WO2021001314A1 - Joint filete avec epaulement realise par fabrication additive - Google Patents

Joint filete avec epaulement realise par fabrication additive Download PDF

Info

Publication number
WO2021001314A1
WO2021001314A1 PCT/EP2020/068251 EP2020068251W WO2021001314A1 WO 2021001314 A1 WO2021001314 A1 WO 2021001314A1 EP 2020068251 W EP2020068251 W EP 2020068251W WO 2021001314 A1 WO2021001314 A1 WO 2021001314A1
Authority
WO
WIPO (PCT)
Prior art keywords
male
female
tubular
channel
threaded joint
Prior art date
Application number
PCT/EP2020/068251
Other languages
English (en)
Inventor
Eric Verger
Original Assignee
Vallourec Oil And Gas France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Oil And Gas France filed Critical Vallourec Oil And Gas France
Priority to US17/623,779 priority Critical patent/US20220243845A1/en
Priority to CN202080048713.9A priority patent/CN114222880A/zh
Priority to MX2021015618A priority patent/MX2021015618A/es
Priority to EP20735554.6A priority patent/EP3994382A1/fr
Priority to BR112021025552A priority patent/BR112021025552A2/pt
Publication of WO2021001314A1 publication Critical patent/WO2021001314A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/004Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/08Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to threaded tubular steel components and more particularly to a tubular threaded joint comprising a shoulder produced by additive manufacturing, for drilling, operating hydrocarbon wells or for transporting oil and gas.
  • component is understood here to mean any element or accessory used to drill or operate a well and comprising at least one connection or connector or even threaded end, and intended to be assembled by a thread to another component in order to constitute with this other component a tubular threaded joint.
  • the component can be for example a tubular element of relatively great length (in particular about ten meters in length), for example a tube, or else a tubular sleeve of a few tens of centimeters in length, or else an accessory of these. tubular elements (suspension device or "hanger”, part for changing section or “cross-over”, safety valve, connector for drill rod or "tool joint", “sub”, and the like).
  • Tubular joints have threaded ends. These threaded ends are complementary allowing the connection of two male (“Pin”) and female (“Box”) tubular elements together. There is therefore a male threaded end and a female threaded end. So-called premium or semi-premium threaded ends generally have at least one abutment surface.
  • a first stop may be formed by two surfaces of two threaded ends, oriented substantially radially, configured so as to be in contact with each other after screwing the threaded ends together or during stresses from compression. The stops generally have negative angles to the main axis of the connections. Intermediate stops are also known on joints comprising at least two stages of threading.
  • the radial deformation of the lip can cause loss of structural integrity in compression and snagging of tools displaced internally in the tubes.
  • the arrangement of the leakage concavity is made by means of direct drilling of the tube, for example by turning.
  • Patent WO2013108931 is known from the state of the art, which discloses a connector assembly for interconnecting tubular elements. This document discloses several passages arranged in the abutment surface
  • Direct drilling therefore has several drawbacks, namely reducing the admissible torque for example of the order of -10% because of a consequent loss of material.
  • machining along a complex abutment surface of this type of channel requires adopting a cutting tool path which deteriorates the cutting tool and increases the risk of creating burrs associated with cutting the material, increasing the risk of galling.
  • the object of the present invention is to resolve the problems of the state of the art cited, by producing a part added by additive manufacturing.
  • the invention therefore consists of a threaded tubular joint (1) for drilling, operating hydrocarbon wells or transporting oil and gas comprising a male threaded tubular element (2) and a female threaded tubular element (3 ), the female threaded tubular member (3) comprising a female inner threaded portion (5) and a female unthreaded portion (6), the male threaded tubular member comprising a male outer threaded portion (7) and an unthreaded portion male (8), characterized in that the male (2) or female (3) tubular element comprises a body (4) and an additive part (9) which comprises at least a first abutment surface.
  • the tubular threaded joint (1) in which said first abutment surface is an inner (10a) or outer (10b) male abutment surface, or an inner (11a) or outer (11b) female abutment surface. ), said inner or outer male abutment surface being adapted to come into contact with a corresponding female abutment surface, characterized in that the unthreaded male part (8) or the unthreaded female part (6) comprises at least one lip interior (12a) or exterior (12b) added by additive manufacturing.
  • the tubular threaded joint is characterized in that the added part (9) is produced by additive manufacturing by recharging, by electron beam melting, by laser melting on a bed of metal powder or "selective laser melting. ", By selective laser sintering, by direct metal deposition or” Direct Energy Deposition ", by Binder Projection Deposition or Laser Projection Deposition, by arc-wire additive manufacturing deposition.
  • the tubular threaded joint (1) is characterized in that the added part has a hardness greater than the hardness of the body (4) over at least 1 mm in depth.
  • the tubular threaded joint (1) is characterized in that the added part has a coefficient of friction greater than the body (4). According to one embodiment, the tubular threaded joint (1) is characterized in that the added part (9) comprises a metal chosen from alloy steels, highly alloyed, cupro nickel alloy.
  • the threaded tubular joint (1) is characterized in that each of the male (2) and female (S) tubular elements have a frusto-conical and / or toric metal-to-metal (15) sealing surface. on one side and on the other side the contact between the male (10a) and female (11a) abutment surfaces thus delimiting a closed space (1S).
  • the tubular threaded joint (1) is characterized in that the added part (9) comprises at least one channel (17).
  • the tubular threaded joint (1) is characterized in that the channel (17) extends from a surface delimiting a closed male space (14a) or a surface delimiting a closed female space (14b) up to to a male interior side surface (18a) or a female interior side surface (18b) or to a male exterior side surface (19a) or a female exterior side surface (19b).
  • the tubular threaded joint (1) is characterized in that the channel (17) is at a predetermined distance of at least 2 mm from the abutment surface in contact in the assembled state of the joint.
  • the tubular threaded joint (1) is characterized in that the channel (17) is at a predetermined distance of at least 2.5 times the diameter of the circumscribed circle of a section of the channel with respect to the abutment surfaces in contact in the assembled state of the seal.
  • the tubular threaded joint (1) is characterized in that the channel (17) extends on the surface of the male or female stop.
  • the tubular threaded joint (1) is characterized in that the channel (17) is located in the added part in such a way that it opens out on the one hand into the closed space (13) nearby of the abutment surface and opens out on the other hand to a side surface.
  • the tubular threaded joint (1) is characterized in that a channel (17) extends linearly, axially, radially or in combination. According to one embodiment, the tubular threaded joint (1) is characterized in that the depth of the added part comprising the channel (17) corresponds to at least 4 times the circumscribed diameter of the section of the channel.
  • the invention also comprises a process for producing the added part by additive manufacturing according to the following description:
  • a process for obtaining a tubular threaded joint in that the added part (9) is produced by a process selected from hardfacing processes, electron beam fusion processes, metal powder bed laser fusion processes or "Selective laser melting", selective laser sintering processes, direct metal deposition or “Direct Energy Deposition” processes, Binder Projection Deposition or Laser Projection deposition processes, arc-additive manufacturing deposition processes wire.
  • tests have been carried out with materials of the Fero 55 and stellite type with a direct metal deposition process.
  • the added part (9) can be made with materials of the cupro-nickel alloy or micro-alloy steel type, for example using an additive “Arc-wire” technique.
  • FIG 1 describes schematically, in a longitudinal sectional view, a tubular threaded joint according to a first embodiment in which the added part of the male tubular element is produced by additive manufacturing.
  • FIG 2 schematically depicts, in a longitudinal sectional view, a tubular thread joint according to a variation of the first embodiment in which the added portion of the male threaded tubular member comprises a depth channel.
  • FIG B describes schematically, in a longitudinal sectional view, a tubular threaded joint according to a second embodiment, in which the female stopper is produced by additive manufacturing and comprises a channel located in the added part.
