WO2020262104A1 - Resin composition and lesion tubular tissue model - Google Patents

Resin composition and lesion tubular tissue model Download PDF

Info

Publication number
WO2020262104A1
WO2020262104A1 PCT/JP2020/023545 JP2020023545W WO2020262104A1 WO 2020262104 A1 WO2020262104 A1 WO 2020262104A1 JP 2020023545 W JP2020023545 W JP 2020023545W WO 2020262104 A1 WO2020262104 A1 WO 2020262104A1
Authority
WO
WIPO (PCT)
Prior art keywords
lesion
resin composition
tubular tissue
component
mass
Prior art date
Application number
PCT/JP2020/023545
Other languages
French (fr)
Japanese (ja)
Inventor
彰 見山
睦 松本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021528254A priority Critical patent/JP7482867B2/en
Priority to DE112020003114.4T priority patent/DE112020003114T5/en
Publication of WO2020262104A1 publication Critical patent/WO2020262104A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Definitions

  • the present invention relates to a resin composition and a lesion tubular tissue model using the resin composition.
  • Patent Document 1 proposes an artificial blood vessel containing a block copolymer composed of a polymer block mainly composed of styrene and a polymer block mainly composed of a conjugated diene compound as a fiber reinforced resin.
  • Patent Document 2 proposes a resin composition containing a hydrogenated block copolymer having a predetermined MFR, an oil, and a polyolefin-based resin having a predetermined specific surface area in a predetermined amount as a resin composition used for a tubular structure. Has been done.
  • the artificial tubular tissue is used as a medical simulator for acquiring skills, and it is required that the physical properties are similar to the tubular tissue of animals including humans.
  • a calcified portion may be formed inside the tubular tissue due to a lesion, and the physical properties of the lesion portion may change.
  • An object of the present invention is to provide a resin composition that can be used in a lesion tubular tissue model having physical properties similar to those of a lesion in a tubular tissue of an animal including humans.
  • the present inventor has proceeded with research and found that by adding an inorganic filler to a hydrogenated block copolymer, the physical properties are similar to those of a lesion in a tubular tissue, and have completed the present invention.
  • the present invention relates to the following.
  • [1] A resin composition containing 100 parts by mass of the component (A) hydrogenated block copolymer and 100 to 5900 parts by mass of the component (B) inorganic filler.
  • [2] The method according to [1], wherein the MFR (measured at a temperature of 230 ° C. and a load of 2.16 kg) of the component (A) hydrogenated block copolymer is 0.01 g / 10 minutes or more and 1 g / 10 minutes or less.
  • Resin composition [3]
  • the resin composition according to [1] or [2] which contains 400 to 5000 parts by mass of the component (B) inorganic filler with respect to 100 parts by mass of the component (A) hydrogenated block copolymer.
  • the resin composition according to the first embodiment of the present invention contains 100 parts by mass of component (A) hydrogenated block copolymer and 100 to 5900 parts by mass of component (B) inorganic filler. This makes it possible to obtain a lesion tubular tissue model having physical properties similar to the lesion portion of the tubular tissue of animals including humans.
  • the hydrogenated block copolymer of the component (A) is an aromatic vinyl-conjugated diene block copolymer composed of a block polymerization unit (X) derived from aromatic vinyl and a block polymerization unit (Y) derived from conjugated diene. It is preferable to contain at least one hydrogenated product (hydrogenated product or hydride).
  • the form of the aromatic vinyl-conjugated diene block copolymer having such a structure is represented by, for example, X (YX) n or (XY) n [n is an integer of 1 or more].
  • X (YX) n particularly the one in the form of XYX is preferable.
  • XYX is selected from the group consisting of polystyrene-polybutadiene-polystyrene block copolymer, polystyrene-polyisoprene-polystyrene block copolymer, and polystyrene-polyisoprene butadiene-polystyrene block copolymer.
  • One or more copolymers to be produced are preferable.
  • the aromatic vinyl block unit (X) which is a hard segment, exists as a bridging point of the conjugated diene rubber block unit (Y) and is a pseudo-crosslink (domain). Is forming.
  • the conjugated diene rubber block unit (Y) existing between the aromatic vinyl block units (X) is a soft segment and has rubber elasticity.
  • Aromatic vinyl blocks examples include styrene, ⁇ -methylstyrene, 3-methylstyrene, p-methylstyrene, 4-propylstyrene, 4-dodecylstyrene, 4-cyclohexylstyrene, and the like. Examples thereof include 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene and 2-vinylnaphthalene. Of these, styrene is preferred.
  • Examples of the conjugated diene forming the conjugated diene block polymerization unit (Y) include butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene, and a combination thereof.
  • one or more conjugated diene selected from the group consisting of butadiene, isoprene, and a combination of butadiene and isoprene (copolymerization of butadiene-isoprene) is preferable.
  • One or more of these conjugated dienes can be used in combination.
  • the conjugated diene block polymerization unit (Y) composed of the butadiene-isoprene copolymer unit may be any of a random copolymerization unit of butadiene and isoprene, a block copolymerization unit, and a tapered copolymerization unit.
  • the content of the aromatic vinyl block polymerization unit (X) is preferably 5% by mass or more and 50% by mass or less, and 20% by mass or more and 40% by mass or less. More preferably: The content of the aromatic vinyl unit can be measured by a conventional method such as infrared spectroscopy or NMR spectroscopy.
  • the aromatic vinyl-conjugated diene block copolymer as described above can be produced by various methods.
  • the production method includes (1) a method of sequentially polymerizing an aromatic vinyl and then a conjugated diene using an alkyllithium compound such as n-butyllithium as an initiator, and (2) polymerizing an aromatic vinyl and then a conjugated diene.
  • an alkyllithium compound such as n-butyllithium as an initiator
  • polymerizing an aromatic vinyl and then a conjugated diene can be mentioned, such as a method of coupling the above with a coupling agent, (3) a method of sequentially polymerizing a conjugated diene and then an aromatic vinyl using a lithium compound as an initiator.
  • the hydrogenated block copolymer is a product (hydrogenated or hydride) obtained by hydrogenating the above aromatic vinyl-conjugated diene block copolymer by a known method, and the preferable hydrogenation rate is 90 mol%. That is all.
  • This hydrogenation rate is a value when the total amount of carbon-carbon double bonds in the conjugated diene block polymerization unit (Y) is 100 mol%. “Hydrogenation rate is 90 mol% or more” means that 90 mol% or more of carbon-carbon double bonds are hydrogenated.
  • hydrogenated block copolymers examples include polystyrene-poly (ethylene / propylene) block (SEP), polystyrene-poly (ethylene / propylene) block-polystyrene (SEPS), and polystyrene-poly (ethylene / butylene) block-.
  • SEP polystyrene-poly (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEBS polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene
  • SEEPS polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene
  • SEEPS is contained as the component (C).
  • the melt flow rate (MFR (temperature 230 ° C., load 2.16 kg)) of the component (A) hydrogenated block copolymer is preferably 0.01 g / 10 minutes or more and 1 g / 10 minutes or less, more preferably. Is 0.05 g / 10 minutes or more and less than 0.1 g / 10 minutes.
  • the MFR (temperature 230 ° C., load 2.16 kg) means an MFR measured under the conditions of a temperature 230 ° C. and a load 2.16 kg according to JIS K7210.
  • the hydrogenation rate is measured by a known method such as nuclear magnetic resonance spectrum analysis (NMR).
  • the shape of the component (A) hydrogenated block copolymer is preferably powder or amorphous (clam) from the viewpoint of oil absorption work before kneading.
  • Component (B) Inorganic filler examples include calcium carbonate, talc, clay (clay), calcium silicate, magnesium carbonate, magnesium hydroxide, mica, barium sulfate, titanium oxide, aluminum hydroxide, silica, alumina, carbon black and the like. Be done. Among these, one or more selected from the group consisting of calcium carbonate, silica, alumina, talc, and clay is preferable, and calcium carbonate is more preferable.
  • composition of the resin composition 100 parts by mass or more of the component (A) hydrogenated block copolymer, 100 parts by mass or more and 5900 parts by mass or less of the component (B) inorganic filler, and more preferably 400 parts by mass or more and 5000 parts by mass of the inorganic filler.
  • the component (C) oil may be further contained.
  • the component (C) oil is most preferably paraffin-based process oil, naphthen-based process oil, mineral oil-based oil such as aromatic process oil or liquid paraffin, silicon oil, castor oil, flaxseed oil, olefin-based wax, and the like.
  • mineral oil-based oil such as aromatic process oil or liquid paraffin
  • silicon oil castor oil
  • flaxseed oil olefin-based wax
  • examples include mineral wax.
  • paraffin-based and / or naphthenic-based process oils are preferred.
  • the process oil include Diana process oil series (manufactured by Idemitsu Kosan Co., Ltd.) and JOMO process P (manufactured by Japan Energy Co., Ltd.).
  • various ester-based plasticizers such as phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, and citric acid can also be used. These plasticizers may be used alone or in combination of two or more.
  • the component (C) oil is previously absorbed by the component (A) hydrogenated block copolymer in advance in terms of workability.
