WO2021004188A1 - 一种防夹检测方法及*** - Google Patents

一种防夹检测方法及*** Download PDF

Info

Publication number
WO2021004188A1
WO2021004188A1 PCT/CN2020/093160 CN2020093160W WO2021004188A1 WO 2021004188 A1 WO2021004188 A1 WO 2021004188A1 CN 2020093160 W CN2020093160 W CN 2020093160W WO 2021004188 A1 WO2021004188 A1 WO 2021004188A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
collected
obstacle
contact position
Prior art date
Application number
PCT/CN2020/093160
Other languages
English (en)
French (fr)
Inventor
刘爽
朱伟豪
刘艳昭
贾晟
Original Assignee
北京经纬恒润科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京经纬恒润科技股份有限公司 filed Critical 北京经纬恒润科技股份有限公司
Priority to US17/625,404 priority Critical patent/US20220228413A1/en
Priority to EP20837595.6A priority patent/EP3998390A4/en
Priority to KR1020227002467A priority patent/KR20220024928A/ko
Publication of WO2021004188A1 publication Critical patent/WO2021004188A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/42Detection using safety edges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefor
    • E05Y2201/43Motors
    • E05Y2201/434Electromotors; Details thereof
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/36Speed control, detection or monitoring
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/40Control units therefor
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/44Sensors not directly associated with the wing movement
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/55Obstruction or resistance detection by using load sensors
    • E05Y2400/554Obstruction or resistance detection by using load sensors sensing motor load
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/531Doors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/542Roof panels
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit

