WO2021000482A1 - 压力缓冲装置及热泵*** - Google Patents

压力缓冲装置及热泵*** Download PDF

Info

Publication number
WO2021000482A1
WO2021000482A1 PCT/CN2019/115868 CN2019115868W WO2021000482A1 WO 2021000482 A1 WO2021000482 A1 WO 2021000482A1 CN 2019115868 W CN2019115868 W CN 2019115868W WO 2021000482 A1 WO2021000482 A1 WO 2021000482A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
buffer
flexible film
heat exchange
buffer device
Prior art date
Application number
PCT/CN2019/115868
Other languages
English (en)
French (fr)
Inventor
路则锋
王飞
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2021000482A1 publication Critical patent/WO2021000482A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the invention relates to the technical field of heat pumps, in particular to a pressure buffer device and a heat pump system.
  • the heat pump system is usually equipped with a refrigeration circuit and a user heat exchange terminal.
  • the refrigeration circuit usually includes a compressor, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger connected together.
  • the indoor heat exchanger is usually equipped with a refrigerant flow channel and a medium flow channel that exchange heat with each other.
  • the refrigerant flow path participates in the flow of refrigerant in the refrigeration circuit, and the heat exchange medium flowing in the medium flow path exchanges heat with the refrigerant flowing through the refrigerant flow path and flows into the user heat exchange terminal to exchange heat through the user Terminal to change the indoor temperature.
  • the heat exchange medium circulating between the medium flow channel and the user heat exchange terminal is affected by thermal expansion and contraction, which will cause changes in the water pressure of the indoor pipeline, especially during temperature changes. After the temperature of the heating medium rises, it is easy to cause the pipeline to rupture and affect the reliability of use.
  • the invention provides a pressure buffer device and a heat pump system.
  • the pressure buffer device is used to buffer the influence of the thermal expansion and contraction of the heat exchange medium on the pipeline, so as to improve the operational reliability of the heat pump system.
  • a pressure buffer device includes:
  • a buffer tank which is provided with a liquid inlet and a liquid outlet;
  • the flexible film is arranged in the buffer tank, the flexible film divides the buffer tank into a buffer cavity and a solution cavity, and the liquid inlet and the liquid outlet are respectively connected to the Solution chamber.
  • the flexible film is located at the upper end of the buffer tank.
  • the buffer tank includes: a tank body, the tank body is provided with the liquid inlet and the liquid outlet; a tank cover, the tank cover is detachably installed on the tank body;
  • the buffer cavity is formed between the flexible film and the tank cover, and the solution cavity is formed between the flexible film and the tank body.
  • the edge of the flexible film is sandwiched between the can cover and the can body.
  • the upper edge of the can body is provided with a first outer flange
  • the edge of the can lid is provided with a second outer flange; the edge of the flexible film is clamped between the first outer flange and the Between the second flared edges.
  • first installation holes are opened on the first outer flange, and a plurality of second installation holes are opened on the second outer flange; bolts penetrate through the first installation holes and the second The mounting hole is screwed with a nut.
  • edge of the flexible film is bonded to the inner surface of the can lid.
  • a switchable air pump is also provided on the tank cover, and the air pump is connected to the buffer cavity.
  • phase change energy storage component is also provided in the solution cavity.
  • the present invention also provides a heat pump system, including a refrigeration circuit and a user heat exchange terminal.
  • the refrigeration circuit includes a compressor, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger.
  • the indoor heat exchanger is configured with mutual Heat exchange refrigerant flow passage and medium flow passage, the compressor, the outdoor heat exchanger, the throttling device and the refrigerant flow passage are connected in sequence, and the user heat exchange terminal is connected to the medium flow passage , Further comprising the above-mentioned pressure buffer device; the buffer tank in the pressure buffer device is connected in series between the user heat exchange terminal and the medium flow channel.
  • the advantages and positive effects of the present invention are: by configuring a flexible film in the buffer tank to form a buffer cavity and a solution cavity, in actual use, when the heat exchange medium is heated due to temperature changes
  • the flexible membrane can deform under the action of the water pressure in the buffer tank to change the volume of the buffer chamber and the solution chamber, so as to buffer the change in the volume of the heat exchange medium caused by the temperature change, and avoid the impact on the indoor tube.
  • the pipeline ruptures caused by the impact of the road, so as to improve the operational reliability of the heat pump system.
  • Figure 1 is a schematic structural diagram of an embodiment of the heat pump system of the present invention
  • Fig. 3 is the second structural principle diagram of the pressure buffer device in the embodiment of the heat pump system of the present invention.
  • the heat pump system of this embodiment includes a refrigeration circuit 100 and a user heat exchange terminal 200.