  • the shape of the hydrogenated block copolymer of the component (A) is preferably the powder or amorphous (clam) shape that easily absorbs oil.
  • the component (C) oil preferably has a kinematic viscosity at 37.8 ° C. or 40 ° C. of 0.1 to 1000 m 2 / s, more preferably 0.1 to 500 m 2 / s, and 0.1. It is more preferably ⁇ 100 m 2 / s.
  • a resin composition can be obtained that gives a biological model having softness and physical properties similar to human blood vessels and / or skin.
  • the measurement of kinematic viscosity can be obtained by measuring at a test temperature of 37.8 ° C. or 40 ° C. using a Canon Fenceke viscometer according to “5. Kinematic viscosity test method” of JIS K 2283: 2000.
  • the component (A) hydrogenated block copolymer is 100 parts by mass and the component (C) oil is 3 parts by mass or more and 1500 parts by mass or less, more preferably 5 parts by mass or more and 1200 parts by mass. It is preferably contained in an amount of 8 parts by mass or more, more preferably 500 parts by mass or less.
  • a lubricant may be contained.
  • the lubricant include ionic surfactants, nonionic (nonionic) surfactants, hydrocarbon-based lubricants, fatty acid-based lubricants, aliphatic amide-based lubricants, metal soap-based lubricants, ester-based lubricants and the like.
  • an anionic surfactant As the ionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.
  • the anionic surfactant include fatty acid sodium, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, monoalkyl phosphate and the like.
  • Examples of commercially available products include the trade name "Electro Stripper PC" manufactured by Kao Corporation.
  • Examples of the cationic surfactant include an alkyltrimethylammonium salt, a dialkyldimethylammonium salt, an alkylbenzyldimethylammonium salt and the like.
  • amphoteric surfactant examples include alkyldimethylamine oxide and alkylcarboxybetaine.
  • nonionic surfactant include polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether, and the like.
  • trade name "Kao Corporation""Electro stripper EA” and the like can be mentioned.
  • hydrocarbon-based lubricant examples include paraffin wax, synthetic polyethylene wax, octyl alcohol and the like.
  • fatty acid-based lubricant examples include stearic acid and stearyl alcohol.
  • aliphatic amide lubricant examples include fatty acid amides such as stearic acid amide, oleic acid amide and erucic acid amide; and alkylene fatty acid amides such as methylene bisstearic acid amide and ethylene bisstearic acid amide.
  • metal soap-based lubricant examples include a metal stearic acid salt and the like.
  • ester-based lubricant examples include fatty acid esters of alcohols, stearic acid monoglycerides, stearyl stearate, and hydrogenated oils.
  • lubricant one or more selected from the above-mentioned lubricants can be used.
  • lubricants selected from the group consisting of ionic surfactants and nonionic surfactants in that they have softness and physical properties more similar to those of human blood vessels and / or skin.
  • nonionic surfactants it is more preferable to contain one or more selected from nonionic surfactants.
  • the resin composition of the present embodiment preferably contains a lubricant of 0.1 part by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the component (A) hydrogenated block copolymer, and more preferably 0. It is preferably contained in an amount of 1 part by mass or more and 100 parts by mass or less, more preferably 0.1 part by mass or more and 50 parts by mass or less.
  • the resin composition is, if necessary, a rubber, a plasticizer, a stabilizer, an antistatic agent, a light resistance improver, an ultraviolet absorber, a softener, a lubricant, a processing aid, and a colorant.
  • Antistatic agent, antifogging agent, antiblocking agent, crystal nucleating agent, foaming agent and the like may be contained.
  • the resin composition in the present embodiment may contain other resins or elastomers, if necessary.
  • the other resin or elastomer is not particularly limited, but for example, a polyolefin such as polyethylene, polypropylene, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer (EVA), or a styrene-butadiene copolymer.
  • Styrene-isoprene copolymer Styrene-isoprene copolymer, styrene-butadiene-isoprene copolymer, styrene-ethylene-butadiene-styrene copolymer (SEBS), styrene-ethylene-propylene-styrene copolymer (SEPS) and other styrene-based thermoplastics Fibrous fillers such as elastomers, acrylonitrile-butadiene-styrene copolymers (ABS resin), acrylic nitrile-styrene copolymers (AS resin), polystyrenes, polyvinyl chlorides, and polyvinylidene chlorides can be mentioned.
  • ABS resin acrylonitrile-butadiene-styrene copolymers
  • AS resin acrylic nitrile-styrene copolymers
  • polystyrenes polyvin
  • the content thereof is preferably 0.01 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the component (A) hydrogenated block copolymer.
  • the resin composition is preferably thermoplastic in terms of manufacturing cost and physical characteristic balance.
  • the A hardness of the resin composition is not particularly limited depending on the lesion tubular tissue model to be produced, but is preferably 1 to 100, more preferably 1 to 80, and even more preferably 1 to 60.
  • the A hardness of the resin composition is preferably 10 to 100, more preferably 40 to 100, further preferably 60 to 100, and most preferably 80 to 100.
  • the A hardness of the resin can be measured according to the durometer hardness test method of JIS K6253-1997.
  • the method for producing the resin composition is not particularly limited, and a known suitable blending method can be used.
  • melt-kneading can be performed with a single-screw or twin-screw screw extruder, a Banbury type mixer, a plast mill, a conider, a heating roll, or the like.
  • each raw material may be uniformly mixed with a Henschel mixer, a ribbon blender, a super mixer, a tumbler, or the like.
  • the melt-kneading temperature is not particularly limited, but is generally 50 to 300 ° C, preferably 70 to 250 ° C.
  • the lesion tubular tissue model of the present embodiment is formed by arranging a pseudo-lesion portion formed from the above resin composition inside the artificial tubular tissue.
  • the artificial tubular tissue preferably has a hollow elongated structure.
  • the inner diameter of the artificial tubular tissue is not particularly limited depending on the type of tubular tissue to be produced, but is preferably 0.1 mm to 30 mm, more preferably 0.5 mm to 20 mm, still more preferably 1 mm to 10 mm.
  • the outer diameter of the artificial tubular tissue depends on the type of tubular tissue to be produced, but is appropriately set according to the size of the inner diameter, and is not particularly limited, but is preferably 0.3 mm to 35 mm, preferably 0.7 mm to 25 mm. More preferably, 1.2 mm to 12 mm is further preferable.
  • the thickness of the artificial tubular structure is appropriately set depending on the relationship between the inner diameter and the outer shape, and is not particularly limited, but is preferably 0.1 mm to 3 mm, more preferably 0.3 mm to 2 mm, still more preferably 0.5 mm to 1 mm. ..
  • the pseudo-lesion portion may have a structure in which a bowl-shaped protruding portion is formed inward of the tube so as to narrow or occlude the lumen 4 of the artificial tubular tissue 2 (pseudo-lesion portion in FIG. 1). (Refer to 3A), it may be formed in a tubular shape inward of the artificial tubular tissue 2, and a pot-shaped inclined surface 5 that narrows inward is formed at the end of the opening of the pseudo-lesion portion. It may be formed (see pseudo-lesion 3B in FIG. 2).
  • the inner diameter is not particularly limited depending on the type of tubular tissue to be produced, but is preferably 0.1 mm to 3 mm, more preferably 0.2 mm to 2 mm, and more preferably 0.3 mm. ⁇ 1 mm is more preferable.
  • the outer diameter of the pseudo-lesion portion 3B depends on the type of tubular tissue to be produced, but is appropriately set according to the size of the inner diameter of the pseudo-lesion portion 3B, and is not particularly limited, but is preferably 0.2 mm to 32 mm. 0.6 mm to 22 mm is more preferable, and 1.1 mm to 12 mm is further preferable.
  • the thickness of the layer of the pseudo-lesion portion 3B is appropriately set according to the relationship between the inner diameter and the outer diameter, and by actually setting the thickness suitable for the degree of stenosis of the stenotic site, the thickness is such that suitable training can be reliably performed. As a result, through-hole training can be performed reliably, and the skill of the operator can be accurately improved.
  • the outer diameter of the pseudo-lesion portion 3B is formed larger than the inner diameter of the artificial tubular tissue.
  • the pseudo-lesion portion 3B is arranged in a compressed state in the artificial tubular tissue and is fixed in the artificial tubular tissue. Therefore, for example, a stent expansion technique practice or a calcification part cutting technique The displacement of the pseudo-lesion portion 3B during practice is suppressed. It may be fixed by using an adhesive, heat fusion or the like.
  • the method for producing the pseudo-lesion portion is not particularly limited, and the pseudo-lesion portion can be produced by a known molding method.
  • various molding methods can be used according to the target tubular structure model, such as extrusion molding, casting molding, injection molding, and vacuum forming.
  • melt flow rate is a value at a temperature of 230 ° C. and a load of 2.16 kg.
  • material ⁇ Hydrogenated block copolymer> "Septon 4055” manufactured by Kuraray Co., Ltd.
  • the hydrogenated block copolymer (A) and the inorganic filler (B) have the composition shown in Table 1, using a lavender plastic coder (PL2000 type manufactured by Brabender), 200 to 230 ° C., and a rotation speed of 50.
  • the resin composition was obtained by kneading at times / minute for 6 minutes.
