WO2021002044A1 - Interference detection and interference control for forward-link communication in feeder link in haps communication system - Google Patents

Interference detection and interference control for forward-link communication in feeder link in haps communication system Download PDF

Info

Publication number
WO2021002044A1
WO2021002044A1 PCT/JP2020/005484 JP2020005484W WO2021002044A1 WO 2021002044 A1 WO2021002044 A1 WO 2021002044A1 JP 2020005484 W JP2020005484 W JP 2020005484W WO 2021002044 A1 WO2021002044 A1 WO 2021002044A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
station
base station
relay
interference
Prior art date
Application number
PCT/JP2020/005484
Other languages
French (fr)
Japanese (ja)
Inventor
亮次 平井
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Publication of WO2021002044A1 publication Critical patent/WO2021002044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to interference detection and interference suppression of forward link communication in a feeder link of an airborne wireless relay device such as HAPS suitable for constructing a three-dimensional network.
  • HAPS high altitude platform stations
  • GW gateway
  • the communication system is a feeder between a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device and the communication relay device. It is equipped with a base station that performs wireless communication of the link.
  • the relay communication station transmits a measurement report including a reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected, and the connection base station receives from the relay communication station. Based on the measurement report, the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected is detected.
  • the relay communication station performs search detection of a received signal for the frequency of the feeder link, and for each of the plurality of received signals detected by the search detection, the physical cell identification information corresponding to the received signal is used.
  • a measurement report including the reception level of the reception signal may be transmitted to the connection base station.
  • the connected base station compares the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the measurement report received from the relay communication station, and the above-mentioned
  • the forward link It may be determined that communication interference has occurred.
  • the connected base station and the other base station may execute an interference suppression process for suppressing the interference of the forward link communication in cooperation with each other. Good.
  • the relay communication station is connected to a feeder link communication unit that functions as a mobile station for mobile communication that communicates with the base station, and the feeder link communication unit, and the terminal is connected to the feeder link communication unit at a frequency different from that of the feeder link.
  • a service link communication unit that functions as a base station for mobile communication that communicates with the device may be provided.
  • the communication relay device is a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
  • This communication relay device includes means for transmitting a measurement report including a reception level measured for the frequency of the feeder link to a connection base station to which the relay communication station is connected.
  • the communication relay device for each of the means for performing search detection of a received signal for the frequency of the feeder link and the plurality of received signals detected by the search detection, the physical cell identification information corresponding to the received signal and the received signal.
  • a means for transmitting a measurement report including the reception level of the above to the connected base station may be provided.
  • a base station is a base that performs wireless communication of a feeder link with a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. It is a station.
  • This base station receives a measurement report including the reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and based on the measurement report, other than the base station.
  • a means for detecting interference in forward link communication due to interference waves from other base stations is provided.
  • the interference of the forward link communication occurs. It may be provided with a means for determining that it has occurred.
  • a means for executing an interference suppression process for suppressing the interference of the forward link communication in cooperation with another base station may be provided.
  • a method is the relay communication from a base station in a feeder link of a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
  • This is a method of detecting the interference of forward link communication toward a station.
  • the relay communication station transmits a measurement report including a reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected, and the connection base station is described. It includes detecting the interference of forward link communication due to the interference wave from a base station other than the base station to which the relay communication station is connected based on the measurement report received from the relay communication station.
  • the program according to still another aspect of the present invention is executed by a computer or processor provided in a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
  • This program includes a program code for transmitting a measurement report including a reception level measured for the frequency of the feeder link to a connected base station to which the relay communication station is connected.
  • the program according to still another aspect of the present invention is a base that performs wireless communication of a feeder link with a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
  • This program includes a program code for receiving a measurement report including a reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and a measurement report received from the relay communication station.
  • the program code for detecting the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected is included.
  • the present invention it is possible to detect the interference of forward link communication in the feeder link of the communication relay device, which tends to occur when the number of movable airborne communication relay devices increases in the same area.
  • FIG. 1 is an explanatory diagram showing an example of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of a main configuration of the HAPS relay communication station according to the embodiment.
  • FIG. 3 is a block diagram showing an example of a main configuration of the BBU of the base station according to the embodiment.
  • FIG. 4 is a flow sequence diagram showing an example of interference detection of forward link communication by the BBU of the HAPS relay communication station and the base station in the communication system according to the embodiment.
  • FIG. 5 is an explanatory diagram showing another example of the communication system according to the embodiment of the present invention.
  • FIG. 1 is an explanatory diagram showing an example of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of a main configuration of the HAPS relay communication station according to the embodiment.
  • FIG. 3 is a block diagram showing an example of a main configuration of the BBU of the base station according to the embodiment.
  • FIG. 4 is
  • FIG. 6 is a flow sequence diagram showing an example of interference detection and interference suppression processing of forward link communication by the HAPS relay communication station and the common BBU in the communication system of FIG.
  • FIG. 7 is an explanatory diagram showing still another example of the communication system according to the embodiment of the present invention.
  • FIG. 8 is a flow sequence diagram showing an example of interference detection and interference suppression processing of reverse link communication by the common BBU in the communication system of FIG. 7.
  • FIG. 1 is an explanatory diagram showing an example of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is applicable to LTE, the 5th generation and the next generation mobile communication after that, and in particular, the 5th generation corresponding to simultaneous connection to a large number of terminal devices and low delay. It is suitable for the realization of (NR) and subsequent next-generation mobile communication three-dimensional networks.
  • the communication system is also referred to as a plurality of high altitude platform stations (HAPS) (also referred to as “high altitude pseudo satellite” or “stratified area platform”) as a plurality of levitation type communication relay devices (wireless relay devices).
  • HAPS high altitude platform stations
  • high altitude pseudo satellite also referred to as "high altitude pseudo satellite” or “stratified area platform”
  • levitation type communication relay devices wireless relay devices.
  • 20 (1) and 20 (2) are provided.
  • the HAPS 20 (1) and 20 (2) are located in an airspace at a predetermined altitude and form a three-dimensional cell (three-dimensional area) in the cell formation target airspace at a predetermined altitude.
  • the HAPS 20 (1) and 20 (2) are controlled to float or fly in a high altitude airspace (floating airspace) of 100 [km] or less from the ground or sea surface by autonomous control or external control.
  • the relay communication stations 21 (1) and 21 (2) are mounted on a floating body or a flying body (for example, an
  • HAPS 20 (1) and 20 (2) are solar-powered HAPS, and two HAPS 20 (1) and 20 (2) are flying.
  • the number of may be 3 or more.
  • the type of HAPS may be a type different from that of a solar plane such as an airship or a balloon.
  • HAPS 20, relay communication station 21, etc. without parenthesized numbers.
  • the airspace where HAPS20 is located is, for example, the airspace of the stratosphere where the altitude above the ground (or above the water such as the sea or lake) is 11 [km] or more and 50 [km] or less.
  • This airspace may be an airspace with an altitude of 15 [km] or more and 25 [km] or less in which the weather conditions are relatively stable, and in particular, an airspace with an altitude of approximately 20 [km].
  • the cell formation target airspace which is the target airspace for forming a three-dimensional cell with one or more HAPS20s
  • This is an airspace within a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) located between the cell formation region near the ground covered by the eNodeB of the above (5th generation gNodeB).
  • the cell formation target airspace in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake. Further, the three-dimensional cell formed by HAPS 20 may be formed so as to reach the ground or the sea surface so that it can communicate with the terminal device 61 located on the ground or the sea.
  • the relay communication station 21 of the HAPS 20 wirelessly communicates with a terminal device (also referred to as a “user device” (UE)) 61, which is a mobile station used by the user, by means of a service link antenna (hereinafter referred to as “SL antenna”). Form multiple beams for the ground.
  • the terminal device 61 may be a communication terminal module incorporated in a drone, which is an aircraft such as a small helicopter that can be remotely controlled, or may be a user device (UE) used by a user in an airplane or the like.
  • the area through which the beam of the service link formed by HAPS20 passes in the cell formation target airspace is a three-dimensional cell.
  • the regions through which the beam of the service link formed by HAPS 20 (1) and 20 (2) passes are the first cell 200C (1) and the second cell 200C (2), respectively.
  • the terminal device 61 (1) is in the first cell 200C (1)
  • the terminal device 61 (2) is in the second cell 200C (2).
  • the relay communication station 21 of the HAPS 20 is a plurality of gateway stations (also referred to as “feeder stations”, hereinafter referred to as "GW stations”) as relay stations (repeater master units) connected to the base station 75 on the ground (or sea) side. ) Wireless communication with 70.
  • the relay communication station 21 (1) of the HAPS 20 (1) wirelessly communicates with the GW station 70 (1) connected to the base station 75 (1), and the relay communication station 21 (2) of the HAPS 20 (2) , Wireless communication with the GW station 70 (2) connected to the base station 75 (2).
  • the plurality of base stations 75 (1) and 75 (2) are time-synchronized with each other.
  • the relay communication station 21 is a mobile communication network core network 80 via a GW station 70 and a base station 75 installed on the ground or the sea where wireless communication is possible by using a feeder link antenna (hereinafter referred to as “FL antenna”). It is connected to the.
  • the GW station 70 of each HAPS may be arranged at different points on the ground or at sea, or may be arranged at the same point. Further, the feeder link communication between the relay communication station 21 of the HAPS 20 and the GW station 70 may be performed by wireless communication using radio waves such as microwaves, or by optical communication using laser light or the like. ..
  • the GW station 70 may control its own antenna (hereinafter referred to as “GW antenna”) 71 so as to track the HAPS 20 moving in the air. Since the GW antenna 71 tracks the HAPS 20, even when a GW antenna 71 having high directivity such as a parabolic antenna is used, it is possible to suppress a deterioration in the communication quality of the feeder link due to the movement of the HAPS 20.
  • GW antenna its own antenna
  • the directional beam control method of the GW antenna 71 various methods such as a gimbal method, an electric method (360-degree beamforming control method), and an electric method (angle-limited beamforming control method + antenna switching) are used. Can be done.
  • the base station 75 is composed of a remote radio device (RRH (Remote Radio Head); also referred to as RRU (Remote Radio Unit)) 76 and a baseband processing device (BBU (Base Band Unit)) 77.
  • RRH Remote Radio Head
  • BBU Base Band Unit
  • the RRH76 and the BBU77 may be connected by an optical fiber line and arranged apart from each other.
  • the RRH76 may be incorporated into the GW station 70.
  • a plurality of BBUs 77 (1) and 77 (2) may be integrated and provided at one place to form a common baseband processing apparatus.
  • the RRH76 includes, for example, an orthogonal modulation / demodulation unit, a transmission unit, a receiver unit, a power amplifier (PA (Power Amplifier)), and a low noise receiver (LNA (Low Noise Amplifier)), and is connected to the GW station 70.
  • the orthogonal modulation / demodulation unit orthogonally modifies the OFDM signal processed by the BBU and converts it into an analog signal (RF signal).
  • the transmission unit converts the frequency of the RF signal generated by the orthogonal modulation / demodulation unit into a frequency to be transmitted as a radio wave.
  • the receiving unit converts the frequency of the high-frequency signal of the received radio wave into a frequency processed by the orthogonal modulation / demodulation unit.
  • the power amplifier (PA) power-amplifies the RF signal generated by the transmitter.
  • the low noise receiver (LNA) amplifies the received weak radio wave and passes it to the receiving unit.
  • the BBU 77 includes, for example, a base station control unit, a transmission line interface unit, a timing control unit, and a baseband unit, and is connected to the core network 80 of the mobile communication network via a predetermined interface (for example, S1 interface). ..
  • the base station control unit controls the entire base station and performs call control protocols and control monitoring.
  • a packet transmission line such as Ethernet (registered trademark) is connected to the transmission line interface unit with a core network or the like, and a predetermined protocol is processed to send and receive IP packets.
  • the timing control unit generates various clocks to be used inside the base station based on the reference clock extracted from the signal received via the packet transmission path or the GNSS (Global Navigation Satellite System) received signal from the artificial satellite.
  • the baseband unit converts (modulates and demodulates) the IP packet sent and received through the transmission line interface unit and the OFDM signal (baseband signal) which is a radio signal.
  • Each of the HAPS 20 may autonomously control the floating movement (flight) of the HAPS itself and the processing at the relay communication station 21 by executing a control program by a control unit composed of a computer or the like incorporated therein.
  • each of the HAPS 20 acquires the current position information of the HAPS itself (for example, GPS position information), the position control information stored in advance (for example, flight schedule information), the position information of other HAPS located in the vicinity, and the like.
  • the floating movement (flight) and the processing in the relay communication station 21 may be autonomously controlled based on the information.
  • the central control server 85 can be configured by, for example, a computer device such as a PC or a server that can read and execute a program.
  • the HAPS 20 is a control communication unit (for example, a control communication unit described later) for receiving control information from the central control server 85 and transmitting various information such as monitoring information to a predetermined destination such as the central control server 85. It is equipped with a mobile communication module).
  • the control communication unit may be assigned terminal identification information (for example, IP address, telephone number, etc.) so that it can communicate with the central control server 85.
  • the MAC address of the communication interface may be used to identify the control communication unit of the HAPS 20.
  • Transmission and reception of control information and monitoring information between the HAPS 20 and the central control server 85 may be performed, for example, via an LTE communication line via the core network 80 of the mobile communication network, the base station 75, and the GW station 70. it can. Further, the transmission / reception of control information and monitoring information may be performed using a satellite line for mobile communication via an artificial satellite, or may be performed using a satellite line via the Internet 90 and an artificial satellite.
  • the monitoring information transmitted from the HAPS 20 is information on the floating movement (flying) of the HAPS itself or the surrounding HAPS and the processing at the relay communication station 21, and the reception monitor in which the HAPS 20 measures the received power of the feeder link with the GW station 70. It may include at least one of information, information on the state of HAPS 20, and information on observation data acquired by various sensors and the like.
  • the monitoring information includes the current position and attitude information of HAPS20, flight route information (flight schedule information, flight route history information), airspeed, ground speed and propulsion direction, wind speed and direction of airflow around HAPS20, and It may include at least one piece of information on the air pressure and temperature around the HAPS 20.
  • the control information may include the target flight route information of HAPS20.
  • the HAPS 20 and the central control server 85 use the weather forecast information of the area including the wireless propagation path of the feeder link, the maintenance schedule information of the GW station 70 or the base station 75, and the reception level of the feeder link with the GW station 70 measured by the HAPS 20.
  • the monitor information, the flight path information of the HAPS 20, the current position information and the attitude information of the HAPS 20, and the position information of the GW station 70 may be acquired. These pieces of information may be obtained, for example, from the server of the core network (mobile communication network) 80 or the server of the Internet 90 that manages each piece of information.
  • the central control server 85 transfers the maintenance schedule information of the GW station 70 or the base station 75 to the GW station 70 or the base station 75 via a predetermined interface (for example, the LTE S1 interface) via the core network 80 of the mobile communication network. It may be obtained from the GW station 70 or the management server that manages the base station 75.
  • a predetermined interface for example, the LTE S1 interface
  • the uplink and downlink duplex schemes for wireless communication between the relay communication station 21 and the terminal device 61 are not limited to a specific scheme, and may be, for example, a Time Division Duplex (TDD) scheme.
  • a frequency division duplex (FDD) system may also be used.
  • the access method for wireless communication between the relay communication station 21 and the terminal device 61 is not limited to a specific method, and is, for example, an FDMA (Frequency Division Multiple Access) method, a TDMA (Time Division Multiple Access) method, or a CDMA (Code) method. It may be a Division Multiple Access) method or an OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM: Spatial Division Multiplexing), and by using a plurality of antennas for both transmission and reception at the same time, per unit frequency.
  • MIMO Multi-Input Multi-Output: Multi-Input and Multi-Output
  • the MIMO technology may be SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device, or one base station may have a plurality of multiple signals.
  • MU-MIMO Multi-User MIMO