  • FIG 4a schematically shows, in perspective, a tubular threaded joint according to the invention.
  • FIG 4b schematically describes, in plan view (yOz), the arrangements of a channel in the added part of a male threaded tubular element.
  • FIG 4c describes schematically, in plan view (xOz), the arrangements of a channel at the level of a lip of a male element in accordance with the invention.
  • FIG 4d describes schematically, in plan view (xOz), the arrangements of a channel at the level of a lip of a female element in accordance with the invention.
  • FIG 5 describes schematically, in a longitudinal sectional view, a tubular threaded joint according to the invention in which the female outer stop surface comprises an added part produced by additive manufacturing.
  • FIG 6 describes schematically, in a longitudinal sectional view, a tubular threaded joint according to the invention in which the outer male abutment surface comprises an added part produced by additive manufacturing.
  • FIG 7 describes schematically, in a longitudinal sectional view, a tubular threaded joint according to a variant of Figure 5 in which the added part produced by additive manufacturing includes a channel.
  • FIG 8 describes schematically, in a longitudinal sectional view, a tubular threaded joint according to a variant of Figure 6 in which the added part produced by additive manufacturing includes a channel.
  • Figure 1 depicts a tubular threaded joint (1) with an added part (9) on a male tubular member (2).
  • This added part (9) is produced by additive manufacturing and has a substantially axial depth “P”.
  • the tubular threaded joint (1) comprises inner male (10a) and female (11a) abutment surfaces in contact which interfere with the mounted state of the joint. These stop surfaces make it possible to create a high tightening torque so as to prevent unwanted unscrewing and to allow stressing of other functional surfaces of the seal. These contacting abutment surfaces can establish a certain seal against liquids or gases, especially when the seal is subjected to compressive stress. This sealing is not desired by the designer, but undergone.
  • the tubular thread seal (1) further includes male and female metal-to-metal sealing surfaces providing a metal-to-metal seal (15).
  • This metal-to-metal seal (15) provides a seal in the assembled state of the seal and during use of the seal in a wide spectrum of stresses exerted on the seal, such as internal pressure, external pressure, compressive forces, pressure forces. traction. It can be seen in Figure 1 that the grease, fluids, gas or any other similar product fit into a closed space (13) defined by the metal-to-metal seal (15) on one side, and on the other side the male (10a) and female (11a) stop surfaces.
  • the metal-to-metal sealing surface (15) is absent and a seal is produced by the female (5) and male (7) threads in the screwed state.
  • the closed space (13) is therefore delimited on the one hand by the stop surfaces (10a, 10b, 11a, 11b) and the female (5) and male (7) threads.
  • the added part (9) is produced by additive manufacturing in such a way that the hardness is greater than or equal to that of the non-added part, that is to say the body (4 ) male or female.
  • the added part (9) is produced by additive manufacturing in such a way that the coefficient of friction is greater than that of the male or female body (4).
  • the invention also makes it possible to significantly increase the coefficient of friction between the part added by additive manufacturing and the material of the body of the corresponding tubular element, in comparison with the coefficient of friction of the bodies of the male and female tubular element between them.
  • An increase in the coefficient of friction is accompanied by an increase in the value of the screwing torque applicable when connecting two threaded tubular elements.
  • the hardness depends in particular on the type of material used, but the materials can be selected in such a way that the hardness is greater in the added part (9) compared to the male or female body (4).
  • the added part (9) comprises a metal chosen from alloy steels, highly alloyed steels or a cupro-nickel alloy.
  • additive manufacturing makes it possible both to very easily fit out an internal cavity, a channel or any other passageway, but also to significantly reduce, in the event of said passageways being fitted, the losses of material compared to a direct intervention for example by drilling as well as production waste.
  • it makes it possible to generate narrow and short passageways unlike what is possible from the state of the art, in particular by drilling.
  • the invention makes it possible to reduce costly machining operations.
  • the invention makes it possible to increase and improve the geometric complexity of the element obtained through a construction method layer by layer.
  • Figure 2 describes similarly to Figure 1, a male tubular element, in which the added part (9) produced by additive manufacturing this time comprises a channel or any other passageway, according to diameters that are both controllable and more or less reduced to avoid weakening of the added part (9) due to excess material shrinkage, too wide or too long a channel.
  • tubular threaded seal is permeable so as to reduce the risks of the presence or appearance of an overpressure in a closed space of the threaded seal, confined by surfaces providing seals.
  • permeable is understood to mean any means making it possible to generate passageways made in the end of a male or female tubular component so as to communicate a closed space to the connection and a space external to the connection, which can result in by one or more channels having a predetermined size.
  • a channel has a width or a minimum diameter of 0.2 mm.
  • This channel can vary in space according to the planes (yOz), (xOz) or (xOy).
  • the channel is planned at the time of the design of the added part during the additive manufacturing of the added part. This eliminates the need for direct installation or drilling as well as the associated drawbacks.
  • the threaded tubular joint is characterized in that the thickness of the deposit must correspond to at least 4 times the diameter of the circumscribed diameter of the section of the channel. It is essential to respect this condition to avoid generating excessive weakening constraints due to the channel.
  • a deposit respecting this parameter makes it possible precisely to prevent the channel fitted out by additive manufacturing from generating too great a concentration of stresses around said channel and therefore to limit the risk of plasticization of material to a zone near the channel.
  • a channel arranged by additive manufacturing allows diffusion between the closed space (1S) and a side surface.
  • said side surface is either a male inner side surface, or a female inner side surface, or a male outer side surface or a female outer surface.
  • FIG. 3 describes in a manner analogous to FIG. 2, according to a second embodiment, a female tubular element, in which the added part (9) produced by additive manufacturing comprises a channel.
  • the channel is provided during the design of the added part (9) so as to connect the closed space (13) to the female inner side surface (18b).
  • the invention fulfills the objective of allowing grease, fluids, gases or any other similar embedded product to be able to escape and free the closed space ( 13). Since this time the male lip does not have a channel, the question of constraints no longer arises for the male element. It does not arise or much less when it comes to the female abutment surface because the channel is arranged so as to be located on the unconstrained part (ie zone free from the strong stresses generated by the contact between abutments).
  • the tubular threaded joint is characterized in that the thickness of the deposit must correspond to at least 4 times the diameter of the circumscribed diameter of the section of the channel.
  • the thickness of the deposit must correspond to at least 4 times the diameter of the circumscribed diameter of the section of the channel.
  • Figures 4b and 4c show schematically the different possible arrangements for a channel (17) of a male tubular element (2).
  • a channel (17) at least 0.2mm wide in depth, with a thickness "d" around said channel which must be greater than 2 times the diameter of the same channel.
  • FIG. 4c the channel (17) is this time at the level of the inner (10a) or outer (10b) male stop surface of the male tubular element (2).
  • FIG. 4d describes, in a manner analogous to FIG. 4c, a channel (17) at the level of the internal (11a) or external (11b) female stop surface of the female tubular element (3).
  • Figures 5 and 6 describe variants of the invention, according to a mirror configuration of Figures 1, 2 and 3, in which the added part (9) produced by additive manufacturing is located at the level of the outer lateral part of a tubular threaded joint (1) is at the level of the outer female stop surface (11b) for FIG. 5 or the outer male abutment surface (10b) for fig. 6.
  • FIG. 7 describes a variant of FIG. 5 in which the added part (9) produced by additive manufacturing comprises a channel (17) or any other diffusion means.
  • FIG. 8 describes a variant of FIG. 6 in which the added part (9) produced by additive manufacturing comprises a channel (17) or any other diffusion means.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

