WO2021003839A1 - 一种基于正向优化的近场无线信道仿真测量方法和*** - Google Patents

一种基于正向优化的近场无线信道仿真测量方法和*** Download PDF

Info

Publication number
WO2021003839A1
WO2021003839A1 PCT/CN2019/105857 CN2019105857W WO2021003839A1 WO 2021003839 A1 WO2021003839 A1 WO 2021003839A1 CN 2019105857 W CN2019105857 W CN 2019105857W WO 2021003839 A1 WO2021003839 A1 WO 2021003839A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
probe antenna
vector
matrix
antenna
Prior art date
Application number
PCT/CN2019/105857
Other languages
English (en)
French (fr)
Inventor
张翔
王正鹏
郭宇航
王飞龙
李雷
刘晓龙
潘冲
任雨鑫
吴翔
张宇
徐菲
魏贵明
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2021003839A1 publication Critical patent/WO2021003839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present invention relates to the technical field of mobile communication measurement, in particular to a near-field wireless channel simulation measurement method and system based on forward optimization.
  • MIMO massive multiple input multiple output
  • Traditional MIMO channel simulation test systems are generally implemented based on radio frequency cable connection channel simulators.
  • the device is a channel test system of a mobile phone. It is necessary to use an open cover method to bypass the mobile phone antenna and directly connect the channel emulator cable to the mobile phone transceiver module, which brings a large number of cable connections and inconvenient measurement; the existing cable connection is not used
  • the channel simulation measurement method the system is complex, the transmission matrix is difficult to obtain, the portability is poor, and the polarization characteristic's influence on the channel simulation is not paid attention to, resulting in low measurement accuracy of the channel simulation method.
  • the invention provides a near-field wireless channel simulation measurement method and system based on forward optimization, which solves the problems of complicated connection of existing methods and systems and low channel measurement accuracy.
  • the embodiment of the present invention points out a near-field wireless channel simulation measurement method based on forward optimization, which includes the following steps: obtain the spatial transmission matrix and its pseudo-inverse matrix according to the position of the probe antenna; open any channel of the device under test separately, and all other The channel is turned off to obtain the ideal isolation vector corresponding to the channel; the spatial transmission matrix is multiplied by the pseudo-inverse matrix and the ideal isolation vector is multiplied to obtain the actual isolation vector, and the ideal isolation vector is subtracted After removing the actual isolation vector, the square sum is obtained to obtain the error vector; the spatial position and or the polarization direction of the probe antenna are optimized until each value in the error vector is less than the set optimization threshold or the The position optimization number of the probe antenna is greater than the set iteration number, and the space transmission matrix optimization value and its pseudo-inverse matrix optimization value are obtained; the pseudo-inverse matrix optimization value is multiplied by the rational isolation matrix, and the device under test is turned on The preset vector of the channel; all other channels of the device under test are individually opened to obtain the preset
  • the spatial position of the probe antenna includes: the spatial position between the probe antennas and or the spatial position between the probe antenna and the device under test.
  • the polarization direction of the probe antenna is horizontal polarization or vertical polarization.
  • the set optimization threshold is 0.1 times the number of channels of the device under test.
  • the embodiment of the present invention also points out a near-field wireless channel simulation measurement system based on forward optimization.
  • the method includes: a device under test, a measurement dark box, a probe antenna, and an amplitude and phase control network;
  • the probe antenna is located in the measurement dark box;
  • the amplitude and phase control network is used to set the amplitude and phase of the probe antenna;
  • the probe antenna is used to radiate signals to space, and the probe antenna is dual-polarized Antenna;
  • the device under test is used to receive the signal radiated by the probe antenna, and each channel is independently controllable.
  • the wavelength corresponding to the lowest frequency of the working frequency band greater than 5 times between the probe antenna and the device under test is less than 5 meters.
  • the number of the probe antennas is between 16 and 256, and the probe antennas are distributed on a straight line or a curve or any plane or any curved surface.
  • the probe antenna is a dual-line polarization antenna or a dual-circular polarization antenna.
  • the measurement dark box is a shielded wave absorbing dark box that meets industry standards, and the inner surface is covered with wave absorbing materials, and the wave absorbing materials are polyurethane foam, ferrite, and wave absorbing sponge.