  • the refrigeration circuit 100 includes a compressor 101, an outdoor heat exchanger 102, a throttling device 103, and an indoor heat exchanger 104.
  • the indoor heat exchanger 104 is equipped with a refrigerant flow path (not marked) and a medium flow path (not marked) that exchange heat with each other.
  • the compressor 101 is connected to the outdoor heat exchanger 102 and the refrigerant flow path in sequence through a four-way valve 105.
  • a throttling device 103 is connected between the outdoor heat exchanger 102 and the refrigerant flow channel, and the user heat exchange terminal 200 is connected to the medium flow channel.
  • the performance entity of the user heat exchange terminal 200 may be a radiator or a fan coil, etc.
  • a circulating pump 201 is usually configured.
  • the indoor heat exchanger 104 usually adopts a plate heat exchanger or a double tube heat exchange.
  • the above-mentioned structural configuration is a configuration method of a conventional heat pump system, which will not be repeated and limited here.
  • the heat pump system of this embodiment is also equipped with a pressure buffer device 300;
  • the pressure buffer device 300 includes a buffer tank 1 and a flexible membrane 2, and the buffer tank 1 is provided with The liquid inlet 11 and the liquid outlet 12;
  • the flexible membrane 2 is arranged in the buffer tank 1.
  • the flexible membrane 2 divides the buffer tank 1 into a buffer cavity B and a solution cavity A, and the liquid inlet 11 and the liquid outlet 12 are respectively Communicating with the solution cavity.
  • the buffer tank 1 is connected in series between the user heat exchange terminal 200 and the medium flow channel through the liquid inlet 11 and the liquid outlet 12.
  • the refrigerant in the refrigeration circuit 100 circulates, and there is a circulation of heat exchange medium between the user heat exchange terminal 200 and the indoor heat exchanger 104.
  • the heat exchange medium and the refrigerant exchange heat in the indoor heat exchanger 104.
  • the temperature of the heat exchange medium is higher, which causes the volume of the heat exchange medium to expand.
  • the heat exchange medium will increase the liquid pressure in the solution cavity A of the buffer tank 1 after the heat exchange medium expands due to temperature rise, and the flexible membrane 2 will deform under the action of the liquid pressure to buffer the influence of the volume expansion of the heat exchange medium on the pipeline.
  • the flexible membrane 2 may be provided at the upper end of the buffer tank 1. In this way, the buffer medium flows below the flexible film 2, and during the flow of the heat exchange medium, the flexible film 2 has little effect on the flowing heat exchange medium. At the same time, since the flexible film 2 does not need to be heavily loaded with the weight of the heat exchange medium, the life of the flexible film 2 is extended.
  • the buffer tank 1 includes: a tank body 13 and a tank cover 14, the tank body 13 is provided with a liquid inlet 11 and a liquid outlet 12; the tank cover 14 is detachably installed on the tank body 13; the flexible film 2 and the tank cover 14
  • the buffer cavity B is formed in between, and correspondingly, the solution cavity A is formed in the tank 13.
  • the flexible film 2 can be sandwiched between the tank body 13 and the tank cover 14 to complete the assembly.
  • the edge of the flexible film 2 is sandwiched between the tank cover 14 and the tank body 13, and the edge of the flexible film 2 is in contact with the tank cover 14 and the tank body 13 and is sealed to form a solution chamber A and a buffer Cavity B.
  • a first outer flange (not marked) is provided on the upper edge of the can body 13, and a second outer flange (not marked) is provided on the edge of the can lid 14; the edge of the flexible film 2 is clamped Between the first flared edge and the second flared edge.
  • the first outer flange and the second outer flange cooperate to increase the contact area with the flexible film 2 to improve the sealing performance.
  • a plurality of first installation holes are opened on the first outer flange, and a plurality of second installation holes are opened on the second outer flange;
  • the first mounting hole and the second mounting hole are screwed with a nut.
  • the first and second outer flanges can tightly clamp the flexible film 2.
  • the flexible film 2 can also be connected to the can cover 14 by means of glue, that is, the edge of the flexible film 2 is bonded to the inner surface of the can cover 14.
  • a switchable air pump 21 is also provided on the tank cover 14, and the air pump 21 communicates with the buffer cavity B.
  • the buffer chamber B can be inflated through the air pump 21 outside the buffer tank 1.
  • the buffer cavity B can be supplemented with gas through the air pump 21.
  • the solution cavity A is also provided with a phase change energy storage component 3.
  • a phase change material is configured in the phase change energy storage component 3, and the phase change material can play a role of energy storage. In the winter heating mode, heat can be stored by the phase change material; and in the summer cooling mode, the cold energy can be stored by the phase change material.
  • the buffer tank 1 equipped with the phase-change energy storage component 3 has different functions in different modes. The specific description is as follows.
  • the circulating pump 201 is activated, and the user heat exchange terminal 200 starts to release cold energy into the room.
  • the cold water from the outlet of the circulating pump 201 enters the user heat exchange terminal 200 to cool the indoor air (for example: the user heat exchange terminal 200 uses a fan coil to blow cold air into the room to produce air conditioning and refrigeration effects)