Definitions

  • the invention relates to the technical field of automobile body control, in particular to an anti-pinch detection method and system.
  • the 10N/mm spring test is required, and the anti-pinch force is less than 100N.
  • the 65N/mm spring test is required within the range of 4-25mm, and the anti-pinch force is less than 100N.
  • Use 20N/mm spring test within the range of 25-200mm, and the anti-pinch force should be less than 100N.
  • the present invention provides an anti-pinch detection method and system to provide a closed component anti-pinch detection method that meets S5 regulations and has a good detection effect.
  • the technical solution is as follows:
  • An anti-pinch detection method includes:
  • the second current rate of change is determined according to the current collected in the current current collection period and the current collected in the target current collection period; wherein there is a difference of N current collection periods between the target current collection period and the current current collection period, N Is an integer greater than or equal to 2;
  • the anti-pinch detection threshold is determined according to the stiffness of the obstacle.
  • the determining the second current change rate according to the current collected in the current current collection period and the current collected in the target current collection period includes:
  • the difference between the filtered value of the current collected in the current current collection period and the filtered value of the current collected in the target current collection period is calculated as the second current change rate.
  • the detecting whether the closing component encounters an obstacle according to the second current change rate includes:
  • the zero point of the contact position is a point at which the closing member and the obstacle start to contact
  • the detecting the zero point of the contact position according to the second current rate of change includes:
  • the judging whether the zero point of the suspected contact position has been verified includes:
  • each time the current of the motor is collected based on the real-time determined second current change rate, and/or, the real-time determined third current change rate and the historical third current change Determine whether the zero point of the suspected contact position is verified or not;
  • the third current rate of change is determined in real time based on the collected current and the current corresponding to the zero point of the suspected contact position.
  • the judging whether the suspected contact position zero point is verified based on the second current change rate determined in real time, and/or the third current change rate determined in real time and the historical third current change rate includes:
  • the suspected contact position zero point After obtaining the suspected contact position zero point, if at least one of the following two situations occurs, it is determined that the suspected contact position zero point has not been verified, and if neither of the following two situations occurs, the suspected contact position is determined Pass zero verification;
  • the first case is: the second current change rate determined in real time is less than the preset second threshold;
  • the second situation is: the third current change rate determined in real time and the historical third current change rate continuously occur that the third current change rate is greater than the preset third threshold, and the third current change rate is greater than the preset
  • the duration of the third threshold is greater than the preset duration.
  • the anti-pinch detection method further includes, in the process of controlling the movement of the motor to drive the closing member to close, controlling the motor to move at a motor movement speed corresponding to the area where the closing member is located;
  • the movable area of the closing component in the closing direction includes a plurality of areas that do not overlap with each other. Each area corresponds to a set motor speed. Different areas correspond to different motor speeds. The distance from the movable area The area closer to the end point in the closing direction corresponds to a smaller motor speed.
  • a controller including: a memory and a processor
  • the memory is used to store programs
  • the processor is configured to execute the program to implement the anti-pinch detection method described in any one of the foregoing.
  • a readable storage medium with a computer program stored thereon, and when the computer program is executed by a processor, the anti-pinch detection method described in any one of the foregoing is implemented.
  • An anti-pinch detection system including: a current acquisition unit, a position acquisition unit and a controller;
  • the controller is configured to use the current collecting unit to collect the current of the motor according to a preset current collecting period during the process of controlling the movement of the motor to drive the closing part to close; and to collect the motor current by the position collecting unit Real-time motor position; determine the first current rate of change according to the current collected in the current current collection cycle and the current collected in the previous current collection cycle; determine the second current rate according to the current collected in the current current collection cycle and the current collected in the target current collection cycle Current rate of change; detecting whether the closing member encounters an obstacle according to the second current rate of change; if it is detected that the closing member encounters the obstacle, the obstacle is determined according to the first current rate of change
  • the stiffness of the object; the real-time obstacle compression distance is determined according to the contact position zero and the real-time collected motor position; the real-time anti-pinch force is determined according to the stiffness of the obstacle and the real-time obstacle compression distance, and the real-time anti-pinch When the force is greater than the preset anti-pinch detection threshold, control the
  • N is an integer greater than or equal to 2
  • the contact position zero is based on detecting that the closing component encounters the obstacle
  • the position of the motor collected by the position collecting unit when the object is determined is determined; the anti-pinch detection threshold is determined according to the stiffness of the obstacle.
  • the current collection unit includes: a sampling resistor and a differential amplifier; the sampling resistor converts the current during the operation of the motor into a voltage signal; the differential amplifier amplifies the voltage signal to obtain the amplified signal Voltage signal;
  • the controller is specifically configured to collect the current of the motor according to a preset current collection period based on the amplified voltage signal.
  • the controller is further configured to control the motor to move at a motor speed corresponding to the area where the closing member is located during the process of controlling the movement of the motor to drive the closing member to close;
  • the movable area of the closing component in the closing direction includes a plurality of areas that do not overlap with each other. Each area corresponds to a set motor speed. Different areas correspond to different motor speeds. The distance from the movable area The area closer to the end point in the closing direction corresponds to a smaller motor speed.
  • the anti-pinch detection method and system provided by the present invention in the process of the motor moving to drive the closing part to close, first determine the first according to the current collected in the current current collection period and the current collected in the previous current collection period.
  • a current change rate and determine the second current change rate according to the current collected in the current current collection period and the current collected in the target current collection period, and then detect whether the closing part encounters an obstacle according to the second current change rate, when the closing part is detected When encountering an obstacle, determine the stiffness of the obstacle according to the first current rate of change, and determine the real-time obstacle compression distance according to the contact position zero point and the real-time collected motor position, and finally according to the stiffness of the obstacle and the real-time obstacle compression distance , Determine the real-time anti-pinch force, and control the motor to reverse when the real-time anti-pinch force is greater than the preset anti-pinch detection threshold.
  • the anti-pinch detection method provided by the present invention performs obstacle detection based on the second current change rate, can quickly and accurately detect the obstacle, and determines the obstacle stiffness based on the first current change rate, so that obstacles with different stiffness can be obtained
  • different anti-pinch detection thresholds can be selected, so as to ensure the consistency of the measurement force, and can avoid the false anti-pinch caused by the small anti-pinch detection threshold setting when an anti-pinch detection threshold is adopted.
  • the anti-pinch detection method provided by the present invention can meet S5 regulations, has fast detection speed, good detection effect, and can avoid false anti-pinch.
  • FIG. 1 is a schematic diagram of the definition of the S5 anti-pinch zone and the anti-pinch process provided by an embodiment of the present invention
  • FIG. 2 is an analysis diagram of the process from the dynamometer contacting the obstacle to the recognition of the anti-pinch event and the control of the glass inversion provided by the embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an anti-pinch detection method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the resistance characteristic curve of the motor movement provided by the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the resistance characteristic curve when the closing component encounters an obstacle according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the relationship between the anti-pinch force and the compression distance corresponding to objects with different rigidities provided by the embodiments of the present invention.
  • FIG. 7 is a schematic diagram of a rigidity boundary of a detectable object provided by an embodiment of the present invention.
  • Figures 8a and 8b are respectively schematic diagrams of closed-loop control of motor speed by using pulse width modulation in different areas during the sunroof closing process provided by an embodiment of the present invention, and schematic diagrams of controlling the motor speed during the sunroof opening process;
  • FIG. 9 is a schematic flowchart of an implementation manner for detecting the zero point of a contact position based on a real-time second current change rate according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an anti-pinch detection device that meets S5 regulations provided by an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a controller provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an anti-pinch detection system that meets S5 regulations provided by an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of motor control and current collection provided by an embodiment of the present invention.
  • anti-pinch detection schemes for closed parts in the prior art. Most of these anti-pinch detection schemes are based on the speed of motor movement. The general idea of the scheme is: in the process of closing the closing part, if an obstacle is encountered , The movement speed of the motor will decrease. In view of this, the anti-pinch force can be determined based on the movement speed of the motor. Specifically, the difference between the actual movement speed of the motor and the preset reference movement speed is calculated, and the speed difference is obtained by calculation Inversely calculate the anti-pinch force, when the anti-pinch force is greater than the preset anti-pinch detection threshold, control the motor to reverse.
  • the difficulty of making the anti-pinch detection scheme of the closed component meet S5 is: First, it can realize fast anti-pinch detection and motor reversal for high-rigidity obstacles. Second, it can distinguish obstacles of different stiffness, such as distinguishing 65N/ mm and 20N/mm springs to ensure the consistency of the force measurement results of obstacles with different stiffness.
  • the inventor’s analysis process is as follows:
  • Figure 1 shows the definition of the S5 anti-pinch zone and the anti-pinch detection process taking the skylight as an example.
  • the moving glass 101 and the dynamometer 102 are fixed together. Within the range of 4-25mm, the dynamometer 102 uses 65N/mm spring is tested. In the range of 25-200mm, the dynamometer 102 uses 20N/mm spring to test.
  • 103 is an obstacle
  • 104 is the glass fully open position
  • 105 is the glass fully closed position.
  • Figure 2 shows a schematic diagram of the whole process from the dynamometer contacting the obstacle to the recognition of the anti-pinch event and controlling the reversal of the moving glass.
  • Point A in Figure 2 is the point where the dynamometer and the obstacle start to contact.
  • the line L1 in Figure 2 reflects the relationship between the anti-pinch force measured by the dynamometer and the compression distance of the spring for the 65N/mm spring, and the line L2 reflects the anti-pinch force measured by the dynamometer for the 20N/mm spring.
  • Point B is the point where the controller starts the anti-pinch detection.
  • the line L3 in Figure 2 reflects the relationship between the anti-pinch force determined by the controller and the spring compression distance.
  • the detection delay between AB is , Due to a certain physical delay in the sunroof drive system, the controller at point B recognizes the signal change when the spring at point A has begun to compress.
  • Point C is the point where the controller detects that the anti-pinch force exceeds the set anti-pinch detection threshold. At this time, the controller sends a reversal command to the motor to control the motor reversal.
  • Point D is the actual glass reversal point, and there is a reversal delay between CD. Due to inertia, the controller sends a reversal command to the motor and moves the glass. It still rushes forward for a certain distance, causing further compression of the spring, and the anti-pinch force exceeds the anti-pinch detection threshold F_THR. It should be noted that F in Figure 2 is for 65N when the controller detects that the anti-pinch force exceeds the anti-pinch detection threshold F_THR.
  • the anti-pinch force measured by the dynamometer F1 in Figure 2 is the anti-pinch force measured by the dynamometer for the 65N/mm spring when the glass is actually reversed, ⁇ F1 is the difference between F1 and F .
  • the most stringent situation requires the spring compression distance between AD to be less than 1.53mm (100N/65N/mm). Therefore, it is necessary to design a reasonable anti-pinch detection program to reduce detection delay and reversal delay, and at a short distance
  • the anti-pinch event is quickly detected in the internal, in order to ensure the consistency of the measured force at different obstacle stiffnesses, it is necessary to identify different obstacle stiffnesses and select different anti-pinch detection thresholds.
  • the obstacle is essentially a spring
  • the obstacle stiffness is the spring stiffness. In the actual use stage, the obstacle stiffness is the stiffness of the obstacle actually encountered.
  • an anti-pinch detection method that can meet S5 regulations and has a good detection effect.
  • This method is suitable for scenarios that require anti-pinch detection of closed parts.
  • This method can be applied to a controller that can control a closed part.
  • the following embodiments will introduce the anti-pinch detection method provided by the present invention that meets the S5 regulations.
  • FIG. 3 shows a schematic flowchart of an anti-pinch detection method that satisfies S5 regulations provided by an embodiment of the present invention.
  • the method may include:
  • Step S301 Determine the first current change rate according to the current collected in the current current collection period and the current collected in the previous current collection period.
  • the current of the motor is periodically collected.
  • the closing parts can be, but are not limited to, movable parts such as doors and windows, sunroofs, rearview mirrors, and seats of automobiles.
  • the current of the motor can be collected through a sampling resistor and a differential amplifier.
  • the process of determining the first current rate of change ⁇ I 1 (k) for the current I(k-1) may include: calculating the current I(k) collected in the current current collection period and the current collected in the previous current collection period as I(k- The difference of 1) is taken as the first current change rate ⁇ I 1 (k), namely:
  • Step S302 Determine the second current change rate according to the current collected in the current current collection period and the current collected in the target current collection period.
  • N is an integer greater than or equal to 2, for example, N can be 3 or 4.
  • the second current rate of change can be determined according to the current collected in the current current collection period and the current collected in the target current collection period. Assuming that the current collected in the current current collection period is I(k), the current collected in the target current collection period Is I(kN). In a possible implementation, the difference between the current I(k) collected in the current current collection period and the current I(kN) collected in the target current collection period can be calculated as the second current rate of change ⁇ I 2 , namely:
