测到发送接收点TRP发生波束失败,且在检测到波束失败的 TRP上识别到新的波束。
可选的,所述第二触发条件包括以下任一项:
接收到所述终端发送的BFRQ信息;
完成波束失败恢复;
向所述终端发送无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
释放或去激活发生波束失败的小区;
释放或去激活发生波束失败的带宽部分BWP;
释放或去激活发生波束失败的发送接收点TRP;
切换到新的小区;
切换到新的带宽部分BWP;
切换到新的发送接收点TRP;
切换到新的波束。
可选的,所述接收终端在满足第一触发条件的情况下,发送的调度请求SR之后,所述方法还包括:
在网络设备配置或指示的上行授权资源上,接收所述终端发送的BFRQ信息。
可选的,所述BFRQ信息由MAC CE承载。
可选的,在满足第二触发条件的情况下,停止接收所述BFRQ信息。
可选的,所述SR为专用于波束失败恢复的SR。
需要说明的是,本实施例作为图2所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图4,图4是本公开实施例提供的一种终端的结构图,如图4所示,终端400包括:
发送模块401,用于在满足第一触发条件的情况下,向网络设备发送调度请求SR;在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
可选的,所述第一触发条件包括以下至少一项:
检测到发生波束失败;
检测到发生波束失败,且识别到新的波束;
存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
可选的,所述终端400还包括:
第一触发模块,用于在发生波束失败的情况下,触发第一MAC CE,所述第一MAC CE用于传输BFRQ信息;或者,检测到发生波束失败,且识别到新的波束的情况下,触发第一MAC CE,所述第一MAC CE用于传输BFRQ信息。
可选的,所述检测到发生波束失败包括以下至少一项:
检测到小区发生波束失败;
检测到带宽部分BWP发生波束失败;
检测到发送接收点TRP发生波束失败。
所述检测到发生波束失败,且识别到新的波束包括以下至少一项:
检测到小区发生波束失败,且在检测到波束失败的小区上识别到新的波束;
检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
检测到发送接收点TRP发生波束失败,且在检测到波束失败的TRP上识别到新的波束。
可选的,所述第一MAC CE处于待发送pending状态。
可选的,所述第二触发条件包括以下任一项:
向所述网络设备发送BFRQ信息;
完成波束失败恢复;
接收到所述网络设备发送的无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
释放或去激活发生波束失败的小区;
释放或去激活发生波束失败的带宽部分BWP;
释放或去激活发生波束失败的发送接收点TRP;
切换到新的小区;
切换到新的带宽部分BWP;
切换到新的发送接收点TRP;
切换到新的波束。
可选的,所述发送模块401还用于,在网络设备配置或指示的上行授权资源上,向所述网络设备发送BFRQ信息。
可选的,所述BFRQ信息由MAC CE承载。
可选的,所述发送模块401,还用于在满足第二触发条件的情况下,取消所述BFRQ信息的发送。
可选的,所述SR为专用于波束失败恢复的SR。
本公开实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图5,图5是本公开实施例提供的一种网络设备的结构图,如图5所示,网络设备500包括:
接收模块501,用于接收终端在满足第一触发条件的情况下,发送的调度请求SR;在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
可选的,所述第一触发条件包括以下至少一项:
所述终端检测到发生波束失败;
所述终端检测到发生波束失败,且识别到新的波束;
所述终端存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
可选的,所述终端检测到发生波束失败包括以下至少一项:
所述终端检测到小区发生波束失败;
所述终端检测到带宽部分BWP发生波束失败;
所述终端检测到发送接收点TRP发生波束失败。
可选的,所述终端检测到发生波束失败,且识别到新的波束包括以下至少一项:
所述终端检测到小区发生波束失败,且在检测到波束失败的小区上识别 到新的波束;
所述终端检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
所述终端检测到发送接收点TRP发生波束失败,且在检测到波束失败的TRP上识别到新的波束。
可选的,所述第二触发条件包括以下任一项:
接收到所述终端发送的BFRQ信息;
完成波束失败恢复;
向所述终端发送无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
释放或去激活发生波束失败的小区;
释放或去激活发生波束失败的带宽部分BWP;
释放或去激活发生波束失败的发送接收点TRP;
切换到新的小区;
切换到新的带宽部分BWP;
切换到新的发送接收点TRP;
切换到新的波束。
可选的,所述接收终端在满足第一触发条件的情况下,发送的调度请求SR之后,所述方法还包括:
在网络设备配置或指示的上行授权资源上,接收所述终端发送的BFRQ信息。
可选的,所述BFRQ信息由MAC CE承载。
可选的,在满足第二触发条件的情况下,停止接收所述BFRQ信息。
可选的,所述SR为专用于波束失败恢复的SR。
本公开实施例提供的网络设备能够实现图3的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图6为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单 元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元601用于:在满足第一触发条件的情况下,向网络设备发送调度请求SR;在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
本公开实施例,通过设置第二触发条件,在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送。这样减少了SR的发送次数,从而降低了SR的资源开销。与此同时,降低了终端功耗,延长了终端的待机时长。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储 介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图6中,触控面板6071与显示面板6061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071与显示面板6061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(input/output,I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端600内的一个或多个元件或者可以用于在终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端600还可以包括给各个部件供电的电源611(比如电池),可选的,电源611可以通过电源管理***与处理器610逻辑相连,从而通过电源管理 ***实现管理充电、放电、以及功耗管理等功能。
另外,终端600包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器610,存储器609,存储在存储器609上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述调度请求发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图7,图7是本公开实施例提供的另一种网络设备的结构图,如图7所示,该网络设备700包括:处理器701、收发机702、存储器703和总线接口,其中:
收发机702用于:接收终端在满足第一触发条件的情况下,发送的调度请求SR;在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
本公开实施例,通过设置第二触发条件,在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送。这样减少了SR的发送次数,从而降低了SR的资源开销。与此同时,降低了终端功耗,延长了终端的待机时长。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
可选的,本公开实施例还提供一种网络设备,包括处理器701,存储器703,存储在存储器703上并可在所述处理器701上运行的计算机程序,该计算机程序被处理器701执行时实现上述调度请求接收方法实施例的各个过程, 且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的网络设备侧的调度请求接收方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的终端侧的调度请求发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits, ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (25)