  • the communication relay device having the relay communication station 21 that wirelessly communicates with the terminal device 61 is the solar plane type HAPS 20
  • the communication relay device is an unmanned airship type or a balloon. It may be a type of HAPS.
  • the following embodiments can be similarly applied to other levitation type communication relay devices other than HAPS.
  • the link between the HAPS 20 and the base station 75 via the GW station 70 is called a "feeder link (FL)", and the link between the HAPS 10 and the terminal device 61 is called a “service link (SL)".
  • the section between the HAPS 20 and the GW station 70 is referred to as a "feeder link radio section”.
  • the communication from the GW station 70 to the terminal device 61 via the HAPS 20 is called “forward link” communication
  • the communication from the terminal device 61 to the GW station 70 via the HAPS 20 is also called “reverse link” communication.
  • the HAPS 20 is located in the stratosphere at an altitude of, for example, about 20 km, forms one feeder link with one GW station 70, and the HAPS 20 forms one cell 200C, and the foot of the cell 200C.
  • the diameter of the service area consisting of the print 200F is, for example, 100 to 200 km, but is not limited thereto.
  • the number of cells formed by HAPS20 may be 2 or more.
  • the HAPS 20 may form a plurality of feeder links with the plurality of GW stations 70.
  • the interference of the forward link communication may occur between the feeder links. .. If the interference of the forward link communication occurs between the feeder links, the wireless communication quality of the forward link communication in the feeder link may deteriorate or the forward link communication may be cut off.
  • the base station 75 of the present embodiment detects the interference of the forward link communication due to the interference wave from the base station other than the base station to which the HAPS 20 is connected, based on the measurement report of the feeder link received from the HAPS 20. doing.
  • FIG. 2 is a block diagram showing an example of the main configuration of the relay communication station 21 of the HAPS 20 according to the present embodiment.
  • the relay communication station 21 includes a feeder link communication unit 221 and a service link communication unit 222, a control unit 224 that controls each unit, and a control communication unit 226.
  • the feeder link communication unit 221 has a function equivalent to that of a mobile station in terrestrial cellular mobile communication.
  • the feeder link communication unit 221 transmits and receives a radio signal having a feeder link frequency F1 to and from the GW station 70 via the FL antenna 211.
  • the service link communication unit 222 has a function equivalent to that of a base station (for example, eNodeB or g-NodeB) in terrestrial cellular mobile communication.
  • the service link communication unit 222 is connected to the feeder link communication unit 221 and transmits / receives a radio signal having a service link frequency F2 different from the feeder link frequency F1 to / from the terminal device 61 via the SL antenna 115.
  • the control unit 224 can control each unit by executing a program incorporated in advance.
  • the control unit 224 functions as the following means (A1) to (A3) in cooperation with the feeder link communication unit 221.
  • (A1) Means for transmitting a measurement report (MR) including a reception level measured for the feeder link frequency F1 to a connection base station 75 to which the relay communication station 21 is connected
  • A2 A means for transmitting a reception signal for the feeder link frequency.
  • Means for Search Detection (A3) For each of the plurality of received signals detected by the search detection, a measurement report (MR) including the physical cell identification information (PCI) corresponding to the received signal and the reception level of the received signal is provided.
  • control unit 224 may control the FL antenna 215 so as to track the GW station 70.
  • the FL antenna 215 By tracking the GW station 70 by the FL antenna 215, it is possible to suppress a deterioration in the communication quality of the feeder link due to the movement of the HAPS 20.
  • various methods such as a gimbal method, an electric method (360-degree beamforming control method), and an electric method (angle-limited beamforming control method + antenna switching) are used. Can be done.
  • the control communication unit 226 is composed of, for example, a mobile communication module having LTE or next-generation (for example, fifth-generation) communication functions, satellite communication functions, or both, so that it can communicate with the central control server 85.
  • Terminal identification information for example, IP address, telephone number, etc.
  • the MAC address of the communication interface may be used to identify the control communication unit 226.
  • FIG. 3 is a block diagram showing an example of a main configuration of BBU77 of the base station 75 according to the present embodiment.
  • the BBU 77 of the base station 75 includes a base station control unit 771, a transmission line interface unit 772, a timing control unit 773, and a baseband unit 774, as described above.
  • the base station control unit 771 functions as the following means (B1) to (B4) in cooperation with the baseband unit 774.
  • (B1) Means for receiving a measurement report (MR) including a reception level and physical cell identification information (PCI) measured by the relay communication station 21 of the HAPS 20 for the feeder link frequency F1 from the relay communication station 21 (B2).
  • MR measurement report
  • PCI physical cell identification information
  • Means for detecting interference of forward link communication due to interference waves from a base station other than the connected base station (own station) 75 to which the relay communication station 21 is connected based on the measurement report (MR) B3
  • relay Means for comparing the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station 21 based on the measurement report (MR) received from the communication station 21 B4) Signal wave reception level and interference wave When the difference from the reception level becomes equal to or less than a predetermined threshold, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold, the interference of the forward link communication occurs.
  • the threshold value used for determining the occurrence of interference in the forward link communication is set in advance based on the configuration of the HAPS communication system and is held in the base station control unit 771.
  • the interference suppression process for suppressing the interference of the forward link communication is the same as DL-CoMP (downlink-cooperative multipoint) that can be used for downlink from the base station to the terminal device in the terrestrial cellular mobile communication. It may be an interference suppression process.
  • DL-CoMP is, for example, a technique in which two RRHs of a base station (eNodeB) cooperate and transmit time-synchronized data to the same terminal device from each of the two RRHs.
  • the RRH76 (1), 76 (2), BBU77 (1), 77 (2), and 78 in the forward link (feeder link) communication of the present embodiment correspond to the RRH and BBU of the DL-CoMP base station (eNodeB).
  • the relay communication station 21 of the HAPS 20 in the forward link (feeder link) communication of the present embodiment corresponds to the terminal device of the DL-CoMP.
  • FIG. 4 is a flow sequence diagram showing an example of interference detection by BBU77 of the relay communication station 21 and the base station 75 of the HAPS 20 in the communication system according to the present embodiment.
  • the relay communication station 21 of the HAPS 20 searches the feeder link frequency F1 periodically or irregularly at a predetermined timing, and is broadcast from the found base stations (connecting base stations and interfering base stations) 75. Acquires the physical cell identification information (PCI) (S101).
  • PCI physical cell identification information
  • the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 broadcasts from the connection base station 75 (1) to which the relay communication station 21 (1) is connected via the GW station 70 (1).
  • the physical cell identification information (PCI 1) included in the synchronized signal (SS) and the like, and the synchronized signal (SS) and the like broadcast from the interference base station 75 (2) via the GW station 70 (2).
  • the relay communication station 21 measures the signal level of the signal transmitted from the base station (connecting base station and interfering base station) 75 (S102).
  • the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 transmits from the connection base station 75 (1) to which the relay communication station 21 (1) is connected via the GW station 70 (1).
  • the reception level (for example, reference signal reception power) of the wave I_FWD (2) is measured.
  • the reception level of the signal wave S_FWD (1) from the connected base station 75 (1) is referred to as a “signal wave reception level", and the reception of the reference signal of the interference wave I_FWD (2) from the interference base station 75 (2).
  • the level is called “interference wave reception level”.
  • the relay communication station 21 lists the physical cell identification information (PCI) acquired by searching and the reception level (signal wave reception level, interference wave reception level), and connects to the base station 75 to which it is connected. Report by MR (Measurement Report) (S301).
  • PCI physical cell identification information
  • the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 MRs the PCI and the reception level listed to the connection base station 75 (1) to which the relay communication station 21 (1) is connected. Report at.
  • the base station 75 detects the interference of the forward link communication due to the interference wave from another base station based on the MR received from the relay communication station 21. For example, the base station 75 compares the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the MR received from the relay communication station 21 (S104), and the signal wave reception level. When the difference between the interference wave reception level and the interference wave reception level becomes less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes more than a predetermined threshold value, interference of forward link communication occurs. (S105).
  • FIG. 5 is an explanatory diagram showing another example of the communication system according to the embodiment of the present invention.
  • BBU77s of a plurality of base stations 75 are aggregated to form a common BBU78 which is a common baseband processing device.
  • RRH76 (1) and 76 (2) of the plurality of base stations 75 are provided in the corresponding GW stations 70 (1) and 70 (2), respectively. That is, the plurality of GW stations 70 (1) and 70 (2) are housed in the common BBU 78 which is the same BBU. Since other configurations are the same as those in FIG. 1 described above, their description will be omitted.
  • the common BBU 78 has the same configuration as that of FIG. 3, and the base station control unit 771 cooperates with the baseband unit 774 to, in addition to the means of (B1) to (B4) described above, It also functions as the next means (B5).
  • (B5) Means for executing interference suppression processing for suppressing interference in forward link communication in cooperation with other base stations when interference in forward link communication is detected.
  • the interference suppression process of the forward link (feeder link) executed by the common BBU78 is, for example, with DL-CoMP (downlink-cooperative multipoint) that can be used for the downlink from the base station to the terminal device in the terrestrial cellular mobile communication. This is a similar interference suppression process.
  • FIG. 6 is a flow sequence diagram showing an example of interference detection and interference suppression processing by BBU77 of the relay communication station 21 and the base station 75 of HAPS 20 in the communication system of FIG. Since steps S201 to S05 in FIG. 6 are the same as S101 to S105 in FIG. 4 described above, their description will be omitted.
  • the common BBU 78 executes the interference suppression process of suppressing the interference of the forward link communication (S206). For example, the common BBU 78 activates the DL-CoMP program incorporated in advance to interfere with the forward link communication by the interference wave I_FWD (2) from the GW station 70 (2) to the HAPS 20 (1) in FIG. Suppress Interference suppression processing is executed.
  • interference of reverse link communication between the feeder links occurs. It may occur. If the interference of the reverse link communication occurs between the feeder links, the wireless communication quality of the reverse link communication in the feeder link may deteriorate or the reverse link communication may be cut off.
  • the same common BBU 78 accommodating the plurality of GW stations 70 (RRH76) receives the plurality of received signals received by the plurality of GW stations 70 (RRH76) by the plurality of GW antennas 71.
  • the reception process is performed on the assumption that the received signal is received, the reception levels of each of the plurality of GW antennas 71 obtained by the reception process are compared with each other, and each GW antenna 71 causes HAPS20 to interfere with reverse link communication.
  • the reception level of the interference wave I_REV from is monitored to determine the presence or absence of interference in reverse link communication.
  • FIG. 7 is an explanatory diagram showing still another example of the communication system according to the embodiment of the present invention.
  • the common BBU 78 has the same configuration as that of FIG. 3 described above, and the base station control unit 771 cooperates with the baseband unit 774 to provide the following means (C1) to (C5). Functions as. (C1) Based on the plurality of received signals received by the plurality of GW stations 70 (RRH76), the other HAPS 20 interfering with the signal wave S_REV from the relay communication station 21 of the HAPS 20 connected to the GW station 70.
  • a plurality of GW stations Means for executing interference suppression processing that suppresses interference in reverse link communication by coordinating the reception operation by 70 (RRH76).
  • the interference suppression process for suppressing the interference of the reverse link communication is the same as UL-CoMP (uplink-cooperative multipoint) that can be used for uplink from a terminal device to a base station in terrestrial cellular mobile communication. It may be an interference suppression process.
  • UL-CoMP is, for example, a base station in which two RRHs of a base station (eNodeB) cooperate and receive a transmission signal from a terminal device communicating with one of the RRHs in both RRHs. This is a technique in which a signal is received in the form of having a plurality of antennas in (eNodeB) and synthesized by a baseband portion (BBU) of a base station (eNodeB).
  • the RRH76 (1), 76 (2), BBU77 (1), 77 (2), and 78 in the reverse link (feeder link) communication of the present embodiment correspond to the RRH and BBU of the UL-CoMP base station (eNodeB).
  • the relay communication station 21 of the HAPS 20 in the forward link (feeder link) communication of the present embodiment corresponds to the UL-CoMP terminal device.
  • FIG. 8 is a flow sequence diagram showing an example of interference detection and interference suppression processing of reverse link communication by the common BBU 78 in the communication system of FIG. 7.
  • the RRH76 (1), 76 (2) of the plurality of GW stations 70 (1), 70 (2) are HAPS20 (1), 20 via the GW antennas 71 (1), 71 (2).
  • the radio wave of the reverse link communication of the feeder link of the frequency F1 transmitted from the relay communication stations 21 (1) and 21 (2) of (2) is received, and the received received signal is transferred to the common BBU 78 (S301).
  • the common BBU 78 receives a plurality of received signals received by the RRH76 (1) and 76 (2) of the plurality of GW stations 70 (1) and 70 (2) from the plurality of GW antennas 71 (1) and 71 (2).
  • the reception process is performed as the reception signal received in (S302).
  • the common BBU 78 is connected to the GW station 70 (RRH76) for each GW antenna 76 based on the received signals of the plurality of GW antennas 71 (1) and 71 (2) obtained in the reception process. It is confirmed whether or not the interference wave I_REV is received from the relay communication station 21 of the other HAPS 20 that is interfering with the signal wave S_REV from the relay communication station 21 of the HAPS 20 (S303). For example, in the example of FIG. 7, the common BBU 78 interferes with the signal wave S_REV (1) from the relay communication station 21 (1) of the HAPS 20 (1) connected to the RRH76 (1) of the GW station 70 (1). It is confirmed whether or not the interference wave I_REV (2) is received from the relay communication station 21 (2) of the other HAPS 20 (2).
  • the common BBU 78 when the common BBU 78 confirms the reception of the interference wave I_REV for each GW antenna 76, the common BBU 78 receives the signal wave S_REV of the reverse link communication from the relay communication station 21 of the HAPS 20 connected to the RRH76 of the GW station 70.
  • the level (signal wave reception level) is compared with the reception level (interference wave reception level) of the interference wave I_REV of the reverse link communication from the relay communication station 21 of another HAPS 20 (S304).
  • the common BBU 78 when the common BBU 78 confirms the reception of the interference wave I_REV (2) with respect to the GW antenna 76 (1), the common BBU 78 is connected to the RRH76 (1) of the GW station 70 (1).
  • the reception level (interference wave reception level) of the interference wave I_REV (2) of the link communication is compared.
  • the common BBU 78 when the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value for each GW antenna 76, or the ratio of the interference wave reception level to the signal wave reception level is a predetermined threshold value.
  • a predetermined threshold value for each GW antenna 76 or the ratio of the interference wave reception level to the signal wave reception level is a predetermined threshold value.
  • the common BBU 78 has a signal wave reception level of the signal wave S_REV (1) and an interference wave reception level of the interference wave I_REV (2) of the reverse link communication with respect to the reception signal of the GW antenna 76 (1).
  • the common BBU 78 executes an interference suppression process of suppressing the interference of the reverse link communication by coordinating a plurality of GW stations 70 (RRH76) with each other (306).
  • the common BBU 78 activates the UL-CoMP program incorporated in advance. Then, the interference suppression process of performing the reception process so as to suppress the interference of the reverse link communication by coordinating the RRH76 (1) and 76 (2) of the GW stations 70 (1) and 70 (2) with each other is executed.
  • the interference of the reverse link communication in the feeder link of the HAPS 20 which tends to occur when the number of HAPS 20 increases in the same area can be detected at an early stage, and the detected interference of the forward link communication can be detected at an early stage. Can be suppressed.
  • the components of the communication terminal), the base station, the base station apparatus, the RRH, the BBU, and the common BBU can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • the substance for example, wireless relay station, feeder station, gateway station, base station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device
  • the means such as a processing unit used to realize the above steps and components is one or more application-specific ICs (ASICs).
  • ASICs application-specific ICs
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processor
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Processor Controller
  • Microcontroller Microprocessor
  • Electronic Device Book It may be implemented in other electronic units, computers, or combinations thereof designed to perform the functions described herein.
  • firmware and / or software implementation means such as processing units used to implement the components are programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.) may be implemented.
  • any computer / processor readable medium that explicitly embodies the firmware and / or software code is a means such as a processing unit used to implement the steps and components described herein. May be used to implement.
  • the firmware and / or software code may be stored in memory and executed by a computer or processor, for example, in a control device.
  • the memory may be implemented inside the computer or processor, or may be implemented outside the processor.
  • the firmware and / or software code may be, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), or electrically erasable PROM (EEPROM). ), FLASH memory, floppy (registered trademark) discs, compact discs (CDs), digital versatile discs (DVDs), magnetic or optical data storage devices, etc., even if they are stored on a computer- or processor-readable medium. Good.
  • the code may be executed by one or more computers or processors, or the computers or processors may be made to perform the functional embodiments described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, processor, or other device or device machine, the format of which is not limited to a particular format.
  • the code of the program may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