  • the heat exchange medium temperature rises If it is detected that the return water temperature T of the indoor heat exchanger 104 is greater than or equal to 13° C. (the first temperature value) at this time, the refrigeration circuit 100 starts the refrigeration operation.
  • the cold water from the indoor heat exchanger 104 enters the buffer tank 1, and after a certain amount of cooling and storage of the phase-change energy storage materials inside the phase-change energy storage component 3, it flows out of the buffer tank 1 into the circulating pump 201, and then enters the user for heat exchange
  • the terminal 200 reciprocates in this way, thereby completing the refrigeration cycle of the indoor water system.
  • T ⁇ 10°C the second temperature value
  • the refrigeration circuit 100 stops the refrigeration operation, and the circulating pump 201 continues to operate.
  • the air conditioning cooling capacity of the user heat exchange terminal 200 comes from the buffer The release of the cold storage in the phase-change energy storage component 3 of the tank 1.
  • the buffer tank 1 Since the buffer tank 1 has a certain cold storage capacity, it can provide the user's heat exchange terminal 200 with cold for a long time, thus reducing the startup and shutdown of the refrigeration circuit 100 It avoids the waste of electric energy caused by frequent start-up and shutdown of the refrigeration circuit 100, and has a better energy-saving effect.
  • T ⁇ 13°C the cold storage capacity in the buffer tank 1 has been released.
  • the refrigeration circuit 100 starts the refrigeration operation, and at the same time provides cold storage for the cold storage of the buffer tank 1 and the air cooling of the user heat exchange terminal 200 until the time When T ⁇ 10°C, the above cycle starts again, and so on.
  • the circulating pump 201 starts, and the user heat exchange terminal 200 starts to run; the hot water from the outlet of the circulating pump 201 enters the user heat exchange terminal 200. After heating the indoor air, the water temperature decreases, and then Enter the indoor heat exchanger 104. If it is detected at this time that the return water temperature T in the return water pipe 15 at the inlet of the indoor heat exchanger 104 is less than or equal to 39° C. (the third temperature value), the refrigeration circuit 100 starts heating operation.
  • the heated hot water from the indoor heat exchanger 104 enters the buffer tank 1, and after a certain amount of heating and storage of the phase change energy storage materials in the phase change energy storage component 3 in the buffer tank 1, the hot water output from the buffer tank 1 It enters the circulating pump 201, and then enters the user heat exchange terminal 200 to heat the indoor air, which circulates back and forth, thereby completing the heating cycle of the indoor water system.
  • T ⁇ 42°C the fourth temperature value
  • the heating heat of the user heat exchange terminal 200 comes from the phase change energy storage component of the buffer tank 1
  • the release of heat storage in 3 because the buffer tank 1 has a certain amount of heat storage, it can provide heat for the user's heat exchange terminal 200 for a long time, thus reducing the number of startup and shutdown of the refrigeration circuit 100 and avoid The waste of electric energy caused by frequent startup and shutdown has better energy-saving effect.
  • T ⁇ 39°C the heat storage in the buffer tank 1 has been released.
  • the refrigeration circuit 100 starts heating operation, and at the same time, it provides heat for the heat storage of the buffer tank 1 and the air heating of the user heat exchange terminal 200 until When T ⁇ 42°C, the above cycle starts again, and so on.
  • the refrigeration circuit 100 receives a defrosting command
  • the four-way valve 105 of the refrigeration circuit 100 reverses, and the indoor heat exchanger 104 changes from the condenser under heating conditions to the evaporation under defrost conditions
  • the outdoor heat exchanger 102 changes from an evaporator in heating mode to a condenser in defrosting mode.
  • the indoor circulating pump 201 continues to run, and the phase change energy storage material in the phase change energy storage component 3 of the buffer tank 1 changes from liquid to solid to release heat.
  • the heat is first heated by the user heat exchange terminal 200 to heat the indoor air, and then It enters the indoor heat exchanger 104 through the water pipeline to evaporate the liquid refrigerant into gas, and then enters the compressor 101 through the refrigerant pipeline, and the high temperature and high pressure refrigerant exhaust gas compressed by the compressor 101 enters the outdoor heat exchange
  • the device 102 defrosts the outdoor heat exchanger 102. Therefore, the heat released in the buffer tank 1 provides sufficient heat for the defrosting of the refrigeration circuit 100, and also provides heat for the defrosting process to maintain continuous heating of the user heat exchange terminal 200. This process can significantly reduce the defrosting time, and Keep the user's heat exchange terminal 200 at a higher air outlet temperature.
  • the indoor temperature can be kept stable, and the indoor temperature will not drop and fluctuate periodically, which significantly improves the user experience, especially the comfort experience.
  • the four-way valve 105 of the refrigeration circuit 100 changes direction again to restore the heating state, and at the same time provides heat for the heat storage of the buffer tank 1 and the heating of the air of the user heat exchange terminal 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