  1. 一种调度请求发送方法,应用于终端,包括:
    在满足第一触发条件的情况下,向网络设备发送调度请求SR;
    在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
  2. 根据权利要求1所述的方法,其中,所述第一触发条件包括以下至少一项:
    检测到发生波束失败;
    检测到发生波束失败,且识别到新的波束;
    存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
  3. 根据权利要求1所述的方法,其中,所述向网络设备发送调度请求SR之前,所述方法还包括:
    检测到发生波束失败的情况下,触发第一媒体接入控制控制元素MAC CE,所述第一MAC CE用于传输BFRQ信息;
    或者,检测到发生波束失败,且识别到新的波束的情况下,触发第一MAC CE,所述第一MAC CE用于传输BFRQ信息。
  4. 根据权利要求2或3所述的方法,其中,所述检测到发生波束失败包括以下至少一项:
    检测到小区发生波束失败;
    检测到带宽部分BWP发生波束失败;
    检测到发送接收点TRP发生波束失败。
  5. 根据权利要求2或3所述的方法,其中,所述检测到发生波束失败,且识别到新的波束包括以下至少一项:
    检测到小区发生波束失败,且在检测到波束失败的小区上识别到新的波束;
    检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
    检测到发送接收点TRP发生波束失败,且在检测到波束失败的TRP上识别到新的波束。
  6. 根据权利要求3所述的方法,其中,所述第一MAC CE处于待发送pending状态。
  7. 根据权利要求1所述的方法,其中,所述第二触发条件包括以下任一项:
    向所述网络设备发送BFRQ信息;
    完成波束失败恢复;
    接收到所述网络设备发送的无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
    释放或去激活发生波束失败的小区;
    释放或去激活发生波束失败的带宽部分BWP;
    释放或去激活发生波束失败的发送接收点TRP;
    切换到新的小区;
    切换到新的带宽部分BWP;
    切换到新的发送接收点TRP;
    切换到新的波束。
  8. 根据权利要求1所述的方法,其中,所述向网络设备发送调度请求SR之后,所述方法还包括:
    在网络设备配置或指示的上行授权资源上,向所述网络设备发送波束失败恢复请求BFRQ信息。
  9. 根据权利要求8所述的方法,其中,所述BFRQ信息由MAC CE承载。
  10. 根据权利要求8所述的方法,其中,在满足第二触发条件的情况下,所述方法还包括:
    取消所述BFRQ信息的发送。
  11. 根据权利要求1所述的方法,其中,所述SR为专用于波束失败恢复的SR。
  12. 一种调度请求接收方法,应用于网络设备,包括:
    接收终端在满足第一触发条件的情况下,发送的调度请求SR;
    在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
  13. 根据权利要求12所述的方法,其中,所述第一触发条件包括以下至少一项:
    所述终端检测到发生波束失败;
    所述终端检测到发生波束失败,且识别到新的波束;
    所述终端存在待发送的波束失败恢复请求BFRQ信息,且不存在可用的上行资源发送所述待发送的BFRQ信息。
  14. 根据权利要求13所述的方法,其中,所述终端检测到发生波束失败包括以下至少一项:
    所述终端检测到小区发生波束失败;
    所述终端检测到带宽部分BWP发生波束失败;
    所述终端检测到发送接收点TRP发生波束失败。
  15. 根据权利要求13所述的方法,其中,所述终端检测到发生波束失败,且识别到新的波束包括以下至少一项:
    所述终端检测到小区发生波束失败,且在检测到波束失败的小区上识别到新的波束;
    所述终端检测到带宽部分BWP发生波束失败,且在检测到波束失败的BWP上识别到新的波束;
    所述终端检测到发送接收点TRP发生波束失败,且在检测到波束失败的TRP上识别到新的波束。
  16. 根据权利要求12所述的方法,其中,所述第二触发条件包括以下任一项:
    接收到所述终端发送的波束失败恢复请求BFRQ信息;
    完成波束失败恢复;