  • the hydrogenated block copolymer (A) was supplied by the manufacturer as an amorphous powder.
  • the hydrogenated block copolymer (A), the inorganic filler (B), and the oil (C) have the composition shown in Table 1 and are used from 200 to 200 using a lavender plastic coder (PL2000 type manufactured by Brabender). A resin composition was obtained by kneading at 230 ° C. at a rotation speed of 50 times / minute for 6 minutes.
  • the hydrogenated block copolymer (A) was supplied by the manufacturer as an amorphous powder. A few days before kneading, a predetermined amount of oil (C) was added dropwise to the hydrogenated block copolymer (A) so that it was sufficiently impregnated. The amount of the oil (C) soaked here is included in the above-mentioned blending amount.
  • Comparative Example 3-5 A resin composition was obtained in the same manner as in Example 1 except that the following resin was used instead of the hydrogenated block copolymer (A).
  • Comparative Example 1 Polyethylene (PE), "Sumikasen C215" manufactured by Sumitomo Chemical Co., Ltd.
  • Comparative Example 2 Acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS), "GR-2000” manufactured by Denka Corporation
  • Comparative Example 3 Polycarbonate (PC), "Iupilon ML200” manufactured by (Mitsubishi Engineering Plastics)
  • the lesion tubular tissue model of the example has physical properties similar to those of the lesion portion of the tubular tissue of animals including humans, and is a training model for palpation of the calcified part and a catheter procedure. It was clarified that it is useful as a training model for practice, a training model for practicing stent expansion technique, and a training model for practicing calcification cutting technique. On the other hand, the lesion tubular tissue model of the comparative example did not have physical properties similar to the lesion portion of the tubular tissue of animals including humans, or was not suitable as the training model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition that can be used for a lesion tubular tissue model having physical properties similar to those of a lesion part of tubular tissue from an animal or human. Said resin composition contains: 100 parts by mass of a hydrogenated block copolymer as component (A); and 100-5,900 parts by mass of an inorganic filler as component (B). 

Description

樹脂組成物及び病変管状組織モデルResin composition and lesion tubular tissue model
 本発明は、樹脂組成物及びそれを用いた病変管状組織モデルに関する。 The present invention relates to a resin composition and a lesion tubular tissue model using the resin composition.
 人工の血管、リンパ管、胆管、尿管等の管状組織は、生体内への移植の他、外科的治療等における技術習得用の医療シミュレータ等の種々の分野で用いられている。特許文献1には、スチレンを主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックからなるブロック共重合体等を繊維強化樹脂として含む人工血管が提案されている。特許文献2では、管状組織に用いられる樹脂組成物として、所定のMFRを有する水添ブロック共重合体、オイル、及び所定の比表面積を有するポリオレフィン系樹脂を所定量で含有する樹脂組成物が提案されている。 Tubular tissues such as artificial blood vessels, lymphatic vessels, bile ducts, and ureters are used in various fields such as medical simulators for acquiring techniques in surgical treatment, etc., in addition to transplantation into the living body. Patent Document 1 proposes an artificial blood vessel containing a block copolymer composed of a polymer block mainly composed of styrene and a polymer block mainly composed of a conjugated diene compound as a fiber reinforced resin. Patent Document 2 proposes a resin composition containing a hydrogenated block copolymer having a predetermined MFR, an oil, and a polyolefin-based resin having a predetermined specific surface area in a predetermined amount as a resin composition used for a tubular structure. Has been done.
特開2014-186281号公報Japanese Unexamined Patent Publication No. 2014-186281 国際公開第2018/151320号International Publication No. 2018/151320
 人工管状組織は、技術習得用の医療シミュレータとして用いられ、物理的性質がヒトを含む動物の管状組織に近似していることが求められる。一方、実際の管状組織は、病変により管状組織内部に石灰化部が形成され、病変部の物理的性質が変化することがある。そのような病変部に対する術者の技術を向上させるために、石灰化部が形成された管状組織の物理的性質を有する技術習得用の医療シミュレータの開発が求められている。 The artificial tubular tissue is used as a medical simulator for acquiring skills, and it is required that the physical properties are similar to the tubular tissue of animals including humans. On the other hand, in an actual tubular tissue, a calcified portion may be formed inside the tubular tissue due to a lesion, and the physical properties of the lesion portion may change. In order to improve the technique of the operator for such a lesion, it is required to develop a medical simulator for acquiring the technique having the physical properties of the tubular tissue in which the calcified part is formed.
 本発明は、ヒトを含む動物の管状組織の病変部に近似した物理的性質を有する病変管状組織モデルに用いることができる樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a resin composition that can be used in a lesion tubular tissue model having physical properties similar to those of a lesion in a tubular tissue of an animal including humans.
 本発明者は、研究を進め、水添ブロック共重合体に、無機フィラーを含有させることで、管状組織の病変部に物理的性質が近似することを見出し、本発明を完成させるに至った。 The present inventor has proceeded with research and found that by adding an inorganic filler to a hydrogenated block copolymer, the physical properties are similar to those of a lesion in a tubular tissue, and have completed the present invention.
 本発明は、以下に関するものである。
[1]成分(A)水添ブロック共重合体100質量部と成分(B)無機フィラー100~5900質量部とを含有する樹脂組成物。
[2]成分(A)水添ブロック共重合体のMFR(温度230℃、荷重2.16kgで測定)が0.01g/10分以上、1g/10分以下である、[1]に記載の樹脂組成物。
[3]成分(A)水添ブロック共重合体100質量部に対し、成分(B)無機フィラー400~5000質量部を含有する、[1]又は[2]に記載の樹脂組成物。
[4]成分(B)無機フィラーが炭酸カルシウムを含有する、[1]から[3]のいずれかに記載の樹脂組成物。
[5]さらに成分(C)オイルを3~1500質量部含有する、[1]から[4]のいずれかに記載の樹脂組成物。
[6]成分(C)オイルの37.8℃又は40℃における動粘度が0.1~1000m/sである、[5]に記載の樹脂組成物。
[7]病変管状組織モデル用である、[1]から[6]のいずれかに記載の樹脂組成物。
[8][1]から[7]のいずれかに記載の樹脂組成物を用いた病変管状組織モデル。
The present invention relates to the following.
[1] A resin composition containing 100 parts by mass of the component (A) hydrogenated block copolymer and 100 to 5900 parts by mass of the component (B) inorganic filler.
[2] The method according to [1], wherein the MFR (measured at a temperature of 230 ° C. and a load of 2.16 kg) of the component (A) hydrogenated block copolymer is 0.01 g / 10 minutes or more and 1 g / 10 minutes or less. Resin composition.
[3] The resin composition according to [1] or [2], which contains 400 to 5000 parts by mass of the component (B) inorganic filler with respect to 100 parts by mass of the component (A) hydrogenated block copolymer.
[4] The resin composition according to any one of [1] to [3], wherein the component (B) inorganic filler contains calcium carbonate.
[5] The resin composition according to any one of [1] to [4], further containing 3 to 1500 parts by mass of the component (C) oil.
[6] The resin composition according to [5], wherein the component (C) oil has a kinematic viscosity of 0.1 to 1000 m 2 / s at 37.8 ° C. or 40 ° C.
[7] The resin composition according to any one of [1] to [6], which is used for a lesion tubular tissue model.
[8] A lesion tubular tissue model using the resin composition according to any one of [1] to [7].
 本発明によれば、ヒトを含む動物の管状組織の病変部に近似した物理的性質を有する病変管状組織モデルに用いることができる樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition that can be used for a lesion tubular tissue model having physical properties similar to those of a lesion portion of a tubular tissue of an animal including humans.
本発明の病変管状組織モデルの一構成例を示す図であって、(a)は病変管状組織モデルの長さ方向に直交する面の断面図、(b)は(a)のA-A線視断面図である。It is a figure which shows one structural example of the lesion tubular tissue model of this invention, (a) is the sectional view of the plane orthogonal to the length direction of the lesion tubular tissue model, (b) is the line AA of (a). It is a sectional view. 本発明の病変管状組織モデルの別の構成例を示す図であって、(a)は病変管状組織モデルの長さ方向に直交する面の断面図、(b)は(a)のB-B線視断面図である。It is a figure which shows another structural example of the lesion tubular tissue model of this invention, (a) is the sectional view of the plane orthogonal to the length direction of the lesion tubular tissue model, (b) is BB of (a). It is a line-of-sight sectional view.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired.
[第一実施形態]
 本発明の第一実施形態に係る樹脂組成物は、成分(A)水添ブロック共重合体100質量部と成分(B)無機フィラー100~5900質量部とを含有する。これにより、ヒトを含む動物の管状組織の病変部に類似した物理的性質を有する病変管状組織モデルとすることが可能である。
[First Embodiment]
The resin composition according to the first embodiment of the present invention contains 100 parts by mass of component (A) hydrogenated block copolymer and 100 to 5900 parts by mass of component (B) inorganic filler. This makes it possible to obtain a lesion tubular tissue model having physical properties similar to the lesion portion of the tubular tissue of animals including humans.