  • the present invention proposes a near-field wireless channel simulation measurement method and system based on forward optimization, which can realize a high isolation method between the ports of the device to be tested, and can obtain a transmission matrix through fast calibration, Through the processing of the transmission matrix, high-precision simulation of the channel is realized; based on the forward optimization optimization, the optimization iteration is simple, which can overcome the channel simulation failure caused by the ill-conditioned inverse matrix, and fully consider the polarization characteristics, which can be applied to small terminal antennas. When the antennas are very close together, the polarization characteristics and pattern characteristics can still provide MIMO antenna isolation close to actual application scenarios.
  • FIG. 1 is an embodiment of the flow of a simulation measurement method for a near field wireless channel based on forward optimization
  • Figure 2 is an embodiment of a near-field wireless channel simulation measurement system based on forward optimization.
  • the present invention adopts a forward optimization method to ensure that the optimized spatial transmission matrix is not ill-conditioned.
  • the distance between the dual-polarization probe antenna and the device to be tested does not need to meet the far-field conditions, as long as two The distance between the persons is beyond the induction near-field area, which can save the construction cost of the entire system;
  • the introduction of polarization adjustment schemes can more widely adapt to the actual needs of different base stations and terminal antennas;
  • the position of the dual-polarized probe antenna can be selected for different devices under test, which can be as close as possible to the isolation requirements between each channel of the device under test.
  • Figure 1 is a flow embodiment of a near-field wireless channel simulation measurement method based on forward optimization.
  • the forward optimization layout realizes the focusing of multiple probe antennas on each channel antenna of the equipment under test.
  • the field wireless channel simulation measurement method includes the following steps:
  • Step 101 Obtain a spatial transmission matrix and its pseudo-inverse matrix according to the position of the probe antenna.
  • the probe antenna is a dual-polarized antenna.
  • step 101 the establishment of the spatial transmission matrix depends on the position of the antenna of the probe and the position of the antenna of the device under test, and is obtained by combining the spatial geometric relationship with the Green's function. It should be noted that the method for obtaining the spatial transmission matrix is the prior art, and will not be specifically described here.
  • the pseudo-inverse matrix is to solve the Moore-Penrose pseudo-inverse of the transmission matrix, and the method for solving the pseudo-inverse matrix is the prior art, which is not specifically described here.
  • any channel of the device to be tested is individually turned on, and all other channels are turned off, to obtain the ideal isolation vector corresponding to the channel:
  • T i is the ideal isolation vector corresponding to the i-th channel of the device under test
  • the i-th data of T i is 1, and all other data are 0.
  • the dimension of the ideal isolation vector is the number of channels of the device under test.
  • Step 103 Multiply the space transmission matrix by the pseudo-inverse matrix and multiply the ideal isolation vector to obtain an actual isolation vector, and subtract the actual isolation vector from the ideal isolation vector to obtain the sum of squares Get the error vector.
  • step 103 the actual isolation vector is:
  • I i is the actual isolation vector of the i-th channel of the device under test
  • B w -1 is the inverse matrix
  • T i is the ideal isolation vector corresponding to the i-th channel of the device under test.
  • step 103 the error vector is:
  • ⁇ i is the error vector corresponding to the i-th channel of the device under test
  • I i is the actual isolation vector of the i-th channel of the device under test
  • T i is the ideal isolation corresponding to the i-th channel of the device under test Degree vector.
  • each channel of the device under test corresponds to the actual isolation vector and the error vector, and the dimensions of the actual isolation vector and the error vector are both the number of the probe antennas.
  • Step 104 optimizing the spatial position and or polarization direction of the probe antenna until each value in the error vector is less than a set optimization threshold or the number of optimization times of the probe antenna position is greater than the set number of iterations, Obtain the optimized value of the space transmission matrix and the optimized value of its pseudo-inverse matrix.
  • the spatial position of the probe antenna includes: the spatial position between the probe antennas and or the spatial position between the probe antenna and the device under test; the polarization direction of the probe antenna For horizontal polarization or vertical polarization.
  • step 104 optimizing the spatial position and or polarization direction of the probe antenna is to optimize the layout of the probe antenna in the forward direction, and the purpose is to realize the focus of multiple probe antennas on each device under test antenna. While focusing on the antenna of a device under test, other antennas under test get very little energy.
  • the probe antenna can be horizontally polarized or vertically polarized. If the probe antenna is a co-polarized antenna, the isolation between the ports of the antenna to be tested may be limited, such as iterating after reaching -15dB. Can not achieve further improvement. Therefore, introducing polarization control to change the polarization direction of the probe antenna can further improve isolation. It should be noted that in actual applications, once the polarization direction of each probe antenna is determined, there is no need to switch the polarization direction of the probe antenna in the channel simulation.