一种压力缓冲装置(300)及热泵***,压力缓冲装置(300)包括缓冲罐(1),缓冲罐(1)上设置有进液口(11)和出液口(12);柔性膜(2),柔性膜(2)设置在缓冲罐(1)中,柔性膜(2)将缓冲罐(1)内部间隔为缓冲腔体(B)和溶液腔体(A),进液口(11)和出液口(12)分别连通溶液腔体(A)。通过压力缓冲装置(300)来缓冲换热介质热胀冷缩对管路造成的影响,以提高热泵***的运行可靠性。

Description

压力缓冲装置及热泵*** 技术领域
本发明涉及热泵技术领域,尤其涉及一种压力缓冲装置及热泵***。
背景技术
目前,热泵***通常配置有制冷回路和用户换热终端,其中,而制冷回路通常包括连接在一起的压缩机、室外换热器、节流装置和室内换热器。而室内换热器中通常配置有相互换热的冷媒流道和介质流道。在实际使用过程中,冷媒流道则参与制冷回路中冷媒的流动,而介质流道中流动的换热介质与流经冷媒流道的冷媒换热后流入到用户换热终端,以通过用户换热终端来改变室内的温度。但是,在实际使用过程中,至少存在如下问题:介质流道与用户换热终端之间循环流动的换热介质受热胀冷缩的影响,会造成室内管路水压的变化,尤其在温度换热介质温度升高后,容易造成管路破裂而影响使用可靠性。
技术问题
如何设计一种运行可靠性高的热泵***是本发明所要解决的技术问题。
技术解决方案
本发明提供了一种压力缓冲装置及热泵***,通过压力缓冲装置来缓冲换热介质热胀冷缩对管路造成的影响,以提高热泵***的运行可靠性。
为达到上述技术目的,本发明采用以下技术方案实现:
一种压力缓冲装置,包括:
缓冲罐,所述缓冲罐上设置有进液口和出液口;
柔性膜,所述柔性膜设置在所述缓冲罐中,所述柔性膜将所述缓冲罐内部间隔为缓冲腔体和溶液腔体,所述进液口和所述出液口分别连通所述溶液腔体。
进一步的,所述柔性膜位于所述缓冲罐的上端部。
进一步的,所述缓冲罐包括:罐体,所述罐体上设置有所述进液口和所述出液口;罐盖,所述罐盖可拆卸的安装在所述罐体上;所述柔性膜与所述罐盖之间形成所述缓冲腔体,所述柔性膜与所述罐体之间形成所述溶液腔体。
进一步的,所述柔性膜的边缘夹在所述罐盖和所述罐体之间。
进一步的,所述罐体的上边缘设置有第一外翻边,所述罐盖的边缘设置有第二外翻边;所述柔性膜的边缘夹在所述第一外翻边和所述第二外翻边之间。
进一步的,所述第一外翻边上开设有多个第一安装孔,所述第二外翻边上开设有多个第二安装孔;螺栓贯穿所述第一安装孔和所述第二安装孔并螺纹连接有螺母。
进一步的,所述柔性膜的边缘粘结在所述罐盖的内表面上。
进一步的,所述罐盖上还设置有可开关的打气嘴,所述打气嘴连通所述缓冲腔体。
进一步的,所述溶液腔体中还设置有相变蓄能部件。
本发明还提供一种热泵***,包括制冷回路和用户换热终端,所述制冷回路包括压缩机、室外换热器、节流装置和室内换热器,所述室内换热器中配置有相互换热的冷媒流道和介质流道,所述压缩机、所述室外换热器、所述节流装置和所述冷媒流道依次连接,所述用户换热终端与所述介质流道连接,还包括上述压力缓冲装置;所述压力缓冲装置中的缓冲罐串联在所述用户换热终端和所述介质流道之间。
有益效果
与现有技术相比,本发明的优点和积极效果是:通过在缓冲罐中配置柔性膜以形成缓冲腔体和溶液腔体,在实际使用过程中,当换热介质因温度变化而出现热胀冷缩的情况,则柔性膜能够在缓冲罐内水压的作用下发生形变以改变缓冲腔体和溶液腔体的体积,以缓冲因温度变化造成换热介质体积的变化,避免对室内管路造成影响而出现管路破裂的情况发生,以提高热泵***的运行可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明热泵***实施例的结构原理图;
图2为本发明热泵***实施例中压力缓冲装置的结构原理图之一;
图3为本发明热泵***实施例中压力缓冲装置的结构原理图之二。