  • the filter value If(k) of the current collected in the current current collection period can be calculated.
  • the filter value If(kN) of the current collected during the target current collection period as the second current change rate ⁇ I 2 , namely:
  • the filter value If(k) of the current collected in the current current collection period is obtained by filtering the current I(k) collected in the current current collection period
  • the filter value If(kN) of the current collected in the target current collection period is obtained by filtering The current I (kN) collected during the target current collection period is filtered and obtained.
  • a first-order sliding filter can be used to filter the current I(k) collected in the current current collection period and the current I(kN) collected in the target current collection period, and the first-order sliding filter can be used to filter the current I(k)
  • the algorithm for filtering is as follows:
  • K1 and K2 are weighting coefficients.
  • Step S303 Detect whether the closing component encounters an obstacle according to the second current change rate. If it is detected that the closing component encounters an obstacle, step S304 is executed. If it is not detected that the closing component encounters an obstacle, then return to step S301.
  • the process of detecting whether the closing component encounters an obstacle according to the second current change rate may include: detecting the contact position zero point according to the second current change rate; when the contact position zero point is detected, determining that the closing component encounters the obstacle.
  • the contact position zero point is the position point where the closing component and the obstacle start to contact.
  • Step S304 Determine the stiffness of the obstacle according to the first current rate of change.
  • the core of the anti-pinch detection that meets the S5 regulations is to be able to distinguish obstacles of different stiffness, such as 65N/mm and 20N/mm springs, so that different anti-pinch detection thresholds and obstacles can be selected for obstacles of different stiffness. Stiffness, so as to achieve the same force measurement of different obstacle stiffness.
  • 65N/mm and 20N/mm springs as an example, if the anti-pinch detection threshold and spring stiffness corresponding to the 65N/mm spring are used uniformly, the detection method may be too sensitive when the 20N/mm spring is used, resulting in false detection. Uniform use of the anti-pinch detection threshold and spring stiffness corresponding to the 20N/mm spring may result in excessive anti-pinch force when the 65N/mm spring is used.
  • the present invention uses the first current change rate to distinguish the stiffness of the obstacle, such as 65N/mm and The stiffness of the 20N/mm spring.
  • FIG 4 which shows the resistance characteristic curve of the motor movement when the closing part does not encounter an obstacle, that is, the current characteristic curve. Due to the different resistance of the guide rail of the closing part, the current rate of change at different positions is different. Under the condition that the closing part does not encounter obstacles, determine the first current rate of change at different motor positions, and store the first current rate of change at different motor positions in the nonvolatile storage unit of the controller (Electrically Erasable Programmable read only memory, EEPROM) for subsequent reference.
  • EEPROM Electrical Erasable Programmable read only memory
  • Figure 5 shows the resistance characteristic curve when the closing part encounters an obstacle.
  • the resistance of the motor increases and the current increases.
  • the stiffness of the obstacle is determined according to the first current rate of change.
  • the stiffness of the obstacle can be determined by the first current rate of change and the first current rate of change calibrated for the currently collected motor position under the condition that the closing component does not encounter the obstacle:
  • Ko is the stiffness of the obstacle
  • ⁇ I 1 (k) is the first current rate of change
  • ⁇ I 1 r(k) is the first calibrated position of the motor that is currently collected under the condition that the closing component does not encounter the obstacle.
  • Kv*Kt is a preset parameter, which can be obtained through bench calibration.
  • the purpose of introducing the first current change rate ⁇ I 1 r(k) calibrated for the collected motor position when the closing component does not encounter an obstacle is to avoid false detection due to changes in resistance characteristics when there are no obstacles.
  • Step S305 Determine the real-time obstacle compression distance according to the contact position zero point and the real-time collected motor position.
  • the real-time obstacle compression distance is the difference between the real-time collected motor position and the zero point of the contact position.
  • the contact position zero point is determined according to the motor position collected when the closing component encounters an obstacle.
  • Step S306 Determine the real-time anti-pinch force according to the stiffness of the obstacle and the real-time obstacle compression distance, and control the motor to reverse when the real-time anti-pinch force is greater than the preset anti-pinch detection threshold.
  • the anti-pinch detection threshold is determined according to the stiffness of the obstacle.
  • Figure 6 shows the relationship between the anti-pinch force and the compression distance of obstacles with different stiffness.
  • the obstacle stiffness Ko1>Ko2 if you want to ensure With the same anti-pinch force f, it is necessary to control the obstacle compression distance S1 corresponding to a1 to be smaller than the obstacle compression distance S2 corresponding to a2, that is, to meet the same anti-pinch force, the obstacle with high rigidity should be selected smaller Obstacle compression distance, for low rigidity obstacles, select larger obstacle compression distance. Therefore, to distinguish the stiffness of different obstacles, it is also necessary to determine the compression distance of different obstacles to achieve the consistency of the anti-pinch force of objects with different stiffness.
  • the real-time anti-pinch force can be calculated based on the obstacle stiffness and the real-time obstacle compression distance. Compared with the speed-based anti-pinch detection method, this embodiment can be more intuitive Reflect the size of anti-pinch force.
  • the force it receives has a first-order linear relationship with its degree of compression.
  • the obstacle can be approximated as an object with uniform rigidity within a short period of time for the closing part to prevent pinching and reversal. Therefore:
  • ⁇ S(k) is the compression distance of the obstacle at time k
  • Ko is the stiffness of the obstacle
  • F(k) is the anti-pinch force at time k.
  • the motor After obtaining the real-time anti-pinch force F(k), judge whether the real-time anti-pinch force F(k) is greater than the preset anti-pinch detection threshold F_THR, which is selected based on the determined Ko. If the real-time anti-pinch force F( k) If it is greater than the preset anti-pinch detection threshold F_THR, it is determined that an anti-pinch event has occurred, and at this time, the motor is controlled to reverse.
  • F_THR the preset anti-pinch detection threshold
  • the rigidity and anti-pinch detection thresholds corresponding to the two identifiable hardest and softest rigid objects can be obtained by calibration.
  • the two solid lines in the figure show the two rigidities of Ko1 and Ko2.
  • the relationship between the compression distance and the anti-pinch force corresponding to an obstacle, the upper dashed line indicates the boundary of 100N anti-pinch force. Therefore, the state of the obstacle located in the shaded area indicates an object with a stiffness between Ko1 and Ko2.
  • the force is less than 100N.
  • the first current change is determined based on the current collected in the current current collection period and the current collected in the previous current collection period.
  • the second current rate of change is determined according to the current collected in the current current collection period and the current collected in the target current collection period, and then the second current rate of change is used to detect whether the closing part encounters an obstacle, and when it is detected that the closing part encounters an obstacle.
  • the stiffness of the obstacle is determined according to the first current rate of change, and the real-time obstacle compression distance is determined based on the zero point of the contact position and the real-time collected motor position.
  • the real-time obstacle compression distance is determined according to the stiffness of the obstacle and the real-time obstacle compression distance
  • the motor is controlled to reverse.
  • the anti-pinch detection method provided by the present invention performs obstacle detection based on the second current change rate, can quickly and accurately detect the obstacle, and determines the obstacle stiffness based on the first current change rate, so that obstacles with different stiffness can be obtained
  • different anti-pinch detection thresholds can be selected, so as to ensure the consistency of the measurement force, and can avoid the false anti-pinch caused by the small anti-pinch detection threshold setting when an anti-pinch detection threshold is adopted.
  • the anti-pinch detection method provided by the embodiment of the present invention can meet the S5 regulations, has a fast detection speed, a good detection effect, and can avoid false anti-pinch.
  • the embodiment of the present invention controls the motor to move at the motor movement speed corresponding to the area where the closing member is located.
  • a closed loop control method based on pulse width modulation Pulse Width Modulation, PWM for short may be used to control the motor movement.
  • the movable area of the closing component in the closing direction includes multiple non-overlapping areas. Each area corresponds to a set motor speed. Different areas have different motor speeds. The distance from the movable area is in the closing direction. The area closer to the end point corresponds to the smaller the motor speed.
  • the movement speed of the motor may not be distinguished.
  • the movement speed of the motor can be controlled to V3, as shown in Fig. 8b.
  • the PWM full duty cycle may be used to control the motor reverse rotation, so as to achieve the shortest distance braking the motor and reduce the forward distance.
  • the embodiment of the present invention controls the speed of the motor in different areas, which can reduce the forward stroke distance when the motor is cut and stopped.
  • the zero point of the contact position can be detected according to the second current rate of change, and when the zero point of the contact position is detected, it is determined that the closing component encounters an obstacle.
  • the following describes the implementation process of detecting the zero point of the contact position according to the second current rate of change.
  • the position acquisition unit may be a Hall sensor, and the current position count of the Hall sensor may be acquired as the contact position zero point.
  • Step S901 Determine whether the second current change rate ⁇ I 2 is greater than the preset first threshold ⁇ I 1 _THR, if the second current change rate is greater than the first threshold ⁇ I 1 _THR, perform step S902; otherwise, perform step S301, that is, again Perform anti-pinch detection method.
  • the first threshold ⁇ I 1 _THR is obtained through calibration.
  • Step S902 Obtain the currently collected motor position as the zero point of the suspected contact position.
  • the motor position currently collected by the position collecting unit can be obtained as the suspected contact position zero point.
  • the position acquisition unit may be a Hall sensor, and the current position count of the Hall sensor may be acquired as the suspected contact position zero point.
  • Step S903 Determine whether the suspected contact position zero point is verified. If the suspected contact position zero point is verified, then step S904 is executed. If the suspected contact position zero point is not verified, then step S301 is executed, that is, the anti-pinch detection method is executed again.
  • the position count of the Hall sensor can be regarded as the suspected position zero point. If it is determined that the suspected contact position zero point is not the correct contact position zero point, the position count accumulated before the Hall sensor needs to be cleared.
  • the process of judging whether the suspected contact position zero point is verified may include: after obtaining the suspected contact position zero point, each time the current of the motor is collected, based on the second current change rate determined in real time, and /Or, the third current change rate determined in real time and the historical third current change rate determine whether the suspected contact position zero point is verified.
  • the third current change rate in real time through the collected current and the current corresponding to the zero point of the suspected contact position. In one possible way, it can be calculated The difference between the collected current I(k) and the current I 0 corresponding to the zero point of the suspected contact position is taken as the third current change rate ⁇ I 3 , namely:
  • the acquired current calculated I (k) If the filtered value (K) corresponding to a position in contact with the suspected current filtered value 0. If I at 0:00 of the difference as a third Current rate of change, namely:
  • the process of judging whether the suspected contact position zero point is verified may include: After contacting the zero point of the position, if at least one of the following two conditions occurs, it is determined that the zero point of the suspected contact position has not been verified. If the following two conditions do not occur, it is determined that the zero point of the suspected contact position has been verified.
  • the first situation is: the second current change rate determined in real time is less than the preset second threshold; the second situation is: the third current change rate determined in real time and the historical third current change rate continuously appear in the third current.
  • the case where the rate of change is greater than the preset third threshold, and the case where the rate of change of the third current is greater than the preset third threshold lasts longer than the preset duration.
  • the second threshold and the third threshold are both fixed values, which may be empirical values obtained through multiple experiments.
  • Step S904 Determine the zero point of the suspected contact position as the zero point of the contact position.
  • the embodiment of the present invention can quickly and accurately detect the zero point of the contact position based on the second current change rate.
  • the real-time obstacle compression distance ⁇ S can be calculated according to the contact position zero point.
  • the real-time obstacle compression distance ⁇ S is the difference between the real-time collected motor position S(k) and the contact position zero point S 0 . which is:
  • the motor position S(k) collected in real time can be the current position count of the Hall sensor.
  • the position count based on the Hall sensor can accurately determine the obstacle compression distance ⁇ S.
  • the embodiment of the present invention also provides an anti-pinch detection device.
  • the anti-pinch detection device provided by the embodiment of the present invention will be described below.
  • the anti-pinch detection device described below and the above-described anti-pinch detection method can be referred to each other.
  • FIG. 10 shows a schematic structural diagram of an anti-pinch detection device that meets S5 regulations according to an embodiment of the present invention.
  • the anti-pinch detection device that meets S5 regulations may include: a first current change rate determination module 1001, a first 2. Current rate of change determination module 1002, obstacle detection module 1003, obstacle stiffness determination module 1004, obstacle compression distance determination module 1005, anti-pinch force determination module 1006, and motor reversal control module 1007.
  • the first current rate of change determination module 1001 is configured to determine the first current rate of change based on the current collected in the current current collection period and the current collected in the previous current collection period.
  • the current of the motor is periodically collected.
  • the second current change rate determining module 1002 is configured to determine the second current change rate according to the current collected in the current current collection period and the current collected in the target current collection period.
  • N is an integer greater than or equal to 2.
  • the obstacle detection module 1003 is configured to detect whether the closing component encounters an obstacle according to the second current change rate.
  • the obstacle stiffness determination module 1004 is configured to determine the stiffness of the obstacle according to the first current change rate if it is detected that the closing component encounters the obstacle.