<成分(A)水添ブロック共重合体>
 成分(A)水添ブロック共重合体は、芳香族ビニルから導かれるブロック重合単位(X)と共役ジエンから導かれるブロック重合単位(Y)とからなる芳香族ビニル-共役ジエンブロック共重合体の水添物(水素添加物または水素化物)を1種以上含有することが好ましい。
<Component (A) Hydrogenated block copolymer>
The hydrogenated block copolymer of the component (A) is an aromatic vinyl-conjugated diene block copolymer composed of a block polymerization unit (X) derived from aromatic vinyl and a block polymerization unit (Y) derived from conjugated diene. It is preferable to contain at least one hydrogenated product (hydrogenated product or hydride).
 このような構成の芳香族ビニル-共役ジエンブロック共重合体の形態は、たとえばX(YX)又は(XY)〔nは1以上の整数〕で示される。これらの中では、X(YX)の形態のもの、特にX-Y-Xの形態のものが好ましい。X-Y-Xの形態のものとしては、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体、ポリスチレン-ポリイソプレン-ポリスチレンブロック共重合体、ポリスチレン-ポリイソプレン・ブタジエン-ポリスチレンブロック共重合体からなる群から選択される1種以上の共重合体が好ましい。 The form of the aromatic vinyl-conjugated diene block copolymer having such a structure is represented by, for example, X (YX) n or (XY) n [n is an integer of 1 or more]. Among these, the one in the form of X (YX) n , particularly the one in the form of XYX is preferable. The form of XYX is selected from the group consisting of polystyrene-polybutadiene-polystyrene block copolymer, polystyrene-polyisoprene-polystyrene block copolymer, and polystyrene-polyisoprene butadiene-polystyrene block copolymer. One or more copolymers to be produced are preferable.
 このような芳香族ビニル-共役ジエンブロック共重合体では、ハードセグメントである芳香族ビニルブロック単位(X)が、共役ジエンゴムブロック単位(Y)の橋かけ点として存在して擬似架橋(ドメイン)を形成している。この芳香族ビニルブロック単位(X)間に存在する共役ジエンゴムブロック単位(Y)は、ソフトセグメントであってゴム弾性を有している。 In such an aromatic vinyl-conjugated diene block copolymer, the aromatic vinyl block unit (X), which is a hard segment, exists as a bridging point of the conjugated diene rubber block unit (Y) and is a pseudo-crosslink (domain). Is forming. The conjugated diene rubber block unit (Y) existing between the aromatic vinyl block units (X) is a soft segment and has rubber elasticity.
 芳香族ビニルブロック重合単位(X)を形成する芳香族ビニルとしては、スチレン、α-メチルスチレン、3-メチルスチレン、p-メチルスチレン、4-プロピルスチレン、4-ドデシルスチレン、4-シクロヘキシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン等が挙げられる。これらの中では、スチレンが好ましい。 Aromatic vinyl blocks Examples of the aromatic vinyl forming the polymerization unit (X) include styrene, α-methylstyrene, 3-methylstyrene, p-methylstyrene, 4-propylstyrene, 4-dodecylstyrene, 4-cyclohexylstyrene, and the like. Examples thereof include 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene and 2-vinylnaphthalene. Of these, styrene is preferred.
 共役ジエンブロック重合単位(Y)を形成する共役ジエンとしては、ブタジエン、イソプレン、ペンタジエン、2,3-ジメチルブタジエン及びこれらの組合せ等が挙げられる。これらの中では、ブタジエン、イソプレン、ブタジエンとイソプレンとの組み合わせ(ブタジエン-イソプレンの共重合)からなる群から選択される1種以上の共役ジエンが好ましい。これらのうち1種以上の共役ジエンを組み合わせて用いることもできる。ブタジエン-イソプレン共重合単位からなる共役ジエンブロック重合単位(Y)は、ブタジエンとイソプレンとのランダム共重合単位、ブロック共重合単位、テーパード共重合単位の何れであってもよい。 Examples of the conjugated diene forming the conjugated diene block polymerization unit (Y) include butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene, and a combination thereof. Among these, one or more conjugated diene selected from the group consisting of butadiene, isoprene, and a combination of butadiene and isoprene (copolymerization of butadiene-isoprene) is preferable. One or more of these conjugated dienes can be used in combination. The conjugated diene block polymerization unit (Y) composed of the butadiene-isoprene copolymer unit may be any of a random copolymerization unit of butadiene and isoprene, a block copolymerization unit, and a tapered copolymerization unit.
 上記のような芳香族ビニル-共役ジエンブロック共重合体では、芳香族ビニルブロック重合単位(X)の含有量が5質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。この芳香族ビニル単位の含有量は赤外線分光、NMR分光法等の常法によって測定することができる。 In the aromatic vinyl-conjugated diene block copolymer as described above, the content of the aromatic vinyl block polymerization unit (X) is preferably 5% by mass or more and 50% by mass or less, and 20% by mass or more and 40% by mass or less. More preferably: The content of the aromatic vinyl unit can be measured by a conventional method such as infrared spectroscopy or NMR spectroscopy.
 上記のような芳香族ビニル-共役ジエンブロック共重合体は、種々の方法により製造することができる。製造方法としては、(1)n-ブチルリチウム等のアルキルリチウム化合物を開始剤として、芳香族ビニル、次いで共役ジエンを逐次重合させる方法、(2)芳香族ビニル、次いで共役ジエンを重合させ、これをカップリング剤によりカップリングさせる方法、(3)リチウム化合物を開始剤として、共役ジエン、次いで芳香族ビニルを逐次重合させる方法等を挙げることができる。 The aromatic vinyl-conjugated diene block copolymer as described above can be produced by various methods. The production method includes (1) a method of sequentially polymerizing an aromatic vinyl and then a conjugated diene using an alkyllithium compound such as n-butyllithium as an initiator, and (2) polymerizing an aromatic vinyl and then a conjugated diene. Can be mentioned, such as a method of coupling the above with a coupling agent, (3) a method of sequentially polymerizing a conjugated diene and then an aromatic vinyl using a lithium compound as an initiator.
 水添ブロック共重合体は、上記のような芳香族ビニル-共役ジエンブロック共重合体を公知の方法により水添した物(水素添加物または水素化物)であり、好ましい水添率は90モル%以上である。この水添率は、共役ジエンブロック重合単位(Y)中の炭素-炭素二重結合の全体量を100モル%としたときの値である。「水添率が90モル%以上」とは、炭素―炭素二重結合の90モル%以上が水素添加されていることを示す。このような水添ブロック共重合体としては、ポリスチレン-ポリ(エチレン/プロピレン)ブロック(SEP)、ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン(SEPS)、ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン(SEBS)、ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン(SEEPS)等が挙げられる。より具体的には、SEPTON(クラレ(株)社製)、クレイトン(Kraton;シェル化学(株)社製)、クレイトンG(シェル化学(株)社製)、タフテック(旭化成(株)社製)(以上商品名)等が挙げられる。これらは、単独で用いても、複数を組み合わせて用いてもよい。中でも、成分(C)としてSEEPSが含まれることが好ましい。 The hydrogenated block copolymer is a product (hydrogenated or hydride) obtained by hydrogenating the above aromatic vinyl-conjugated diene block copolymer by a known method, and the preferable hydrogenation rate is 90 mol%. That is all. This hydrogenation rate is a value when the total amount of carbon-carbon double bonds in the conjugated diene block polymerization unit (Y) is 100 mol%. “Hydrogenation rate is 90 mol% or more” means that 90 mol% or more of carbon-carbon double bonds are hydrogenated. Examples of such hydrogenated block copolymers include polystyrene-poly (ethylene / propylene) block (SEP), polystyrene-poly (ethylene / propylene) block-polystyrene (SEPS), and polystyrene-poly (ethylene / butylene) block-. Examples include polystyrene (SEBS), polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene (SEEPS) and the like. More specifically, SEPTON (manufactured by Kuraray Co., Ltd.), Kraton (manufactured by Shell Chemical Co., Ltd.), Clayton G (manufactured by Shell Chemical Co., Ltd.), Tough Tech (manufactured by Asahi Kasei Corporation) (The above product name) and the like. These may be used alone or in combination of two or more. Above all, it is preferable that SEEPS is contained as the component (C).
 成分(A)水添ブロック共重合体のメルトフローレート(MFR(温度230℃、荷重2.16kg))は、0.01g/10分以上、1g/10分以下であることが好ましく、より好ましくは0.05g/10分以上、0.1g/10分未満である。MFR(温度230℃、荷重2.16kg)とは、JIS K7210に従って、温度230℃、荷重2.16kgの条件下で測定するMFRをいう。MFRが0.01g/10分以上とすることで、成形加工する際に成形不良を生じる可能性が低減され、MFRが1g/10分以下とすることで、オイルを添加した際にブリードアウト(オイルのしみ出し)が発生したり、力学的強度が低下する可能性が低減される。水添率は、核磁気共鳴スペクトル解析(NMR)等の公知の方法により測定する。
 成分(A)水添ブロック共重合体の形状は、混練前のオイル吸収作業の観点から、粉末又は無定形(クラム)状が好ましい。
The melt flow rate (MFR (temperature 230 ° C., load 2.16 kg)) of the component (A) hydrogenated block copolymer is preferably 0.01 g / 10 minutes or more and 1 g / 10 minutes or less, more preferably. Is 0.05 g / 10 minutes or more and less than 0.1 g / 10 minutes. The MFR (temperature 230 ° C., load 2.16 kg) means an MFR measured under the conditions of a temperature 230 ° C. and a load 2.16 kg according to JIS K7210. By setting the MFR to 0.01 g / 10 minutes or more, the possibility of molding defects during molding is reduced, and by setting the MFR to 1 g / 10 minutes or less, bleeding out (bleeding out) when oil is added. The possibility of oil seepage) and a decrease in mechanical strength is reduced. The hydrogenation rate is measured by a known method such as nuclear magnetic resonance spectrum analysis (NMR).