本发明的最佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图3所示,本实施热泵***,包括制冷回路100和用户换热终端200,制冷回路100包括压缩机101、室外换热器102、节流装置103和室内换热器104,室内换热器104中配置有相互换热的冷媒流道(未标记)和介质流道(未标记),压缩机101、通过四通阀105与室外换热器102和冷媒流道依次连接,室外换热器102和冷媒流道之间连接节流装置103,用户换热终端200与所述介质流道连接。其中,用户换热终端200的表现实体可以采用散热器或风机盘管等,用户换热终端200与所述介质流道之间为了加快换热介质循环流动,则通常配置有循环泵201。另外,室内换热器104通常采用板式换热器或套管式换热。上述结构配置为常规热泵***的配置方式,在此不做赘述和限定。
而为了满足减小因换热介质热胀冷缩对室内管路造成,本实施热泵***还配置有压力缓冲装置300;压力缓冲装置300包括缓冲罐1和柔性膜2,缓冲罐1上设置有进液口11和出液口12;柔性膜2设置在缓冲罐1中,柔性膜2将缓冲罐1内部间隔为缓冲腔体B和溶液腔体A,进液口11和出液口12分别连通所述溶液腔体。缓冲罐1则通过进液口11和出液口12串联在用户换热终端200与所述介质流道之间。
具体的,在热泵***实际运行过程中,制冷回路100中的冷媒循环流动,而用户换热终端200与室内换热器104之间存在换热介质循环流动。换热介质和冷媒则在室内换热器104中进行热交换。在冬季制热模式下,换热介质的温度较高,使得换热介质出现体积的膨胀。换热介质因升温发生膨胀后会在缓冲罐1的溶液腔体A内提升液体压力,而柔性膜2在液体压力的作用下会产生形变,以缓冲换热介质体积膨胀对管路的影响。
其中,为了确保换热介质在缓冲罐1中顺畅的流动,则可以将柔性膜2设置在缓冲罐1的上端部。这样,缓冲介质在柔性膜2的下方流动,换热介质在流动过程中,柔性膜2对流动中的换热介质影响较小。同时,由于柔性膜2无需重载换热介质的重量,延长了柔性膜2的寿命。
进一步的,为了方便将柔性膜2组装到缓冲罐1中。则缓冲罐1包括:罐体13和罐盖14,罐体13上设置有进液口11和出液口12;罐盖14可拆卸的安装在罐体13上;柔性膜2与罐盖14之间形成所述缓冲腔体B,相对应的,则在罐体13中形成溶液腔体A。
具体的,在实际组装过程中,可以采用将柔性膜2夹在罐体13和罐盖14之间的方式来完成组装。这种情况下,则将柔性膜2的边缘夹在罐盖14和罐体13之间,柔性膜2的边缘与罐盖14和罐体13接触并密封连接,以形成溶液腔体A和缓冲腔体B。
而由于柔性膜2自身材质具有弹性,柔性膜2被罐盖14和罐体13夹紧后,可以通过柔性膜2起到密封罐体13和罐盖14之间形成的连接部位。而为了提高密封效果,则在罐体13的上边缘设置有第一外翻边(未标记),罐盖14的边缘设置有第二外翻边(未标记);柔性膜2的边缘夹在所述第一外翻边和所述第二外翻边之间。通过第一外翻边和第二外翻边配合来增大与柔性膜2接触面积,以提高密封性能。
另外,为了方便组装罐体13和罐盖14,所述第一外翻边上开设有多个第一安装孔,所述第二外翻边上开设有多个第二安装孔;螺栓贯穿所述第一安装孔和所述第二安装孔并螺纹连接有螺母。具体的,通过螺母和螺栓配合,能使得第一外翻边和第二外翻边紧密的夹紧柔性膜2。
同样的,柔性膜2还可以通过胶粘的方式连接在罐盖14上,即柔性膜2的边缘粘结在罐盖14的内表面上。
优选地,为了在组装时,方便向缓冲腔体B中充气,则罐盖14上还设置有可开关的打气嘴21,打气嘴21连通所述缓冲腔体B。具体的, 在将罐体13、罐盖14和柔性膜2组装好后,可以在缓冲罐1的外部通过打气嘴21向缓冲腔体B中充气。同样的,在后期使用过程中,也可以在缓冲腔体B泄气的情况下,通过打气嘴21对缓冲腔体B补充气体。
进一步的,所述溶液腔体A中还设置有相变蓄能部件3。具体的,相变蓄能部件3中配置有相变材料,相变材料能够起到蓄能的作用。在冬季制热模式下,通过相变材料可以存储热量;而在夏季制冷模式下,通过相变材料可以存储冷量。