  • the set optimization threshold is 0.1 times the number of channels of the device under test. It should be noted that the set optimization threshold may also be other values, which are not particularly limited here.
  • the set number of iterations may be the maximum number of iterations, that is, the number of iterations when the error vector remains unchanged regardless of the iteration. It should be noted that the set number of iterations may also be other values, which is not specifically limited here.
  • Step 105 Multiply the optimal value of the pseudo-inverse matrix by the rational isolation matrix to obtain a preset vector of the open channel of the device under test.
  • step 105 the preset vector is:
  • a i is the preset vector of the i-th channel of the device under test
  • T i is the ideal isolation vector corresponding to the i-th channel of the device under test
  • a i1 to A in are the first to nth channels received by the i-th channel of the device under test
  • Step 106 Turn on all other channels of the device under test separately to obtain the preset vector of each channel, and obtain the preset matrix after stitching in the order of the channels.
  • step 106 the preset matrix is:
  • A is the preset matrix
  • a i is the preset vector of the i-th channel of the device under test
  • a i1 to A in are the i-th channel of the device under test.
  • the method further includes: inputting the inverse matrix of the preset matrix into a multi-channel channel simulator or an amplitude-phase control network to obtain at least one of the following channel system parameters: reference signal received power, throughput rate, error Bit rate.
  • channel system parameters reference signal received power, throughput rate, error Bit rate.
  • the calculation of the preset matrix is based on the near-field focusing algorithm.
  • different focal spots are collected for different antenna positions to be tested.
  • the signal of a certain channel of the device under test is maximized, while the signals of other channels are suppressed. This method is a positive optimization, potentially requiring more measurements, but can obtain better isolation between channels.
  • Figure 2 is an embodiment of a near-field wireless channel simulation measurement system based on forward optimization, using a near-field wireless channel simulation measurement method based on forward optimization.
  • the system specifically includes: a device under test 1, a measurement dark box 3, a probe Antenna 2, amplitude and phase control network 4.
  • the device under test and the probe antenna are located in the measurement dark box; the amplitude and phase control network is used to set the amplitude and phase of the probe antenna; the probe antenna is used to radiate signals into space, and The probe antenna is a dual-polarized antenna; the device under test is used to receive the signal radiated by the probe antenna, and each channel is independently controllable.
  • the corresponding wavelength between the probe antenna and the device under test is greater than 5 times the lowest frequency of the working frequency band and less than 5 meters, the number of probe antennas is between 16 and 256, and the probe antennas are distributed in a straight line On or on a curve or on any plane or on any surface. Further, the probe antenna is a dual-line polarization antenna or a dual-circular polarization antenna.
  • the type and layout of the probe antenna will affect whether the desired isolation can be obtained. For example, if the probe antenna is very close, it is impossible to obtain high isolation between the antennas of the device under test.
  • the main consideration for adopting dual-polarized antennas is that MIMO of many devices under test is realized by polarization diversity. After dual-polarization is introduced, higher isolation may be easily obtained.
  • the measurement dark box is a shielded wave absorbing dark box that meets industry standards, and the inner surface is covered with wave absorbing materials, and the wave absorbing materials are polyurethane foam, ferrite, and wave absorbing sponge.
  • the probe antenna adopts a dual-polarized antenna, and the position of the dual-polarized probe antenna is selectable, and can be selected for any channel of different devices under test Different probe antenna positions can be as close as possible to the isolation requirements between each channel of the device under test.
  • the present invention can be implemented by means of software plus the necessary general hardware platform, and of course it can also be implemented by hardware, but in many cases the former is a better implementation. the way.
  • the technical solution of the present invention essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a A terminal device (which may be a mobile phone, a personal computer, a server, or a network device, etc.) executes the method described in each embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于正向优化的近场无线信道仿真测量方法和***,解决现有方法和***连线复杂、信道测量精度低的问题。所述方法,包含:获取空间传输矩阵和其伪逆矩阵;对待测设备任一通道单独打开,得到对应的理想隔离度向量;将空间传输矩阵乘以伪逆矩阵乘以理想隔离度向量、得到实际隔离度向量,进一步得到误差向量;对探头天线的空间位置和或极化方向进行优化,得到空间传输矩阵优化值和其伪逆矩阵优化值;将伪逆矩阵优化值乘以理性隔离度矩阵,得到预置向量;对待测设备其他所有通道单独打开、得到每个通道的预置向量,按通道顺序拼接后得到预置矩阵。所述***,使用所述方法。本发明采用正向优化方法实现MIMO信道***的近场无线测量。