The shape of the component (A) hydrogenated block copolymer is preferably powder or amorphous (clam) from the viewpoint of oil absorption work before kneading.
<成分(B)無機フィラー>
 成分(B)無機フィラーとしては、炭酸カルシウム、タルク、クレー(粘土)、珪酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、マイカ、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、アルミナ、カーボンブラック等が挙げられる。これらの中では、炭酸カルシウム、シリカ、アルミナ、タルク、クレーからなる群から選択される1種以上が好ましく、炭酸カルシウムがより好ましい。
<Component (B) Inorganic filler>
Examples of the component (B) inorganic filler include calcium carbonate, talc, clay (clay), calcium silicate, magnesium carbonate, magnesium hydroxide, mica, barium sulfate, titanium oxide, aluminum hydroxide, silica, alumina, carbon black and the like. Be done. Among these, one or more selected from the group consisting of calcium carbonate, silica, alumina, talc, and clay is preferable, and calcium carbonate is more preferable.
(含有量)
 樹脂組成物の好ましい組成としては、成分(A)水添ブロック共重合体を100質量部、成分(B)無機フィラーを100質量部以上5900質量部以下、より好ましくは400質量部以上5000質量部以下、さらに好ましくは500質量部以上4000質量部以下含有することが好ましい。上記組成とすることで、ヒトを含む動物の管状組織の病変部に類似した物理的性質を有する人工管状組織をより容易に実現することができる。
(Content)
As a preferable composition of the resin composition, 100 parts by mass or more of the component (A) hydrogenated block copolymer, 100 parts by mass or more and 5900 parts by mass or less of the component (B) inorganic filler, and more preferably 400 parts by mass or more and 5000 parts by mass of the inorganic filler. Below, it is more preferable to contain 500 parts by mass or more and 4000 parts by mass or less. With the above composition, an artificial tubular tissue having physical properties similar to the lesion portion of the tubular tissue of an animal including a human can be more easily realized.
 本発明の一実施形態において、さらに成分(C)オイルを含有してもよい。 In one embodiment of the present invention, the component (C) oil may be further contained.
<成分(C)オイル>
 成分(C)オイルとしては、最も好ましくは、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルや流動パラフィン等の鉱物油系オイル、シリコンオイル、ヒマシ油、アマニ油、オレフィン系ワックス、鉱物系ワックス等が挙げられる。これらの中では、パラフィン系及び/又はナフテン系のプロセスオイルが好ましい。プロセスオイルとしては、ダイアナプロセスオイルシリーズ(出光興産社製)、JOMOプロセスP(ジャパンエナジー社製)等が挙げられる。また、フタル酸系、トリメリット酸系、ピロメリット酸系、アジピン酸系、またはクエン酸系の各種エステル系可塑剤も用いることができる。これらの可塑剤は、単独で用いても、複数を組み合わせて用いてもよい。
<Ingredient (C) oil>
The component (C) oil is most preferably paraffin-based process oil, naphthen-based process oil, mineral oil-based oil such as aromatic process oil or liquid paraffin, silicon oil, castor oil, flaxseed oil, olefin-based wax, and the like. Examples include mineral wax. Of these, paraffin-based and / or naphthenic-based process oils are preferred. Examples of the process oil include Diana process oil series (manufactured by Idemitsu Kosan Co., Ltd.) and JOMO process P (manufactured by Japan Energy Co., Ltd.). Further, various ester-based plasticizers such as phthalic acid, trimellitic acid, pyromellitic acid, adipic acid, and citric acid can also be used. These plasticizers may be used alone or in combination of two or more.
 成分(C)オイルは、事前に成分(A)水添ブロック共重合体にあらかじめ吸収させておくのが作業性の点で好ましい。そのためには、成分(A)水添ブロック共重合体の形状は、オイルを吸収しやすい、前記粉末又は無定形(クラム)状が好ましい。 It is preferable that the component (C) oil is previously absorbed by the component (A) hydrogenated block copolymer in advance in terms of workability. For that purpose, the shape of the hydrogenated block copolymer of the component (A) is preferably the powder or amorphous (clam) shape that easily absorbs oil.
 成分(C)オイルは、37.8℃又は40℃における動粘度が0.1~1000m/sであることが好ましく、0.1~500m/sであることがより好ましく、0.1~100m/sであることがさらに好ましい。上記範囲内にすることで、ヒトの血管及び/又は皮膚に類似した軟質性や物性を有する生体モデルを与える樹脂組成物にすることができる。動粘度の測定は、JIS K 2283:2000の「5.動粘度試験方法」に従って、キャノンフェンスケ粘度計を用いて37.8℃又は40℃の試験温度で測定することにより得ることができる。 The component (C) oil preferably has a kinematic viscosity at 37.8 ° C. or 40 ° C. of 0.1 to 1000 m 2 / s, more preferably 0.1 to 500 m 2 / s, and 0.1. It is more preferably ~ 100 m 2 / s. Within the above range, a resin composition can be obtained that gives a biological model having softness and physical properties similar to human blood vessels and / or skin. The measurement of kinematic viscosity can be obtained by measuring at a test temperature of 37.8 ° C. or 40 ° C. using a Canon Fenceke viscometer according to “5. Kinematic viscosity test method” of JIS K 2283: 2000.
(含有量)
 樹脂組成物の好ましい組成としては、成分(A)水添ブロック共重合体を100質量部に対し、成分(C)オイルを3質量部以上1500質量部以下、より好ましくは5質量部以上1200質量部以下、さらに好ましくは8質量部以上500質量部以下含有することが好ましい。
(Content)
As a preferable composition of the resin composition, the component (A) hydrogenated block copolymer is 100 parts by mass and the component (C) oil is 3 parts by mass or more and 1500 parts by mass or less, more preferably 5 parts by mass or more and 1200 parts by mass. It is preferably contained in an amount of 8 parts by mass or more, more preferably 500 parts by mass or less.
<潤滑剤>
 本発明の一実施形態において、潤滑剤を含有してもよい。潤滑剤としては、イオン性界面活性剤、ノニオン系(非イオン性)界面活性、炭化水素系滑剤、脂肪酸系滑剤、脂肪族アミド系滑剤、金属石鹸系滑剤、エステル系滑剤等を挙げることができる
<Lubricant>
In one embodiment of the present invention, a lubricant may be contained. Examples of the lubricant include ionic surfactants, nonionic (nonionic) surfactants, hydrocarbon-based lubricants, fatty acid-based lubricants, aliphatic amide-based lubricants, metal soap-based lubricants, ester-based lubricants and the like.
 イオン性界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤を用いることができる。アニオン系界面活性剤としては、脂肪酸ナトリウム、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩等を挙げることができる。市販品としては花王株式会社製の商品名「エレクトロストリッパーPC」等を挙げることができる。
 カチオン系界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩等を挙げることができる。
 両性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン等を挙げることができる。
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル等を挙げることができる、市販品としては、花王株式会社製の商品名「エレクトロストリッパーEA」等を挙げることができる。
As the ionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used. Examples of the anionic surfactant include fatty acid sodium, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, monoalkyl phosphate and the like. Examples of commercially available products include the trade name "Electro Stripper PC" manufactured by Kao Corporation.
Examples of the cationic surfactant include an alkyltrimethylammonium salt, a dialkyldimethylammonium salt, an alkylbenzyldimethylammonium salt and the like.
Examples of the amphoteric surfactant include alkyldimethylamine oxide and alkylcarboxybetaine.
Examples of the nonionic surfactant include polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether, and the like. As a commercially available product, the trade name "Kao Corporation""Electro stripper EA" and the like can be mentioned.
 炭化水素系滑剤としては、パラフィンワックス、合成ポリエチレンワックス、オクチルアルコール等を挙げることができる。脂肪酸系滑剤としては、ステアリン酸やステアリルアルコール等を挙げることができる。
 脂肪族アミド系滑剤としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等の脂肪酸アミド;メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等のアルキレン脂肪酸アミド等を挙げることができる。金属石鹸系滑剤としては、ステアリン酸金属塩等を挙げることができる。
 エステル系滑剤としては、アルコールの脂肪酸エステル、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等を挙げることができる。
Examples of the hydrocarbon-based lubricant include paraffin wax, synthetic polyethylene wax, octyl alcohol and the like. Examples of the fatty acid-based lubricant include stearic acid and stearyl alcohol.