更重要的是,对于配置有相变蓄能部件3的缓冲罐1,在不同模式下的起到的作用不同,具体说明如下。
夏季制冷模式下:
用户换热终端200接到制冷运行指令后,循环泵201启动,用户换热终端200开始向室内释放冷量。循环泵201出口的冷水经过进入用户换热终端200,对室内空气冷却(例如:用户换热终端200采用风机盘管的方式将冷空气吹入房间产生空调制冷效果)后,换热介质温度升高,然后进入室内换热器104,若此时检测室内换热器104的回水温度T≥13℃(第一温度值)时,制冷回路100启动制冷运行。从室内换热器104出来的冷水进入缓冲罐1中,对相变蓄能部件3内部相变储能材料进行一定冷却蓄能后,从缓冲罐1流出进入循环泵201,再进入用户换热终端200,这样循环往复,从而完成室内水***的制冷循环。而在制冷回路100运行过程中,当T≤10℃(第二温度值)时,制冷回路100停止制冷运行,循环泵201继续运行,此过程中用户换热终端200的空调冷量来自于缓冲罐1的相变蓄能部件3中蓄冷的释放,由于缓冲罐1具有一定的蓄冷量,能够在较长时间内为用户换热终端200提供冷量,这样就减少了制冷回路100的开停机次数,避免了因制冷回路100频繁开停机造成的电能浪费,具有较好的节能效果。当T≥13℃时,缓冲罐1内的蓄冷量已释放完毕,此时制冷回路100启动制冷运行,同时为缓冲罐1的蓄冷和用户换热终端200的空气冷却来提供冷量,直到当T≤10℃时,又开始以上的循环,这样周而复始。
冬季制热情况下:
用户换热终端200接到制热运行指令后,循环泵201启动,用户换热终端200开始运行;循环泵201出口的热水进入用户换热终端200,对室内空气加热后,水温降低,然后进入室内换热器104。若此时检测室内换热器104进口的回水管15内的回水温度T≤39℃(第三温度值)时,制冷回路100启动制热运行。从室内换热器104出来的制热热水进入缓冲罐1,对缓冲罐1中的相变蓄能部件3内部相变储能材料进行一定加热蓄能后,从缓冲罐1输出的热水进入循环泵201,再进入用户换热终端200加热室内空气,这样循环往复,从而完成室内水***的制热循环。当T≥42℃(第四温度值)时,制冷回路100停止制热运行,循环泵201继续运行,此过程中用户换热终端200的制热热量来自于缓冲罐1的相变蓄能部件3中蓄热的释放,由于缓冲罐1具有一定的蓄热量,能够在较长时间内为用户换热终端200提供热量,这样就减少了制冷回路100的开停机次数,避免了因制冷回路100频繁开停机造成的电能浪费,具有较好的节能效果。当T≤39℃时,缓冲罐1内的蓄热量已释放完毕,此时制冷回路100启动制热运行,同时为缓冲罐1的蓄热和用户换热终端200的空气加热来提供热量,直到当T≥42℃时,又开始以上的循环,这样周而复始。
制热过程中,当制冷回路100接到除霜指令时,制冷回路100的四通阀105换向,室内换热器104由制热工况下的冷凝器变为除霜工况下的蒸发器,室外换热器102则由制热工况下的蒸发器变为除霜工况下的冷凝器。此时,室内循环泵201继续运行,缓冲罐1的相变蓄能部件3中的相变储能材料由液态变为固态来释放热量,该热量先经用户换热终端200加热室内空气,然后经水管路进入室内换热器104,使其中的液态制冷剂蒸发变为气体,之后经制冷剂管路进入压缩机101,经压缩机101压缩变为高温高压的制冷剂排气进入室外换热器102,对室外换热器102进行除霜。因此,缓冲罐1中释放的热量为制冷回路100除霜提供了充足的热量,也为除霜过程为保持用户换热终端200连续制热提供了热量,此过程可以显著减少除霜时间,且保持用户换热终端200较高的出风温度。除霜过程中能够保持室内温度稳定,不会出现室内温度下降而周期性波动,显著提升了用户体验,特别是舒适性体验。除霜结束后,制冷回路100的四通阀105再次换向,恢复制热状态,同时为缓冲罐1的蓄热和用户换热终端200的空气加热来提供热量。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明个实施例技术方案的精神和范围。