    向所述终端发送无线资源控制RRC、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一项;
    释放或去激活发生波束失败的小区;
    释放或去激活发生波束失败的带宽部分BWP;
    释放或去激活发生波束失败的发送接收点TRP;
    切换到新的小区;
    切换到新的带宽部分BWP;
    切换到新的发送接收点TRP;
    切换到新的波束。
  17. 根据权利要求12所述的方法,其中,所述接收终端在满足第一触发条件的情况下,发送的调度请求SR之后,所述方法还包括:
    在网络设备配置或指示的上行授权资源上,接收所述终端发送的波束失败恢复请求BFRQ信息。
  18. 根据权利要求17所述的方法,其中,所述BFRQ信息由媒体接入控制控制元素MAC CE承载。
  19. 根据权利要求18所述的方法,其中,在满足第二触发条件的情况下,停止接收所述BFRQ信息。
  20. 根据权利要求12所述的方法,其中,所述SR为专用于波束失败恢复的SR。
  21. 一种终端,包括:
    发送模块,用于在满足第一触发条件的情况下,向网络设备发送调度请求SR;在满足第二触发条件的情况下,取消所述SR的发送或跳过N次SR的发送,N为大于1的整数。
  22. 一种网络设备,包括:
    接收模块,用于接收终端在满足第一触发条件的情况下,发送的调度请求SR;在满足第二触发条件的情况下,停止所述SR的接收或跳过N次所述SR的接收,N为大于1的整数。
  23. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的调度请求发送方法中的步骤。
  24. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求 12至20中任一项所述的调度请求接收方法中的步骤。
  25. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的调度请求发送方法的步骤,或者所述计算机程序被处理器执行时实现如权利要求12至20中任一项所述的调度请求接收方法的步骤。
PCT/CN2020/101292 2019-07-11 2020-07-10 调度请求发送方法、调度请求接收方法、终端和网络设备 WO2021004522A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20836701.1A EP3998832A4 (en) 2019-07-11 2020-07-10 PLANNING REQUEST SENDING METHOD, PLANNING REQUEST RECEIVING METHOD, TERMINAL AND NETWORK DEVICE
KR1020227004050A KR20220030290A (ko) 2019-07-11 2020-07-10 스케줄링 요청 송신 방법, 스케줄링 요청 수신 방법, 단말 및 네트워크 장비
JP2022501344A JP7289981B2 (ja) 2019-07-11 2020-07-10 スケジューリング要求送信方法、スケジューリング要求受信方法、端末及びネットワーク機器
US17/571,865 US11909490B2 (en) 2019-07-11 2022-01-10 Scheduling request transmitting method, scheduling request receiving method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910626768.2A CN111818658B (zh) 2019-07-11 2019-07-11 调度请求发送方法、调度请求接收方法、终端和网络设备
CN201910626768.2 2019-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/571,865 Continuation US11909490B2 (en) 2019-07-11 2022-01-10 Scheduling request transmitting method, scheduling request receiving method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2021004522A1 true WO2021004522A1 (zh) 2021-01-14