Joint fileté tubulaire (1) pour le forage, l'exploitation des puits d'hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle (2) et un élément tubulaire fileté femelle (3), l'élément tubulaire fileté femelle (3) comprenant une partie filetée intérieure femelle (5) et une partie non filetée femelle (6), l'élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle (7) et une partie non filetée mâle (8), caractérisé en ce que l'élément tubulaire mâle (2) ou femelle (3) comprend un corps (4) et une partie ajoutée (9) par fabrication additive qui comprend au moins une première surface de butée.

Description

DESCRIPTION
Titre : JOINT FILETE AVEC EPAULEMENT REALISE PAR FABRICATION
ADDITIVE
L'invention concerne les composants filetés tubulaires en acier et plus particulièrement un joint fileté tubulaire comprenant un épaulement réalisé par fabrication additive, pour le forage, l'exploitation des puits d'hydrocarbures ou pour le transport de pétrole et de gaz.
On entend ici par "composant" tout élément ou accessoire utilisé pour forer ou exploiter un puit et comprenant au moins une connexion ou connecteur ou encore extrémité filetée, et destiné à être assemblé par un filetage à un autre composant pour constituer avec cet autre composant un joint fileté tubulaire. Le composant peut être par exemple un élément tubulaire de relativement grande longueur (notamment d'environ une dizaine de mètres de longueur), par exemple un tube, ou bien un manchon tubulaire de quelques dizaines de centimètres de longueur, ou encore un accessoire de ces éléments tubulaires (dispositif de suspension ou « hanger », pièce de changement de section ou « cross-over », vanne de sécurité, connecteur pour tige de forage ou « tool joint », « sub », et analogues).
Les joints tubulaires sont dotés d'extrémités filetées. Ces extrémités filetées sont complémentaires permettant le raccordement de deux éléments tubulaires mâle (« Pin ») et femelle (« Box ») entre eux. Il y a donc une extrémité filetée male et une extrémité filetée femelle. Les extrémités filetées dites premium ou semi-premium comportent généralement au moins une surface de butée. Une première butée peut être formée par deux surfaces de deux extrémités filetées , orientées de façon sensiblement radiale, configurées de façon à être en contact l'une avec l'autre à l'issue du vissage des extrémités filetées entre elles ou lors de sollicitations de compression. Les butées ont généralement des angles négatifs par rapport à l'axe principal des connexions. On connaît également des butées intermédiaires sur des joints comportant au moins deux étages de filetage.
Lors de la connexion d'un joint fileté tubulaire, il est fréquent que des graisses, fluides, gaz ou tout autre produit similaire s'encastrent dans les espaces (ou espacement) demeurés libres après connexion des filets mâle et femelle. Ces espaces peuvent être confinés ou fermés, par exemple, par des surfaces d'étanchéité métal-métal en contact d'un côté et des surfaces de butée mâle et femelle qui entrent en contact d'un autre côté. Ces espaces peuvent également être confinés par la connexion des filets mâles et femelles d'un côté et de la surface de butée mâle qui entre en contact avec une surface de butée femelle de l'autre côté, comme dans le cas des connexions semi-premium qui ne comportent pas de surfaces d'étanchéité métal- métal. Cette graisse pose des problèmes de contraintes majeures sur les tubes en créant une pression non souhaitable au niveau des connexions desdits tubes. Ces pressions peuvent engendrer notamment des problèmes de déformations, dévissage, gonflement... et autres effets indésirables pouvant fragiliser la connexion des tubes pouvant conduire à des accidents majeurs lors de l'installation ou de l'utilisation des tubes dans les puits d'exploitation, de forage ou encore lors du transport (ex : pipelines).
En effet, dans le cas d'une étanchéité dite interne, où la partie femelle, présentant par construction une rigidité supérieure à celle de la lèvre de la partie mâle, fait face à la lèvre de la partie mâle. La lèvre de la partie mâle tend alors à se déformer vers l'intérieur. La déformation radiale vers l'intérieur de la lèvre de la partie mâle réduit la pression de contact au niveau de la portée d'étanchéité, permettant alors une fuite du fluide vers le filetage et l'extérieur de la connexion. Il peut en résulter, outre une perte de fluide circulant à l'intérieur des tubes et une baisse de productivité du puits, une contamination du fluide présent à l'extérieur du tube par un fluide présent à l'intérieur du tube, mais également une déformation permanente de la lèvre de la partie mâle. Par ailleurs, la déformation radiale de la lèvre peut entraîner des fuites lorsque le joint fileté est soumis à nouveau à des pressions élevées de fluide intérieur ou extérieur.
En outre, la déformation radiale de la lèvre peut entraîner des pertes d'intégrité structurelles en compression et des accrochages d'outils déplacés intérieurement dans les tubes.
On connaît de l'art antérieur la solution proposée par le brevet US 2010/0301603 Al concernant une invention dans le domaine des joints filetés tubulaires supérieurs utilisés pour connecter les tubes en acier, tels que des tubes de forage, par exemple intérieur ou extérieur. Il est divulgué notamment que l'étanchéité aux fluides (liquides ou gaz) sous forte pression résulte d'un serrage radial mutuel des portées d'étanchéité. L'intensité du serrage radial est fonction du positionnement axial relatif des éléments filetés mâle et femelle et est donc définie par la mise en butée de ces éléments par des butées de vissage. Ce document a pour but d'améliorer l'étanchéité du joint fileté tubulaire, et notamment du joint fileté tubulaire dans sa structure prête à l'emploi. Ce document propose comme solution d'aménager une concavité de fuite dans l'une des parties filetées mâle ou femelle pour mettre en communication une chambre formée entre la portion distale de lèvre et la surface correspondante de l'autre partie filetée avec l'intérieur du joint.
Cependant dans le cadre de ce document l'aménagement de la concavité de fuite est fait au moyen d'un perçage direct du tube, par exemple par tournage.