Claims (10)

  1. 一种压力缓冲装置,其特征在于,包括:
    缓冲罐,所述缓冲罐上设置有进液口和出液口;
    柔性膜,所述柔性膜设置在所述缓冲罐中,所述柔性膜将所述缓冲罐内部间隔为缓冲腔体和溶液腔体,所述进液口和所述出液口分别连通所述溶液腔体。
  2. 根据权利要求1所述的压力缓冲装置,其特征在于,所述柔性膜位于所述缓冲罐的上端部。
  3. 根据权利要求1所述的压力缓冲装置,其特征在于,所述缓冲罐包括:
    罐体,所述罐体上设置有所述进液口和所述出液口;
    罐盖,所述罐盖可拆卸的安装在所述罐体上;
    所述柔性膜与所述罐盖之间形成所述缓冲腔体,所述柔性膜与所述罐体之间形成所述溶液腔体。
  4. 根据权利要求3所述的压力缓冲装置,其特征在于,所述柔性膜的边缘夹在所述罐盖和所述罐体之间。
  5. 根据权利要求4所述的压力缓冲装置,其特征在于,所述罐体的上边缘设置有第一外翻边,所述罐盖的边缘设置有第二外翻边;所述柔性膜的边缘夹在所述第一外翻边和所述第二外翻边之间。
  6. 根据权利要求5所述的压力缓冲装置,其特征在于,所述第一外翻边上开设有多个第一安装孔,所述第二外翻边上开设有多个第二安装孔;螺栓贯穿所述第一安装孔和所述第二安装孔并螺纹连接有螺母。
  7. 根据权利要求3所述的压力缓冲装置,其特征在于,所述柔性膜的边缘粘结在所述罐盖的内表面上。
  8. 根据权利要求3所述的压力缓冲装置,其特征在于,所述罐盖上还设置有可开关的打气嘴,所述打气嘴连通所述缓冲腔体。
  9. 根据权利要求1-8任一所述的压力缓冲装置,其特征在于,所述溶液腔体中还设置有相变蓄能部件。
  10. 一种热泵***,包括制冷回路和用户换热终端,所述制冷回路包括压缩机、室外换热器、节流装置和室内换热器,所述室内换热器中配置有相互换热的冷媒流道和介质流道,所述压缩机、所述室外换热器、所述节流装置和所述冷媒流道依次连接,所述用户换热终端与所述介质流道连接,其特征在于,还包括如权利要求1-9任一所述的压力缓冲装置;所述压力缓冲装置中的缓冲罐串联在所述用户换热终端和所述介质流道之间。
PCT/CN2019/115868 2019-07-04 2019-11-06 压力缓冲装置及热泵*** WO2021000482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910600121.2 2019-07-04
CN201910600121.2A CN112178989A (zh) 2019-07-04 2019-07-04 压力缓冲装置及热泵***

Publications (1)

Publication Number Publication Date
WO2021000482A1 true WO2021000482A1 (zh) 2021-01-07

Family

ID=73915132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115868 WO2021000482A1 (zh) 2019-07-04 2019-11-06 压力缓冲装置及热泵***

Country Status (2)