The present invention detects inference to forward-link communication in a feeder link of a communication relay device, wherein the interference can easily occur when movable floating-type communication relay devices increase in the same area. A communication system is provided with: a movable floating-type communication relay device including a relay communication station which performs wireless service link communication between terminal devices; and a base station which performs wireless feeder link communication between communication relay devices. The relay communication station transmits a measurement report including a reception level measured for a feeder link frequency to a connection base station to which the relay communication station is connected. The connection base station or a base station connected to the connection base station detects the interference to the forward-link communication from an interference gateway station that is not the connection base station on the basis of the measurement report received from the relay communication station.

Description

HAPS通信システムのフィーダリンクにおけるフォワードリンク通信の干渉検知及び干渉抑制Interference detection and interference suppression of forward link communication in the feeder link of the HAPS communication system
 本発明は、3次元化ネットワークの構築に適したHAPS等の空中浮揚型の無線中継装置のフィーダリンクにおけるフォワードリンク通信の干渉検知及び干渉抑制に関するものである。 The present invention relates to interference detection and interference suppression of forward link communication in a feeder link of an airborne wireless relay device such as HAPS suitable for constructing a three-dimensional network.
 従来、空中に浮揚して滞在可能な高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)等の通信中継装置が知られている(例えば、特許文献1参照)。この空中浮揚型の通信中継装置における通信回線は、その通信中継装置と移動通信網側のゲートウェイ(GW)局との間のフィーダリンクと、通信中継装置と端末装置との間のサービスリンクとで構成される。 Conventionally, communication relay devices such as high altitude platform stations (HAPS) (also referred to as "high altitude pseudo satellites") that can float and stay in the air are known (see, for example, Patent Document 1). The communication line in this levitation type communication relay device is a feeder link between the communication relay device and the gateway (GW) station on the mobile communication network side, and a service link between the communication relay device and the terminal device. It is composed.
米国特許出願公開第2016/0046387号明細書U.S. Patent Application Publication No. 2016/0046387
 移動可能な空中浮揚型の通信中継装置が同じエリアに増えてくると、複数の通信中継装置のフィーダリンク間でフォワードリンク通信の干渉が発生し、フィーダリンクにおけるフォワードリンク通信の無線通信品質が低下したり、フォワードリンク通信がきれたりするおそれがある。 When the number of movable airborne communication relay devices increases in the same area, forward link communication interference occurs between the feeder links of multiple communication relay devices, and the wireless communication quality of the forward link communication in the feeder link deteriorates. There is a risk that the forward link communication will be cut off.
 本発明の一態様に係る通信システムは、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置と、前記通信中継装置との間でフィーダリンクの無線通信を行う基地局と、を備える。前記中継通信局は、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信し、前記接続基地局は、前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する。
 前記通信システムにおいて、前記中継通信局は、前記フィーダリンクの周波数について受信信号のサーチ検知を行い、前記サーチ検知で検知できた複数の受信信号それぞれについて、前記受信信号に対応する物理セル識別情報と前記受信信号の受信レベルとを含む測定報告を、前記接続基地局に送信してもよい。
 前記通信システムにおいて、前記接続基地局は、前記中継通信局から受信した測定報告に基づいて、前記中継通信局に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較し、前記信号波受信レベルと前記干渉波受信レベルとの差が所定の閾値以下になったとき又は前記信号波受信レベルに対する前記干渉波受信レベルの比が所定の閾値以上になったときに、前記フォワードリンク通信の干渉が発生していると判断してもよい。
 前記通信システムにおいて、前記フォワードリンク通信の干渉が検知されたとき、前記接続基地局及び前記他の基地局は、互いに協調して前記フォワードリンク通信の干渉を抑制する干渉抑制処理を実行してもよい。
 前記通信システムにおいて、前記中継通信局は、前記基地局と通信する移動通信の移動局として機能するフィーダリンク通信部と、前記フィーダリンク通信部に接続され、前記フィーダリンクとは異なる周波数で前記端末装置と通信する移動通信の基地局として機能するサービスリンク通信部と、を備えてもよい。
The communication system according to one aspect of the present invention is a feeder between a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device and the communication relay device. It is equipped with a base station that performs wireless communication of the link. The relay communication station transmits a measurement report including a reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected, and the connection base station receives from the relay communication station. Based on the measurement report, the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected is detected.
In the communication system, the relay communication station performs search detection of a received signal for the frequency of the feeder link, and for each of the plurality of received signals detected by the search detection, the physical cell identification information corresponding to the received signal is used. A measurement report including the reception level of the reception signal may be transmitted to the connection base station.
In the communication system, the connected base station compares the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the measurement report received from the relay communication station, and the above-mentioned When the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold value, the forward link It may be determined that communication interference has occurred.
When the interference of the forward link communication is detected in the communication system, the connected base station and the other base station may execute an interference suppression process for suppressing the interference of the forward link communication in cooperation with each other. Good.
In the communication system, the relay communication station is connected to a feeder link communication unit that functions as a mobile station for mobile communication that communicates with the base station, and the feeder link communication unit, and the terminal is connected to the feeder link communication unit at a frequency different from that of the feeder link. A service link communication unit that functions as a base station for mobile communication that communicates with the device may be provided.
 本発明の他の態様に係る通信中継装置は、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置である。この通信中継装置は、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、当該中継通信局が接続している接続基地局に送信する手段を備える。
 前記通信中継装置において、前記フィーダリンクの周波数について受信信号のサーチ検知を行う手段と、前記サーチ検知で検知できた複数の受信信号それぞれについて、前記受信信号に対応する物理セル識別情報と前記受信信号の受信レベルとを含む測定報告を、前記接続基地局に送信する手段と、を備えてもよい。
The communication relay device according to another aspect of the present invention is a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. This communication relay device includes means for transmitting a measurement report including a reception level measured for the frequency of the feeder link to a connection base station to which the relay communication station is connected.
In the communication relay device, for each of the means for performing search detection of a received signal for the frequency of the feeder link and the plurality of received signals detected by the search detection, the physical cell identification information corresponding to the received signal and the received signal. A means for transmitting a measurement report including the reception level of the above to the connected base station may be provided.
 本発明の更に他の態様に係る基地局は、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置とフィーダリンクの無線通信を行う基地局である。この基地局は、前記通信中継装置の中継通信局がフィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局から受信する手段と、前記測定報告に基づいて、当該基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する手段と、を備える。
 前記基地局において、前記中継通信局から受信した測定報告に基づいて、前記中継通信局に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較する手段と、前記信号波受信レベルと前記干渉波受信レベルとの差が所定の閾値以下になったとき又は前記信号波受信レベルに対する前記干渉波受信レベルの比が所定の閾値以上になったときに、前記フォワードリンク通信の干渉が発生していると判断する手段と、を備えてもよい。
 前記基地局において、前記フォワードリンク通信の干渉が検知されたとき、他の基地局と協調して前記フォワードリンク通信の干渉を抑制する干渉抑制処理を実行する手段を備えてもよい。
A base station according to still another aspect of the present invention is a base that performs wireless communication of a feeder link with a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. It is a station. This base station receives a measurement report including the reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and based on the measurement report, other than the base station. A means for detecting interference in forward link communication due to interference waves from other base stations is provided.
In the base station, a means for comparing the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the measurement report received from the relay communication station, and the signal wave reception level. When the difference between the interference wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold value, the interference of the forward link communication occurs. It may be provided with a means for determining that it has occurred.
When the interference of the forward link communication is detected in the base station, a means for executing an interference suppression process for suppressing the interference of the forward link communication in cooperation with another base station may be provided.
 本発明の更に他の態様に係る方法は、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置のフィーダリンクにおける基地局から前記中継通信局に向かうフォワードリンク通信の干渉を検知する方法である。この方法は、前記中継通信局が、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信することと、前記接続基地局が、前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知することと、を含む。 A method according to still another aspect of the present invention is the relay communication from a base station in a feeder link of a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. This is a method of detecting the interference of forward link communication toward a station. In this method, the relay communication station transmits a measurement report including a reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected, and the connection base station is described. It includes detecting the interference of forward link communication due to the interference wave from a base station other than the base station to which the relay communication station is connected based on the measurement report received from the relay communication station.
 本発明の更に他の態様に係るプログラムは、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置に設けられたコンピュータ又はプロセッサで実行されるプログラムである。このプログラムは、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信するためのプログラムコードを含む。 The program according to still another aspect of the present invention is executed by a computer or processor provided in a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. Program. This program includes a program code for transmitting a measurement report including a reception level measured for the frequency of the feeder link to a connected base station to which the relay communication station is connected.
 本発明の更に他の態様に係るプログラムは、端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置とでフィーダリンクの無線通信を行う基地局に設けられたコンピュータ又はプロセッサで実行されるプログラムである。このプログラムは、前記通信中継装置の中継通信局がフィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局から受信するためのプログラムコードと、前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知するためのプログラムコードと、を含む。 The program according to still another aspect of the present invention is a base that performs wireless communication of a feeder link with a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. A program that is executed by a computer or processor installed in a station. This program includes a program code for receiving a measurement report including a reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and a measurement report received from the relay communication station. Based on the above, the program code for detecting the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected is included.
 本発明によれば、移動可能な空中浮揚型の通信中継装置が同じエリアに増えてきた場合に発生しやすい通信中継装置のフィーダリンクにおけるフォワードリンク通信の干渉を検知することができる。 According to the present invention, it is possible to detect the interference of forward link communication in the feeder link of the communication relay device, which tends to occur when the number of movable airborne communication relay devices increases in the same area.
図1は、本発明の実施形態に係る通信システムの一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a communication system according to an embodiment of the present invention. 図2は、実施形態に係るHAPSの中継通信局の主要構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a main configuration of the HAPS relay communication station according to the embodiment. 図3は、実施形態に係る基地局のBBUの主要構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a main configuration of the BBU of the base station according to the embodiment. 図4は、実施形態に係る通信システムにおけるHAPSの中継通信局及び基地局のBBUによるフォワードリンク通信の干渉検知の一例を示すフローシーケンス図である。FIG. 4 is a flow sequence diagram showing an example of interference detection of forward link communication by the BBU of the HAPS relay communication station and the base station in the communication system according to the embodiment. 図5は、本発明の実施形態に係る通信システムの他の例を示す説明図である。FIG. 5 is an explanatory diagram showing another example of the communication system according to the embodiment of the present invention. 図6は、図5の通信システムにおけるHAPSの中継通信局及び共通BBUによるフォワードリンク通信の干渉検知及び干渉抑制処理の一例を示すフローシーケンス図である。FIG. 6 is a flow sequence diagram showing an example of interference detection and interference suppression processing of forward link communication by the HAPS relay communication station and the common BBU in the communication system of FIG. 図7は、本発明の実施形態に係る通信システムの更に他の例を示す説明図である。FIG. 7 is an explanatory diagram showing still another example of the communication system according to the embodiment of the present invention. 図8は、図7の通信システムにおける共通BBUによるリバースリンク通信の干渉検知及び干渉抑制処理の一例を示すフローシーケンス図である。FIG. 8 is a flow sequence diagram showing an example of interference detection and interference suppression processing of reverse link communication by the common BBU in the communication system of FIG. 7.
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの一例を示す説明図である。本実施形態に係る通信システムは、LTE、第5世代及びそれ以降の次世代の移動通信に適用可能であり、特に、多数の端末装置への同時接続や低遅延化などに対応する第5世代(NR)及びそれ以降の次世代の移動通信の3次元化ネットワークの実現に適する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing an example of a communication system according to an embodiment of the present invention. The communication system according to the present embodiment is applicable to LTE, the 5th generation and the next generation mobile communication after that, and in particular, the 5th generation corresponding to simultaneous connection to a large number of terminal devices and low delay. It is suitable for the realization of (NR) and subsequent next-generation mobile communication three-dimensional networks.
 図1に示すように、通信システムは、複数の空中浮揚型の通信中継装置(無線中継装置)としての複数の高高度プラットフォーム局(HAPS)(「高高度疑似衛星」、「成層圏プラットフォーム」ともいう。)20(1)、20(2)を備えている。HAPS20(1)、20(2)は、所定高度の空域に位置して、所定高度のセル形成目標空域に3次元セル(3次元エリア)を形成する。HAPS20(1)、20(2)は、自律制御又は外部からの制御により地面又は海面から100[km]以下の高高度の空域(浮揚空域)に浮遊あるいは飛行して位置するように制御される浮揚体又は飛行体(例えば、飛行船、ソーラープレーン)に、中継通信局21(1)、21(2)が搭載されたものである。 As shown in FIG. 1, the communication system is also referred to as a plurality of high altitude platform stations (HAPS) (also referred to as "high altitude pseudo satellite" or "stratified area platform") as a plurality of levitation type communication relay devices (wireless relay devices). .) 20 (1) and 20 (2) are provided. The HAPS 20 (1) and 20 (2) are located in an airspace at a predetermined altitude and form a three-dimensional cell (three-dimensional area) in the cell formation target airspace at a predetermined altitude. The HAPS 20 (1) and 20 (2) are controlled to float or fly in a high altitude airspace (floating airspace) of 100 [km] or less from the ground or sea surface by autonomous control or external control. The relay communication stations 21 (1) and 21 (2) are mounted on a floating body or a flying body (for example, an airship or a solar plane).
 なお、図1の例では、HAPS20(1)及び20(2)がソーラープレーンタイプのHAPSであり、2つのHAPS20(1)、20(2)が飛行している例を示しているが、HAPSの数は3以上であってもよい。また、HAPSの種類は、飛行船、気球などのソーラープレーンとは異なるタイプであってもよい。また、以下の説明において、複数のHAPS及びその中継通信局などを区別しない場合は、括弧付き数字を付けずにHAPS20、中継通信局21などと表記する。 In the example of FIG. 1, HAPS 20 (1) and 20 (2) are solar-powered HAPS, and two HAPS 20 (1) and 20 (2) are flying. The number of may be 3 or more. Further, the type of HAPS may be a type different from that of a solar plane such as an airship or a balloon. Further, in the following description, when a plurality of HAPS and its relay communication station are not distinguished, they are referred to as HAPS 20, relay communication station 21, etc. without parenthesized numbers.
 HAPS20の位置する空域は、例えば、地上(又は海や湖などの水上)の高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。 The airspace where HAPS20 is located is, for example, the airspace of the stratosphere where the altitude above the ground (or above the water such as the sea or lake) is 11 [km] or more and 50 [km] or less. This airspace may be an airspace with an altitude of 15 [km] or more and 25 [km] or less in which the weather conditions are relatively stable, and in particular, an airspace with an altitude of approximately 20 [km].
 本実施形態の通信システムにおける1又は2以上のHAPS20で3次元セルを形成する目標の空域であるセル形成目標空域は、HAPS20が位置する空域と従来のマクロセル基地局等の基地局(例えば、LTEのeNodeB、第5世代のgNodeB)がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。 In the communication system of the present embodiment, the cell formation target airspace, which is the target airspace for forming a three-dimensional cell with one or more HAPS20s, is the airspace in which the HAPS20 is located and a base station such as a conventional macrocell base station (for example, LTE). This is an airspace within a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) located between the cell formation region near the ground covered by the eNodeB of the above (5th generation gNodeB).
 なお、本実施形態の3次元セルが形成されるセル形成目標空域は、海、川又は湖の上空であってもよい。また、HAPS20で形成する3次元セルは、地上又は海上に位置する端末装置61との間でも通信できるよう地面又は海面に達するように形成してもよい。 The cell formation target airspace in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake. Further, the three-dimensional cell formed by HAPS 20 may be formed so as to reach the ground or the sea surface so that it can communicate with the terminal device 61 located on the ground or the sea.