La solution d'une intervention « directe » de type perçage dans un élément tubulaire ou une partie de cet élément tubulaire déjà préconçu ou produit présente un certain nombre d'inconvénients. Les dimensions de perçage sont nécessairement importantes, elles peuvent nuire à l'intégrité de la lèvre et augmenter le risque de plastification. Par ailleurs, une solution d'intervention directe de type usinage de surface de butée génère des éléments coupants à la surface de la concavité de fuite. De plus, la réalisation d'une concavité sur une surface de butée réduit le couple mécanique admissible par ladite surface de butée et augmente le risque de grippage. Enfin, générer une concavité de fuite crée une concentration de contrainte supplémentaire et indésirable autour de ladite concavité de fuite. A tous ces inconvénients propres aux conséquences d'aménagement direct d'une concavité de fuite, s'ajoutent les difficultés d'usinage, à savoir également que le fait de générer une concavité de fuite par perçage se révèle coûteux en temps, notamment en augmentant le temps de cycle de production et qu'il s'agit d'un procédé difficile à contrôler justifiant de coûts élevés de production.
On connaît de l'état de l'art le brevet W02013108931 qui divulgue un ensemble connecteur pour interconnecter des éléments tubulaires. Ce document divulgue plusieurs passages aménagés en surface de butée
Le perçage direct présente donc plusieurs inconvénients, à savoir diminuer le couple admissible par exemple de l'ordre de -10% à cause d'une perte de matière conséquente. Un problème de contraintes supplémentaires dans la matière des connexions dues aux diamètres des canaux réalisés par perçage qui sont élevés. Aussi, l'usinage le long d'une surface de butée complexe de ce type de canaux oblige à adopter une trajectoire d'outil de coupe qui détériore l'outil de coupe et augmente le risque de création de bavures lié à la coupe de la matière, augmentant le risque de grippage.
La présente invention a pour but de résoudre les problèmes de l'état de l'art cité, en réalisant une partie ajoutée par fabrication additive.
L'invention consiste donc en un joint fileté tubulaire (1) pour le forage, l'exploitation des puits d'hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle (2) et un élément tubulaire fileté femelle (3), l'élément tubulaire fileté femelle (3) comprenant une partie filetée intérieure femelle (5) et une partie non filetée femelle (6), l'élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle (7) et une partie non filetée mâle (8), caractérisé en ce que l'élément tubulaire mâle (2) ou femelle (3) comprend un corps (4) et une partie ajoutée (9) par fabrication additive qui comprend au moins une première surface de butée.
Selon un mode de réalisation, le joint fileté tubulaire (1) dans lequel ladite première surface de butée est une surface de butée mâle intérieure (10a) ou extérieure (10b), ou une surface de butée femelle intérieure (lia) ou extérieure (11b), ladite surface de butée mâle intérieure ou extérieure étant apte à entrer en contact avec une surface de butée femelle correspondante, caractérisé en ce que la partie non filetée mâle (8) ou la partie non filetée femelle (6) comprend au moins une lèvre intérieure (12a) ou extérieure (12b) ajoutée par fabrication additive.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée (9) est réalisée par fabrication additive par rechargement, par fusion par faisceau d'électrons, par fusion laser sur lit de poudre métallique ou « sélective laser melting », par frittage sélectif par laser, par dépôt métallique direct ou « Direct Energy Déposition », par Dépôt par Projection de Liant ou Dépôt par Projection Laser, par dépôt par fabrication additive arc-fil.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que la partie ajoutée présente une dureté supérieure à la dureté du corps (4) sur au moins 1 mm de profondeur.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que la partie ajoutée présente un coefficient de frottement supérieur au corps (4). Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que la partie ajoutée (9) comprend un métal choisi parmi les aciers alliés, fortement alliés, alliage cupro nickel.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que chacun des éléments tubulaires mâle (2) et femelle (S) présentent une surface d'étanchéité métal-métal (15) frusto-conique et/ou torique d'un côté et de l'autre côté le contact entre les surfaces de butées mâle (10a) et femelle (lia) délimitant ainsi un espace fermé (1S).
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que la partie ajoutée (9) comprend au moins un canal (17).
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que le canal (17) s'étend depuis une surface délimitant un espace fermé mâle (14a) ou une surface délimitant un espace fermé femelle (14b) jusqu'à une surface latérale intérieure mâle (18a) ou une surface latérale intérieure femelle (18b) ou jusqu'à une surface latérale extérieure mâle (19a) ou une surface latérale extérieure femelle (19b).
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que le canal (17) est à une distance prédéterminée d'au moins 2 mm de la surface de butée en contact à l'état assemblé du joint.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que le canal (17) est à une distance prédéterminée d'au moins 2,5 fois le diamètre du cercle circonscrit d'une section du canal par rapport aux surfaces de butées en contact à l'état assemblé du joint.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que le canal (17) s'étend en surface de la butée mâle ou femelle.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que le canal (17) est situé dans la partie ajoutée de telle manière qu'il débouche d'une part dans l'espace fermé (13) à proximité de la surface de butée et débouche d'autre part vers une surface latérale.
Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce qu'un canal (17) s'étend linéairement, axialement, radialement ou en combinaison. Selon un mode de réalisation, le joint fileté tubulaire (1) est caractérisé en ce que la profondeur de la partie ajoutée comprenant le canal (17) correspond à au moins 4 fois le diamètre circonscrit de la section du canal.