Description

一种基于正向优化的近场无线信道仿真测量方法和***
本申请要求于2019年7月5日提交中国国家知识产权局、申请号为201910605545.8、发明名称为“一种基于正向优化的近场无线信道仿真测量方法和***”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信测量技术领域,尤其涉及一种基于正向优化的近场无线信道仿真测量方法和***。
背景技术
5G移动通信中,基于大规模多输入多输出(MIMO)体制的无线通信***的将获得广泛应用,传统的MIMO信道仿真测试***,一般都是基于射频电缆连接信道仿真器实现的,对于待测设备为手机的信道测试***,需要应用开盖方式绕过手机天线,直接将信道仿真器电缆与手机收发模块相连,带来电缆连线数量多、测量不方便;现有的不采用电缆连接的信道仿真测量方法中,***复杂、传输矩阵获取困难、可移植性差、且没有重视极化特性对信道仿真的影响,造成信道仿真方法测量精度低。
发明内容
本发明提供一种基于正向优化的近场无线信道仿真测量方法和***,解决现有方法和***连线复杂、信道测量精度低的问题。
本发明实施例指出一种基于正向优化的近场无线信道仿真测量方法,包含以下步骤:根据探头天线位置,获取空间传输矩阵和其伪逆矩阵;对待测设备任一通道单独打开、其他所有通道关断,得到该通道对应的理想隔离度向量;将所述空间传输矩阵乘以所述伪逆矩阵乘以所述理想隔离度向量、得到实际隔离度向量,将所述理想隔离度向量减去所述实际隔离度向量后求平方和得到误 差向量;对所述探头天线的空间位置和或极化方向进行优化,直到所述误差向量中的每一项数值小于设定优化阈值或所述探头天线的位置优化次数大于设定迭代次数,得到空间传输矩阵优化值和其伪逆矩阵优化值;将所述伪逆矩阵优化值乘以所述理性隔离度矩阵,得到所述待测设备打开通道的预置向量;对所述待测设备其他所有通道单独打开、得到每个通道的预置向量,按通道顺序拼接后得到预置矩阵。
进一步地,所述探头天线的空间位置,包含:所述探头天线之间的空间位置和或所述探头天线与所述待测设备之间的空间位置。
进一步地,所述探头天线的极化方向为水平极化或垂直极化。
优选地,所述设定优化阈值为所述待测设备的通道数的0.1倍。
本发明实施例还指出一种基于正向优化的近场无线信道仿真测量***,使用所述方法,包含:待测设备、测量暗箱、探头天线、幅相调控网络;所述待测设备与所述探头天线位于所述测量暗箱内;所述幅相调控网络,用于设置所述探头天线的幅度、相位;所述探头天线,用于向空间辐射信号,且所述探头天线为双极化天线;所述待测设备,用于接收所述探头天线辐射的信号,每个通道独立可控。
进一步地,所述探头天线与所述待测设备之间大于5倍工作频带最低频率对应波长,小于5米。
进一步地,所述探头天线数量在16~256之间,探头天线分布在一条直线上或一条曲线上或任意平面上或任意曲面上。
优选地,所述探头天线为双线极化天线或双圆极化天线。
优选地,所述测量暗箱为满足行业标准的屏蔽吸波暗箱,内表面铺设吸波材料,吸波材料为聚氨酯泡沫、铁氧体、吸波海绵。
本发明有益效果包括:本发明提出了一种基于正向优化的近场无线信道仿真测量方法和***,能够实现待测设备端口间高隔离度的方法,能够通过快速 的校准,获取传输矩阵,通过对传输矩阵的处理实现信道的高精度仿真;基于正向优化优化,优化迭代简单,能够克服病态逆矩阵造成的信道仿真失败,充分考虑了极化特性,能够适用于小型终端天线,当两天线相聚很近时,仍然能够通过极化特性和方向图特性提供接近实际应用场景的MIMO天线隔离度。
附图说明
图1为一种基于正向优化的近场无线信道仿真测量方法流程实施例;