  • the obstacle compression distance determination module 1005 is used to determine the real-time obstacle compression distance according to the contact position zero point and the real-time collected motor position.
  • the contact position zero point is determined according to the motor position collected when the closing component encounters an obstacle.
  • the anti-pinch force determination module 1006 is used to determine the real-time anti-pinch force according to the stiffness of the obstacle and the real-time obstacle compression distance.
  • the motor reverse rotation control module 1007 is used to control the reverse rotation of the motor when the real-time anti-pinch force is greater than the preset anti-pinch detection threshold.
  • the anti-pinch detection threshold is determined according to the stiffness of the obstacle.
  • the anti-pinch detection device performs obstacle detection based on the second current rate of change, can quickly and accurately detect the obstacle, and determines the stiffness of the obstacle based on the first current rate of change, so that obstacles with different stiffness can be obtained
  • different anti-pinch detection thresholds can be selected, so as to ensure the consistency of the measurement force, and can avoid the false anti-pinch caused by the small anti-pinch detection threshold setting when an anti-pinch detection threshold is adopted.
  • the anti-pinch detection method provided by the embodiment of the present invention can meet the S5 regulations, has a fast detection speed, a good detection effect, and can avoid false anti-pinch.
  • the second current change rate determining module 1002 in the anti-pinch detection device is specifically used to calculate the difference between the current collected in the current current collection period and the current collected in the target current collection period. Or, calculate the difference between the filtered value of the current collected in the current current collection period and the filtered value of the current collected in the target current collection period as the second current rate of change.
  • the obstacle detection module 1003 in the anti-pinch detection device may include: a contact position zero detection module and an obstacle determination module.
  • the contact position zero point detection module is used to detect the contact position zero point according to the second current rate of change.
  • the contact position zero point is the position point where the closing component and the obstacle start to contact.
  • the obstacle determination module is used to determine that the closed component encounters an obstacle when the zero point of the contact position is detected.
  • the contact position zero detection module is specifically used to obtain the current collected motor position as the suspected contact position zero when the second current rate of change is greater than the preset first threshold; determine the suspected contact position zero Whether the verification is passed; if the suspected contact position zero is verified, the suspected contact position zero is regarded as the contact position zero; if the suspected contact position zero is not verified, the first current rate of change determination module 1001 is triggered according to the current collected by the current current collection period The first current rate of change is determined with the current collected in the previous current collection period, and the second current rate of change determination module 1002 determines the second current rate of change based on the current collected in the current current collection period and the current collected in the target current collection period.
  • the contact position zero detection module is specifically used to determine whether the zero point of the suspected contact position has passed the verification after obtaining the zero point of the suspected contact position. Second, the current rate of change, and/or the real-time determined third current rate of change and the historical third current rate of change, to determine whether the suspected contact position zero point is verified.
  • the third current rate of change is determined in real time through the collected current and the current corresponding to the zero point of the suspected contact position.
  • the contact position zero detection module determines the suspected contact position based on the real-time determined second current change rate, and/or the real-time determined third current change rate and the historical third current change rate When the zero point is verified, it is specifically used to determine that the suspected contact position zero point has not been verified if at least one of the following two situations occurs after the suspected contact position zero point is obtained. If the following two situations do not occur, then determine Pass the zero point verification of the suspected contact position;
  • the first case is: the second current change rate determined in real time is less than the preset second threshold;
  • the second situation is: the third current change rate determined in real time and the historical third current change rate continuously occur that the third current change rate is greater than the preset third threshold, and the third current change rate is greater than the preset
  • the duration of the third threshold is greater than the preset duration.
  • the obstacle stiffness determination module 1004 in the anti-pinch detection device provided in the foregoing embodiment is specifically used to pass the first current change rate, and when the closing component does not encounter an obstacle , Determine the stiffness of the obstacle based on the first current rate of change calibrated by the currently collected motor position.
  • the anti-pinch detection device provided in the foregoing embodiment further includes a speed control module.
  • the speed control module is used to control the movement of the motor to drive the closing part to close, and to control the motor to move at the motor speed corresponding to the area where the closing part is located.
  • the movable area of the closing component in the closing direction includes multiple non-overlapping areas. Each area corresponds to a set motor speed. Different areas have different motor speeds. The distance from the movable area is in the closing direction. The area closer to the end point corresponds to the smaller the motor speed.
  • the embodiment of the present invention also provides a controller.
  • the controller may include: at least one processor 1101, at least one communication interface 1102, at least one memory 1103, and At least one communication bus 1104;
  • the number of the processor 1101, the communication interface 1102, the memory 1103, and the communication bus 1104 is at least one, and the processor 1101, the communication interface 1102, and the memory 1103 complete mutual communication through the communication bus 1104;
  • the processor 1101 may be a central processing unit CPU, or a specific integrated circuit (ASIC) (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present invention, etc.;
  • ASIC Application Specific Integrated Circuit
  • the memory 1103 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory;
  • the memory stores a program
  • the processor can call the program stored in the memory
  • the program is used for:
  • the stiffness of the obstacle is determined according to the first current rate of change
  • the contact position zero point is determined according to the motor position collected when the closed component encounters the obstacle;
  • the embodiment of the present invention also provides a readable storage medium, the readable storage medium may store a program suitable for execution by a processor, and the program is used for:
  • the stiffness of the obstacle is determined according to the first current rate of change
  • the embodiment of the present invention also provides an anti-pinch detection system.
  • FIG. 12 shows a schematic structural diagram of the anti-pinch detection system.
  • the system may include: a current collection unit 1201, a position collection unit 1202, and a controller 1203.
  • the controller 1203 is configured to use the current collection unit 1201 to collect the current of the motor according to a preset current collection cycle during the process of controlling the movement of the motor to drive the closing part to close; and the position collection unit 1202 to collect the real-time motor of the motor Position; Determine the first current rate of change based on the current collected in the current current collection period and the current collected in the previous current collection period; Determine the second current rate of change based on the current collected in the current current collection period and the current collected in the target current collection period; The second current rate of change detects whether the closing part encounters an obstacle; if it is detected that the closing part encounters an obstacle, the stiffness of the obstacle is determined according to the first current rate of change; the real-time determination is determined according to the contact position zero and the real-time collected motor position Obstacle compression distance: Determine the real-time anti-pinch force according to the stiffness of the obstacle and the real-time obstacle compression distance, and control the motor to reverse when the real-time anti-pinch force is greater than the preset anti-p
  • N is an integer greater than or equal to 2
  • the contact position zero is based on the motor position collected by the position collection unit 1202 when the closed component encounters an obstacle. Confirm;
  • the anti-pinch detection threshold is determined according to the stiffness of the obstacle.
  • the current collecting unit 1201 includes: a sampling resistor 12011 and a differential amplifier 12012.
  • the sampling resistor 12011 converts the current in the running process of the motor into a voltage signal; the differential amplifier 12012 amplifies the voltage signal to obtain the amplified voltage signal.
  • the controller 1203 is specifically configured to collect the current of the motor according to a preset current collection period based on the amplified voltage signal.
  • FIG. 13 shows the principle diagram of motor control and current acquisition.
  • the figure includes H bridge, sampling resistor and differential amplifier.
  • the sampling resistor is set in the middle of the H bridge.
  • Ub in the figure represents the power supply voltage, which can be 12V.
  • GND represents the ground terminal,
  • Vs represents the working voltage of the differential amplifier, which can be 5V, and
  • Out represents the output of the differential amplifier.
  • the sampling resistor converts the current during the operation of the motor into a voltage signal, and the differential amplifier amplifies the voltage signal, so that the controller 1203 collects the current of the motor based on the amplified voltage signal.
  • H bridge is a typical DC motor control circuit, because its circuit shape is exactly like the letter "H", so it is named “H bridge", as shown in Figure 13, 4 transistors FET1, FET2, FET3, FET4 Make up the 4 vertical legs of "H", and motor M is the horizontal bar in "H", CW means that the motor rotates clockwise (that is, forward), and CCW means that the motor rotates counterclockwise (that is, reverse).
  • CW means that the motor rotates clockwise (that is, forward)
  • CCW means that the motor rotates counterclockwise (that is, reverse).
  • the transistors FET2 and FET3 are turned on.
  • the sampling resistor and differential amplifier can be used to collect the current when the motor M rotates.
  • the transistors FET1 and FET4 are turned on. At this time, the sampling resistor is used.
  • the differential amplifier and the differential amplifier can collect the current when the motor M is reversed. In this way, only one sampling resistor and a single op amp can simultaneously collect the current when the motor is reversed, thereby saving hardware costs.
  • the input terminal of the differential amplifier can be raised 2.5V
  • the voltage range of the differential amplifier input terminal is 2.5-5V when the motor is rotating
  • the voltage range of the differential amplifier input terminal is 0-2.5V when the motor is reversed.
  • the controller 1203 realizes bidirectional current detection.
  • the anti-pinch detection system provided in the foregoing embodiment may further include a speed collection unit.
  • the controller 1203 is also used to control the motor to move at a motor speed corresponding to the area where the closing member is located during the process of controlling the movement of the motor to drive the closing component to close.
  • the controller 1203 collects the real-time movement speed of the motor using the speed collection unit, and adjusts the movement speed of the motor to the movement speed of the motor corresponding to the area where the closing component is located according to the real-time movement speed of the motor.
  • the movable area of the closing component in the closing direction includes a plurality of non-overlapping areas, each area corresponds to a set motor speed, and different areas correspond to different motor speeds, and the distance movable area is closed The closer the end point in the direction corresponds to the smaller the motor speed.
  • the controller 1203 determines the second current rate of change based on the current collected in the current current collection period and the current collected in the target current collection period, it is specifically used to calculate the current collected in the current current collection period and the current collected in the target current collection period.
  • the difference of the current is used as the second current rate of change; or, the difference between the filtered value of the current collected in the current current collection period and the filtered value of the current collected in the target current collection period is calculated as the second current rate of change.
  • the controller 1203 when the controller 1203 detects whether the closing component encounters an obstacle according to the second current change rate, it is specifically configured to detect the contact position zero point according to the second current change rate, where the contact position zero point is the start of the closing component and the obstacle. The point of contact; when the zero point of the contact position is detected, it is determined that the closed part encounters an obstacle.
  • the controller 1203 when the controller 1203 detects the contact position zero point according to the second current change rate, it is specifically configured to obtain the currently collected motor position as the suspected contact position zero point when the second current change rate is greater than the preset first threshold; Judge whether the zero point of the suspected contact position is verified; if the zero point of the suspected contact position is verified, the zero point of the suspected contact position is taken as the zero point of the contact position; if the zero point of the suspected contact position is not verified, the current collected according to the current current collection cycle and the previous one are executed.
  • the current collected in the current collection period determines the first current rate of change
  • the second current rate of change is determined based on the current collected in the current current collection period and the current collected in the target current collection period.
  • the controller 1203 judges whether the suspected contact position zero point is verified, it is specifically used to collect the current of the motor every time after obtaining the suspected contact position zero point, based on the second current change rate determined in real time, And/or, the third current change rate determined in real time and the historical third current change rate determine whether the suspected contact position zero point is verified.
  • the third current rate of change is determined in real time based on the collected current and the current corresponding to the zero point of the suspected contact position.
  • the controller 1203 determines whether the suspected contact position zero point has passed the verification based on the real-time determined second current change rate, and/or the real-time determined third current change rate and the historical third current change rate, the specific After obtaining the zero point of the suspected contact position, if at least one of the following two conditions occurs, it is determined that the zero point of the suspected contact position has not been verified, and if the following two conditions do not occur, the zero point of the suspected contact position is determined to be verified;
  • the first case is: the second current change rate determined in real time is less than the preset second threshold;
  • the second situation is: the third current change rate determined in real time and the historical third current change rate continuously occur that the third current change rate is greater than the preset third threshold, and the third current change rate is greater than the preset
  • the duration of the third threshold is greater than the preset duration.
  • the controller 1203 determines the stiffness of the obstacle according to the first current rate of change, it is specifically configured to pass the first current rate of change, and when the closing component does not encounter the obstacle, the current acquisition
  • the first current change rate of the motor position calibration determines the stiffness of the obstacle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Window Of Vehicle (AREA)