Examples of the aliphatic amide lubricant include fatty acid amides such as stearic acid amide, oleic acid amide and erucic acid amide; and alkylene fatty acid amides such as methylene bisstearic acid amide and ethylene bisstearic acid amide. Examples of the metal soap-based lubricant include a metal stearic acid salt and the like.
Examples of the ester-based lubricant include fatty acid esters of alcohols, stearic acid monoglycerides, stearyl stearate, and hydrogenated oils.
 潤滑剤は、上記した潤滑剤から選択される1以上を用いることができる。中でも、ヒトの血管及び/又は皮膚により類似した軟質性や物性を有する点で、イオン性界面活性剤及び非イオン性界面活性剤からなる群から選択される1以上の潤滑剤を含むことが好ましく、ノニオン系界面活性剤から選択される1以上を含むことがより好ましい。 As the lubricant, one or more selected from the above-mentioned lubricants can be used. Among them, it is preferable to contain one or more lubricants selected from the group consisting of ionic surfactants and nonionic surfactants in that they have softness and physical properties more similar to those of human blood vessels and / or skin. , It is more preferable to contain one or more selected from nonionic surfactants.
(含有量)
 本実施形態の樹脂組成物は、潤滑剤を、成分(A)水添ブロック共重合体を100質量部に対し、0.1質量部以上150質量部以下含有することが好ましく、より好ましくは0.1質量部以上100質量部以下、さらに好ましくは0.1質量部以上50質量部以下含有することが好ましい。
(Content)
The resin composition of the present embodiment preferably contains a lubricant of 0.1 part by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the component (A) hydrogenated block copolymer, and more preferably 0. It is preferably contained in an amount of 1 part by mass or more and 100 parts by mass or less, more preferably 0.1 part by mass or more and 50 parts by mass or less.
<添加剤等>
 本発明の一実施形態において、樹脂組成物は、必要に応じて、ゴム、可塑剤、安定剤、老化防止剤、耐光性向上剤、紫外線吸収剤、軟化剤、滑剤、加工助剤、着色剤、帯電防止剤、防曇剤、ブロッキング防止剤、結晶核剤、発泡剤等を含有していてもよい。
<Additives, etc.>
In one embodiment of the present invention, the resin composition is, if necessary, a rubber, a plasticizer, a stabilizer, an antistatic agent, a light resistance improver, an ultraviolet absorber, a softener, a lubricant, a processing aid, and a colorant. , Antistatic agent, antifogging agent, antiblocking agent, crystal nucleating agent, foaming agent and the like may be contained.
 本実施形態における樹脂組成物は、必要に応じて、その他の樹脂又はエラストマーを含有してもよい。その他の樹脂又はエラストマーとしては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)等のポリオレフィン、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエン-イソプレン共重合体、スチレン-エチレン-ブタジエン-スチレン共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)等のスチレン系熱可塑性エラストマー、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリルニトリル-スチレン共重合体(AS樹脂)、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン等、繊維状フィラーを挙げることができる。その他の樹脂又はエラストマーを含有する場合、その含有量は、成分(A)水添ブロック共重合体を100質量部に対し、0.01質量部以上500質量部以下であることが好ましい。
 樹脂組成物は、製造コスト、物性バランスの点で、熱可塑性であることが好ましい。
The resin composition in the present embodiment may contain other resins or elastomers, if necessary. The other resin or elastomer is not particularly limited, but for example, a polyolefin such as polyethylene, polypropylene, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer (EVA), or a styrene-butadiene copolymer. , Styrene-isoprene copolymer, styrene-butadiene-isoprene copolymer, styrene-ethylene-butadiene-styrene copolymer (SEBS), styrene-ethylene-propylene-styrene copolymer (SEPS) and other styrene-based thermoplastics Fibrous fillers such as elastomers, acrylonitrile-butadiene-styrene copolymers (ABS resin), acrylic nitrile-styrene copolymers (AS resin), polystyrenes, polyvinyl chlorides, and polyvinylidene chlorides can be mentioned. When other resins or elastomers are contained, the content thereof is preferably 0.01 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the component (A) hydrogenated block copolymer.
The resin composition is preferably thermoplastic in terms of manufacturing cost and physical characteristic balance.
 本発明の一実施形態において、樹脂組成物のA硬度は、作製する病変管状組織モデルにより特に限定されないが、1~100が好ましく、1~80がより好ましく、1~60がさらに好ましい。例えば病変冠動脈モデルを作製する場合、樹脂組成物のA硬度は、10~100が好ましく、40~100がより好ましく、60~100がさらに好ましく、80~100が最も好ましい。なお、樹脂のA硬度は、JIS K6253-1997のデュロメーター硬さ試験法に従って測定することができる。 In one embodiment of the present invention, the A hardness of the resin composition is not particularly limited depending on the lesion tubular tissue model to be produced, but is preferably 1 to 100, more preferably 1 to 80, and even more preferably 1 to 60. For example, when preparing a lesion coronary artery model, the A hardness of the resin composition is preferably 10 to 100, more preferably 40 to 100, further preferably 60 to 100, and most preferably 80 to 100. The A hardness of the resin can be measured according to the durometer hardness test method of JIS K6253-1997.
[製造方法]
 樹脂組成物の製造方法は、特に限定されず、公知の適当なブレンド法を用いることができる。例えば、単軸、二軸のスクリュー押出機、バンバリー型ミキサー、プラストミル、コニーダー、加熱ロールなどで溶融混練を行うことができる。溶融混練を行う前に、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー、タンブラーなどで各原料を均一に混合しておくこともよい。溶融混練温度はとくに制限はないが、50~300℃、好ましくは70~250℃が一般的である。
[Production method]
The method for producing the resin composition is not particularly limited, and a known suitable blending method can be used. For example, melt-kneading can be performed with a single-screw or twin-screw screw extruder, a Banbury type mixer, a plast mill, a conider, a heating roll, or the like. Before performing melt-kneading, each raw material may be uniformly mixed with a Henschel mixer, a ribbon blender, a super mixer, a tumbler, or the like. The melt-kneading temperature is not particularly limited, but is generally 50 to 300 ° C, preferably 70 to 250 ° C.
[病変管状組織モデル]
 本実施形態の病変管状組織モデルは、人工管状組織の内側に上記樹脂組成物から成形された疑似病変部が配置されてなる。
[Lesion tubular tissue model]
The lesion tubular tissue model of the present embodiment is formed by arranging a pseudo-lesion portion formed from the above resin composition inside the artificial tubular tissue.
(人工管状組織)
 人工管状組織は、中空の細長い構造をしていることが好ましい。
 人工管状組織の内径は、作製する管状組織の種類により特に限定されないが0.1mm~30mmが好ましく、0.5mm~20mmがより好ましく、1mm~10mmがさらに好ましい。
 人工管状組織の外径は、作製する管状組織の種類によるが、内径の大きさに応じて適宜設定され、特に限定されるものではないが0.3mm~35mmが好ましく、0.7mm~25mmがより好ましく、1.2mm~12mmがさらに好ましい。
 人工管状組織の厚みは、内径と外形の関係により適宜設定され、特に限定されるものではないが0.1mm~3mmが好ましく、0.3mm~2mmがより好ましく、0.5mm~1mmがさらに好ましい。
(Artificial tubular tissue)
The artificial tubular tissue preferably has a hollow elongated structure.
The inner diameter of the artificial tubular tissue is not particularly limited depending on the type of tubular tissue to be produced, but is preferably 0.1 mm to 30 mm, more preferably 0.5 mm to 20 mm, still more preferably 1 mm to 10 mm.
The outer diameter of the artificial tubular tissue depends on the type of tubular tissue to be produced, but is appropriately set according to the size of the inner diameter, and is not particularly limited, but is preferably 0.3 mm to 35 mm, preferably 0.7 mm to 25 mm. More preferably, 1.2 mm to 12 mm is further preferable.
The thickness of the artificial tubular structure is appropriately set depending on the relationship between the inner diameter and the outer shape, and is not particularly limited, but is preferably 0.1 mm to 3 mm, more preferably 0.3 mm to 2 mm, still more preferably 0.5 mm to 1 mm. ..