图2为一种基于正向优化的近场无线信道仿真测量***实施例。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明创新点为:第一、本发明采用正向优化的方法,确保优化后的空间传输矩阵非病态,双极化探头天线和待测设备之间的距离不需要满足远场条件,只要两者之间距离超出感应近场区,能够节省整个***的建设成本;第二、引入极化调整方案,能够更广泛的适应不同基站和终端天线的实际需求;第三、双极化探头天线位置可选,针对不同待测设备可以选择不同的探头天线位置,能够最大程度的靠近待测设备每个通道之间的隔离度要求。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图1为一种基于正向优化的近场无线信道仿真测量方法流程实施例,通过正向优化布局实现多个探头天线分别对待测设备每个通道天线的聚焦,一种基于正向优化的近场无线信道仿真测量方法,具体包含以下步骤:
步骤101,根据探头天线位置,获取空间传输矩阵和其伪逆矩阵。
在步骤101中,所述探头天线为双极化天线。
在步骤101中,所述空间传输矩阵的建立依赖所述探头天线的位置和待测设备天线的位置,由空间几何关系结合格林函数获得。需要说明的是,获得所述空间传输矩阵的方法为现有技术,这里不做具体说明。
在步骤101中,所述伪逆矩阵为对所述传输矩阵求解Moore-Penrose伪逆,所述伪逆矩阵求解方法为现有技术,这里不做具体说明。
步骤102,对待测设备任一通道单独打开、其他所有通道关断,得到该通道对应的理想隔离度向量:
Figure PCTCN2019105857-appb-000001
其中,T i为所述待测设备第i通道对应的理想隔离度向量,T i的第i个数据为1、其余所有数据为0。
在步骤102中,所述理想隔离度向量的维度为所述待测设备的通道数。
步骤103,将所述空间传输矩阵乘以所述伪逆矩阵乘以所述理想隔离度向量、得到实际隔离度向量,将所述理想隔离度向量减去所述实际隔离度向量后求平方和得到误差向量。
在步骤103中,所述实际隔离度向量为:
I i=B×B w -1×T i        (2)
其中,I i为所述待测设备第i通道的实际隔离度向量,B w -1为所述为逆矩阵,T i为所述待测设备第i通道对应的理想隔离度向量。
在步骤103中,所述误差向量为:
δ i=(T i-I i) 2       (3)
其中,δ i为所述待测设备第i通道对应的误差向量,I i为所述待测设备第i通道的实际隔离度向量,T i为所述待测设备第i通道对应的理想隔离度向量。
需要说明的是,所述待测设备的每个通道均对应一个所述实际隔离度向量和误差向量,所述实际隔离度向量和所述误差向量的维度均为所述探头天线的个数。
步骤104,对所述探头天线的空间位置和或极化方向进行优化,直到所述误差向量中的每一项数值小于设定优化阈值或所述探头天线的位置优化次数大于设定迭代次数,得到空间传输矩阵优化值和其伪逆矩阵优化值。
在步骤104中,所述探头天线的空间位置,包含:所述探头天线之间的空间位置和或所述探头天线与所述待测设备之间的空间位置;所述探头天线的极化方向为水平极化或垂直极化。
在步骤104中,对所述探头天线的空间位置和或极化方向进行优化即为对所述探头天线进行正向优化布局,目的是实现多个探头天线对每个待测设备天线的聚焦,在聚焦在某个待测设备天线的同时,其他待测天线获得的能量很少。
在步骤104中,所述探头天线可以选择水平极化或垂直极化,如果探头天线为同极化天线,待测天线各端口之间的隔离度可能有限制,比如达到-15dB后无论如何迭代都无法实现进一步提升。因此,引入极化调控改变探 头天线的极化方向,可以进一步提高隔离度。需要说明的是,在实际应用中,一旦确定了每个探头天线的极化方向,在信道仿真中不需要切换探头天线的极化方向。
在步骤104中,所述设定优化阈值为所述待测设备的通道数的0.1倍,需要说明的是,所述设定优化阈值还可以是其他数值,这里不做特别限定。所述设定迭代次数可以为最大迭代次数,即无论如何进行迭代,所述误差向量均保持不变时的迭代次数。需要说明的是,所述设定迭代次数,还可以是其他数值,这里不做特别限定。