Abstract

本发明提供了一种防夹检测方法及***,方法包括:根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率,目标电流采集周期与当前电流采集周期之间相差N个采集周期;根据第二电流变化率检测闭合部件是否遇到障碍物,若是,则根据第一电流变化率确定障碍物刚度;根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;根据障碍物刚度和实时的障碍物压缩距离确定实时防夹力,并在实时防夹力大于预设的防夹检测阈值时,控制电机反转。本发明提供的防夹检测方法能够满足S5法规,且检测效果较好。

Description

一种防夹检测方法及***
本申请要求于2019年7月10日提交中国专利局、申请号为201910620150.5、发明名称为“一种防夹检测方法及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车车身控制技术领域,尤其涉及一种防夹检测方法及***。
背景技术
随着汽车技术的发展,大量由直流有刷电机控制和驱动的部件被广泛应用,以提高车辆操作的舒适性,比如,通过电机驱动天窗、门窗、后视镜、座椅等运动部件的电动打开和关闭。针对此类电机闭合***,相关法规在保护人身安全方面提出了设计约束,即通过电机操作闭合部件闭合的过程中,在法规规定的范围内(4-200mm)必须具备防夹功能。
对于欧标和国标要求采用10N/mm弹簧测试,防夹力小于100N;而对于美标FMVSS118(以下简称S5),要求4-25mm范围内采用65N/mm弹簧测试,防夹力要小于100N,25-200mm范围内采用20N/mm弹簧测试,防夹力要小于100N。近年来,为了得到更好的闭合部件防夹效果、提高安全性,越来越多的汽车厂商要求满足S5法规,且要求不同刚度弹簧测力一致性要好,误防夹风险要低,基于此,亟需一种满足S5法规且检测效果较好的防夹检测方法。
发明内容
有鉴于此,本发明提供了一种防夹检测方法及***,用以提供一种满足S5法规且检测效果较好的闭合部件防夹检测方法,其技术方案如下:
一种防夹检测方法,包括:
根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;其中,在控制电机运动以驱动闭合部件闭合的过程中,周期性采集所述电机的电流;
根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;其中,所述目标电流采集周期与所述当前电流采集周期 之间相差N个电流采集周期,N为大于或等于2的整数;
根据所述第二电流变化率检测所述闭合部件是否遇到障碍物;
若检测到所述闭合部件遇到所述障碍物,则根据所述第一电流变化率确定所述障碍物的刚度;
根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;其中,所述接触位置零点根据检测到所述闭合部件遇到所述障碍物时采集的电机位置确定;
根据所述障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制所述电机反转;其中,所述防夹检测阈值根据所述障碍物的刚度确定。
可选的,所述根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率,包括:
计算所述当前电流采集周期采集的电流与所述目标电流采集周期采集的电流的差值,作为所述第二电流变化率;
或者,
计算所述当前电流采集周期采集的电流的滤波值与所述目标电流采集周期采集的电流的滤波值的差值,作为所述第二电流变化率。
可选的,所述根据所述第二电流变化率检测所述闭合部件是否遇到障碍物,包括:
根据所述第二电流变化率检测所述接触位置零点,其中,所述接触位置零点为所述闭合部件与所述障碍物开始接触的位置点;
当检测到所述接触位置零点时,确定所述闭合部件遇到障碍物。
可选的,所述根据所述第二电流变化率检测所述接触位置零点,包括:
当所述第二电流变化率大于预设的第一阈值时,获取当前采集的电机位置作为疑似接触位置零点;
判断所述疑似接触位置零点是否验证通过;
若所述疑似接触位置零点验证通过,则将所述疑似接触位置零点作为所述接触位置零点;
若所述疑似接触位置零点未验证通过,则执行所述根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,以及,所述 根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率。
可选的,所述判断所述疑似接触位置零点是否验证通过,包括:
在获得所述疑似接触位置零点后,每采集到一次所述电机的电流时,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断所述疑似接触位置零点是否验证通过;
其中,每采集到一次所述电机的电流时,通过所采集的电流和所述疑似接触位置零点处对应的电流实时确定第三电流变化率。
可选的,所述基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断所述疑似接触位置零点是否验证通过,包括:
在获得所述疑似接触位置零点后,若出现以下两种情况中的至少一种,则确定所述疑似接触位置零点未验证通过,若均没有出现以下两种情况,则确定所述疑似接触位置零点验证通过;
第一种情况为:实时确定的第二电流变化率小于预设的第二阈值;
第二种情况为:实时确定的第三电流变化率及历史的第三电流变化率中连续出现第三电流变化率大于预设的第三阈值的情况,且第三电流变化率大于预设的第三阈值这一情况的持续时长大于预设时长。
可选的,所述的防夹检测方法还包括,在控制所述电机运动以驱动所述闭合部件闭合的过程中,控制所述电机以所述闭合部件所处区域对应的电机运动速度运动;
其中,所述闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离所述可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
一种控制器,包括:存储器和处理器;
所述存储器,用于存储程序;
所述处理器,用于执行所述程序,实现前述任一项所述的防夹检测方法。
一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现前述任一项所述的防夹检测方法。
一种防夹检测***,包括:电流采集单元、位置采集单元和控制器;
所述控制器,用于在控制电机运动以驱动闭合部件闭合的过程中,利用所述电流采集单元按预设的电流采集周期采集所述电机的电流;利用所述位置采集单元采集所述电机实时的电机位置;根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;根据所述第二电流变化率检测所述闭合部件是否遇到障碍物;若检测到所述闭合部件遇到所述障碍物,则根据所述第一电流变化率确定所述障碍物的刚度;根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;根据所述障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制所述电机反转;
其中,所述目标电流采集周期与所述当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;所述接触位置零点根据检测到所述闭合部件遇到所述障碍物时所述位置采集单元采集的电机位置确定;所述防夹检测阈值根据所述障碍物的刚度确定。
可选的,所述电流采集单元包括:采样电阻和差分放大器;所述采样电阻将所述电机运行过程中的电流转换为电压信号;所述差分放大器对所述电压信号进行放大,获得放大后的电压信号;
所述控制器,具体用于基于所述放大后的电压信号,按预设的电流采集周期采集所述电机的电流。
可选的,所述控制器,还用于在控制电机运动以驱动闭合部件闭合的过程中,控制所述电机以所述闭合部件所处区域对应的电机运动速度运动;
其中,所述闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离所述可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
经由上述方案可知,本发明提供的一种防夹检测方法及***,在电机运动以驱动闭合部件闭合的过程中,首先根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,并根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率,然后根据第二电 流变化率检测闭合部件是否遇到障碍物,当检测到闭合部件遇到障碍物时,根据第一电流变化率确定障碍物的刚度,并根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离,最后根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转。本发明提供的防夹检测方法,基于第二电流变化率进行障碍物检测,能够快速、准确地检测到障碍物,基于第一电流变化率确定障碍物刚度,使得针对不同刚度的障碍物可获得不同的障碍物刚度值,并可以此选取不同的防夹检测阈值,从而能够保证测力的一致性,且能够避免采用一个防夹检测阈值时防夹检测阈值设置较小导致的误防夹。综上,本发明提供的防夹检测方法能够满足S5法规,且检测速度快,检测效果好,能够避免误防夹。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的S5防夹区定义及防夹过程示意图;
图2为本发明实施例提供的从测力计接触到障碍物到识别到防夹事件并控制玻璃反转这一过程的分析图;
图3为本发明实施例提供的防夹检测方法的流程示意图;
图4为本发明实施例提供的电机运动的阻力特性曲线的示意图;
图5为本发明实施例提供的当闭合部件遇到障碍物时的阻力特性曲线的示意图;
图6为本发明实施例提供的不同刚度物体对应的防夹力与压缩距离的关系示意图;
图7为本发明实施例提供的可检测物体刚度边界的示意图;
图8a和图8b分别为本发明实施例提供的天窗闭合过程中,采用脉冲宽度调制分区域对电机速度进行闭环控制的示意图,以及天窗打开过程中、对电机速度进行控制的示意图;
图9为本发明实施例提供的基于实时的第二电流变化率检测接触位置零点 的一实现方式的流程示意图;
图10为本发明实施例提供的满足S5法规的防夹检测装置的结构示意图;
图11为本发明实施例提供的控制器的结构示意图;
图12为本发明实施例提供的满足S5法规的防夹检测***的结构示意图;
图13为本发明实施例提供的电机控制及电流采集的原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
为了能够获得满足S5法规且效果较好的闭合部件防夹检测方案,本案发明人进行了研究,在研究过程中发现:
现有技术中存在一些闭合部件防夹检测方案,这些防夹检测方案多为基于电机运动速度的防夹检测方案,该方案的大致思路为:在闭合部件闭合的过程中,如果遇到障碍物,电机的运动速度会下降,有鉴于此,可基于电机的运动速度确定防夹力,具体的,计算电机的实际运动速度与预设的参考运动速度的差值,通过计算得到的速度差值反算防夹力,当防夹力大于预设的防夹检测阈值时,控制电机反转。
发明人经研究发现,基于电机运动速度的防夹检测方案虽然能够满足10N/mm弹簧测试,但是,无法满足S5的防夹测试,若要使基于电机运动速度的防夹检测方案满足S5的防夹测试,则需要降低防夹检测阈值以增加检测灵敏度,而通过降低防夹检测阈值来增加检测灵敏度存在一个致命的缺陷,即当障碍物刚度较大时,需要非常小的防夹检测阈值才能满足防夹力小于100N的法规要求,然而,设置非常小的防夹检测阈值会因检测灵敏度过高导致防夹误检测,进而导致闭合部件无法正常闭合。
鉴于基于电机运动速度的防夹检测方案存在的问题,本案发明人试图摆脱基于电机运动速度的防夹检测方式,尝试通过其它方式实现满足S5法规的闭合部件防夹检测方案,发明人通过分析发现:使闭合部件的防夹检测方案满足S5的难点在于:其一,对高刚度障碍物实现快速的防夹检测及电机反转,其 二,能够区分不同刚度的障碍物,比如,区分65N/mm和20N/mm弹簧,以保证不同刚度障碍物测力结果的一致性。发明人的分析过程如下:
请参阅图1,示出了以天窗为例,S5防夹区定义及防夹检测过程,移动玻璃101与测力计102固定在一起,在4-25mm这一范围内,测力计102采用65N/mm弹簧进行测试,在25-200mm这一范围内,测力计102采用20N/mm弹簧进行测试,图1中的103为障碍物,104为玻璃全开位置,105为玻璃全关位置。请参阅图2,示出了从测力计接触障碍物到识别到防夹事件并控制移动玻璃反转全过程的示意图,图2中的A点为测力计与障碍物开始接触的点,图2中的直线L1反映的是针对65N/mm弹簧,测力计测得的防夹力与弹簧压缩距离的关系,直线L2反映的是针对20N/mm弹簧,测力计测得的防夹力与弹簧压缩距离的关系,B点为控制器开始进行防夹检测的点,图2中的直线L3反映的是控制器确定的防夹力与弹簧压缩距离的关系,AB之间为检测延迟,由于天窗传动***存在一定物理延迟,导致A点弹簧已经开始压缩时,B点控制器才识别得到信号变化,C点为控制器检测到防夹力超过设定的防夹检测阈值的点,此时,控制器向电机发送反转命令以控制电机反转,D点为实际的玻璃反转点,CD之间为反转延迟,由于惯性,控制器向电机发送反转命令后,移动玻璃仍然会前冲一段距离,导致进一步压缩弹簧,防夹力超过防夹检测阈值F_THR,需要说明的是,图2中的F为控制器检测到防夹力超过防夹检测阈值F_THR时,针对65N/mm弹簧,测力计测得的防夹力,图2中的F1为玻璃实际反转时,针对65N/mm弹簧,测力计测得的防夹力,ΔF1为F1与F的差值。对于法规S5,最严格的情况要求AD之间的弹簧压缩距离要小于1.53mm(100N/65N/mm),因此,要设计合理防夹检测方案,降低检测延迟和反转延迟,并在短距离内快速检测到防夹事件,为保证不同障碍物刚度时测力的一致性,需识别不同的障碍物刚度,并选取不同的防夹检测阈值。需要说明的是,在测试阶段,障碍物实质为弹簧,障碍物刚度为弹簧刚度,在实际使用阶段,障碍物刚度为实际遇到的障碍物的刚度。
在上述研究思路的基础上,本案发明人进一步进行深入研究,最终提供了一种能够满足S5法规且检测效果较好的防夹检测方法,该方法适用于需要对闭合部件进行防夹检测的场景,该方法可应用于可对闭合部件进行控制的控制器。接下来通过下述实施例对本发明提供的满足S5法规的防夹检测方法进行 介绍。
请参阅图3,示出了本发明实施例提供的满足S5法规的防夹检测方法的流程示意图,该方法可以包括:
步骤S301:根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率。
在本实施例中,在控制电机运动以驱动闭合部件闭合的过程中,周期性采集电机的电流。
其中,闭合部件可以但不限定为汽车的门窗、天窗、后视镜、座椅等可运动部件。可选的,在电机运动的过程中,可通过采样电阻和差分放大器采集电机的电流。
假设当前电流采集周期采集的电流为I(k),前一电流采集周期采集的电流为I(k-1),则根据当前电流采集周期采集的电流I(k)和前一电流采集周期采集的电流I(k-1)确定第一电流变化率ΔI 1(k)的过程可以包括:计算当前电流采集周期采集的电流I(k)与前一电流采集周期采集的电流为I(k-1)的差值,作为第一电流变化率ΔI 1(k),即:
ΔI 1(k)=I(k)-I(k-1)       (1)
步骤S302:根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率。
其中,目标电流采集周期与当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数,比如,N可为3或4。
根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率的实现方式有多种,假设当前电流采集周期采集的电流为I(k),目标电流采集周期采集的电流为I(k-N),在一种可能的实现方式中,可计算当前电流采集周期采集的电流I(k)与目标电流采集周期采集的电流I(k-N)的差值,作为第二电流变化率ΔI 2,即:
ΔI 2=I(k)-I(k-N)       (2)
考虑到电机运动过程中,直流分量上会叠加交流的纹波噪声,为了避免噪声的影响,在另一种较优的实现方式中,可计算当前电流采集周期采集的电流的滤波值If(k)与目标电流采集周期采集的电流的滤波值If(k-N)的差值,作为第二电流变化率ΔI 2,即:
ΔI 2=If(k)-If(k-N)     (3)
其中,当前电流采集周期采集的电流的滤波值If(k)通过对当前电流采集周期采集的电流I(k)进行滤波处理得到,目标电流采集周期采集的电流的滤波值If(k-N)通过对目标电流采集周期采集的电流I(k-N)进行滤波处理得到。
可选的,可采用一阶滑动滤波器对当前电流采集周期采集的电流I(k)和目标电流采集周期采集的电流I(k-N)进行滤波,采用一阶滑动滤波器对电流I(k)进行滤波的算法如下:
If(k)=K1*If(k-1)+K2*I(k)      (4)
其中,If(k-1)为前一时刻的电流滤波值,K1、K2为加权系数。