 HAPS20の中継通信局21は、サービスリンク用アンテナ(以下「SLアンテナ」という。)により、ユーザが使用する移動局である端末装置(「ユーザ装置」(UE)ともいう。)61と無線通信するための複数のビームを地面に向けて形成する。端末装置61は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローンに組み込まれた通信端末モジュールでもよいし、飛行機等の中でユーザが使用するユーザ装置(UE)であってもよい。 The relay communication station 21 of the HAPS 20 wirelessly communicates with a terminal device (also referred to as a “user device” (UE)) 61, which is a mobile station used by the user, by means of a service link antenna (hereinafter referred to as “SL antenna”). Form multiple beams for the ground. The terminal device 61 may be a communication terminal module incorporated in a drone, which is an aircraft such as a small helicopter that can be remotely controlled, or may be a user device (UE) used by a user in an airplane or the like.
 セル形成目標空域においてHAPS20が形成するサービスリンクのビームが通過する領域が3次元セルである。例えば、HAPS20(1)及び20(2)がそれぞれ形成するサービスリンクのビームが通過する領域が第1セル200C(1)及び第2セル200C(2)である。図1において、端末装置61(1)は第1セル200C(1)に在圏し、端末装置61(2)は第2セル200C(2)に在圏している。 The area through which the beam of the service link formed by HAPS20 passes in the cell formation target airspace is a three-dimensional cell. For example, the regions through which the beam of the service link formed by HAPS 20 (1) and 20 (2) passes are the first cell 200C (1) and the second cell 200C (2), respectively. In FIG. 1, the terminal device 61 (1) is in the first cell 200C (1), and the terminal device 61 (2) is in the second cell 200C (2).
 HAPS20の中継通信局21は、地上(又は海上)側の基地局75に接続された中継局(リピーター親機)としての複数のゲートウェイ局(「フィーダ局」ともいう。以下「GW局」という。)70と無線通信する。例えば、HAPS20(1)の中継通信局21(1)は、基地局75(1)に接続されたGW局70(1)と無線通信し、HAPS20(2)の中継通信局21(2)は、基地局75(2)に接続されたGW局70(2)と無線通信する。複数の基地局75(1),75(2)は互いに時間同期している。 The relay communication station 21 of the HAPS 20 is a plurality of gateway stations (also referred to as "feeder stations", hereinafter referred to as "GW stations") as relay stations (repeater master units) connected to the base station 75 on the ground (or sea) side. ) Wireless communication with 70. For example, the relay communication station 21 (1) of the HAPS 20 (1) wirelessly communicates with the GW station 70 (1) connected to the base station 75 (1), and the relay communication station 21 (2) of the HAPS 20 (2) , Wireless communication with the GW station 70 (2) connected to the base station 75 (2). The plurality of base stations 75 (1) and 75 (2) are time-synchronized with each other.
 中継通信局21は、フィーダリンク用アンテナ(以下「FLアンテナ」という。)により、無線通信可能な地上又は海上に設置されたGW局70及び基地局75を介して、移動通信網のコアネットワーク80に接続されている。各HAPSのGW局70は地上又は海上の互いに異なる地点に配置してもよいし、同一地点に配置してもよい。また、HAPS20の中継通信局21とGW局70との間のフィーダリンクの通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。 The relay communication station 21 is a mobile communication network core network 80 via a GW station 70 and a base station 75 installed on the ground or the sea where wireless communication is possible by using a feeder link antenna (hereinafter referred to as “FL antenna”). It is connected to the. The GW station 70 of each HAPS may be arranged at different points on the ground or at sea, or may be arranged at the same point. Further, the feeder link communication between the relay communication station 21 of the HAPS 20 and the GW station 70 may be performed by wireless communication using radio waves such as microwaves, or by optical communication using laser light or the like. ..
 GW局70は、空中で移動するHAPS20を追尾するように自局のアンテナ(以下「GWアンテナ」という。)71を制御してもよい。GWアンテナ71がHAPS20を追尾することにより、パラボラアンテナなどの高い指向性を有するGWアンテナ71を用いた場合でも、HAPS20の移動によるフィーダリンクの通信品質の低下を抑制できる。 The GW station 70 may control its own antenna (hereinafter referred to as “GW antenna”) 71 so as to track the HAPS 20 moving in the air. Since the GW antenna 71 tracks the HAPS 20, even when a GW antenna 71 having high directivity such as a parabolic antenna is used, it is possible to suppress a deterioration in the communication quality of the feeder link due to the movement of the HAPS 20.
 GWアンテナ71の指向性ビームの制御方式としては、ジンバル方式、電気方式(360度のビームフォーミング制御方式)、電気方式(角度限定のビームフォーミング制御方式+アンテナ切替)など、各種の方式を用いることができる。 As the directional beam control method of the GW antenna 71, various methods such as a gimbal method, an electric method (360-degree beamforming control method), and an electric method (angle-limited beamforming control method + antenna switching) are used. Can be done.
 基地局75は、例えばLTEのeNodeBの場合、遠隔無線装置(RRH(Remote Radio Head)。RRU(Remote Radio Unit)ともいう。)76及びベースバンド処理装置(BBU(Base Band Unit))77で構成されている。なお、RRH76とBBU77とはそれぞれ、光ファイバー回線で接続し、互いに離して配置してもよい。RRH76は、GW局70に組み込んでもよい。また、複数のBBU77(1),77(2)は集約して一箇所に設け、共通のベースバンド処理装置として構成してもよい。 For example, in the case of LTE eNodeB, the base station 75 is composed of a remote radio device (RRH (Remote Radio Head); also referred to as RRU (Remote Radio Unit)) 76 and a baseband processing device (BBU (Base Band Unit)) 77. Has been done. The RRH76 and the BBU77 may be connected by an optical fiber line and arranged apart from each other. The RRH76 may be incorporated into the GW station 70. Further, a plurality of BBUs 77 (1) and 77 (2) may be integrated and provided at one place to form a common baseband processing apparatus.
 RRH76は、例えば、直交変復調部と送信部と受信部と電力増幅器(PA(Power Amplifier))とローノイズ受信機(LNA(Low Noise Amplifier))とを備え、GW局70に接続されている。直交変復調部は、BBUで処理されるOFDM信号を直交変復調し、アナログ信号(RF信号)に変換する。送信部は、直交変復調部で生成されたRF信号の周波数を電波として送出する周波数に変換する。受信部は、受信した電波の高周波信号の周波数を直交変復調部で処理する周波数に変換する。電力増幅器(PA)は、送信部で生成したRF信号を電力増幅する。ローノイズ受信機(LNA)は、受信した微弱電波を増幅して受信部に渡す。 The RRH76 includes, for example, an orthogonal modulation / demodulation unit, a transmission unit, a receiver unit, a power amplifier (PA (Power Amplifier)), and a low noise receiver (LNA (Low Noise Amplifier)), and is connected to the GW station 70. The orthogonal modulation / demodulation unit orthogonally modifies the OFDM signal processed by the BBU and converts it into an analog signal (RF signal). The transmission unit converts the frequency of the RF signal generated by the orthogonal modulation / demodulation unit into a frequency to be transmitted as a radio wave. The receiving unit converts the frequency of the high-frequency signal of the received radio wave into a frequency processed by the orthogonal modulation / demodulation unit. The power amplifier (PA) power-amplifies the RF signal generated by the transmitter. The low noise receiver (LNA) amplifies the received weak radio wave and passes it to the receiving unit.
 BBU77は、例えば、基地局制御部と伝送路インターフェース部とタイミング制御部とベースバンド部とを備え、所定のインターフェース(例えば、S1インターフェース)を介して移動通信網のコアネットワーク80に接続されている。基地局制御部は、基地局全体の制御および呼制御のプロトコルや制御監視を行う。伝送路インターフェース部は、コアネットワーク等との間のイーサネット(登録商標)などのパケット伝送路が接続され、所定のプロトコルを処理してIPパケットの授受を行う。タイミング制御部は、パケット伝送路を介して受信した信号又は人工衛星からのGNSS(Global Navigation Satellite System)受信信号から抽出した基準クロックに基づいて基地局内部で使用する各種クロックを生成する。ベースバンド部は、伝送路インターフェース部を通して授受するIPパケットと無線信号であるOFDM信号(ベースバンド信号)の変換(変復調)を行う。 The BBU 77 includes, for example, a base station control unit, a transmission line interface unit, a timing control unit, and a baseband unit, and is connected to the core network 80 of the mobile communication network via a predetermined interface (for example, S1 interface). .. The base station control unit controls the entire base station and performs call control protocols and control monitoring. A packet transmission line such as Ethernet (registered trademark) is connected to the transmission line interface unit with a core network or the like, and a predetermined protocol is processed to send and receive IP packets. The timing control unit generates various clocks to be used inside the base station based on the reference clock extracted from the signal received via the packet transmission path or the GNSS (Global Navigation Satellite System) received signal from the artificial satellite. The baseband unit converts (modulates and demodulates) the IP packet sent and received through the transmission line interface unit and the OFDM signal (baseband signal) which is a radio signal.
 HAPS20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、HAPS自体の浮揚移動(飛行)や中継通信局21での処理を自律制御してもよい。例えば、HAPS20はそれぞれ、HAPS自体の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や中継通信局21での処理を自律制御してもよい。 Each of the HAPS 20 may autonomously control the floating movement (flight) of the HAPS itself and the processing at the relay communication station 21 by executing a control program by a control unit composed of a computer or the like incorporated therein. For example, each of the HAPS 20 acquires the current position information of the HAPS itself (for example, GPS position information), the position control information stored in advance (for example, flight schedule information), the position information of other HAPS located in the vicinity, and the like. The floating movement (flight) and the processing in the relay communication station 21 may be autonomously controlled based on the information.
 また、HAPS20それぞれの浮揚移動(飛行)や中継通信局21での処理は、移動通信網のコアネットワーク80に接続された通信センター等に設けられた遠隔制御装置としての中央制御サーバ85によって制御できるようにしてもよい。中央制御サーバ85は、例えば、プログラムを読み込んで実行可能なPCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS20は、中央制御サーバ85からの制御情報を受信したり中央制御サーバ85等の所定の送信先に監視情報などの各種情報を送信したりするための後述の制御通信部(例えば、移動通信モジュール)を備える。制御通信部は、中央制御サーバ85と間で通信できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。HAPS20の制御通信部の識別には通信インターフェースのMACアドレスを用いてもよい。 Further, the floating movement (flight) of each HAPS 20 and the processing in the relay communication station 21 can be controlled by the central control server 85 as a remote control device provided in the communication center or the like connected to the core network 80 of the mobile communication network. You may do so. The central control server 85 can be configured by, for example, a computer device such as a PC or a server that can read and execute a program. In this case, the HAPS 20 is a control communication unit (for example, a control communication unit described later) for receiving control information from the central control server 85 and transmitting various information such as monitoring information to a predetermined destination such as the central control server 85. It is equipped with a mobile communication module). The control communication unit may be assigned terminal identification information (for example, IP address, telephone number, etc.) so that it can communicate with the central control server 85. The MAC address of the communication interface may be used to identify the control communication unit of the HAPS 20.
 HAPS20と中央制御サーバ85との間の制御情報及び監視情報の送受信は、例えば、移動通信網のコアネットワーク80と基地局75とGW局70とを経由するLTEの通信回線を介して行うことができる。また、制御情報及び監視情報の送受信は、人工衛星を介した移動通信の衛星回線を用いて行ってもよいし、インターネット90と人工衛星とを介した衛星回線を用いて行ってもよい。 Transmission and reception of control information and monitoring information between the HAPS 20 and the central control server 85 may be performed, for example, via an LTE communication line via the core network 80 of the mobile communication network, the base station 75, and the GW station 70. it can. Further, the transmission / reception of control information and monitoring information may be performed using a satellite line for mobile communication via an artificial satellite, or may be performed using a satellite line via the Internet 90 and an artificial satellite.
 HAPS20から送信する監視情報は、HAPS自体又は周辺のHAPSの浮揚移動(飛行)や中継通信局21での処理に関する情報、HAPS20がGW局70との間のフィーダリンクの受信電力を測定した受信モニタ情報、及び、HAPS20の状態に関する情報や各種センサなどで取得した観測データの情報の少なくとも一つを含んでもよい。また、監視情報は、HAPS20の現在位置及び姿勢情報、飛行経路情報(飛行スケジュール情報、飛行ルート履歴情報)、対気速度、対地速度及び推進方向、HAPS20の周辺の気流の風速及び風向、並びに、HAPS20の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。制御情報は、HAPS20の目標飛行ルート情報を含んでもよい。 The monitoring information transmitted from the HAPS 20 is information on the floating movement (flying) of the HAPS itself or the surrounding HAPS and the processing at the relay communication station 21, and the reception monitor in which the HAPS 20 measures the received power of the feeder link with the GW station 70. It may include at least one of information, information on the state of HAPS 20, and information on observation data acquired by various sensors and the like. The monitoring information includes the current position and attitude information of HAPS20, flight route information (flight schedule information, flight route history information), airspeed, ground speed and propulsion direction, wind speed and direction of airflow around HAPS20, and It may include at least one piece of information on the air pressure and temperature around the HAPS 20. The control information may include the target flight route information of HAPS20.
 HAPS20及び中央制御サーバ85は、フィーダリンクの無線伝搬路を含むエリアの天気予報の情報、GW局70又は基地局75の保守予定情報、HAPS20で測定されたGW局70とのフィーダリンクの受信レベルモニタ情報、HAPS20の飛行経路情報、HAPS20の現在位置情報及び姿勢情報、並びにGW局70の位置情報を取得してもよい。これらの情報は、例えば、各情報を管理しているコアネットワーク(移動通信網)80のサーバ又はインターネット90のサーバから取得してもよい。また、中央制御サーバ85は、GW局70又は基地局75の保守予定情報を、所定のインターフェース(例えば、LTEのS1インターフェース)により移動通信網のコアネットワーク80を介してGW局70又は基地局75から取得してもよいし、GW局70又は基地局75を管理する管理サーバから取得してもよい。 The HAPS 20 and the central control server 85 use the weather forecast information of the area including the wireless propagation path of the feeder link, the maintenance schedule information of the GW station 70 or the base station 75, and the reception level of the feeder link with the GW station 70 measured by the HAPS 20. The monitor information, the flight path information of the HAPS 20, the current position information and the attitude information of the HAPS 20, and the position information of the GW station 70 may be acquired. These pieces of information may be obtained, for example, from the server of the core network (mobile communication network) 80 or the server of the Internet 90 that manages each piece of information. Further, the central control server 85 transfers the maintenance schedule information of the GW station 70 or the base station 75 to the GW station 70 or the base station 75 via a predetermined interface (for example, the LTE S1 interface) via the core network 80 of the mobile communication network. It may be obtained from the GW station 70 or the management server that manages the base station 75.
 中継通信局21と端末装置61との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、中継通信局21と端末装置61との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、前記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、前記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。 The uplink and downlink duplex schemes for wireless communication between the relay communication station 21 and the terminal device 61 are not limited to a specific scheme, and may be, for example, a Time Division Duplex (TDD) scheme. A frequency division duplex (FDD) system may also be used. Further, the access method for wireless communication between the relay communication station 21 and the terminal device 61 is not limited to a specific method, and is, for example, an FDMA (Frequency Division Multiple Access) method, a TDMA (Time Division Multiple Access) method, or a CDMA (Code) method. It may be a Division Multiple Access) method or an OFDMA (Orthogonal Frequency Division Multiple Access). In addition, the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM: Spatial Division Multiplexing), and by using a plurality of antennas for both transmission and reception at the same time, per unit frequency. You may use MIMO (Multi-Input Multi-Output: Multi-Input and Multi-Output) technology that can increase the transmission capacity of the device. Further, the MIMO technology may be SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device, or one base station may have a plurality of multiple signals. It may be MU-MIMO (Multi-User MIMO) technology in which signals are transmitted to different terminal devices at the same time and frequency, or a plurality of different base stations transmit signals to one terminal device at the same time and frequency. ..
 なお、以下の実施形態では、端末装置61と無線通信する中継通信局21を有する通信中継装置が、ソーラープレーンタイプのHAPS20の場合について図示して説明するが、通信中継装置は無人飛行船タイプや気球タイプのHAPSであってもよい。また、以下の実施形態は、HAPS以外の他の空中浮揚型の通信中継装置にも同様に適用できる。 In the following embodiment, the case where the communication relay device having the relay communication station 21 that wirelessly communicates with the terminal device 61 is the solar plane type HAPS 20 will be illustrated and described, but the communication relay device is an unmanned airship type or a balloon. It may be a type of HAPS. Further, the following embodiments can be similarly applied to other levitation type communication relay devices other than HAPS.
 また、HAPS20とGW局70を介した基地局75との間のリンクを「フィーダリンク(FL)」といい、HAPS10と端末装置61との間のリンクを「サービスリンク(SL)」という。特に、HAPS20とGW局70との間の区間を「フィーダリンクの無線区間」という。また、GW局70からHAPS20を経由して端末装置61に向かう通信を「フォワードリンク」通信といい、端末装置61からHAPS20を経由してGW局70に向かう通信を「リバースリンク」通信ともいう。 Further, the link between the HAPS 20 and the base station 75 via the GW station 70 is called a "feeder link (FL)", and the link between the HAPS 10 and the terminal device 61 is called a "service link (SL)". In particular, the section between the HAPS 20 and the GW station 70 is referred to as a "feeder link radio section". Further, the communication from the GW station 70 to the terminal device 61 via the HAPS 20 is called "forward link" communication, and the communication from the terminal device 61 to the GW station 70 via the HAPS 20 is also called "reverse link" communication.
 図1において、HAPS20は、例えば高度が約20kmの成層圏に位置し、一つのGW局70との間に一つのフィーダリンクを形成し、HAPS20が一つのセル200Cを形成し、そのセル200Cのフットプリント200Fからなるサービスエリアの直径は例えば100~200kmであるが、これらに限定されるものではない。例えば、HAPS20で形成するセルの数は2以上であってもよい。また、HAPS20は、複数のGW局70との間に複数のフィーダリンクを形成してもよい。 In FIG. 1, the HAPS 20 is located in the stratosphere at an altitude of, for example, about 20 km, forms one feeder link with one GW station 70, and the HAPS 20 forms one cell 200C, and the foot of the cell 200C. The diameter of the service area consisting of the print 200F is, for example, 100 to 200 km, but is not limited thereto. For example, the number of cells formed by HAPS20 may be 2 or more. Further, the HAPS 20 may form a plurality of feeder links with the plurality of GW stations 70.