Family

ID=72844545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101292 WO2021004522A1 (zh) 2019-07-11 2020-07-10 调度请求发送方法、调度请求接收方法、终端和网络设备

Country Status (6)

Country Link
US (1) US11909490B2 (zh)
EP (1) EP3998832A4 (zh)
JP (1) JP7289981B2 (zh)
KR (1) KR20220030290A (zh)
CN (1) CN111818658B (zh)
WO (1) WO2021004522A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195353A1 (en) * 2021-03-17 2022-09-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatus of link recovery in multi-trp system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333675B (zh) * 2020-11-25 2022-09-13 紫光展锐(重庆)科技有限公司 一种数据计数的方法及相关装置
US20240080147A1 (en) * 2021-01-04 2024-03-07 Beijing Xiaomi Mobile Software Co., Ltd. Method for determining beam failure detection (bfd) resource, communication device, and storage medium
CN115442895A (zh) * 2021-06-04 2022-12-06 维沃移动通信有限公司 波束失败恢复处理方法、装置及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778418A (zh) * 2009-01-13 2010-07-14 中兴通讯股份有限公司 无线网络中触发或上报调度请求的方法和设备
WO2018093169A1 (en) * 2016-11-17 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for activating/deactivating cells with scalable transmission time intervals in wireless communication system using cell aggregation
CN109842894A (zh) * 2017-11-27 2019-06-04 华硕电脑股份有限公司 无线通信***中减少波束恢复程序中断的方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382146B2 (ja) 2010-02-12 2014-01-08 富士通株式会社 無線通信装置、無線通信システムおよび無線通信方法
CN111629413B (zh) * 2017-05-15 2022-10-04 维沃移动通信有限公司 波束失败处理方法、辅基站失败处理方法及终端
US10555307B2 (en) * 2017-06-16 2020-02-04 Futurewei Technologies, Inc. System and method for beam failure recovery request reporting
US11419173B2 (en) * 2017-08-09 2022-08-16 Idac Holdings, Inc. Methods and systems for beam recovery and management
CN109982430B (zh) * 2017-12-28 2021-07-13 大唐移动通信设备有限公司 一种进行调度请求的方法和设备
US11277302B2 (en) * 2018-06-21 2022-03-15 Ofinno, Llc PUCCH based beam failure recovery procedure
CN109156027B (zh) 2018-08-17 2022-04-05 北京小米移动软件有限公司 调度请求传输方法、装置及存储介质
KR102659723B1 (ko) * 2018-11-01 2024-04-22 삼성전자주식회사 이동 통신 시스템에서 통신을 수행하는 방법 및 장치
KR20200054086A (ko) * 2018-11-09 2020-05-19 한국전자통신연구원 높은 신뢰 조건을 가지는 데이터 또는 제어 정보의 전송 방법 및 이를 위한 장치
US20220167197A1 (en) * 2019-04-10 2022-05-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for determining beam failure
US20220352959A1 (en) * 2019-06-21 2022-11-03 Ntt Docomo, Inc. Terminal
CN114026946A (zh) * 2019-06-28 2022-02-08 中兴通讯股份有限公司 针对辅小区的波束故障恢复