步骤S303:根据第二电流变化率检测闭合部件是否遇到障碍物,若检测到闭合部件遇到障碍物,则执行步骤S304,若未检测到闭合部件遇到障碍物,则返回执行步骤S301。
根据第二电流变化率检测闭合部件是否遇到障碍物的过程可以包括:根据第二电流变化率检测接触位置零点;当检测到接触位置零点时,确定闭合部件遇到障碍物。
其中,接触位置零点为闭合部件与障碍物开始接触的位置点。根据第二电流变化率检测接触位置零点的具体实现过程可参见后续实施例的说明。
步骤S304:根据第一电流变化率确定障碍物的刚度。
需要说明的是,满足S5法规的防夹检测的核心是能够区分不同刚度的障碍物,比如65N/mm和20N/mm弹簧,以便针对不同刚度的障碍物选取不同的防夹检测阈值和障碍物刚度,从而达到不同障碍物刚度测力一致。以65N/mm和20N/mm弹簧为例,若统一采用65N/mm弹簧对应的防夹检测阈值和弹簧刚度,则可能导致采用20N/mm弹簧时,检测方法过于灵敏,从而造成误检测,若统一采用20N/mm弹簧对应的防夹检测阈值和弹簧刚度,则可能导致采用65N/mm弹簧时,防夹力过大。
可以理解的是,电机运动过程中的电流大小反映了所受负载大小,电流的变化反应了阻力的变化,有鉴于此,本发明采用第一电流变化率区分障碍物刚度,比如65N/mm和20N/mm弹簧的刚度。
请参阅图4,示出了闭合部件未遇到障碍物时,电机运动的阻力特性曲线,即电流特性曲线,由于闭合部件导轨阻力不同,不同位置的电流变化率有一定 差异。在闭合部件未遇到障碍物的条件下,确定不同的电机位置处的第一电流变化率,并将不同的电机位置处的第一电流变化率存储到控制器的非易失存储单元(Electrically Erasable Programmable read only memory,EEPROM)中,以便后续参考。
请参阅图5,示出了闭合部件遇到障碍物时的阻力特性曲线,曲线中的A点处遇到障碍物,从A点开始,电机的阻力上升,电流增大。在本实施例中,当检测到闭合部件遇到障碍物时,根据第一电流变化率确定障碍物的刚度。
具体的,可通过第一电流变化率,以及,在闭合部件未遇到障碍物的条件下,针对当前采集的电机位置标定的第一电流变化率,确定障碍物的刚度:
Ko=Kv*Kt(ΔI 1(k)-ΔI 1r(k))        (5)
其中,Ko即为障碍物的刚度,ΔI 1(k)为第一电流变化率,ΔI 1r(k)为在闭合部件未遇到障碍物的条件下,针对当前采集的电机位置标定的第一电流变化率,其可从EEPROM中获取,Kv*Kt为预设参数,其可通过台架标定获得。
需要说明的是,引入闭合部件没有遇到障碍物时针对采集的电机位置标定的第一电流变化率ΔI 1r(k)的目的是,避免无障碍物时由于阻力特性变化造成误检测。
需要说明的是,闭合部件遇到障碍物后,障碍物刚度越大,第一电流变化率越大,因此,可依据不同电流变化率区分障碍物刚度。图5中的“1”、“2”、“3”分别代表三种不同刚度的障碍物下电机电流的变化趋势,显然刚度关系为1>2>3。
步骤S305:根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离。
具体的,实时的障碍物压缩距离为实时采集的电机位置与接触位置零点的差值。其中,接触位置零点根据检测到闭合部件遇到障碍物时采集的电机位置确定。
步骤S306:根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转。
其中,防夹检测阈值根据障碍物的刚度确定。
请参阅图6,示出了不同刚度障碍物对应的防夹力与障碍物压缩距离的关系,假设有两个刚度不同的障碍物a1和a2,且有障碍物刚度Ko1>Ko2,若要 保证具有相同的防夹力f,则需要分别控制a1对应的障碍物压缩距离S1小于a2对应的障碍物压缩距离S2,即满足同样防夹力的情况下,高刚度的障碍物应该选取较小的障碍物压缩距离,低刚度的障碍物选取较大的障碍物压缩距离。因此,区分出不同障碍物的刚度,还需要确定不同的障碍物压缩距离,即可实现不同刚度物体防夹力的一致性。
获得障碍物刚度和实时的障碍物压缩距离后,即可基于障碍物刚度和实时的障碍物压缩距离计算实时的防夹力,与基于速度的防夹检测方法相比,本实施例能够更直观反映防夹力大小。
根据胡克定律,对刚性均匀的物体,其所受到的力与其压缩程度成一阶线性关系,闭合部件防夹及反转的短时间内,障碍物可近似为刚性均匀的物体,因此有:
F(k)=Ko*ΔS(k)       (6)
其中,ΔS(k)为k时刻的障碍物压缩距离,Ko为障碍物刚度,F(k)即为k时刻的防夹力。
需要说明的是,防夹反转条件为F(k)=Ko*ΔS(k)<100N,则障碍物压缩距离应满足ΔS(k)<100N/Ko。
获得实时的防夹力F(k)后,判断实时的防夹力F(k)是否大于预设的防夹检测阈值F_THR,该阈值基于确定出的Ko选取,若实时的防夹力F(k)大于预设的防夹检测阈值F_THR,则判定检测到防夹事件发生,此时,控制电机反转。
实际应用时可通过标定得到可识别的最硬和最软两种刚度物体对应的刚度和防夹检测阈值,请参阅图7,图中的两条实线示出了刚度为Ko1和Ko2的两种障碍物所对应的压缩距离与防夹力的关系,上方虚线表示100N防夹力的边界,因此,坐落在阴影区域的障碍物状态表示刚度介于Ko1与Ko2之间的物体,其防夹力都是小于100N的。
本发明实施例提供的满足S5法规的防夹检测方法,在电机运动以驱动闭合部件闭合的过程中,首先根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,并根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率,然后根据第二电流变化率检测闭合部件是否遇到障碍物,当检测到闭合部件遇到障碍物时,根据第一电流变化率确定障碍物的刚度,并根据接触位置零点和实时采集的电机位置确定 实时的障碍物压缩距离,最后根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转。本发明提供的防夹检测方法,基于第二电流变化率进行障碍物检测,能够快速、准确地检测到障碍物,基于第一电流变化率确定障碍物刚度,使得针对不同刚度的障碍物可获得不同的障碍物刚度值,并可以此选取不同的防夹检测阈值,从而能够保证测力的一致性,且能够避免采用一个防夹检测阈值时防夹检测阈值设置较小导致的误防夹。综上,本发明实施例提供的防夹检测方法能够满足S5法规,且检测速度快,检测效果好,能够避免误防夹。
上述实施例提到,在实时的防夹力大于预设的防夹检测阈值时,控制电机反转,可以理解的是,电机反转前由于惯性会前冲一段距离,此过程会继续压缩弹簧,造成防夹力增大,为此,本发明实施例在控制电机运动以驱动闭合部件闭合的过程中,控制电机以闭合部件所处区域对应的电机运动速度运动。在本实施例中,可采用基于脉冲宽度调制(Pulse width modulation,简称PWM)的闭环控制方式控制电机运动。
其中,闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
以汽车的天窗为例:将天窗在闭合方向上的可运动区域划分为多个区域,比如,4-25mm、25-200mm、200mm之外,需要说明的是,4mm、25mm、200mm指的是到可运动区域在闭合方向上到终点的距离。针对每个区域设定一电机运动速度,比如4-25mm对应的电机运动速度为V 1,25-200mm对应的电机运动速度为V 2,200mm之外对应的电机运动速度为V 3,并且,V 3>V 2>V 1,即距离可运动区域在闭合方向上的终点越近,电机的运动速度越小。在对电机进行控制时,按天窗所在区域对应的速度控制电机运动,请参阅图8a,示出了天窗闭合过程中,分区域对电机速度进行控制的示意图。
需要说明的是,闭合部件在打开过程中,可不对电机的运动速度进行区分,比如,对于上述的天窗,可控制电机的运动速度为V3,如图8b所示。
优选的,当检测到实时的防夹力大于预设的防夹检测阈值时,可采用PWM满占空比控制电机反转,以实现最短距离制动电机,减少前冲距离。
本发明实施例分区域对电机速度进行控制,能够降低电机切停时的前冲距离。
上述内容提到,可根据第二电流变化率检测接触位置零点,当检测到接触位置零点时,确定闭合部件遇到障碍物。以下对根据第二电流变化率检测接触位置零点的实现过程进行介绍。
根据第二电流变化率检测接触位置零点的实现方式有多种:
在一种可能的实现方式中,可判断第二电流变化率ΔI 2是否大于预设的第一阈值ΔI 1_THR;若第二电流变化率大于预设的第一阈值ΔI 1_THR,则获取位置采集单元当前采集的电机位置作为接触位置零点。可选的,位置采集单元可以为霍尔传感器,可获取霍尔传感器的当前位置计数作为接触位置零点。
需要说明的是,接触位置零点过早选取会造成防夹力偏小,过晚选取会造成防夹力过大。理论上,当ΔI 2>ΔI 1_THR时,位置采集单元当前采集的电机位置即为接触位置零点,但考虑到第二电流变化率会随滑轨阻力变化而波动,这导致确定出的接触位置零点可能是错误的接触位置零点,有鉴于此,本实施例提供了另一种较优的实现方式,请参阅图9,示出了该实现方式的实现过程的流程示意图,可以包括:
步骤S901:判断第二电流变化率ΔI 2是否大于预设的第一阈值ΔI 1_THR,若第二电流变化率大于第一阈值ΔI 1_THR,则执行步骤S902,否则,执行步骤S301,即再次执行防夹检测方法。
其中,第一阈值ΔI 1_THR通过标定得。
步骤S902:获取当前采集的电机位置作为疑似接触位置零点。
在本实施例中,可获取位置采集单元当前采集的电机位置作为疑似接触位置零点。可选的,位置采集单元可以为霍尔传感器,可获取霍尔传感器的当前位置计数作为疑似接触位置零点。
步骤S903:判断疑似接触位置零点是否验证通过,若疑似接触位置零点验证通过,则执行步骤S904,若疑似接触位置零点未验证通过,则执行步骤S301,即再次执行防夹检测方法。
判断疑似接触位置零点是否验证通过,即判断疑似接触位置零点是否为正确的接触位置零点,若疑似接触位置零点验证通过,则表明疑似接触位置零点是正确的接触位置零点,若疑似接触位置零点未验证通过,则表明疑似接触位 置零点不是正确的接触位置零点。
前面提到,可将霍尔传感器的位置计数作为疑似位置零点,若判断出疑似接触位置零点不是正确的接触位置零点时,则需要将霍尔传感器之前累积的位置计数清零。
在一种可能的实现方式中,判断疑似接触位置零点是否验证通过的过程可以包括:在获得疑似接触位置零点后,每采集到一次电机的电流时,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过。
其中,每采集到一次电机的电流时,通过所采集的电流和疑似接触位置零点处对应的电流实时确定第三电流变化率的实现方式有多种,在一种可能的实现方式中,可计算所采集的电流I(k)和疑似接触位置零点处对应的电流I 0的差值,作为第三电流变化率ΔI 3,即:
ΔI 3=I(k)–I 0       (7)
在另一种可能的实现方式中,可计算所采集的电流I(k)的滤波值If(k)与疑似接触位置零点处对应的电流I 0的滤波值If 0的差值,作为第三电流变化率,即:
ΔI 3=If(k)–If 0       (8)
进一步的,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过的过程可以包括:在获得疑似接触位置零点后,若出现以下两种情况中的至少一种,则确定疑似接触位置零点未验证通过,若均没有出现以下两种情况,则确定疑似接触位置零点验证通过。
第一种情况为:实时确定的第二电流变化率小于预设的第二阈值;第二种情况为:实时确定的第三电流变化率及历史的第三电流变化率中连续出现第三电流变化率大于预设的第三阈值的情况,且第三电流变化率大于预设的第三阈值这一情况的持续时长大于预设时长。
其中,第二阈值和第三阈值均为固定值,其可以为通过多次试验获得的经验值。
步骤S904:将疑似接触位置零点确定为接触位置零点。
本发明实施例基于第二电流变化率能够快速、准确地检测到接触位置零点。
在确定出接触位置零点后,即可根据接触位置零点计算实时的障碍物压缩距离ΔS,实时的障碍物压缩距离ΔS为实时采集的电机位置S(k)与接触位置零点S 0的差值,即:
ΔS=S(k)-S 0      (9)
其中,实时采集的电机位置S(k)可以为霍尔传感器的当前位置计数。基于霍尔传感器的位置计数能够准确地确定出障碍物压缩距离ΔS。
本发明实施例还提供了一种防夹检测装置,下面对本发明实施例提供的防夹检测装置进行描述,下文描述的防夹检测装置与上文描述的防夹检测方法可相互对应参照。
请参阅图10,示出了本发明实施例提供的一种满足S5法规的防夹检测装置的结构示意图,该满足S5法规的防夹检测装置可以包括:第一电流变化率确定模块1001、第二电流变化率确定模块1002、障碍物检测模块1003、障碍物刚度确定模块1004、障碍物压缩距离确定模块1005、防夹力确定模块1006、和电机反转控制模块1007。
第一电流变化率确定模块1001,用于根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率。
其中,在控制电机运动以驱动闭合部件闭合的过程中,周期性采集电机的电流。
第二电流变化率确定模块1002,用于根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率。
其中,目标电流采集周期与当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数。
障碍物检测模块1003,用于根据第二电流变化率检测闭合部件是否遇到障碍物。
障碍物刚度确定模块1004,用于若检测到闭合部件遇到障碍物,则根据第一电流变化率确定障碍物的刚度。
障碍物压缩距离确定模块1005,用于根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离。
其中,接触位置零点根据检测到闭合部件遇到障碍物时采集的电机位置确定。
防夹力确定模块1006,用于根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力。
电机反转控制模块1007,用于在实时的防夹力大于预设的防夹检测阈值时,控制电机反转。
其中,防夹检测阈值根据障碍物的刚度确定。
本发明提供的防夹检测装置,基于第二电流变化率进行障碍物检测,能够快速、准确地检测到障碍物,基于第一电流变化率确定障碍物刚度,使得针对不同刚度的障碍物可获得不同的障碍物刚度值,并可以此选取不同的防夹检测阈值,从而能够保证测力的一致性,且能够避免采用一个防夹检测阈值时防夹检测阈值设置较小导致的误防夹。综上,本发明实施例提供的防夹检测方法能够满足S5法规,且检测速度快,检测效果好,能够避免误防夹。
在一种可能的实现方式中,上述实施例提供的防夹检测装置中的第二电流变化率确定模块1002,具体用于计算当前电流采集周期采集的电流与目标电流采集周期采集的电流的差值,作为第二电流变化率;或者,计算当前电流采集周期采集的电流的滤波值与目标电流采集周期采集的电流的滤波值的差值,作为第二电流变化率。
在一种可能的实现方式中,上述实施例提供的防夹检测装置中的障碍物检测模块1003可以包括:接触位置零点检测模块和障碍物确定模块。
接触位置零点检测模块,用于根据第二电流变化率检测接触位置零点。其中,接触位置零点为闭合部件与障碍物开始接触的位置点。
障碍物确定模块,用于当检测到接触位置零点时,确定闭合部件遇到障碍物。
在一种可能的实现方式中,接触位置零点检测模块,具体用于当第二电流变化率大于预设的第一阈值时,获取当前采集的电机位置作为疑似接触位置零点;判断疑似接触位置零点是否验证通过;若疑似接触位置零点验证通过,则将疑似接触位置零点作为接触位置零点;若疑似接触位置零点未验证通过,则触发第一电流变化率确定模块1001根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,以及,第二电流变化率确定模块1002根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确 定第二电流变化率。
在一种可能的实现方式中,接触位置零点检测模块在判断疑似接触位置零点是否验证通过时,具体用于在获得疑似接触位置零点后,每采集到一次电机的电流时,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过。
其中,每采集到一次电机的电流时,通过所采集的电流和疑似接触位置零点处对应的电流实时确定第三电流变化率。
在一种可能的实现方式中,接触位置零点检测模块在基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过时,具体用于在获得疑似接触位置零点后,若出现以下两种情况中的至少一种,则确定疑似接触位置零点未验证通过,若均没有出现以下两种情况,则确定疑似接触位置零点验证通过;
第一种情况为:实时确定的第二电流变化率小于预设的第二阈值;
第二种情况为:实时确定的第三电流变化率及历史的第三电流变化率中连续出现第三电流变化率大于预设的第三阈值的情况,且第三电流变化率大于预设的第三阈值这一情况的持续时长大于预设时长。
在一种可能的实现方式中,上述实施例提供的防夹检测装置中的障碍物刚度确定模块1004,具体用于通过第一电流变化率,以及,在闭合部件未遇到障碍物的条件下,针对当前采集的电机位置标定的第一电流变化率,确定障碍物的刚度。