 上記構成の本実施形態の通信システムにおいて、上空を移動可能なHAPS20が同じ共通エリアに増えてくると、各HAPS20の飛行経路及び利用周波数によっては、複数のHAPS20のフィーダリンク間での干渉が発生するおそれがある。 In the communication system of the present embodiment having the above configuration, when the number of HAPS20s that can move in the sky increases in the same common area, interference occurs between the feeder links of a plurality of HAPS20s depending on the flight path and frequency of use of each HAPS20. There is a risk of
 例えば、共通エリアを飛行する複数のHAPS20のある一つのHAPSのフィーダリンク通信部が他のHAPS向けのフィーダリンクの信号も受信した場合、フィーダリンク間でフォワードリンク通信の干渉が発生するおそれがある。フィーダリンク間でフォワードリンク通信の干渉が発生すると、フィーダリンクにおけるフォワードリンク通信の無線通信品質が低下したり、フォワードリンク通信がきれたりするおそれがある。 For example, if the feeder link communication unit of one HAPS having a plurality of HAPS 20s flying in a common area also receives the signal of the feeder link for another HAPS, the interference of the forward link communication may occur between the feeder links. .. If the interference of the forward link communication occurs between the feeder links, the wireless communication quality of the forward link communication in the feeder link may deteriorate or the forward link communication may be cut off.
 そこで、本実施形態の基地局75では、HAPS20から受信したフィーダリンクの測定報告に基づいて、HAPS20が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知している。 Therefore, the base station 75 of the present embodiment detects the interference of the forward link communication due to the interference wave from the base station other than the base station to which the HAPS 20 is connected, based on the measurement report of the feeder link received from the HAPS 20. doing.
 図2は、本実施形態に係るHAPS20の中継通信局21の主要構成の一例を示すブロック図である。図2において、中継通信局21は、フィーダリンク通信部221とサービスリンク通信部222と各部を制御する制御部224と制御通信部226を備える。 FIG. 2 is a block diagram showing an example of the main configuration of the relay communication station 21 of the HAPS 20 according to the present embodiment. In FIG. 2, the relay communication station 21 includes a feeder link communication unit 221 and a service link communication unit 222, a control unit 224 that controls each unit, and a control communication unit 226.
 フィーダリンク通信部221は、地上セルラー方式の移動通信における移動局と同等の機能を有する。フィーダリンク通信部221は、FLアンテナ211を介してGW局70との間でフィーダリンク周波数F1の無線信号を送受信する。 The feeder link communication unit 221 has a function equivalent to that of a mobile station in terrestrial cellular mobile communication. The feeder link communication unit 221 transmits and receives a radio signal having a feeder link frequency F1 to and from the GW station 70 via the FL antenna 211.
 サービスリンク通信部222は、地上セルラー方式の移動通信における基地局(例えば、eNodeB又はg-NodeB)と同等の機能を有する。サービスリンク通信部222は、フィーダリンク通信部221に接続され、SLアンテナ115を介して端末装置61との間で、フィーダリンク周波数F1とは異なるサービスリンク周波数F2の無線信号を送受信する。 The service link communication unit 222 has a function equivalent to that of a base station (for example, eNodeB or g-NodeB) in terrestrial cellular mobile communication. The service link communication unit 222 is connected to the feeder link communication unit 221 and transmits / receives a radio signal having a service link frequency F2 different from the feeder link frequency F1 to / from the terminal device 61 via the SL antenna 115.
 制御部224は、予め組み込まれたプログラムを実行することにより各部を制御することができる。制御部224は、フィーダリンク通信部221と連携して次の(A1)~(A3)の手段として機能する。
(A1)フィーダリンクの周波数F1について測定した受信レベルを含む測定報告(MR)を、中継通信局21が接続している接続基地局75に送信する手段
(A2)フィーダリンクの周波数について受信信号のサーチ検知を行う手段
(A3)前記サーチ検知で検知できた複数の受信信号それぞれについて、受信信号に対応する物理セル識別情報(PCI)と受信信号の受信レベルとを含む測定報告(MR)を、前記接続基地局に送信する手段
The control unit 224 can control each unit by executing a program incorporated in advance. The control unit 224 functions as the following means (A1) to (A3) in cooperation with the feeder link communication unit 221.
(A1) Means for transmitting a measurement report (MR) including a reception level measured for the feeder link frequency F1 to a connection base station 75 to which the relay communication station 21 is connected (A2) A means for transmitting a reception signal for the feeder link frequency. Means for Search Detection (A3) For each of the plurality of received signals detected by the search detection, a measurement report (MR) including the physical cell identification information (PCI) corresponding to the received signal and the reception level of the received signal is provided. Means for transmitting to the connected base station
 また、制御部224は、GW局70を追尾するようにFLアンテナ215を制御してもよい。FLアンテナ215がGW局70を追尾することにより、HAPS20の移動によるフィーダリンクの通信品質の低下を抑制できる。FLアンテナ215の指向性ビームの制御方式としては、ジンバル方式、電気方式(360度のビームフォーミング制御方式)、電気方式(角度限定のビームフォーミング制御方式+アンテナ切替)など、各種の方式を用いることができる。 Further, the control unit 224 may control the FL antenna 215 so as to track the GW station 70. By tracking the GW station 70 by the FL antenna 215, it is possible to suppress a deterioration in the communication quality of the feeder link due to the movement of the HAPS 20. As the control method of the directional beam of the FL antenna 215, various methods such as a gimbal method, an electric method (360-degree beamforming control method), and an electric method (angle-limited beamforming control method + antenna switching) are used. Can be done.
 制御通信部226は、例えば、LTE又は次世代(例えば第5世代)の通信機能、衛星通信機能又はその両方の通信機能を有する移動通信モジュールで構成され、中央制御サーバ85と間で通信できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられる。制御通信部226の識別には通信インターフェースのMACアドレスを用いてもよい。 The control communication unit 226 is composed of, for example, a mobile communication module having LTE or next-generation (for example, fifth-generation) communication functions, satellite communication functions, or both, so that it can communicate with the central control server 85. Terminal identification information (for example, IP address, telephone number, etc.) is assigned to. The MAC address of the communication interface may be used to identify the control communication unit 226.
 図3は、本実施形態に係る基地局75のBBU77の主要構成の一例を示すブロック図である。図3において、基地局75のBBU77は、前述のとおり、基地局制御部771と伝送路インターフェース部772とタイミング制御部773とベースバンド部774とを備える。 FIG. 3 is a block diagram showing an example of a main configuration of BBU77 of the base station 75 according to the present embodiment. In FIG. 3, the BBU 77 of the base station 75 includes a base station control unit 771, a transmission line interface unit 772, a timing control unit 773, and a baseband unit 774, as described above.
 基地局制御部771は、ベースバンド部774と連携して次の(B1)~(B4)の手段として機能する。
(B1)HAPS20の中継通信局21がフィーダリンクの周波数F1について測定した受信レベルと物理セル識別情報(PCI)とを含む測定報告(MR)を、中継通信局21から受信する手段
(B2)前記測定報告(MR)に基づいて、中継通信局21が接続している接続基地局(自局)75以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する手段
(B3)中継通信局21から受信した測定報告(MR)に基づいて、中継通信局21に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較する手段
(B4)信号波受信レベルと干渉波受信レベルとの差が所定の閾値以下になったとき、又は、信号波受信レベルに対する干渉波受信レベルの比が所定の閾値以上になったときに、フォワードリンク通信の干渉が発生していると判断する手段
The base station control unit 771 functions as the following means (B1) to (B4) in cooperation with the baseband unit 774.
(B1) Means for receiving a measurement report (MR) including a reception level and physical cell identification information (PCI) measured by the relay communication station 21 of the HAPS 20 for the feeder link frequency F1 from the relay communication station 21 (B2). Means for detecting interference of forward link communication due to interference waves from a base station other than the connected base station (own station) 75 to which the relay communication station 21 is connected based on the measurement report (MR) (B3) relay Means for comparing the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station 21 based on the measurement report (MR) received from the communication station 21 (B4) Signal wave reception level and interference wave When the difference from the reception level becomes equal to or less than a predetermined threshold, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold, the interference of the forward link communication occurs. Means to judge
 上記フォワードリンク通信の干渉の発生の判断に用いる閾値は、HAPS通信システムの構成などに基づいて予め設定し、基地局制御部771に保持されている。 The threshold value used for determining the occurrence of interference in the forward link communication is set in advance based on the configuration of the HAPS communication system and is held in the base station control unit 771.
 なお、前記フォワードリンク通信の干渉を抑制する干渉抑制処理は、地上セルラー方式の移動通信における基地局から端末装置へのダウンリンクで使用可能なDL-CoMP(ダウンリンク-協調マルチポイント)と同様な干渉抑制処理であってもよい。DL-CoMPとは、例えば、基地局(eNodeB)の2つのRRHが協調し、同一の端末装置に対して時間的に同期したデータを前記2つのRRHそれぞれから送信する技術である。本実施形態のフォワードリンク(フィーダリンク)通信におけるRRH76(1),76(2)、BBU77(1),77(2),78は、DL-CoMPの基地局(eNodeB)のRRH及びBBUに対応し、本実施形態のフォワードリンク(フィーダリンク)通信におけるHAPS20の中継通信局21はDL-CoMPの端末装置に対応する。 The interference suppression process for suppressing the interference of the forward link communication is the same as DL-CoMP (downlink-cooperative multipoint) that can be used for downlink from the base station to the terminal device in the terrestrial cellular mobile communication. It may be an interference suppression process. DL-CoMP is, for example, a technique in which two RRHs of a base station (eNodeB) cooperate and transmit time-synchronized data to the same terminal device from each of the two RRHs. The RRH76 (1), 76 (2), BBU77 (1), 77 (2), and 78 in the forward link (feeder link) communication of the present embodiment correspond to the RRH and BBU of the DL-CoMP base station (eNodeB). However, the relay communication station 21 of the HAPS 20 in the forward link (feeder link) communication of the present embodiment corresponds to the terminal device of the DL-CoMP.
 図4は、本実施形態に係る通信システムにおけるHAPS20の中継通信局21及び基地局75のBBU77による干渉検知の一例を示すフローシーケンス図である。
 図4において、HAPS20の中継通信局21は、所定のタイミングで定期的に又は非定期に、フィーダリンクの周波数F1をサーチし、見つかった基地局(接続基地局及び干渉基地局)75からブロードキャストされている物理セル識別情報(PCI)を取得する(S101)。例えば、図1におけるHAPS20(1)の中継通信局21(1)は、その中継通信局21(1)が接続している接続基地局75(1)からGW局70(1)を介してブロードキャストされている同期信号(SS)等に含まれる物理セル識別情報(PCI=1)と、干渉基地局75(2)からGW局70(2)を介してブロードキャストされている同期信号(SS)等に含まれる物理セル識別情報(PCI=2)とを取得する。
FIG. 4 is a flow sequence diagram showing an example of interference detection by BBU77 of the relay communication station 21 and the base station 75 of the HAPS 20 in the communication system according to the present embodiment.
In FIG. 4, the relay communication station 21 of the HAPS 20 searches the feeder link frequency F1 periodically or irregularly at a predetermined timing, and is broadcast from the found base stations (connecting base stations and interfering base stations) 75. Acquires the physical cell identification information (PCI) (S101). For example, the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 broadcasts from the connection base station 75 (1) to which the relay communication station 21 (1) is connected via the GW station 70 (1). The physical cell identification information (PCI = 1) included in the synchronized signal (SS) and the like, and the synchronized signal (SS) and the like broadcast from the interference base station 75 (2) via the GW station 70 (2). The physical cell identification information (PCI = 2) included in is acquired.
 更に、中継通信局21は、基地局(接続基地局及び干渉基地局)75から送信されている信号の信号レベルを測定する(S102)。例えば、図1におけるHAPS20(1)の中継通信局21(1)は、その中継通信局21(1)が接続している接続基地局75(1)からGW局70(1)を介して送信されているフォワード通信の信号波S_FWD(1)の受信レベル(例えば、参照信号受信電力)と、干渉基地局75(2)からGW局70(2)を介して送信されているフォワード通信の干渉波I_FWD(2)の受信レベル(例えば、参照信号受信電力)とを測定する。以下、接続基地局75(1)からの信号波S_FWD(1)の受信レベルを「信号波受信レベル」といい、干渉基地局75(2)からの干渉波I_FWD(2)の参照信号の受信レベルを「干渉波受信レベル」という。 Further, the relay communication station 21 measures the signal level of the signal transmitted from the base station (connecting base station and interfering base station) 75 (S102). For example, the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 transmits from the connection base station 75 (1) to which the relay communication station 21 (1) is connected via the GW station 70 (1). Interference between the reception level of the signal wave S_FWD (1) of the forward communication being performed (for example, the reference signal reception power) and the forward communication transmitted from the interference base station 75 (2) via the GW station 70 (2). The reception level (for example, reference signal reception power) of the wave I_FWD (2) is measured. Hereinafter, the reception level of the signal wave S_FWD (1) from the connected base station 75 (1) is referred to as a "signal wave reception level", and the reception of the reference signal of the interference wave I_FWD (2) from the interference base station 75 (2). The level is called "interference wave reception level".
 次に、中継通信局21は、サーチして取得した物理セル識別情報(PCI)と受信レベル(信号波受信レベル、干渉波受信レベル)とをリスト化し、自身が接続している基地局75にMR(Measurement Report)で報告する(S301)。例えば、図1におけるHAPS20(1)の中継通信局21(1)は、その中継通信局21(1)が接続している接続基地局75(1)に、リスト化したPCI及び受信レベルをMRで報告する。 Next, the relay communication station 21 lists the physical cell identification information (PCI) acquired by searching and the reception level (signal wave reception level, interference wave reception level), and connects to the base station 75 to which it is connected. Report by MR (Measurement Report) (S301). For example, the relay communication station 21 (1) of the HAPS 20 (1) in FIG. 1 MRs the PCI and the reception level listed to the connection base station 75 (1) to which the relay communication station 21 (1) is connected. Report at.
 次に、基地局75は、中継通信局21から受信したMRに基づいて、他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する。例えば、基地局75は、中継通信局21から受信したMRに基づいて、中継通信局に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較し(S104)、信号波受信レベルと干渉波受信レベルとの差が所定の閾値以下になったとき又は信号波受信レベルに対する干渉波受信レベルの比が所定の閾値以上になったときに、フォワードリンク通信の干渉が発生していると判断する(S105)。 Next, the base station 75 detects the interference of the forward link communication due to the interference wave from another base station based on the MR received from the relay communication station 21. For example, the base station 75 compares the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the MR received from the relay communication station 21 (S104), and the signal wave reception level. When the difference between the interference wave reception level and the interference wave reception level becomes less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes more than a predetermined threshold value, interference of forward link communication occurs. (S105).
 図1~図4の実施形態によれば、HAPS20が同じエリアに増えてきた場合に発生しやすいHAPS20のフィーダリンクにおけるフォワードリンク通信の干渉を早期に検知することができる。 According to the embodiments of FIGS. 1 to 4, it is possible to detect early the interference of forward link communication in the feeder link of HAPS20, which tends to occur when HAPS20 increases in the same area.
 図5は、本発明の実施形態に係る通信システムの他の例を示す説明図である。図5の通信システムでは、複数の基地局75のBBU77を集約して共通のベースバンド処理装置である共通BBU78として構成している。また、複数の基地局75のRRH76(1),76(2)はそれぞれ対応するGW局70(1)、70(2)に設けられている。すなわち、複数のGW局70(1)、70(2)は同一のBBUである共通BBU78に収容されている。その他の構成は、前述の図1と同じであるので、それらの説明は省略する。 FIG. 5 is an explanatory diagram showing another example of the communication system according to the embodiment of the present invention. In the communication system of FIG. 5, BBU77s of a plurality of base stations 75 are aggregated to form a common BBU78 which is a common baseband processing device. Further, RRH76 (1) and 76 (2) of the plurality of base stations 75 are provided in the corresponding GW stations 70 (1) and 70 (2), respectively. That is, the plurality of GW stations 70 (1) and 70 (2) are housed in the common BBU 78 which is the same BBU. Since other configurations are the same as those in FIG. 1 described above, their description will be omitted.
 図5の通信システムにおいて、共通BBU78は前述の図3と同様な構成であり、基地局制御部771はベースバンド部774と連携して、前述の(B1)~(B4)の手段のほか、次の(B5)の手段としても機能する。
(B5)フォワードリンク通信の干渉が検知されたとき、他の基地局と協調してフォワードリンク通信の干渉を抑制する干渉抑制処理を実行する手段
In the communication system of FIG. 5, the common BBU 78 has the same configuration as that of FIG. 3, and the base station control unit 771 cooperates with the baseband unit 774 to, in addition to the means of (B1) to (B4) described above, It also functions as the next means (B5).
(B5) Means for executing interference suppression processing for suppressing interference in forward link communication in cooperation with other base stations when interference in forward link communication is detected.
 共通BBU78で実行するフォワードリンク(フィーダリンク)の干渉抑制処理は、例えば地上セルラー方式の移動通信における基地局から端末装置へのダウンリンクで使用可能なDL-CoMP(ダウンリンク-協調マルチポイント)と同様な干渉抑制処理である。 The interference suppression process of the forward link (feeder link) executed by the common BBU78 is, for example, with DL-CoMP (downlink-cooperative multipoint) that can be used for the downlink from the base station to the terminal device in the terrestrial cellular mobile communication. This is a similar interference suppression process.
 図6は、図5の通信システムにおけるHAPS20の中継通信局21及び基地局75のBBU77による干渉検知及び干渉抑制処理の一例を示すフローシーケンス図である。なお、図6中のステップS201~S05は、前述の図4のS101~S105と同様であるので、それらの説明は省略する。 FIG. 6 is a flow sequence diagram showing an example of interference detection and interference suppression processing by BBU77 of the relay communication station 21 and the base station 75 of HAPS 20 in the communication system of FIG. Since steps S201 to S05 in FIG. 6 are the same as S101 to S105 in FIG. 4 described above, their description will be omitted.
 図6において、フォワードリンク通信の干渉が発生していると判断した場合、共通BBU78は、そのフォワードリンク通信の干渉を抑制する干渉抑制処理を実行する(S206)。例えば、共通BBU78は、予め組み込んでおいたDL-CoMPのプログラムを起動して、図5のGW局70(2)からHAPS20(1)に向かう干渉波I_FWD(2)によるフォワードリンク通信の干渉を抑制する干渉抑制処理を実行する。 In FIG. 6, when it is determined that the interference of the forward link communication has occurred, the common BBU 78 executes the interference suppression process of suppressing the interference of the forward link communication (S206). For example, the common BBU 78 activates the DL-CoMP program incorporated in advance to interfere with the forward link communication by the interference wave I_FWD (2) from the GW station 70 (2) to the HAPS 20 (1) in FIG. Suppress Interference suppression processing is executed.
 図5~図6の実施形態によれば、HAPS20が同じエリアに増えてきた場合に発生しやすいHAPS20のフィーダリンクにおけるフォワードリンク通信の干渉を早期に検知できるだけでなく、そのフォワードリンク通信の干渉を抑制することができる。 According to the embodiments of FIGS. 5 to 6, not only can the interference of the forward link communication in the feeder link of the HAPS 20 which tends to occur when the HAPS 20 increases in the same area be detected at an early stage, but also the interference of the forward link communication can be detected. It can be suppressed.