(疑似病変部)
 疑似病変部は、人工管状組織2の内腔4を狭窄もしくは閉塞するように、管の内方に椀状に膨出する突出部を形成する構造であってもよく(図1の疑似病変部3Aを参照)、人口管状組織2の内方に筒状に形成されていてもよく、さらに疑似病変部の開口部端部には、内方に向けて窄まる摺鉢状の傾斜面5が形成されていてもよい(図2の疑似病変部3Bを参照)。
 疑似病変部が筒状構造である場合の内径は、作製する管状組織の種類により、特に限定されるものではないが0.1mm~3mmが好ましく、0.2mm~2mmがより好ましく、0.3mm~1mmがさらに好ましい。
 疑似病変部3Bの外径は、作製する管状組織の種類によるが、疑似病変部3Bの内径の大きさに応じて適宜設定され、特に限定されるものではないが0.2mm~32mmが好ましく、0.6mm~22mmがより好ましく、1.1mm~12mmがさらに好ましい。
 疑似病変部3Bの層の厚みは、その内径と外径の関係により適宜設定され、実際に狭窄部位の狭窄度に適した厚みに設定することにより、適した訓練を確実に実施できる厚みにすることで貫通孔練を確実に実施することができ、術者の技術向上が的確に図られる。
 ここで、疑似病変部3Bの外径は、人工管状組織の内径よりも大きく形成されていることが好ましい。このような構造を採ることにより、疑似病変部3Bは人工管状組織に圧縮された状態で配置され、人工管状組織内に固定されることになるため、例えばステント拡張手技練習や石灰化部切削手技練習の際に疑似病変部3Bの位置がずれるのが抑制される。接着剤、熱融着などを用いて固定しても良い。
(Pseudo lesion)
The pseudo-lesion portion may have a structure in which a bowl-shaped protruding portion is formed inward of the tube so as to narrow or occlude the lumen 4 of the artificial tubular tissue 2 (pseudo-lesion portion in FIG. 1). (Refer to 3A), it may be formed in a tubular shape inward of the artificial tubular tissue 2, and a pot-shaped inclined surface 5 that narrows inward is formed at the end of the opening of the pseudo-lesion portion. It may be formed (see pseudo-lesion 3B in FIG. 2).
When the pseudo-lesion has a tubular structure, the inner diameter is not particularly limited depending on the type of tubular tissue to be produced, but is preferably 0.1 mm to 3 mm, more preferably 0.2 mm to 2 mm, and more preferably 0.3 mm. ~ 1 mm is more preferable.
The outer diameter of the pseudo-lesion portion 3B depends on the type of tubular tissue to be produced, but is appropriately set according to the size of the inner diameter of the pseudo-lesion portion 3B, and is not particularly limited, but is preferably 0.2 mm to 32 mm. 0.6 mm to 22 mm is more preferable, and 1.1 mm to 12 mm is further preferable.
The thickness of the layer of the pseudo-lesion portion 3B is appropriately set according to the relationship between the inner diameter and the outer diameter, and by actually setting the thickness suitable for the degree of stenosis of the stenotic site, the thickness is such that suitable training can be reliably performed. As a result, through-hole training can be performed reliably, and the skill of the operator can be accurately improved.
Here, it is preferable that the outer diameter of the pseudo-lesion portion 3B is formed larger than the inner diameter of the artificial tubular tissue. By adopting such a structure, the pseudo-lesion portion 3B is arranged in a compressed state in the artificial tubular tissue and is fixed in the artificial tubular tissue. Therefore, for example, a stent expansion technique practice or a calcification part cutting technique The displacement of the pseudo-lesion portion 3B during practice is suppressed. It may be fixed by using an adhesive, heat fusion or the like.
[疑似病変部の製造方法]
 疑似病変部の製造方法は、特に限定されず、公知の成形方法により製造できる。例えば押出し成形、注型成形、射出成形、真空成形等、目的の管状組織モデルに合わせ様々な成形方法を用いることができる。
[Manufacturing method of pseudo-lesion]
The method for producing the pseudo-lesion portion is not particularly limited, and the pseudo-lesion portion can be produced by a known molding method. For example, various molding methods can be used according to the target tubular structure model, such as extrusion molding, casting molding, injection molding, and vacuum forming.
 以下に実施例を示して本発明をさらに具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the interpretation of the present invention is not limited by these Examples.
[人工血管用樹脂組成物の製造]
 人工血管用樹脂組成物の製造に用いた材料を以下に示す。なお、以下において、メルトフローレート(MFR)は、温度230℃、荷重2.16kgの値である。
[材料]
<水添ブロック共重合体>
 株式会社クラレ社製「セプトン4055」
<オイル>
 出光興産株式会社社製「ダイアナプロセスオイルPW90」
[Manufacturing of resin composition for artificial blood vessels]
The materials used for producing the resin composition for artificial blood vessels are shown below. In the following, the melt flow rate (MFR) is a value at a temperature of 230 ° C. and a load of 2.16 kg.
[material]
<Hydrogenated block copolymer>
"Septon 4055" manufactured by Kuraray Co., Ltd.
<Oil>
"Diana Process Oil PW90" manufactured by Idemitsu Kosan Co., Ltd.
[疑似病変部用樹脂組成物の製造]
 人工血管の内周面に配置するための疑似病変部の製造に用いた材料を以下に示す。
[材料]
<成分(A)水添ブロック共重合体>
 A:SEEPS、株式会社クラレ製「SEPTON-4055」、MFR1g/10分、スチレン含有量30質量%
<成分(B)無機フィラー>
 B:炭酸カルシウム、日東粉化工業社製「NS#100」
<成分(C)オイル>
 C:パラフィン系オイル、出光興産株式会社製「PW-90」、40℃における動粘度90.5mm/s
[Manufacture of resin composition for pseudo-lesion]
The materials used to manufacture the pseudo-lesion for placement on the inner peripheral surface of the artificial blood vessel are shown below.
[material]
<Component (A) Hydrogenated block copolymer>
A: SEEPS, "SEPTON-4055" manufactured by Kuraray Co., Ltd., MFR 1 g / 10 minutes, styrene content 30% by mass
<Component (B) Inorganic filler>
B: Calcium carbonate, "NS # 100" manufactured by Nitto Flour Chemical Co., Ltd.
<Ingredient (C) oil>
C: Paraffin oil, "PW-90" manufactured by Idemitsu Kosan Co., Ltd., kinematic viscosity at 40 ° C. 90.5 mm 2 / s
[実施例1-3、比較例1、2]
 水添ブロック共重合体(A)と、無機フィラー(B)とを、表1に示す組成で、ブラベンダープラスチコーダー(ブラベンダー社製PL2000型)を使用し、200~230℃、回転速度50回/分、6分間混練して樹脂組成物を得た。なお、水添ブロック共重合体(A)は、無定形の粉末でメーカーより供給された。
[Examples 1-3, Comparative Examples 1 and 2]
The hydrogenated block copolymer (A) and the inorganic filler (B) have the composition shown in Table 1, using a lavender plastic coder (PL2000 type manufactured by Brabender), 200 to 230 ° C., and a rotation speed of 50. The resin composition was obtained by kneading at times / minute for 6 minutes. The hydrogenated block copolymer (A) was supplied by the manufacturer as an amorphous powder.
[実施例4-6]
 水添ブロック共重合体(A)と、無機フィラー(B)と、オイル(C)とを、表1に示す組成で、ブラベンダープラスチコーダー(ブラベンダー社製PL2000型)を使用し、200~230℃、回転速度50回/分、6分間混練して樹脂組成物を得た。なお、水添ブロック共重合体(A)は、無定形の粉末でメーカーより供給された。混練数日前に、水添ブロック共重合体(A)に対し、所定量のオイル(C)を滴下し十分に染みこませておいた。なお、ここで染み込ませたオイル(C)の量は、上記配合量に含まれる。
[Example 4-6]
The hydrogenated block copolymer (A), the inorganic filler (B), and the oil (C) have the composition shown in Table 1 and are used from 200 to 200 using a lavender plastic coder (PL2000 type manufactured by Brabender). A resin composition was obtained by kneading at 230 ° C. at a rotation speed of 50 times / minute for 6 minutes. The hydrogenated block copolymer (A) was supplied by the manufacturer as an amorphous powder. A few days before kneading, a predetermined amount of oil (C) was added dropwise to the hydrogenated block copolymer (A) so that it was sufficiently impregnated. The amount of the oil (C) soaked here is included in the above-mentioned blending amount.
[比較例3-5]
 水添ブロック共重合体(A)に替えて以下の樹脂を用いた以外は、実施例1と同じ方法で樹脂組成物を得た。
 比較例1:ポリエチレン(PE)、住友化学株式会社製「スミカセンC215」
 比較例2:アクリロニトリル・ブタジエン・スチレン共重合合成樹脂(ABS)、デンカ株式会社製「GR-2000」
 比較例3:ポリカーボネート(PC)、(三菱エンジニアリングプラスチックス)社製「ユーピロンML200」
[Comparative Example 3-5]
A resin composition was obtained in the same manner as in Example 1 except that the following resin was used instead of the hydrogenated block copolymer (A).
Comparative Example 1: Polyethylene (PE), "Sumikasen C215" manufactured by Sumitomo Chemical Co., Ltd.
Comparative Example 2: Acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS), "GR-2000" manufactured by Denka Corporation
Comparative Example 3: Polycarbonate (PC), "Iupilon ML200" manufactured by (Mitsubishi Engineering Plastics)
[測定及び評価]
 人工血管用樹脂組成物を押出し成形することにより、外径8mm、内径4mm、肉厚2mmの人工血管を作製した。
 実施例1-6及び比較例1-3の樹脂組成物を押出し成形することにより、外径4.2mm、内径1mm、肉厚1.6mm、長さ10mmの管状構造を有する疑似病変部を作製した。
 なお、外径、内径、及び厚みは、OLYMPUS社製オプトデジタルマイクロスコープDSX500を用いて測定した。
 得られた人工血管の内側に疑似病変部を配置し、病変管状組織モデルとした。
[Measurement and evaluation]
By extruding the resin composition for an artificial blood vessel, an artificial blood vessel having an outer diameter of 8 mm, an inner diameter of 4 mm, and a wall thickness of 2 mm was produced.