在一种可能的实现方式中,上述实施例提供的防夹检测装置还包括:速度控制模块。
速度控制模块,用于在控制电机运动以驱动闭合部件闭合的过程中,控制电机以闭合部件所处区域对应的电机运动速度运动。
其中,闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
本发明实施例还提供了一种控制器,请参阅图11,示出了该控制器的结构 示意图,该控制器可以包括:至少一个处理器1101,至少一个通信接口1102,至少一个存储器1103和至少一个通信总线1104;
在本发明实施例中,处理器1101、通信接口1102、存储器1103、通信总线1104的数量为至少一个,且处理器1101、通信接口1102、存储器1103通过通信总线1104完成相互间的通信;
处理器1101可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路等;
存储器1103可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory)等,例如至少一个磁盘存储器;
其中,存储器存储有程序,处理器可调用存储器存储的程序,程序用于:
根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;其中,在控制电机运动以驱动闭合部件闭合的过程中,周期性采集电机的电流;
根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;其中,目标电流采集周期与当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;
根据所述第二电流变化率检测闭合部件是否遇到障碍物;
若检测到闭合部件遇到障碍物,则根据第一电流变化率确定障碍物的刚度;
根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;其中,接触位置零点根据检测到闭合部件遇到障碍物时采集的电机位置确定;
根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转;其中,防夹检测阈值根据障碍物的刚度确定。
可选的,程序的细化功能和扩展功能可参照上文描述。
本发明实施例还提供一种可读存储介质,该可读存储介质可存储有适于处理器执行的程序,程序用于:
根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;其中,在控制电机运动以驱动闭合部件闭合的过程中,周期 性采集电机的电流;
根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;其中,目标电流采集周期与当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;
根据第二电流变化率检测闭合部件是否遇到障碍物;
若检测到闭合部件遇到所述障碍物,则根据第一电流变化率确定障碍物的刚度;
根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;其中,接触位置零点根据检测到闭合部件遇到所述障碍物时采集的电机位置确定;
根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转;其中,防夹检测阈值根据障碍物的刚度确定。
可选的,程序的细化功能和扩展功能可参照上文描述。
本发明实施例还提供了一种防夹检测***,请参阅图12,示出了该防夹检测***的结构示意图,该***可以包括:电流采集单元1201、位置采集单元1202和控制器1203。
控制器1203,用于在控制电机运动以驱动闭合部件闭合的过程中,利用所述电流采集单元1201按预设的电流采集周期采集所述电机的电流;利用位置采集单元1202采集电机实时的电机位置;根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;根据第二电流变化率检测闭合部件是否遇到障碍物;若检测到闭合部件遇到障碍物,则根据第一电流变化率确定障碍物的刚度;根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;根据障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制电机反转。
其中,目标电流采集周期与当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;接触位置零点根据检测到闭合部件遇到障碍物时位置采集单元1202采集的电机位置确定;防夹检测阈值根据障碍物的刚度 确定。
优选的,如图12所示,电流采集单元1201包括:采样电阻12011和差分放大器12012。
采样电阻12011将电机运行过程中的电流转换为电压信号;差分放大器12012对电压信号进行放大,获得放大后的电压信号。控制器1203,具体用于基于放大后的电压信号,按预设的电流采集周期采集电机的电流。
请参阅图13,示出了电机控制及电流采集的原理图,图中包括H桥、采样电阻和差分放大器,采样电阻设置在H桥中间,图中的Ub代表电源电压,其可以为12V,GND代表接地端,Vs代表差分放大器的工作电压,其可以为5V,Out代表差分放大器的输出。采样电阻将电机运行过程中的电流转换为电压信号,差分放大器对电压信号进行放大,以便控制器1203基于放大后的电压信号采集电机的电流。需要说明的是,H桥是典型的直流电机控制电路,因为它的电路形状酷似字母“H”,故得名“H桥”,如图13所示,4个三极管FET1、FET2、FET3、FET4组成“H”的4条垂直腿,而电机M就是“H”中的横杠,CW表示电机顺时针转动(即正转),CCW表示电机逆时针转动(即反转),当电机M正转时,三极管FET2和FET3导通,此时,利用采样电阻和差分放大器可采集到电机M正转时的电流,当电机M反转时,三极管FET1和FET4导通,此时,利用采样电阻和差分放大器可采集到电机M反转时的电流,如此,只采用一个采样电阻和单路运放便可同时采集电机正反转时的电流,从而节约了硬件成本。在本实施例中,可将差分放大器输入端抬升2.5V,电机正转时差分放大器输入端电压范围2.5-5V,电机反转时差分放大器输入端电压范围0-2.5V,经过放大后输入给控制器1203,实现双向电流检测。
可选的,上述实施例提供的防夹检测***中还可以包括速度采集单元。
控制器1203,还用于在控制电机运动以驱动闭合部件闭合的过程中,控制电机以闭合部件所处区域对应的电机运动速度运动。
具体的,控制器1203利用速度采集单元采集电机实时的运动速度,根据电机实时的运动速度,将电机的运动速度调整为闭合部件所处区域对应的电机运动速度。
其中,所述闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同, 距离可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
可选的,控制器1203在根据当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率时,具体用于计算当前电流采集周期采集的电流与目标电流采集周期采集的电流的差值,作为第二电流变化率;或者,计算当前电流采集周期采集的电流的滤波值与目标电流采集周期采集的电流的滤波值的差值,作为第二电流变化率。
可选的,控制器1203在根据第二电流变化率检测闭合部件是否遇到障碍物时,具体用于根据第二电流变化率检测接触位置零点,其中,接触位置零点为闭合部件与障碍物开始接触的位置点;当检测到接触位置零点时,确定闭合部件遇到障碍物。
可选的,控制器1203在根据第二电流变化率检测接触位置零点时,具体用于当第二电流变化率大于预设的第一阈值时,获取当前采集的电机位置作为疑似接触位置零点;判断疑似接触位置零点是否验证通过;若疑似接触位置零点验证通过,则将疑似接触位置零点作为接触位置零点;若疑似接触位置零点未验证通过,则执行根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,以及,根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率。
可选的,控制器1203在判断疑似接触位置零点是否验证通过时,具体用于在获得疑似接触位置零点后,每采集到一次所述电机的电流时,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过。其中,每采集到一次所述电机的电流时,通过所采集的电流和所述疑似接触位置零点处对应的电流实时确定第三电流变化率。
可选的,控制器1203在基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断疑似接触位置零点是否验证通过时,具体用于在获得疑似接触位置零点后,若出现以下两种情况中的至少一种,则确定疑似接触位置零点未验证通过,若均没有出现以下两种情况,则确定疑似接触位置零点验证通过;
第一种情况为:实时确定的第二电流变化率小于预设的第二阈值;
第二种情况为:实时确定的第三电流变化率及历史的第三电流变化率中连 续出现第三电流变化率大于预设的第三阈值的情况,且第三电流变化率大于预设的第三阈值这一情况的持续时长大于预设时长。
可选的,控制器1203在根据第一电流变化率确定所述障碍物的刚度时,具体用于通过第一电流变化率,以及,在闭合部件未遇到障碍物的条件下,针对当前采集的电机位置标定的第一电流变化率,确定障碍物的刚度。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种防夹检测方法,其特征在于,包括:
    根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;其中,在控制电机运动以驱动闭合部件闭合的过程中,周期性采集所述电机的电流;
    根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;其中,所述目标电流采集周期与所述当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;
    根据所述第二电流变化率检测所述闭合部件是否遇到障碍物;
    若检测到所述闭合部件遇到所述障碍物,则根据所述第一电流变化率确定所述障碍物的刚度;
    根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;其中,所述接触位置零点根据检测到所述闭合部件遇到所述障碍物时采集的电机位置确定;
    根据所述障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制所述电机反转;其中,所述防夹检测阈值根据所述障碍物的刚度确定。
  2. 根据权利要求1所述的防夹检测方法,其特征在于,所述根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率,包括:
    计算所述当前电流采集周期采集的电流与所述目标电流采集周期采集的电流的差值,作为所述第二电流变化率;
    或者,
    计算所述当前电流采集周期采集的电流的滤波值与所述目标电流采集周期采集的电流的滤波值的差值,作为所述第二电流变化率。
  3. 根据权利要求1所述的防夹检测方法,其特征在于,所述根据所述第二电流变化率检测所述闭合部件是否遇到障碍物,包括:
    根据所述第二电流变化率检测所述接触位置零点,其中,所述接触位置零点为所述闭合部件与所述障碍物开始接触的位置点;
    当检测到所述接触位置零点时,确定所述闭合部件遇到障碍物。
  4. 根据权利要求3所述的防夹检测方法,其特征在于,所述根据所述第二电流变化率检测所述接触位置零点,包括:
    当所述第二电流变化率大于预设的第一阈值时,获取当前采集的电机位置作为疑似接触位置零点;
    判断所述疑似接触位置零点是否验证通过;
    若所述疑似接触位置零点验证通过,则将所述疑似接触位置零点作为所述接触位置零点;
    若所述疑似接触位置零点未验证通过,则执行所述根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率,以及,所述根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率。
  5. 根据权利要求4所述的防夹检测方法,其特征在于,所述判断所述疑似接触位置零点是否验证通过,包括:
    在获得所述疑似接触位置零点后,每采集到一次所述电机的电流时,基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断所述疑似接触位置零点是否验证通过;
    其中,每采集到一次所述电机的电流时,通过所采集的电流和所述疑似接触位置零点处对应的电流实时确定第三电流变化率。
  6. 根据权利要求5所述的防夹检测方法,其特征在于,所述基于实时确定的第二电流变化率,和/或,实时确定的第三电流变化率及历史的第三电流变化率,判断所述疑似接触位置零点是否验证通过,包括:
    在获得所述疑似接触位置零点后,若出现以下两种情况中的至少一种,则确定所述疑似接触位置零点未验证通过,若均没有出现以下两种情况,则确定所述疑似接触位置零点验证通过;
    第一种情况为:实时确定的第二电流变化率小于预设的第二阈值;
    第二种情况为:实时确定的第三电流变化率及历史的第三电流变化率中连续出现第三电流变化率大于预设的第三阈值的情况,且第三电流变化率大于预设的第三阈值这一情况的持续时长大于预设时长。
  7. 根据权利要求1~6中任一项所述的防夹检测方法,其特征在于,还包括,在控制所述电机运动以驱动所述闭合部件闭合的过程中,控制所述电机以 所述闭合部件所处区域对应的电机运动速度运动;
    其中,所述闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离所述可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
  8. 一种防夹检测***,其特征在于,包括:电流采集单元、位置采集单元和控制器;
    所述控制器,用于在控制电机运动以驱动闭合部件闭合的过程中,利用所述电流采集单元按预设的电流采集周期采集所述电机的电流;利用所述位置采集单元采集所述电机实时的电机位置;根据当前电流采集周期采集的电流和前一电流采集周期采集的电流确定第一电流变化率;根据所述当前电流采集周期采集的电流和目标电流采集周期采集的电流确定第二电流变化率;根据所述第二电流变化率检测所述闭合部件是否遇到障碍物;若检测到所述闭合部件遇到所述障碍物,则根据所述第一电流变化率确定所述障碍物的刚度;根据接触位置零点和实时采集的电机位置确定实时的障碍物压缩距离;根据所述障碍物的刚度和实时的障碍物压缩距离,确定实时的防夹力,并在实时的防夹力大于预设的防夹检测阈值时,控制所述电机反转;
    其中,所述目标电流采集周期与所述当前电流采集周期之间相差N个电流采集周期,N为大于或等于2的整数;所述接触位置零点根据检测到所述闭合部件遇到所述障碍物时所述位置采集单元采集的电机位置确定;所述防夹检测阈值根据所述障碍物的刚度确定。
  9. 根据权利要求8所述的防夹检测***,其特征在于,所述电流采集单元包括:采样电阻和差分放大器;所述采样电阻将所述电机运行过程中的电流转换为电压信号;所述差分放大器对所述电压信号进行放大,获得放大后的电压信号;
    所述控制器,具体用于基于所述放大后的电压信号,按预设的电流采集周期采集所述电机的电流。
  10. 根据权利要求8或9所述的防夹检测***,其特征在于,所述控制器,还用于在控制电机运动以驱动闭合部件闭合的过程中,控制所述电机以所述闭合部件所处区域对应的电机运动速度运动;
    其中,所述闭合部件在闭合方向上的可运动区域包括多个互不重合的区域,每个区域对应一设定的电机运动速度,不同区域对应的电机运动速度不同,距离所述可运动区域在闭合方向上的终点越近的区域对应的电机运动速度越小。
PCT/CN2020/093160 2019-07-10 2020-05-29 一种防夹检测方法及*** WO2021004188A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/625,404 US20220228413A1 (en) 2019-07-10 2020-05-29 Anti-pinch detection method and system
EP20837595.6A EP3998390A4 (en) 2019-07-10 2020-05-29 METHOD AND ANTI-PINCH DETECTION SYSTEM
KR1020227002467A KR20220024928A (ko) 2019-07-10 2020-05-29 안티-핀치 검출 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910620150.5 2019-07-10
CN201910620150.5A CN112211520B (zh) 2019-07-10 2019-07-10 一种防夹检测方法及***