 次に、本実施形態の通信システムのフィーダリンクにおけるリバースリンク通信の干渉の検知及び干渉抑制処理について説明する。 Next, the interference detection and interference suppression processing of reverse link communication in the feeder link of the communication system of the present embodiment will be described.
 本実施形態の通信システムのように共通エリアを複数のHAPS20が飛行し、複数のHAPS20がGW局70に対してフィーダリンクの信号を送信しているとき、フィーダリンク間でリバースリンク通信の干渉が発生するおそれがある。フィーダリンク間でリバースリンク通信の干渉が発生すると、フィーダリンクにおけるリバースリンク通信の無線通信品質が低下したり、リバースリンク通信がきれたりするおそれがある。 When a plurality of HAPS 20s fly in a common area as in the communication system of the present embodiment and a plurality of HAPS 20s transmit a feeder link signal to the GW station 70, interference of reverse link communication between the feeder links occurs. It may occur. If the interference of the reverse link communication occurs between the feeder links, the wireless communication quality of the reverse link communication in the feeder link may deteriorate or the reverse link communication may be cut off.
 そこで、本実施形態では、複数のGW局70(RRH76)を収容した同一の共通BBU78により、その複数のGW局70(RRH76)で受信された複数の受信信号を、複数のGWアンテナ71で受信された受信信号と仮定して受信処理を行い、その受信処理で得られた複数のGWアンテナ71それぞれの受信レベルを互いに比較し、GWアンテナ71ごとに、リバースリンク通信の干渉の原因となるHAPS20からの干渉波I_REVの受信レベルを監視してリバースリンク通信の干渉の発生の有無を判断している。 Therefore, in the present embodiment, the same common BBU 78 accommodating the plurality of GW stations 70 (RRH76) receives the plurality of received signals received by the plurality of GW stations 70 (RRH76) by the plurality of GW antennas 71. The reception process is performed on the assumption that the received signal is received, the reception levels of each of the plurality of GW antennas 71 obtained by the reception process are compared with each other, and each GW antenna 71 causes HAPS20 to interfere with reverse link communication. The reception level of the interference wave I_REV from is monitored to determine the presence or absence of interference in reverse link communication.
 図7は、本発明の実施形態に係る通信システムの更に他の例を示す説明図である。図7において、基本的な構成は前述の図5と同一であるので、それらの説明は省略する。また、図7の通信システムにおいて、共通BBU78は前述の図3と同様な構成であり、基地局制御部771は、ベースバンド部774と連携して、次の(C1)~(C5)の手段として機能する。
(C1)複数のGW局70(RRH76)が受信した複数の受信信号に基づいて、GW局70に接続しているHAPS20の中継通信局21からの信号波S_REVに干渉している他のHAPS20の中継通信局21からの干渉波I_REVによるリバースリンク通信の干渉を検知する手段
(C2)複数のGW局70(RRH76)で受信された複数の受信信号を、複数のGWアンテナ71で受信された受信信号として受信処理を行う手段
(C3)前記受信処理で得られた複数のGWアンテナ71それぞれの受信信号に基づいて、GWアンテナ71ごとに、リバースリンク通信の信号波S_REVの受信信号レベル(信号波受信レベル)と干渉波I_REVの受信レベル(干渉波受信レベル)とを比較する手段
(C4)信号波受信レベルと干渉波受信レベルとの差が所定の閾値以下になったとき又は信号波受信レベルに対する干渉波受信レベルの比が所定の閾値以上になったときに、リバースリンク通信の干渉が発生していると判断する手段
(C5)リバースリンク通信の干渉が検知されたとき、複数のGW局70(RRH76)による受信動作を協調させてリバースリンク通信の干渉を抑制する干渉抑制処理を実行する手段
FIG. 7 is an explanatory diagram showing still another example of the communication system according to the embodiment of the present invention. In FIG. 7, since the basic configuration is the same as that in FIG. 5 described above, description thereof will be omitted. Further, in the communication system of FIG. 7, the common BBU 78 has the same configuration as that of FIG. 3 described above, and the base station control unit 771 cooperates with the baseband unit 774 to provide the following means (C1) to (C5). Functions as.
(C1) Based on the plurality of received signals received by the plurality of GW stations 70 (RRH76), the other HAPS 20 interfering with the signal wave S_REV from the relay communication station 21 of the HAPS 20 connected to the GW station 70. Means for Detecting Reverse Link Communication Interference by Interference Wave I_REV from Relay Communication Station 21 (C2) Reception of Multiple Received Signals Received by Multiple GW Stations 70 (RRH76) Received by Multiple GW Antennas 71 Means for performing reception processing as a signal (C3) Based on the reception signals of each of the plurality of GW antennas 71 obtained in the reception processing, the reception signal level (signal wave) of the signal wave S_REV of reverse link communication for each GW antenna 71. Means for comparing the reception level of the interference wave I_REV with the reception level of the interference wave I_REV (C4) When the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value or the signal wave reception level Means for determining that interference of reverse link communication has occurred when the ratio of the interference wave reception level to the signal exceeds a predetermined threshold value (C5) When interference of reverse link communication is detected, a plurality of GW stations Means for executing interference suppression processing that suppresses interference in reverse link communication by coordinating the reception operation by 70 (RRH76).
 なお、前記リバースリンク通信の干渉を抑制する干渉抑制処理は、地上セルラー方式の移動通信における端末装置から基地局へのアップリンクで使用可能なUL-CoMP(アップリンク-協調マルチポイント)と同様な干渉抑制処理であってもよい。UL-CoMPとは、例えば、基地局(eNodeB)の2つのRRHが協調し、どちらか一方のRRHと通信している端末装置からの送信信号を両方のRRHで受信を行うことにより、基地局(eNodeB)に複数アンテナがあるような形で信号を受信し、基地局(eNodeB)のベースバンド部(BBU)で合成処理する技術である。本実施形態のリバースリンク(フィーダリンク)通信におけるRRH76(1),76(2)、BBU77(1),77(2),78は、UL-CoMPの基地局(eNodeB)のRRH及びBBUに対応し、本実施形態のフォワードリンク(フィーダリンク)通信におけるHAPS20の中継通信局21はUL-CoMPの端末装置に対応する。 The interference suppression process for suppressing the interference of the reverse link communication is the same as UL-CoMP (uplink-cooperative multipoint) that can be used for uplink from a terminal device to a base station in terrestrial cellular mobile communication. It may be an interference suppression process. UL-CoMP is, for example, a base station in which two RRHs of a base station (eNodeB) cooperate and receive a transmission signal from a terminal device communicating with one of the RRHs in both RRHs. This is a technique in which a signal is received in the form of having a plurality of antennas in (eNodeB) and synthesized by a baseband portion (BBU) of a base station (eNodeB). The RRH76 (1), 76 (2), BBU77 (1), 77 (2), and 78 in the reverse link (feeder link) communication of the present embodiment correspond to the RRH and BBU of the UL-CoMP base station (eNodeB). However, the relay communication station 21 of the HAPS 20 in the forward link (feeder link) communication of the present embodiment corresponds to the UL-CoMP terminal device.
 図8は、図7の通信システムにおける共通BBU78によるリバースリンク通信の干渉検知及び干渉抑制処理の一例を示すフローシーケンス図である。
 図8において、複数のGW局70(1),70(2)のRRH76(1),76(2)は、GWアンテナ71(1),71(2)を介して、HAPS20(1),20(2)の中継通信局21(1),21(2)から送信された周波数F1のフィーダリンクのリバースリンク通信の電波を受信し、受信した受信信号を共通BBU78に転送する(S301)。
FIG. 8 is a flow sequence diagram showing an example of interference detection and interference suppression processing of reverse link communication by the common BBU 78 in the communication system of FIG. 7.
In FIG. 8, the RRH76 (1), 76 (2) of the plurality of GW stations 70 (1), 70 (2) are HAPS20 (1), 20 via the GW antennas 71 (1), 71 (2). The radio wave of the reverse link communication of the feeder link of the frequency F1 transmitted from the relay communication stations 21 (1) and 21 (2) of (2) is received, and the received received signal is transferred to the common BBU 78 (S301).
 共通BBU78は、複数のGW局70(1),70(2)のRRH76(1),76(2)で受信された複数の受信信号を、複数のGWアンテナ71(1),71(2)で受信された受信信号として受信処理を行う(S302)。 The common BBU 78 receives a plurality of received signals received by the RRH76 (1) and 76 (2) of the plurality of GW stations 70 (1) and 70 (2) from the plurality of GW antennas 71 (1) and 71 (2). The reception process is performed as the reception signal received in (S302).
 次に、共通BBU78は、前記受信処理で得られた複数のGWアンテナ71(1),71(2)それぞれの受信信号に基づいて、GWアンテナ76ごとに、GW局70(RRH76)に接続しているHAPS20の中継通信局21からの信号波S_REVに干渉している他のHAPS20の中継通信局21からの干渉波I_REVの受信の有無を確認する(S303)。例えば、図7の例において、共通BBU78は、GW局70(1)のRRH76(1)に接続しているHAPS20(1)の中継通信局21(1)からの信号波S_REV(1)に干渉している他のHAPS20(2)の中継通信局21(2)からの干渉波I_REV(2)の受信の有無を確認する。 Next, the common BBU 78 is connected to the GW station 70 (RRH76) for each GW antenna 76 based on the received signals of the plurality of GW antennas 71 (1) and 71 (2) obtained in the reception process. It is confirmed whether or not the interference wave I_REV is received from the relay communication station 21 of the other HAPS 20 that is interfering with the signal wave S_REV from the relay communication station 21 of the HAPS 20 (S303). For example, in the example of FIG. 7, the common BBU 78 interferes with the signal wave S_REV (1) from the relay communication station 21 (1) of the HAPS 20 (1) connected to the RRH76 (1) of the GW station 70 (1). It is confirmed whether or not the interference wave I_REV (2) is received from the relay communication station 21 (2) of the other HAPS 20 (2).
 次に、共通BBU78は、GWアンテナ76ごとに、干渉波I_REVの受信を確認した場合、GW局70のRRH76に接続しているHAPS20の中継通信局21からのリバースリンク通信の信号波S_REVの受信レベル(信号波受信レベル)と、他のHAPS20の中継通信局21からのリバースリンク通信の干渉波I_REVの受信レベル(干渉波受信レベル)とを比較する(S304)。例えば、図7の例において、共通BBU78は、GWアンテナ76(1)について干渉波I_REV(2)の受信を確認した場合、GW局70(1)のRRH76(1)に接続しているHAPS20(1)の中継通信局21(1)からのリバースリンク通信の信号波S_REV(1)の受信レベル(信号波受信レベル)と、他のHAPS20(2)の中継通信局21(2)からのリバースリンク通信の干渉波I_REV(2)の受信レベル(干渉波受信レベル)とを比較する。 Next, when the common BBU 78 confirms the reception of the interference wave I_REV for each GW antenna 76, the common BBU 78 receives the signal wave S_REV of the reverse link communication from the relay communication station 21 of the HAPS 20 connected to the RRH76 of the GW station 70. The level (signal wave reception level) is compared with the reception level (interference wave reception level) of the interference wave I_REV of the reverse link communication from the relay communication station 21 of another HAPS 20 (S304). For example, in the example of FIG. 7, when the common BBU 78 confirms the reception of the interference wave I_REV (2) with respect to the GW antenna 76 (1), the common BBU 78 is connected to the RRH76 (1) of the GW station 70 (1). The reception level (signal wave reception level) of the signal wave S_REV (1) of the reverse link communication from the relay communication station 21 (1) of 1) and the reverse from the relay communication station 21 (2) of the other HAPS 20 (2). The reception level (interference wave reception level) of the interference wave I_REV (2) of the link communication is compared.
 次に、共通BBU78は、GWアンテナ76ごとに、信号波受信レベルと干渉波受信レベルとの差が所定の閾値以下になったとき又は信号波受信レベルに対する干渉波受信レベルの比が所定の閾値以上になったときに、リバースリンク通信の干渉が発生していると判断する(S305)。例えば、図7の例において、共通BBU78は、GWアンテナ76(1)の受信信号について、リバースリンク通信の信号波S_REV(1)の信号波受信レベルと干渉波I_REV(2)の干渉波受信レベルとの差が所定の閾値以下になったとき、又は、信号波S_REV(1)の信号波受信レベルに対する干渉波I_REV(2)の干渉波受信レベルの比が所定の閾値以上になったときに、信号波S_REV(1)に対する干渉波I_REV(2)によるリバースリンク通信の干渉が発生していると判断する。 Next, in the common BBU 78, when the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value for each GW antenna 76, or the ratio of the interference wave reception level to the signal wave reception level is a predetermined threshold value. When the above is reached, it is determined that interference in reverse link communication has occurred (S305). For example, in the example of FIG. 7, the common BBU 78 has a signal wave reception level of the signal wave S_REV (1) and an interference wave reception level of the interference wave I_REV (2) of the reverse link communication with respect to the reception signal of the GW antenna 76 (1). When the difference between and is equal to or less than a predetermined threshold, or when the ratio of the interference wave reception level of the interference wave I_REV (2) to the signal wave reception level of the signal wave S_REV (1) is equal to or more than the predetermined threshold. , It is determined that the interference wave I_REV (2) interferes with the signal wave S_REV (1) in reverse link communication.
 次に、共通BBU78は、リバースリンク通信の干渉が検知されたとき、複数のGW局70(RRH76)を互いに協調させてリバースリンク通信の干渉を抑制する干渉抑制処理を実行する(306)。例えば、図7の例において、共通BBU78は、信号波S_REV(1)に対する干渉波I_REV(2)によるリバースリンク通信の干渉が検知されたとき、予め組み込んでおいたUL-CoMPのプログラムを起動して、GW局70(1),70(2)のRRH76(1),76(2)を互いに協調させてリバースリンク通信の干渉を抑制するように受信処理を行う干渉抑制処理を実行する。 Next, when the interference of the reverse link communication is detected, the common BBU 78 executes an interference suppression process of suppressing the interference of the reverse link communication by coordinating a plurality of GW stations 70 (RRH76) with each other (306). For example, in the example of FIG. 7, when the interference of the reverse link communication by the interference wave I_REV (2) with respect to the signal wave S_REV (1) is detected, the common BBU 78 activates the UL-CoMP program incorporated in advance. Then, the interference suppression process of performing the reception process so as to suppress the interference of the reverse link communication by coordinating the RRH76 (1) and 76 (2) of the GW stations 70 (1) and 70 (2) with each other is executed.
 図7,8の実施形態によれば、HAPS20が同じエリアに増えてきた場合に発生しやすいHAPS20のフィーダリンクにおけるリバースリンク通信の干渉を早期に検知できるとともに、その検知されたフォワードリンク通信の干渉を抑制することができる。 According to the embodiments shown in FIGS. 7 and 8, the interference of the reverse link communication in the feeder link of the HAPS 20 which tends to occur when the number of HAPS 20 increases in the same area can be detected at an early stage, and the detected interference of the forward link communication can be detected at an early stage. Can be suppressed.
 なお、本明細書で説明された処理工程並びにHAPS等の通信中継装置の中継通信局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(ユーザ装置、移動局、通信端末)、基地局、基地局装置、RRH、BBU及び共通BBUの構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 In addition, the processing process described in this specification and the relay communication station, feeder station, gateway station, management device, monitoring device, remote control device, server, terminal device (user device, mobile station, etc.) of the communication relay device such as HAPS. The components of the communication terminal), the base station, the base station apparatus, the RRH, the BBU, and the common BBU can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、無線中継局、フィーダ局、ゲートウェイ局、基地局、基地局装置、無線中継局装置、端末装置(ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 Regarding hardware implementation, the substance (for example, wireless relay station, feeder station, gateway station, base station, base station device, wireless relay station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device), the means such as a processing unit used to realize the above steps and components is one or more application-specific ICs (ASICs). , Digital Signal Processor (DSP), Digital Signal Processor (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Processor, Controller, Microcontroller, Microprocessor, Electronic Device, Book It may be implemented in other electronic units, computers, or combinations thereof designed to perform the functions described herein.
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 For firmware and / or software implementation, means such as processing units used to implement the components are programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.) may be implemented. In general, any computer / processor readable medium that explicitly embodies the firmware and / or software code is a means such as a processing unit used to implement the steps and components described herein. May be used to implement. For example, the firmware and / or software code may be stored in memory and executed by a computer or processor, for example, in a control device. The memory may be implemented inside the computer or processor, or may be implemented outside the processor. The firmware and / or software code may be, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), or electrically erasable PROM (EEPROM). ), FLASH memory, floppy (registered trademark) discs, compact discs (CDs), digital versatile discs (DVDs), magnetic or optical data storage devices, etc., even if they are stored on a computer- or processor-readable medium. Good. The code may be executed by one or more computers or processors, or the computers or processors may be made to perform the functional embodiments described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であれよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 Further, the medium may be a non-temporary recording medium. Also, the code of the program may be read and executed by a computer, processor, or other device or device machine, the format of which is not limited to a particular format. For example, the code of the program may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Also, the description of the embodiments disclosed herein is provided to allow one of ordinary skill in the art to manufacture or use the disclosure. Various amendments to this disclosure will be readily apparent to those of skill in the art and the general principles defined herein are applicable to other variations without departing from the spirit or scope of this disclosure. Therefore, this disclosure is not limited to the examples and designs described herein, but should be accepted in the broadest range consistent with the principles and novel features disclosed herein.
 20 HAPS(通信中継装置)
 21 中継通信局
 61,61(1),61(2) 端末装置
 70,70(1),70(2) ゲートウェイ局(GW局)
 71,71(1),71(2) フィーダリンク用アンテナ(GWアンテナ)
 75,75(1),75(2) 基地局
 76,76(1),76(2) 遠隔無線装置(RRH)
 77,77(1),77(2) ベースバンド処理装置(BBU)
 78 共通のベースバンド処理装置(共通BBU)
 85 中央制御サーバ
 200C,200C(1),200C(2) 3次元セル
 200F,200F(1),200F(2) フットプリント
 211 フィーダリンク用アンテナ(FLアンテナ)
 215 サービスリンク用アンテナ(SLアンテナ)
 221 フィーダリンク通信部
 222 サービスリンク通信部
 224 制御部
 226 制御通信部
 771 基地局制御部
 772 伝送路インターフェース部
 773 タイミング制御部
 774 ベースバンド部
20 HAPS (communication relay device)
21 Relay communication station 61, 61 (1), 61 (2) Terminal equipment 70, 70 (1), 70 (2) Gateway station (GW station)
71, 71 (1), 71 (2) Feeder link antenna (GW antenna)
75, 75 (1), 75 (2) Base stations 76, 76 (1), 76 (2) Remote radio equipment (RRH)
77, 77 (1), 77 (2) Baseband processing equipment (BBU)
78 Common baseband processing equipment (common BBU)
85 Central control server 200C, 200C (1), 200C (2) 3D cell 200F, 200F (1), 200F (2) Footprint 211 Feeder link antenna (FL antenna)
215 Service link antenna (SL antenna)
221 Feeder link communication unit 222 Service link communication unit 224 Control unit 226 Control communication unit 771 Base station control unit 772 Transmission line interface unit 773 Timing control unit 774 Baseband unit