L'invention comprend également un procédé de réalisation de la partie ajoutée parfabrication additive selon la description suivante :
Un procédé pour obtenir un joint fileté tubulaire en ce que la partie ajoutée (9) est réalisée par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d'électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil.
Par exemple des essais ont été réalisés avec des matériaux de type Fero 55 et stellite avec un procédé de dépôt métallique direct.
Alternativement on peut réaliser la partie ajoutée (9) avec des matériaux de type alliage cupro-nickel ou acier micro-allié en utilisant par exemple une technique additive « Arc-fil ».
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés.
[Fig 1] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon un premier mode de réalisation dans lequel la partie ajoutée de l'élément tubulaire mâle est réalisé par fabrication additive.
[Fig 2] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon une variation du premier mode de réalisation dans lequel la partie ajoutée de l'élément tubulaire fileté mâle comprend un canal en profondeur. [Fig B] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon un second mode de réalisation, dans lequel la butée femelle est réalisée par fabrication additive et comprend un canal situé dans la partie ajoutée. [Fig 4a] montre de façon schématique, en perspective, un joint fileté tubulaire selon l'invention.
[Fig 4b] décrit de façon schématique, en vue selon le plan (yOz), des dispositions d'un canal dans la partie ajoutée d'un élément tubulaire fileté mâle. [Fig 4c] décrit de façon schématique, en vue selon le plan (xOz), des dispositions d'un canal au niveau d'une lèvre d'un élément mâle en accord avec l'invention.
[Fig 4d] décrit de façon schématique, en vue selon le plan (xOz), des dispositions d'un canal au niveau d'une lèvre d'un élément femelle en accord avec l'invention.
[Fig 5] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon l'invention dans lequel la surface de butée extérieure femelle comprend une partie ajoutée réalisée par fabrication additive.
[Fig 6] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon l'invention dans lequel la surface de butée mâle extérieure comprends une partie ajoutée réalisée par fabrication additive. [Fig 7] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon une variante de la figure 5 dans lequel la partie ajoutée réalisée par fabrication additive comprends un canal.
[Fig 8] décrit de façon schématique, dans une vue de coupe longitudinale, un joint fileté tubulaire selon une variante de la figure 6 dans lequel la partie ajoutée réalisée par fabrication additive comprends un canal.
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant. Ils ne sont pas limitatifs quant à la portée de l'invention.
La figure 1 décrit un joint fileté tubulaire (1) avec une partie ajoutée (9) sur un élément tubulaire mâle (2). Cette partie ajoutée (9) est réalisée par fabrication additive et présente une profondeur « P » substantiellement axiale. Le joint fileté tubulaire (1) comprend des surfaces de butées intérieures mâle (10a) et femelle (lia) en contact interfèrent à l'état monté du joint. Ces surfaces de butées permettent de créer un couple de vissage important de manière à empêcher un dévissage non désiré et à permettre de mettre sous contrainte d'autres surfaces fonctionnelles du joint. Ces surfaces de butée en contact peuvent établir une certaine étanchéité à des liquides ou des gaz, spécialement lorsque le joint est soumis à une contrainte de compression. Cette étanchéité n'est pas souhaitée par le concepteur, mais subie. Le joint fileté tubulaire (1) comprend en outre des surfaces d'étanchéité métal-métal mâle et femelle établissant une étanchéité métal-métal (15). Cette étanchéité métal-métal (15) assure une étanchéité à l'état monté du joint et pendant l'utilisation du joint dans un large spectre de contraintes exercées sur le joint, telles que pression intérieure, pression extérieure, efforts de compression, efforts de traction. On peut visualiser sur la figure 1 que les graisses, fluides, gaz ou tout autre produit similaire s'encastrent dans un espace fermé (13) défini par l'étanchéité métal-métal (15) d'un côté, et de l'autre côté les surfaces de butées mâle (10a) et femelle (lia).
Selon une variante de l'invention la surface d'étanchéité métal-métal (15) est absente et une étanchéité est réalisée par les filets femelles (5) et mâles (7) à l'état vissés. L'espace fermé (13) est donc délimité d'une part par les surfaces de butées (10a, 10b, lia, 11b) et les filets femelles (5) et mâles (7).
Selon une variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que la dureté est supérieure ou égale à celle de la partie non ajoutée, c'est- à-dire le corps (4) mâle ou femelle. Selon une autre variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que le coefficient de frottement est supérieur à celui du le corps (4) mâle ou femelle.
L'invention permet également d'augmenter significativement le coefficient de frottement entre la partie ajoutée par fabrication additive et le matériau du corps de l'élément tubulaire correspondant, en comparaison avec le coefficient de frottement des corps de l'élément tubulaire mâle et femelle entre eux.
Une augmentation du coefficient de frottement s'accompagne par une augmentation la valeur de couple de vissage applicable lors d'une connexion de deux éléments tubulaires filetés. La dureté dépend notamment du type de matériau utilisé, mais les matériaux peuvent être sélectionnés de telle manière à ce que la dureté est supérieure dans la partie ajoutée (9) par rapport au corps (4) mâle ou femelle.
Selon un aspect de l'invention, la partie ajoutée (9) comprend un métal choisi parmi les aciers alliés, fortement alliés ou alliage cupro-nickel.