Publications (1)

Publication Number Publication Date
WO2021004188A1 true WO2021004188A1 (zh) 2021-01-14

Family

ID=74048100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093160 WO2021004188A1 (zh) 2019-07-10 2020-05-29 一种防夹检测方法及***

Country Status (5)

Country Link
US (1) US20220228413A1 (zh)
EP (1) EP3998390A4 (zh)
KR (1) KR20220024928A (zh)
CN (1) CN112211520B (zh)
WO (1) WO2021004188A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115083129A (zh) * 2022-06-30 2022-09-20 华帝股份有限公司 一种翻板防夹手的预警方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117192618A (zh) * 2023-09-11 2023-12-08 杭州闪充聚能新能源有限公司 一种运动机构的障碍物检测方法及避障控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067987A1 (en) * 2003-09-02 2005-03-31 Yazaki Corporation Power-window jamming preventing apparatus
CN102979397A (zh) * 2012-11-01 2013-03-20 北京经纬恒润科技有限公司 一种防夹方法及装置
CN106712605A (zh) * 2017-01-25 2017-05-24 北京经纬恒润科技有限公司 一种控制方法及装置
CN106899254A (zh) * 2017-03-30 2017-06-27 北京经纬恒润科技有限公司 一种闭合部件防夹检测方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579802B2 (en) * 1992-04-22 2009-08-25 Nartron Corporation Collision monitoring system
US7548037B2 (en) * 1992-04-22 2009-06-16 Nartron Corporation Collision monitoring system
US5689160A (en) * 1994-02-28 1997-11-18 Ohi Seisakusho Co., Ltd. Vehicle window lift control
CA2164241C (en) * 1995-12-01 2003-02-18 Richard J. Hellinga Power closure panel control apparatus
GB2311798A (en) * 1996-04-01 1997-10-08 Draftex Ind Ltd Sealing and guiding strip and closure safety system for power-driven vehicle windows
US6756754B2 (en) * 2002-10-01 2004-06-29 Siemens Vdo Automotive Inc. Integrated one touch up and down windowlift motor with direct sense for anti-pinch
US7161779B2 (en) * 2003-12-12 2007-01-09 Lear Corporation Anti-pinch and electrical motor protection device
US7714526B2 (en) * 2006-03-08 2010-05-11 Mitsuba Corporation Control device for a closure member of a vehicle
CN101220724B (zh) * 2008-01-30 2012-04-18 张建华 一种汽车电动窗防夹控制方法
DE102008042762A1 (de) * 2008-10-13 2010-04-15 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Einklemmschutzfunktion bei einem elektrischen Schließsystem
US8341885B2 (en) * 2010-09-23 2013-01-01 Dynaco Europe Door control system with obstacle detection
JP6049374B2 (ja) * 2012-09-21 2016-12-21 アスモ株式会社 開閉体制御装置及びその制御方法
JP6430911B2 (ja) * 2015-09-03 2018-11-28 株式会社東海理化電機製作所 開閉体制御装置
CN105201319B (zh) * 2015-11-06 2017-09-29 武汉理工大学 一种基于双霍尔传感器与直流电机的四门车窗防夹方法
CN109398051A (zh) * 2017-08-17 2019-03-01 福特环球技术公司 直线马达致动天窗
JP7063601B2 (ja) * 2017-12-19 2022-05-09 東日本旅客鉄道株式会社 戸挟み検知装置及び戸挟み検知システム
CN109291764A (zh) * 2018-11-19 2019-02-01 阮燕琼 一种基于温度补偿技术的汽车环境监控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067987A1 (en) * 2003-09-02 2005-03-31 Yazaki Corporation Power-window jamming preventing apparatus
CN102979397A (zh) * 2012-11-01 2013-03-20 北京经纬恒润科技有限公司 一种防夹方法及装置
CN106712605A (zh) * 2017-01-25 2017-05-24 北京经纬恒润科技有限公司 一种控制方法及装置
CN106899254A (zh) * 2017-03-30 2017-06-27 北京经纬恒润科技有限公司 一种闭合部件防夹检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998390A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115083129A (zh) * 2022-06-30 2022-09-20 华帝股份有限公司 一种翻板防夹手的预警方法和装置
CN115083129B (zh) * 2022-06-30 2024-02-27 华帝股份有限公司 一种翻板防夹手的预警方法和装置

Also Published As

Publication number Publication date
EP3998390A1 (en) 2022-05-18
KR20220024928A (ko) 2022-03-03
CN112211520A (zh) 2021-01-12
CN112211520B (zh) 2021-10-15
EP3998390A4 (en) 2023-07-26
US20220228413A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US4641067A (en) Motor control method and apparatus therefor
WO2021004188A1 (zh) 一种防夹检测方法及***
EP1509824B1 (en) Motor speed-based anti-pinch control apparatus and method with rough road condition detection and compensation
JP3555180B2 (ja) 自動窓開閉機構における挟込防止装置
JP5043354B2 (ja) モータ制御装置及びモータのデューティ制御方法
CN102226368B (zh) 一种具有自适应性的电动窗防夹控制方法
TWI430061B (zh) 用於追蹤隔板系統性能的系統及方法
JP2005232753A (ja) 開閉体制御装置
JP2001518278A (ja) 電気的に駆動されるアセンブリの動作を電気的に制御及び調節するための方法
JP2004506110A (ja) 非接触センサを有する乗物閉止はさみ防止組立体
JP2005351042A (ja) 開閉体制御装置
US10464399B2 (en) Vehicle window opening device
US7843153B2 (en) Control system for controlling an adjusting device operated by electric motor in a motor vehicle
CN111206838A (zh) 一种纹波防夹位置补偿方法及装置
US7977902B2 (en) Method and apparatus for pinch protection for a motor-driven closure system
US11581829B2 (en) Pinch detection based on motor current increase
WO2015027774A1 (zh) 用于电动车窗的防夹保护装置及方法
EP0692856A2 (en) Power window or panel controller
US10301860B2 (en) Opening/closing control device
JPH06327279A (ja) 電動駆動装置
JP3675622B2 (ja) パワーウインド装置の挟み込み検知方法
JP3484887B2 (ja) パワーウィンドスイッチ装置
KR102299494B1 (ko) 차량의 윈도 제어 장치 및 그 방법
DE102004011332A1 (de) Steuerungsvorrichtung und Verfahren zur Steuerung eines Verstellsystems, insbesondere eines Fensterhebers eines Kraftfahrzeuges
KR101735167B1 (ko) 차량용 선루프의 안티-핀치 시스템의 핀치 검출 방법 및 이러한 방법을 사용하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227002467

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837595

Country of ref document: EP

Effective date: 20220210