Claims (13)

  1.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置と、前記通信中継装置との間でフィーダリンクの無線通信を行う基地局と、を備える通信システムであって、
     前記中継通信局は、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信し、
     前記接続基地局は、前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する、ことを特徴とする通信システム。
    A mobile levitation type communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device, and a base station that performs wireless communication of a feeder link with the communication relay device. It is a communication system that has
    The relay communication station transmits a measurement report including a reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected.
    Based on the measurement report received from the relay communication station, the connection base station detects the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected. A communication system characterized by that.
  2.  請求項1の通信システムにおいて、
     前記中継通信局は、
      前記フィーダリンクの周波数について受信信号のサーチ検知を行い、
      前記サーチ検知で検知できた複数の受信信号それぞれについて、前記受信信号に対応する物理セル識別情報と前記受信信号の受信レベルとを含む測定報告を、前記接続基地局に送信する、ことを特徴とする通信システム。
    In the communication system of claim 1,
    The relay communication station
    Search detection of the received signal is performed for the frequency of the feeder link, and
    For each of the plurality of received signals detected by the search detection, a measurement report including the physical cell identification information corresponding to the received signal and the reception level of the received signal is transmitted to the connected base station. Communication system.
  3.  請求項1又は2の通信システムにおいて、 
     前記接続基地局は、
      前記中継通信局から受信した測定報告に基づいて、前記中継通信局に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較し、
      前記信号波受信レベルと前記干渉波受信レベルとの差が所定の閾値以下になったとき又は前記信号波受信レベルに対する前記干渉波受信レベルの比が所定の閾値以上になったときに、前記フォワードリンク通信の干渉が発生していると判断する、ことを特徴とする通信システム。
    In the communication system of claim 1 or 2.
    The connected base station
    Based on the measurement report received from the relay communication station, the signal wave reception level and the interference wave reception level of the forward link communication that reached the relay communication station are compared.
    When the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold value, the forward A communication system characterized in that it is determined that interference in link communication has occurred.
  4.  請求項1乃至3のいずれかの通信システムにおいて、
     前記フォワードリンク通信の干渉が検知されたとき、前記接続基地局及び前記他の基地局は、互いに協調して前記フォワードリンク通信の干渉を抑制する干渉抑制処理を実行する、ことを特徴とする通信システム。
    In the communication system according to any one of claims 1 to 3,
    When the interference of the forward link communication is detected, the connected base station and the other base station cooperate with each other to execute an interference suppression process for suppressing the interference of the forward link communication. system.
  5.  請求項1乃至4のいずれかの通信システムにおいて、
     前記中継通信局は、
      前記基地局と通信する移動通信の移動局として機能するフィーダリンク通信部と、
      前記フィーダリンク通信部に接続され、前記フィーダリンクとは異なる周波数で前記端末装置と通信する移動通信の基地局として機能するサービスリンク通信部と、を備えることを特徴とする通信システム。
    In the communication system according to any one of claims 1 to 4.
    The relay communication station
    A feeder link communication unit that functions as a mobile station for mobile communication that communicates with the base station.
    A communication system including a service link communication unit that is connected to the feeder link communication unit and functions as a base station for mobile communication that communicates with the terminal device at a frequency different from that of the feeder link.
  6.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置であって、
     フィーダリンクの周波数について測定した受信レベルを含む測定報告を、当該中継通信局が接続している接続基地局に送信する手段を備えることを特徴とする通信中継装置。
    It is a mobile levitation type communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
    A communication relay device comprising a means for transmitting a measurement report including a reception level measured for a feeder link frequency to a connection base station to which the relay communication station is connected.
  7.  請求項6の通信中継装置において、
     前記フィーダリンクの周波数について受信信号のサーチ検知を行う手段と、
     前記サーチ検知で検知できた複数の受信信号それぞれについて、前記受信信号に対応する物理セル識別情報と前記受信信号の受信レベルとを含む測定報告を、前記接続基地局に送信する手段と、を備えることを特徴とする通信中継装置。
    In the communication relay device of claim 6,
    A means for searching and detecting a received signal for the frequency of the feeder link,
    For each of the plurality of received signals detected by the search detection, a means for transmitting a measurement report including the physical cell identification information corresponding to the received signal and the reception level of the received signal to the connected base station is provided. A communication relay device characterized by this.
  8.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置とフィーダリンクの無線通信を行う基地局であって、
     前記通信中継装置の中継通信局がフィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局から受信する手段と、
     前記測定報告に基づいて、当該基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知する手段と、を備えることを特徴とする基地局。
    It is a base station that performs wireless communication of feeder link with a movable airborne communication relay device including a relay communication station that performs wireless communication of service link with the terminal device.
    A means for receiving a measurement report including a reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and
    A base station provided with means for detecting interference in forward link communication due to interference waves from a base station other than the base station based on the measurement report.
  9.  請求項8の基地局において、
     前記中継通信局から受信した測定報告に基づいて、前記中継通信局に到達したフォワードリンク通信の信号波受信レベルと干渉波受信レベルとを比較する手段と、
     前記信号波受信レベルと前記干渉波受信レベルとの差が所定の閾値以下になったとき又は前記信号波受信レベルに対する前記干渉波受信レベルの比が所定の閾値以上になったときに、前記フォワードリンク通信の干渉が発生していると判断する手段と、を備えることを特徴とする基地局。
    In the base station of claim 8,
    A means for comparing the signal wave reception level and the interference wave reception level of the forward link communication that has reached the relay communication station based on the measurement report received from the relay communication station.
    When the difference between the signal wave reception level and the interference wave reception level becomes equal to or less than a predetermined threshold value, or when the ratio of the interference wave reception level to the signal wave reception level becomes equal to or more than a predetermined threshold value, the forward A base station provided with means for determining that interference in link communication has occurred.
  10.  請求項8又は9の基地局において、
     前記フォワードリンク通信の干渉が検知されたとき、他の基地局と協調して前記フォワードリンク通信の干渉を抑制する干渉抑制処理を実行する手段を備えることを特徴とする基地局。
    In the base station of claim 8 or 9.
    A base station including a means for executing an interference suppression process for suppressing the interference of the forward link communication in cooperation with another base station when the interference of the forward link communication is detected.
  11.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置のフィーダリンクにおける基地局から前記中継通信局に向かうフォワードリンク通信の干渉を検知する方法であって、
     前記中継通信局が、フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信することと、
     前記接続基地局が、前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知することと、を含むことを特徴とする方法。
    A method of detecting interference of forward link communication from a base station to the relay communication station in a feeder link of a movable airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device. And
    The relay communication station transmits a measurement report including the reception level measured for the frequency of the feeder link to the connection base station to which the relay communication station is connected.
    Based on the measurement report received from the relay communication station, the connection base station detects the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected. And, a method characterized by including.
  12.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置に設けられたコンピュータ又はプロセッサで実行されるプログラムであって、
     フィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局が接続している接続基地局に送信するためのプログラムコードを含むことを特徴とするプログラム。
    A program executed by a computer or processor provided in a mobile airborne communication relay device including a relay communication station that performs wireless communication of a service link with a terminal device.
    A program comprising a program code for transmitting a measurement report including a reception level measured for a feeder link frequency to a connected base station to which the relay communication station is connected.
  13.  端末装置との間でサービスリンクの無線通信を行う中継通信局を含む移動可能な空中浮揚型の通信中継装置とでフィーダリンクの無線通信を行う基地局に設けられたコンピュータ又はプロセッサで実行されるプログラムであって、
     前記通信中継装置の中継通信局がフィーダリンクの周波数について測定した受信レベルを含む測定報告を、前記中継通信局から受信するためのプログラムコードと、
     前記中継通信局から受信した測定報告に基づいて、前記中継通信局が接続している基地局以外の他の基地局からの干渉波によるフォワードリンク通信の干渉を検知するためのプログラムコードと、を含むことを特徴とするプログラム。
    It is executed by the computer or processor installed in the base station that performs wireless communication of the feeder link with the mobile airborne communication relay device including the relay communication station that performs wireless communication of the service link with the terminal device. It ’s a program
    A program code for receiving a measurement report including a reception level measured by the relay communication station of the communication relay device for the frequency of the feeder link from the relay communication station, and
    Based on the measurement report received from the relay communication station, the program code for detecting the interference of the forward link communication due to the interference wave from the base station other than the base station to which the relay communication station is connected. A program characterized by including.
PCT/JP2020/005484 2019-07-03 2020-02-13 Interference detection and interference control for forward-link communication in feeder link in haps communication system WO2021002044A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124646 2019-07-03
JP2019124646A JP2021013052A (en) 2019-07-03 2019-07-03 Interference detection and interference suppression of forward link communication in feeder link of haps communication system