Avantageusement la fabrication additive permet à la fois d'aménager très facilement une cavité interne, un canal ou toute autre voie de passage, mais aussi de réduire significativement, en cas d'aménagement desdits voies de passages, les pertes de matière par rapport à une intervention directe par exemple par perçage ainsi que les déchets de productions. De ce fait, elle donne la possibilité de générer des voies de passages étroites et courtes contrairement à ce qu'il est possible de faire à partir de l'état de l'art, par perçage notamment.
Avantageusement l'invention permet de diminuer des opérations d'usinage coûteuses.
Avantageusement l'invention permet d'augmenter et d'améliorer la complexité géométrique de l'élément obtenu à travers un mode de construction couche par couche.
Avantageusement plusieurs parties différentes, par exemple avec une dimension, une complexité, un ou des matériaux différents, peuvent être construites ensemble et en même temps, ou alors ajoutées pendant la construction.
Avantageusement plusieurs fonctionnalités peuvent être ajoutées en regard d'un haut niveau de personnalisation.
La figure 2 décrit de manière analogue à la figure 1, un élément tubulaire mâle, dans lequel la partie ajoutée (9) réalisé par fabrication additive comprend cette fois un canal ou toute autre voie de passage, selon des diamètres à la fois contrôlables et plus ou moins réduits pour éviter une fragilisation de la partie ajoutée (9) due à un excès de retrait de matière, un canal trop large ou trop long.
Ainsi, le joint fileté tubulaire est perméable de manière à diminuer les risques de présence ou d'apparition d'une surpression dans un espace fermé du joint fileté, confiné par des surfaces réalisant des étanchéités. On entend par « perméable » tout moyen permettant de générer des voies de passages réalisées dans l'extrémité d'un composant tubulaire mâle ou femelle de manière à faire communiquer un espace fermé à la connexion et un espace extérieur à la connexion, pouvant se traduire par un ou plusieurs canaux présentant une dimension prédéterminée. Selon un mode de réalisation un canal présente une largeur ou un diamètre minimal de 0.2 mm.
Les formes de ce canal peuvent varier dans l'espace selon les plans (yOz), (xOz) ou (xOy).
Le canal est prévu au moment de la conception de la partie ajoutée lors de la fabrication additive de la partie ajoutée. Ceci permet de se passer d'aménagement ou de perçage direct ainsi que les inconvénients associés.
Selon l'invention, le joint fileté tubulaire est caractérisé en ce que l'épaisseur du dépôt doit correspondre à au moins 4 fois le diamètre du diamètre circonscrit de la section du canal. Il est essentiel de respecter cette condition pour éviter de générer des contraintes de fragilisation trop importante due au canal. Avantageusement un tel dépôt respectant ce paramètre permet précisément d'éviter que le canal aménagé par fabrication additive ne génère une trop grande concentration de contraintes autour dudit canal et donc de limiter le risque de plastification de matière à une zone de proximité du canal.
Avantageusement, un canal aménagé par fabrication additive permet la diffusion entre l'espace fermé (1S) et une surface latérale.
On admet dans le cadre de notre invention que ladite surface latérale est soit une surface latérale intérieure mâle, soit une surface latérale intérieure femelle, soit une surface latérale extérieure mâle ou soit une surface extérieure femelle.
La figure 3 décrit de manière analogue à la figure 2, selon un second mode de réalisation, un élément tubulaire femelle, dans lequel la partie ajoutée (9) réalisée par fabrication additive comprend un canal.
Le canal est prévu lors de la conception de la partie ajoutée (9) de telle manière à relier l'espace fermé (13) à la surface latérale intérieure femelle (18b). Avantageusement, lorsque c'est la surface de butée femelle qui comprend un canal, l'invention remplit l'objectif de permettre à des graisses, fluides, gaz ou tout autre produit similaire encastrés de pouvoir s'échapper et libérer l'espace fermé (13) . Etant donné que cette fois la lèvre mâle ne présente pas de canal, la question des contraintes ne se pose plus pour l'élément mâle. Elle ne se pose pas ou beaucoup moins lorsqu'il s'agit de la surface de butée femelle car le canal est aménagé de manière à se situer sur la partie non contrainte (i.e. zone exempte des contraintes fortes générées par le contact entre butées).
Le joint fileté tubulaire est caractérisé en ce que l'épaisseur du dépôt doit correspondre à au moins 4 fois le diamètre du diamètre circonscrit de la section du canal. Avantageusement un tel dépôt respectant ce paramètre permet précisément d'éviter que le canal aménagé par fabrication additive ne génère une trop grande concentration de contraintes autour dudit canal et donc de limiter le risque de plastification de matière à une zone de proximité du canal.
Les figures 4b et 4c schématisent les différentes dispositions possibles pour un canal (17) d'un élément tubulaire mâle (2). On retrouve notamment dans la figure 4b, dans une vue selon le plan (yOz) un canal (17) en profondeur d'au moins 0.2mm de largeur, avec une épaisseur « d » autour dudit canal qui doit être supérieure à 2 fois le diamètre du même canal.
Dans la figure 4c, le canal (17) est cette fois ci au niveau de la surface de butée mâle intérieure (10a) ou extérieure (10b) de l'élément tubulaire mâle (2). La figure 4d décrit de manière analogue à la figure 4c, un canal (17) au niveau de la surface de butée femelle intérieure (lia) ou extérieure (11b) de l'élément tubulaire femelle (3).
Les figures 5 et 6 décrivent des variantes de l'invention, selon une configuration en miroir de des figures 1, 2 et 3, dans lesquelles la partie ajoutée (9) réalisée par fabrication additive est située au niveau de la partie latérale extérieure d'un joint fileté tubulaire (1) soit au niveau de la surface de butée femelle extérieur (11b) pour la fig. 5 ou la surface de butée mâle extérieur (10b) pour la fig. 6.
La figure 7 décrit une variante de la figure 5 dans laquelle la partie ajoutée (9) réalisée par fabrication additive comprend un canal (17) ou tout autre moyen de diffusion. La figure 8 décrit une variante de la figure 6 dans laquelle la partie ajoutée (9) réalisée par fabrication additive comprend un canal (17) ou tout autre moyen de diffusion.