Country Link
CN (1) CN112178989A (zh)
WO (1) WO2021000482A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017016A1 (en) * 2003-07-22 2005-01-27 Robert Lombari Expansion tank with double diaphragm
CN102864818A (zh) * 2012-10-13 2013-01-09 温岭市联华机械有限公司 一种膨胀罐
CN202954400U (zh) * 2012-10-13 2013-05-29 温岭市联华机械有限公司 一种膨胀罐隔膜的连接结构
CN202954401U (zh) * 2012-10-13 2013-05-29 温岭市联华机械有限公司 一种隔膜式膨胀罐
US20140158573A1 (en) * 2012-12-12 2014-06-12 Amtrol Licensing Inc. Air cell indicator
CN105042070A (zh) * 2015-06-25 2015-11-11 张家港市顺佳隔热技术有限公司 一种快速充气式囊式膨胀罐
CN204963258U (zh) * 2015-08-20 2016-01-13 青岛经济技术开发区海尔热水器有限公司 一种太阳能集热循环***用自动补液装置
CN205975813U (zh) * 2016-08-29 2017-02-22 浙江耀达智能科技股份有限公司 一种隔膜膨胀罐

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408348A (zh) * 2008-11-19 2009-04-15 江苏佳佳太阳能有限公司 一种太阳能热水器的介质装置
DE202011003668U1 (de) * 2011-03-08 2011-07-14 Noll, Thomas, Dr., 85110 Pufferspeicher zur Aufnahme von flüssigem Medium, Wasserversorgungsanlage mit einem derartigen Pufferspeicher sowie Pufferspeichervorrichtung mit zumindest einem Pufferspeicher
CN109703403B (zh) * 2018-12-27 2022-06-21 万帮数字能源股份有限公司 一种能效比高、冷却效率高的大功率充电冷却装置
CN109959101A (zh) * 2019-05-05 2019-07-02 李社红 换热装置及具有其的热泵空调***
CN210663477U (zh) * 2019-07-04 2020-06-02 青岛海尔智能技术研发有限公司 压力缓冲装置及热泵***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017016A1 (en) * 2003-07-22 2005-01-27 Robert Lombari Expansion tank with double diaphragm
CN102864818A (zh) * 2012-10-13 2013-01-09 温岭市联华机械有限公司 一种膨胀罐
CN202954400U (zh) * 2012-10-13 2013-05-29 温岭市联华机械有限公司 一种膨胀罐隔膜的连接结构
CN202954401U (zh) * 2012-10-13 2013-05-29 温岭市联华机械有限公司 一种隔膜式膨胀罐
US20140158573A1 (en) * 2012-12-12 2014-06-12 Amtrol Licensing Inc. Air cell indicator
CN105042070A (zh) * 2015-06-25 2015-11-11 张家港市顺佳隔热技术有限公司 一种快速充气式囊式膨胀罐
CN204963258U (zh) * 2015-08-20 2016-01-13 青岛经济技术开发区海尔热水器有限公司 一种太阳能集热循环***用自动补液装置
CN205975813U (zh) * 2016-08-29 2017-02-22 浙江耀达智能科技股份有限公司 一种隔膜膨胀罐

Also Published As

Publication number Publication date
CN112178989A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN101545689B (zh) 空气调节装置
CN105757798A (zh) 空调***和空调***的控制方法
KR20100059176A (ko) 축열 시스템
KR101964946B1 (ko) 외기온도 보상형 고효율 냉각시스템
JP2980022B2 (ja) ヒートポンプ給湯機
CN211233470U (zh) 压力缓冲组件及热泵***
KR20180072368A (ko) 다중열원 융합형 히트펌프시스템
CN210663477U (zh) 压力缓冲装置及热泵***
EP2375187A2 (en) Heat pump apparatus and operation control method of heat pump apparatus
CN112178737A (zh) 蓄能组件及热泵***
WO2021000481A1 (zh) 压力缓冲组件及热泵***
WO2021000482A1 (zh) 压力缓冲装置及热泵***
KR20100046365A (ko) 히트펌프 시스템
KR100816450B1 (ko) 브라인 열교환기를 이용한 공기조화장치 및 방법
CN210399097U (zh) 蓄能组件及热泵***
CN216384419U (zh) 四管制风冷冷热水机组
CN102062061A (zh) 风力发电的纯水循环***的冷却方法及实现其的冷却***
KR20200003589A (ko) 공기 조화 시스템
CN113154547B (zh) 一种新排风分级热回收***
CN103836837A (zh) 一种双模式复合的热泵机组以及控制方法
KR100796373B1 (ko) 항온 항습기
JPH09287847A (ja) 熱回収式空気調和装置
KR100788477B1 (ko) 열교환기가 구비된 히트펌프형 공조시스템
CN109579357B (zh) 一种具有高效热回收的多联机热泵***及控制方法
KR20110018958A (ko) 히트펌프 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936430

Country of ref document: EP

Kind code of ref document: A1