Publications (1)

Publication Number Publication Date
WO2021002044A1 true WO2021002044A1 (en) 2021-01-07

Family

ID=74101279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005484 WO2021002044A1 (en) 2019-07-03 2020-02-13 Interference detection and interference control for forward-link communication in feeder link in haps communication system

Country Status (2)

Country Link
JP (1) JP2021013052A (en)
WO (1) WO2021002044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236636A1 (en) * 2021-05-10 2022-11-17 株式会社Ntt都科摩 Electronic device in high-altitude platform station-ground communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023116023A (en) * 2022-02-09 2023-08-22 株式会社Nttドコモ Wireless communication system and wireless communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504690A (en) * 2007-11-16 2011-02-10 クゥアルコム・インコーポレイテッド Using identifiers to establish communication
JP2014120783A (en) * 2012-12-13 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> Distributed radio communication base station system, and communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024751B (en) * 2011-09-26 2016-01-27 华为技术有限公司 Interference control method and equipment
IN2014CN03338A (en) * 2011-11-04 2015-07-03 Mitsubishi Electric Corp
JP6099773B2 (en) * 2014-01-28 2017-03-22 三菱電機株式会社 Satellite communication system, gateway, communication network control station, and satellite communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504690A (en) * 2007-11-16 2011-02-10 クゥアルコム・インコーポレイテッド Using identifiers to establish communication
JP2014120783A (en) * 2012-12-13 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> Distributed radio communication base station system, and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAFUMI ET AL.: "A study on efficient spectrum utilization for feeder link using multipe gateways in HAPS system", HAPS , RCS, vol. 118, no. 311, 13 November 2018 (2018-11-13) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236636A1 (en) * 2021-05-10 2022-11-17 株式会社Ntt都科摩 Electronic device in high-altitude platform station-ground communication system

Also Published As

Publication number Publication date
JP2021013052A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2020202817A1 (en) Multi-feeder link configuration in haps communication system and control therefor
JP7010901B2 (en) Dynamic site diversity in HAPS communication systems
WO2019151056A1 (en) Monitoring of radio relay device using feeder link
US11057856B2 (en) Site-to-site transmission/propagation delay correction during application of site diversity in haps feeder link
WO2021002044A1 (en) Interference detection and interference control for forward-link communication in feeder link in haps communication system
WO2021002045A1 (en) Interference detection and interference suppression of reverse link communication in feeder link of haps communication system
WO2020179384A1 (en) Interference canceling in haps multi-feeder link
JP7059232B2 (en) Reverse link interference canceling in HAPS multi-feeder link
WO2020195270A1 (en) Detection of interference between multifeeder links in haps communication system
JP2020162002A (en) Interference canceling by fixed division of feeder link transmission band in haps system having plural gateways
JP2020010219A (en) Single frequency network cell configuration using HAPS
WO2020202820A1 (en) Interference canceling by variable division of feeder link transmission band in multiple-gateway haps system
JP7108737B1 (en) COMMUNICATION REPAIR DEVICE, REMOTE CONTROL DEVICE, SYSTEM, AREA CONTROL METHOD AND PROGRAM
WO2022019125A1 (en) Lessening of decline in interference-reducing performance in processing delay during antenna switching in multi-feeder link of haps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835248

Country of ref document: EP

Kind code of ref document: A1