Claims

REVENDICATIONS
1. Joint fileté tubulaire (1) pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle (2) et un élément tubulaire fileté femelle (3), l’élément tubulaire fileté femelle (3) comprenant une partie filetée intérieure femelle (5) et une partie non filetée femelle (6), l’élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle (7) et une partie non filetée mâle (8), caractérisé en ce que l’élément tubulaire mâle (2) ou femelle (3) comprend un corps (4) et une partie ajoutée (9) par fabrication additive qui comprend au moins une première surface de butée.
2. Joint fileté tubulaire (1) selon la revendication 1 dans lequel ladite première surface de butée est une surface de butée mâle intérieure (10a) ou extérieure (10b), ou une surface de butée femelle intérieure (l ia) ou extérieure (11b), ladite surface de butée mâle intérieure ou extérieure étant apte à entrer en contact avec une surface de butée femelle correspondante, caractérisé en ce que la partie non filetée mâle (8) ou la partie non filetée femelle (6) comprend au moins une lèvre intérieure (12a) ou extérieure (12b) ajoutée par fabrication additive.
3. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 2 caractérisé en ce que la partie ajoutée (9) est réalisée par fabrication additive par rechargement, par fusion par faisceau d’électrons, par fusion laser sur lit de poudre métallique ou « sélective laser melting », par frittage sélectif par laser, par dépôt métallique direct ou « Direct Energy Déposition », par Dépôt par Proj ection de Liant ou Dépôt par Proj ection Laser, par dépôt par fabrication additive arc-fil.
4. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 3 caractérisé en ce que la partie ajoutée présente une dureté supérieure à la dureté du corps (4) sur au moins 1 mm de profondeur.
5. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 4 caractérisé en ce que la partie ajoutée présente un coefficient de frottement supérieur au corps (4).
6. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 5 caractérisé en ce que la partie ajoutée (9) comprend un métal choisi parmi les aciers alliés, fortement alliés, alliage cupro-nickel.
7. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 6 caractérisé en ce que chacun des éléments tubulaires mâle (2) et femelle (3) présentent une surface d’étanchéité métal-métal (15) frusto-conique et/ou torique d’un côté et de l’autre côté le contact entre les surfaces de butées mâle (10a) et femelle (l ia) délimitant ainsi un espace fermé (13).
8. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 7 caractérisé en ce que la partie ajoutée (9) comprend au moins un canal (17).
9. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 8 caractérisé en ce que le canal (17) s’étend depuis une surface délimitant un espace fermé mâle (14a) ou une surface délimitant un espace fermé femelle (14b) jusqu’à une surface latérale intérieure mâle (18a) ou une surface latérale intérieure femelle (18b) ou jusqu’à une surface latérale extérieure mâle (19a) ou une surface latérale extérieure femelle (19b).
10. Joint fileté tubulaire (1) selon l’une quelconque des revendications 8 à 9 caractérisé en ce que le canal (17) est à une distance prédéterminée d’au moins 2 mm de la surface de butée en contact à l’état assemblé du joint.
11. Joint fileté tubulaire (1) selon l’une quelconque des revendications 8 à 10 caractérisé en ce que le canal (17) est à une distance prédéterminée d’au moins 2,5 fois le diamètre du cercle circonscrit d’une section du canal par rapport aux surfaces de butées en contact à l’état assemblé du joint.
12. Joint fileté tubulaire (1) selon l’une quelconque des revendications 8 à 11 caractérisé en ce que le canal (17) s’étend en surface de la butée mâle ou femelle.
13. Joint fileté tubulaire (1) selon l’une quelconque des revendications 8 à 12 caractérisé en ce que le canal (17) est situé dans la partie ajoutée de telle manière qu’il débouche d’une part dans l’espace fermé (13) à proximité de la surface de butée et débouche d’autre part vers une surface latérale.
14. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 13 caractérisé en ce qu’un canal (17) s’étend linéairement, axial ement, radialement ou en combinaison.
15. Joint fileté tubulaire (1) selon l’une quelconque des revendications 1 à 14 caractérisé en ce que la profondeur de la partie ajoutée comprenant le canal (17) correspond à au moins 4 fois le diamètre circonscrit de la section du canal.
16. Un procédé pour obtenir un joint fileté tubulaire en ce qu’une partie ajoutée (9) est réalisée par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d’électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil.
PCT/EP2020/068251 2019-07-01 2020-06-29 Joint filete avec epaulement realise par fabrication additive WO2021001314A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/623,779 US20220243845A1 (en) 2019-07-01 2020-06-29 Threaded joint with shoulder produced by additive manufacturing
CN202080048713.9A CN114222880A (zh) 2019-07-01 2020-06-29 具有通过增材制造产生的肩部的螺纹接头
MX2021015618A MX2021015618A (es) 2019-07-01 2020-06-29 Unión roscada con reborde producida mediante fabricación por adición.
EP20735554.6A EP3994382A1 (fr) 2019-07-01 2020-06-29 Joint filete avec epaulement realise par fabrication additive
BR112021025552A BR112021025552A2 (pt) 2019-07-01 2020-06-29 Junta roscada com ressalto produzido por fabricação aditiva

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1907277 2019-07-01
FR1907277A FR3098272B1 (fr) 2019-07-01 2019-07-01 Joint filete avec epaulement realise par fabrication additive

Publications (1)

Publication Number Publication Date
WO2021001314A1 true WO2021001314A1 (fr) 2021-01-07

Family

ID=69157910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/068251 WO2021001314A1 (fr) 2019-07-01 2020-06-29 Joint filete avec epaulement realise par fabrication additive

Country Status (8)

Country Link
US (1) US20220243845A1 (fr)
EP (1) EP3994382A1 (fr)
CN (1) CN114222880A (fr)
AR (1) AR119329A1 (fr)
BR (1) BR112021025552A2 (fr)
FR (1) FR3098272B1 (fr)
MX (1) MX2021015618A (fr)
WO (1) WO2021001314A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023180375A1 (fr) * 2022-03-25 2023-09-28 Vallourec Oil And Gas France Joint fileté tubulaire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3120416A1 (fr) * 2021-03-03 2022-09-09 Vallourec Oil And Gas France Elément tubulaire fileté à segment
FR3120414A1 (fr) * 2021-03-03 2022-09-09 Vallourec Oil And Gas France Elément tubulaire fileté à segment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301603A1 (en) 2007-11-07 2010-12-02 Vallourec Mannesmann Oil & Gas France Threaded connection comprising at least one threaded element with an end lip for a metal tube
WO2013108931A1 (fr) 2012-01-19 2013-07-25 Nippon Steel & Sumitomo Metal Corporation Joint fileté pour tuyaux
US20150273586A1 (en) * 2014-03-28 2015-10-01 Baker Hughes Incorporated Additive Manufacturing Process for Tubular with Embedded Electrical Conductors
US20160376849A1 (en) * 2015-06-26 2016-12-29 Schlumberger Technology Corporation Electrical connectivity across a tool joint
US20180038498A1 (en) * 2016-08-04 2018-02-08 The Boeing Company Stacked Disk Check Valve