步骤105,将所述伪逆矩阵优化值乘以所述理性隔离度矩阵,得到所述待测设备打开通道的预置向量。
在步骤105中,所述预置向量为:
Figure PCTCN2019105857-appb-000002
其中,A i为所述待测设备第i通道的预置向量,
Figure PCTCN2019105857-appb-000003
为所述伪逆矩阵优化值,T i为所述待测设备第i通道对应的理想隔离度向量,A i1~A in为所述待测设备第i通道接收的第1个~第n个探头天线辐射信号的幅度,
Figure PCTCN2019105857-appb-000004
为所述待测设备第i通道接收的第1个~第n个探头天线辐射信号的相位。
步骤106,对所述待测设备其他所有通道单独打开、得到每个通道的预置向量,按通道顺序拼接后得到预置矩阵。
在步骤106中,所述预置矩阵为:
Figure PCTCN2019105857-appb-000005
其中,m为所述待测设备的通道数,A为所述预置矩阵,A i为所述待测设备第i通道的预置向量,A i1~A in为所述待测设备第i通道接收的第1个~第n个探头天线辐射信号的幅度,
Figure PCTCN2019105857-appb-000006
为所述待测设备第i通道接收的第1个~第n个探头天线辐射信号的相位。
进一步地,所述方法,还包含:将所述预置矩阵的逆矩阵输入多通道信道仿真器或幅相调控网络中,得到以下至少一种信道***参数:参考信号接收功率、吞吐率、误码率。需要说明的是,根据所述预置矩阵计算信道***参数的方法为现有技术,这里不做具体说明。
本发明实施例提出的近场无线信道仿真测量方法,对预置矩阵的计算基于了近场聚焦算法,对于任选的探头天线和极化方向,针对待测天线位置的不同汇集不同的焦斑,使待测设备的某一通道信号达到最大,而其他通道信号得到抑制,该方法是一种正向优化,潜在需要的测量次数更多,但是能够获得更好的通道间隔离度。
图2为一种基于正向优化的近场无线信道仿真测量***实施例,使用基于正向优化的近场无线信道仿真测量方法,所述***具体包含:待测设备1、测量暗箱3、探头天线2、幅相调控网络4。
所述待测设备与所述探头天线位于所述测量暗箱内;所述幅相调控网络,用于设置所述探头天线的幅度、相位;所述探头天线,用于向空间辐射信号,且所述探头天线为双极化天线;所述待测设备,用于接收所述探头天线辐射的信号,每个通道独立可控。
作为本发明实施例,所述探头天线与所述待测设备之间大于5倍工作频带 最低频率对应波长,小于5米,所述探头天线数量在16~256之间,探头天线分布在一条直线上或一条曲线上或任意平面上或任意曲面上。进一步地,所述探头天线为双线极化天线或双圆极化天线。
因为探头天线的种类和布局是会影响到能否获得希望的隔离度。举例说明,如果探头天线距离非常近,是无法获得待测设备各个天线之间的高隔离度的。采用双极化天线主要考虑有很多待测设备的MIMO是依靠极化分集实现的,引入双极化后可能很容易就能够获得较高的隔离度。
在本发明实施例中,所述测量暗箱为满足行业标准的屏蔽吸波暗箱,内表面铺设吸波材料,吸波材料为聚氨酯泡沫、铁氧体、吸波海绵。
本发明实施例提出的基于正向优化的近场无线信道仿真测量***,探头天线采用双极化天线,且双极化探头天线位置是可以选择的,针对不同待测设备的任一通道可以选择不同的探头天线位置,能够最大程度的靠近待测设备每个通道之间的隔离度要求。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端设备(可以是手机,个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述 的方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (9)