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778418A (zh) * 2009-01-13 2010-07-14 中兴通讯股份有限公司 无线网络中触发或上报调度请求的方法和设备
WO2018093169A1 (en) * 2016-11-17 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for activating/deactivating cells with scalable transmission time intervals in wireless communication system using cell aggregation
CN109842894A (zh) * 2017-11-27 2019-06-04 华硕电脑股份有限公司 无线通信***中减少波束恢复程序中断的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETSI MCC: "Report of 3GPP TSG RAN2#102 meeting, Busan, Korea", 3GPP DRAFT; R2-1811001, vol. RAN WG2, 19 August 2018 (2018-08-19), Gothenburg, Sweden, pages 1 - 296, XP051520743 *
See also references of EP3998832A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195353A1 (en) * 2021-03-17 2022-09-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatus of link recovery in multi-trp system

Also Published As

Publication number Publication date
JP7289981B2 (ja) 2023-06-12
EP3998832A1 (en) 2022-05-18
CN111818658A (zh) 2020-10-23
JP2022539477A (ja) 2022-09-09
US20220131593A1 (en) 2022-04-28
CN111818658B (zh) 2023-05-26
EP3998832A4 (en) 2022-08-03
US11909490B2 (en) 2024-02-20
KR20220030290A (ko) 2022-03-10

Similar Documents

Publication Publication Date Title
US11671854B2 (en) Cell beam failure processing method, mobile communication terminal and network side device
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
WO2020216243A1 (zh) 指示信息的传输方法及通信设备
WO2020156436A1 (zh) 测量方法、终端、测量指示方法及网络侧设备
WO2019141058A1 (zh) 侦听指示方法、终端及网络设备
WO2020253587A1 (zh) Srs功率控制方法、srs功率控制的配置方法及相关设备
WO2021088843A1 (zh) 小区管理方法、小区管理配置方法、终端和网络侧设备
US20210092630A1 (en) Method for cell management, terminal, and network-side device
WO2020216245A1 (zh) 上行传输方法、终端和网络侧设备
WO2020063240A1 (zh) 信道接入方法、配置方法、终端及网络侧设备
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
US20210219247A1 (en) Power headroom reporting method and terminal device
US20230345321A1 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
US20230354065A1 (en) Cell Management Method, Trigger Condition Configuration Method, Terminal Device, and Network-Side Device
WO2021036943A1 (zh) 发生波束失败的处理方法和终端
WO2020249116A1 (zh) 测量方法、设备及***
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
WO2019137425A1 (zh) 重配置方法、终端及基站
WO2021004523A1 (zh) 传输方法、终端和网络设备
WO2021164680A1 (zh) Pusch传输方法、终端及网络设备
US20210219325A1 (en) Information indicating method, indication receiving method, terminal, and network-side device
US11570724B2 (en) Method for PH calculation and terminal
WO2021027500A1 (zh) 网络设备信息接收方法、发送方法、终端和网络设备
US20220110182A1 (en) Processing method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227004050

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836701

Country of ref document: EP

Effective date: 20220211