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405171A (en) * 1989-10-26 1995-04-11 Union Oil Company Of California Dual gasket lined pipe connector
DE4120998C1 (fr) * 1991-06-21 1992-12-03 Mannesmann Ag, 4000 Duesseldorf, De
US6863313B1 (en) * 1998-02-25 2005-03-08 Grant Prideco, L.P. Threaded connection for internally clad pipe
US6042153A (en) * 1998-02-25 2000-03-28 Grant Prideco, Inc. Threaded connection for internally clad pipe
ITRM20020512A1 (it) * 2002-10-10 2004-04-11 Tenaris Connections Bv Tubo filettato con trattamento superficiale.
US7093654B2 (en) * 2004-07-22 2006-08-22 Intelliserv, Inc. Downhole component with a pressure equalization passageway
AR057940A1 (es) * 2005-11-30 2007-12-26 Tenaris Connections Ag Conexiones roscadas con recubrimientos de alta y baja friccion
US7731246B2 (en) * 2006-09-29 2010-06-08 Varco I/P, Inc. Pipe coupling system
FR2937077B1 (fr) * 2008-10-15 2010-10-22 Vallourec Mannesmann Oil & Gas Composant pour le forage et l'exploitation des puits d'hydrocarbures
GB201006336D0 (en) * 2010-04-15 2010-06-02 Oil States Ind Uk Ltd Pipe connector device
CN201836559U (zh) * 2010-11-04 2011-05-18 李芙蓉 外径不小于30mm的双金属管连接用的螺纹密封接头
US20120175846A1 (en) * 2011-01-11 2012-07-12 Baker Hughes Incorporated Threaded device with metal to metal seal and method
US9097068B2 (en) * 2012-12-19 2015-08-04 Baker Hughes Incorporated Pressure compensation device for thread connections
FR3003007B1 (fr) * 2013-03-06 2015-08-28 Vallourec Mannesmann Oil & Gas France Composant tubulaire filete protege par un film
US10751824B2 (en) * 2016-12-09 2020-08-25 Postle Industries, Inc. Work string tubing connection restoration
AR118023A1 (es) * 2019-02-12 2021-09-15 Nippon Steel Corp Conexión roscada para tubos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301603A1 (en) 2007-11-07 2010-12-02 Vallourec Mannesmann Oil & Gas France Threaded connection comprising at least one threaded element with an end lip for a metal tube
WO2013108931A1 (fr) 2012-01-19 2013-07-25 Nippon Steel & Sumitomo Metal Corporation Joint fileté pour tuyaux
US20150273586A1 (en) * 2014-03-28 2015-10-01 Baker Hughes Incorporated Additive Manufacturing Process for Tubular with Embedded Electrical Conductors
US20160376849A1 (en) * 2015-06-26 2016-12-29 Schlumberger Technology Corporation Electrical connectivity across a tool joint
US20180038498A1 (en) * 2016-08-04 2018-02-08 The Boeing Company Stacked Disk Check Valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023180375A1 (fr) * 2022-03-25 2023-09-28 Vallourec Oil And Gas France Joint fileté tubulaire
FR3133897A1 (fr) * 2022-03-25 2023-09-29 Vallourec Oil And Gas France Joint fileté tubulaire

Also Published As

Publication number Publication date
FR3098272B1 (fr) 2022-07-22
EP3994382A1 (fr) 2022-05-11
BR112021025552A2 (pt) 2022-04-12
CN114222880A (zh) 2022-03-22
FR3098272A1 (fr) 2021-01-08
US20220243845A1 (en) 2022-08-04
AR119329A1 (es) 2021-12-09
MX2021015618A (es) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2021001314A1 (fr) Joint filete avec epaulement realise par fabrication additive
EP1461560B2 (fr) Joint filete tubulaire superieur comprenant au moins un element filete avec levre d extremite
EP1121553A1 (fr) Assemblage filete integral de deux tubes metalliques
FR2923283A1 (fr) Joint filete comprenant au moins un element filete avec levre d'extremite pour tube metallique.
FR2848282A1 (fr) Procede de realisation d'un joint filete tubulaire etanche vis-a-vis de l'exterieur
CA2738094C (fr) Composant pour le forage et l'exploitation des puits d'hydrocarbures
WO2005064219A1 (fr) Réalisation, par expansion plastique, d'un joint tubulaire étanche avec surépaisseur(s) de matière locale(s) et initiale(s)
EP3555412B1 (fr) Joint fileté pour composant tubulaire
WO2005064218A1 (fr) Réalisation, par expansion plastique, d'un assemblage de deux joints tubulaires filetés étanches avec une sous-épaisseur de matière locale et initiale
WO2019016254A1 (fr) Procédé de fabrication d'une pièce de raccordement
FR2940677A1 (fr) Joint tubulaire etanche utilise dans l'industrie du petrole
EP4041982A1 (fr) Joint filete avec portee d'etancheite realisee par fabrication additive
FR2863030A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
WO2022184991A1 (fr) Elément tubulaire fileté à segment
WO2022184993A1 (fr) Elément tubulaire fileté à segment
EP2795038B1 (fr) Composant tubulaire pour le forage et l'exploitation des puits d'hydrocarbures et joint filete resultant
EP3620685B1 (fr) Organe de transmission de puissance
FR3055565A1 (fr) Douillage en vis-a-vis pour la reparation de trous de serrage
FR3109543A1 (fr) Insert precisement integre dans un corps brut realise par fabrication additive.
WO2022184992A1 (fr) Elément tubulaire fileté à segment
FR2818728A1 (fr) Joint filete tubulaire avec butee renforcee
WO2023002101A1 (fr) Conduite pour le transport de fluides avec contrôle du flambement de la chemise interne anticorrosion
WO2019008256A1 (fr) Valve de circuit de fluide caloriporteur
FR2904031A1 (fr) Element male, pour un composant de forage, a butee externe et butee interne adaptee au refacage sans perte de couple de resistance, et ensemble de composants de forage associe.
FR2853695A1 (fr) Dispositif de fermeture de soupape d'un systeme d'injection de fluide sous pression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20735554

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021025552

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020735554

Country of ref document: EP

Effective date: 20220201

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021025552

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE FR1907277 DE 01/07/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. OS DOCUMENTOS APRESENTADOS NAO ESTAO TRADUZIDOS E A DECLARACAO NAO CONTEM OS DADOS IDENTIFICADORES DA PRIORIDADE.

ENP Entry into the national phase

Ref document number: 112021025552

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211217