  1. 一种基于正向优化的近场无线信道仿真测量方法,其特征在于,包含以下步骤:
    根据探头天线位置,获取空间传输矩阵和其伪逆矩阵;
    对待测设备任一通道单独打开、其他所有通道关断,得到该通道对应的理想隔离度向量:
    Figure PCTCN2019105857-appb-100001
    其中,T i为所述待测设备第i通道对应的理想隔离度向量,T i的第i个数据为1、其余所有数据为0;
    将所述空间传输矩阵乘以所述伪逆矩阵乘以所述理想隔离度向量、得到实际隔离度向量,将所述理想隔离度向量减去所述实际隔离度向量后求平方和得到误差向量;
    对所述探头天线的空间位置和或极化方向进行优化,直到所述误差向量中的每一项数值小于设定优化阈值或所述探头天线的位置优化次数大于设定迭代次数,得到空间传输矩阵优化值和其伪逆矩阵优化值;
    将所述伪逆矩阵优化值乘以所述理性隔离度矩阵,得到所述待测设备打开通道的预置向量;
    对所述待测设备其他所有通道单独打开、得到每个通道的预置向量,按通道顺序拼接后得到预置矩阵。
  2. 如权利要求1所述的基于正向优化的近场无线信道仿真测量方法,其特征在于,所述探头天线的空间位置,包含:所述探头天线之间的空间位置和或所述探头天线与所述待测设备之间的空间位置。
  3. 如权利要求1所述的基于正向优化的近场无线信道仿真测量方法,其特征在于,所述探头天线的极化方向为水平极化或垂直极化。
  4. 如权利要求1所述的基于正向优化的近场无线信道仿真测量方法,其特征在于,所述设定优化阈值为所述待测设备的通道数的0.1倍。
  5. 一种基于正向优化的近场无线信道仿真测量***,使用权利要求1~4任一项所述方法,其特征在于,包含:待测设备、测量暗箱、探头天线、幅相调控网络;
    所述待测设备与所述探头天线位于所述测量暗箱内;
    所述幅相调控网络,用于设置所述探头天线的幅度、相位;
    所述探头天线,用于向空间辐射信号,且所述探头天线为双极化天线;
    所述待测设备,用于接收所述探头天线辐射的信号,每个通道独立可控。
  6. 如权利要求5所述的基于正向优化的近场无线信道仿真测量***,其特征在于,所述探头天线与所述待测设备之间大于5倍工作频带最低频率对应波长,小于5米。
  7. 如权利要求5所述的基于正向优化的近场无线信道仿真测量***,其 特征在于,所述探头天线数量在16~256之间,探头天线分布在一条直线上或一条曲线上或任意平面上或任意曲面上。
  8. 如权利要求5所述的基于正向优化的近场无线信道仿真测量***,其特征在于,所述探头天线为双线极化天线或双圆极化天线。
  9. 如权利要求5所述的基于正向优化的近场无线信道仿真测量***,其特征在于,所述测量暗箱为满足行业标准的屏蔽吸波暗箱,内表面铺设吸波材料,吸波材料为以下至少一种:聚氨酯泡沫、铁氧体、吸波海绵。
PCT/CN2019/105857 2019-07-05 2019-09-15 一种基于正向优化的近场无线信道仿真测量方法和*** WO2021003839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910605545.8 2019-07-05
CN201910605545.8A CN112188537B (zh) 2019-07-05 2019-07-05 一种基于正向优化的近场无线信道仿真测量方法和***

Publications (1)

Publication Number Publication Date
WO2021003839A1 true WO2021003839A1 (zh) 2021-01-14

Family

ID=73914716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105857 WO2021003839A1 (zh) 2019-07-05 2019-09-15 一种基于正向优化的近场无线信道仿真测量方法和***

Country Status (2)

Country Link
CN (1) CN112188537B (zh)
WO (1) WO2021003839A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试***有限公司 Mimo无线终端的无线性能测试方法
CN104349510A (zh) * 2013-07-31 2015-02-11 中兴通讯股份有限公司 人体局域网实现方法和装置
CN105842546A (zh) * 2015-08-26 2016-08-10 深圳市通用测试***有限公司 基于天线方向图信息的电磁波传播矩阵的逆矩阵求解方法
EP3101919A1 (en) * 2015-06-02 2016-12-07 Oticon A/s A peer to peer hearing system
CN108932381A (zh) * 2018-06-27 2018-12-04 电子科技大学 一种考虑阵列误差的天线阵列故障诊断方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571079B2 (ja) * 2006-02-09 2010-10-27 日本電信電話株式会社 無線通信システム及び方法
CN105993133B (zh) * 2014-07-04 2019-05-24 华为技术有限公司 多极化发射接收天线、发射接收装置、***和方法
US10601695B2 (en) * 2016-09-01 2020-03-24 Keysight Technologies, Inc. Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
US10033473B1 (en) * 2017-01-23 2018-07-24 Keysight Technologies, Inc. Systems and methods for performing multiple input, multiple output (MIMO) over-the-air testing
CN108574539B (zh) * 2017-03-08 2021-01-15 深圳市通用测试***有限公司 基于mimo无线终端测试的信号生成方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试***有限公司 Mimo无线终端的无线性能测试方法
CN104349510A (zh) * 2013-07-31 2015-02-11 中兴通讯股份有限公司 人体局域网实现方法和装置
EP3101919A1 (en) * 2015-06-02 2016-12-07 Oticon A/s A peer to peer hearing system
CN105842546A (zh) * 2015-08-26 2016-08-10 深圳市通用测试***有限公司 基于天线方向图信息的电磁波传播矩阵的逆矩阵求解方法
CN108932381A (zh) * 2018-06-27 2018-12-04 电子科技大学 一种考虑阵列误差的天线阵列故障诊断方法

Also Published As

Publication number Publication date
CN112188537A (zh) 2021-01-05
CN112188537B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Qi et al. 5G over-the-air measurement challenges: Overview
CN107800495B (zh) 用于多入多出无线链路的无线电信道仿真的***和方法
EP2577892B1 (en) Over-the-air test
WO2022095510A1 (zh) 阵列天线的校准方法、装置及存储介质
US20180212695A1 (en) Systems and methods for performing multiple input, multiple output (mimo) over-the-air testing
CN110071771A (zh) 用于射频环境模拟的分布式***
WO2021003838A1 (zh) 一种近场信道仿真测量***和方法
Bolli et al. Computational electromagnetics for the SKA-Low prototype station AAVS2
WO2017215020A1 (zh) 用于大规模mimo***基站的测试方法及装置
Castellanos et al. Signal-level models of pointwise electromagnetic exposure for millimeter wave communication
TW201947236A (zh) 無線通信裝置空中傳輸量測系統
Li et al. Massive MIMO for ray-based channels
Kildal et al. Verification of the Random Line-of-Sight Measurement Setup at 1.5-3 GHz Including MIMO Throughput Measurements of a Complete Vehicle
Pérez et al. On the impact of the radiation pattern of the antenna element on MU-MIMO indoor channels
Razmhosseini et al. Practical diversity design for PCB IoT terminals
Zheng et al. Field trial measurement and channel modeling for reconfigurable intelligent surface
Pratschner et al. A mutual coupling model for massive MIMO applied to the 3GPP 3D channel model
WO2021003839A1 (zh) 一种基于正向优化的近场无线信道仿真测量方法和***
Saqib et al. THz Communications: A Key Enabler for Future Cellular Networks
US10103826B2 (en) Testing device and testing method with a fading simulator
CN102148885A (zh) 一种多天线终端的测试方法和***
Zhang et al. A low complexity emulation scheme for 5G millimeter‐wave massive MIMO channel
Wang et al. Far-and Near-Field Channel Measurements and Characterization in the Terahertz Band Using a Virtual Antenna Array
Wijekoon et al. Phase Shifter Optimization in RIS-Aided MIMO Systems Under Multiple Reflections
Ahmadi‐Shokouh et al. Empirical MIMO beamforming and channel measurements at 57–64 GHz frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936648

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936648

Country of ref document: EP

Kind code of ref document: A1