By extruding the resin compositions of Examples 1-6 and Comparative Example 1-3, a pseudo-lesion portion having a tubular structure having an outer diameter of 4.2 mm, an inner diameter of 1 mm, a wall thickness of 1.6 mm, and a length of 10 mm was produced. did.
The outer diameter, inner diameter, and thickness were measured using an Opt Digital Microscope DSX500 manufactured by OLYMPUS.
A pseudo-lesion was placed inside the obtained artificial blood vessel to prepare a lesion tubular tissue model.
 実施例及び比較例の樹脂組成物を用いて製造した病変管状組織モデルについて、以下のようにして物性の測定及び評価を行った。 The physical properties of the lesion tubular tissue model produced using the resin compositions of Examples and Comparative Examples were measured and evaluated as follows.
(硬度)
 50mm×50mm、厚さ10mmの試験片を作製し、JIS K6253-1997のデュロメーター硬さ試験法に従って、23℃、50%RHの室内環境下の条件にてタイプAのデュロメーター硬度を求めた。なお、この硬度は瞬間値である。以下の基準に基づいて評価した。
 ○:60以上100以下
 △:10以上60未満
 ×:10未満
(hardness)
A test piece having a size of 50 mm × 50 mm and a thickness of 10 mm was prepared, and the durometer hardness of type A was determined under the conditions of 23 ° C. and 50% RH under the durometer hardness test method of JIS K6253-1997. This hardness is an instantaneous value. Evaluation was based on the following criteria.
◯: 60 or more and 100 or less Δ: 10 or more and less than 60 ×: less than 10
(触感性)
 病変管状組織モデルについて、医療従事者による触診評価を行い、触感性を評価した。
 ○:実際の石灰化病変部に似ている
 △:実際の石灰化病変部にやや似ている
 ×:実際の石灰化病変部に似ていない
(Tactile)
The lesion tubular tissue model was evaluated by palpation by a medical professional to evaluate the tactile sensation.
○: Similar to the actual calcified lesion Δ: Slightly similar to the actual calcified lesion ×: Not similar to the actual calcified lesion
(石灰化部切削試験における有用性)
 病変管状組織モデルについて、ローターブレーターを用い、疑似病変部の切削を行った。切削時の触感性及び切削具合について、医師による目視評価を行った。
 ○:実際の石灰化病変部を切削した場合と同様であった
 △:実際の石灰化病変部を切削した場合と触感性が異なっていた
 ×:実際の石灰化病変部を切削した場合と触感性が大きく異なっていた
(Usefulness in calcification cutting test)
For the lesion tubular tissue model, a pseudo-lesion portion was cut using a rotor blator. A doctor visually evaluated the tactile sensation and cutting condition during cutting.
◯: Same as when the actual calcified lesion was cut Δ: Tactile sensation was different from that when the actual calcified lesion was cut ×: Tactile sensation when the actual calcified lesion was cut The sex was very different
(ステント拡張試験における有用性)
 石灰化部を切削した病変管状組織モデルをバルーンカテーテルで拡張し、ステント留置術によりステントを埋め込み、拡げた箇所の補強を行った。ステントによる拡張の程度について目視評価した。
 ○:内腔が実際の石灰化病変部と同様にステント拡張、保持の再現が出来た
 △:内腔が拡がりきらなかった、もしくは疑似病変部の樹脂の一部がステントの網目から浸潤してきた
 ×:ステントが拡がらなかった、ステントが食い込み内腔が拡がらなかった、もしくはステント拡張後に保持できず収縮してしまった (拡張を維持できなかった)
(Usefulness in stent expansion test)
A lesion tubular tissue model in which the calcified part was cut was expanded with a balloon catheter, and a stent was implanted by stent placement to reinforce the expanded part. The degree of expansion by the stent was visually evaluated.
◯: Stent expansion and retention could be reproduced in the same way as the actual calcified lesion. Δ: The lumen did not expand completely, or a part of the resin in the pseudo-lesion infiltrated from the mesh of the stent. ×: The stent did not expand, the stent bite into the stent, the lumen did not expand, or the stent could not be held and contracted after expansion (expansion could not be maintained).
(総合評価)
 上記の評価に基づいて、以下の基準に従って総合評価を行った。
 ○:病変管状組織モデルとして有用であった
 △:病変管状組織モデルとしてやや有用であった
 ×:病変管状組織モデルとして有用ではなかった
(Comprehensive evaluation)
Based on the above evaluation, a comprehensive evaluation was performed according to the following criteria.
◯: Useful as a lesion tubular tissue model Δ: Slightly useful as a lesion tubular tissue model ×: Not useful as a lesion tubular tissue model
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の病変管状組織モデルは、ヒトを含む動物の管状組織の病変部に近似した物理的性質を有しており、石灰化部分の触診手技用トレーニングモデル、カテーテル手技練習用トレーニングモデル、ステント拡張手技練習用トレーニングモデル、石灰化部切削手技練習用トレーニングモデルとして有用であることが明らかとなった。これに対して、比較例の病変管状組織モデルは、ヒトを含む動物の管状組織の病変部に近似した物理的性質を有していない、もしくは前記トレーニングモデルとして適していなかった。 As shown in Table 1, the lesion tubular tissue model of the example has physical properties similar to those of the lesion portion of the tubular tissue of animals including humans, and is a training model for palpation of the calcified part and a catheter procedure. It was clarified that it is useful as a training model for practice, a training model for practicing stent expansion technique, and a training model for practicing calcification cutting technique. On the other hand, the lesion tubular tissue model of the comparative example did not have physical properties similar to the lesion portion of the tubular tissue of animals including humans, or was not suitable as the training model.
1 病変管状組織モデル
2 人工管状組織
3A、3B 疑似病変部
4 内腔
5 傾斜面
 
1 Lesion tubular tissue model 2 Artificial tubular tissue 3A, 3B Pseudo-lesion 4 lumen 5 inclined surface

Claims (8)

  1.  成分(A)水添ブロック共重合体100質量部と成分(B)無機フィラー100~5900質量部とを含有する樹脂組成物。 A resin composition containing 100 parts by mass of component (A) hydrogenated block copolymer and 100 to 5900 parts by mass of component (B) inorganic filler.
  2.  成分(A)水添ブロック共重合体のMFR(温度230℃、荷重2.16kgで測定)が0.01g/10分以上、1g/10分以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the MFR (measured at a temperature of 230 ° C. and a load of 2.16 kg) of the component (A) hydrogenated block copolymer is 0.01 g / 10 minutes or more and 1 g / 10 minutes or less. ..
  3.  成分(A)水添ブロック共重合体100質量部に対し、成分(B)無機フィラー400~5000質量部を含有する、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which contains 400 to 5000 parts by mass of the component (B) inorganic filler with respect to 100 parts by mass of the component (A) hydrogenated block copolymer.
  4.  成分(B)無機フィラーが炭酸カルシウムを含有する、請求項1から3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the component (B) inorganic filler contains calcium carbonate.
  5.  さらに成分(C)オイルを3~1500質量部含有する、請求項1から4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further containing 3 to 1500 parts by mass of the component (C) oil.
  6.  成分(C)オイルの37.8℃又は40℃における動粘度が0.1~1000m/sである、請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the component (C) oil has a kinematic viscosity of 0.1 to 1000 m 2 / s at 37.8 ° C. or 40 ° C.
  7.  病変管状組織モデル用である、請求項1から6のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, which is used for a lesion tubular tissue model.
  8.  請求項1から7のいずれか一項に記載の樹脂組成物を用いた病変管状組織モデル。
     
    A lesion tubular tissue model using the resin composition according to any one of claims 1 to 7.
PCT/JP2020/023545 2019-06-27 2020-06-16 Resin composition and lesion tubular tissue model WO2020262104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021528254A JP7482867B2 (en) 2019-06-27 2020-06-16 Resin composition and diseased tubular tissue model
DE112020003114.4T DE112020003114T5 (en) 2019-06-27 2020-06-16 RESIN COMPOSITION AND MODEL FOR LESIONED TUBULAR TISSUES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119481 2019-06-27
JP2019119481 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262104A1 true WO2020262104A1 (en) 2020-12-30

Family

ID=74060098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023545 WO2020262104A1 (en) 2019-06-27 2020-06-16 Resin composition and lesion tubular tissue model

Country Status (3)

Country Link
JP (1) JP7482867B2 (en)
DE (1) DE112020003114T5 (en)
WO (1) WO2020262104A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206715A (en) * 2005-01-27 2006-08-10 Dow Corning Toray Co Ltd Thermoplastic elastomer composition for vehicle molding and glass plate with vehicle molding
WO2017030145A1 (en) * 2015-08-19 2017-02-23 デンカ株式会社 Resin composition for organ models
WO2018097311A1 (en) * 2016-11-28 2018-05-31 クラレトレーディング株式会社 Compound resin and human body model
WO2018117212A1 (en) * 2016-12-21 2018-06-28 デンカ株式会社 Resin composition
WO2018151320A1 (en) * 2017-02-20 2018-08-23 デンカ株式会社 Resin composition and biological model
JP2019065080A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Conductive resin composition and model for manipulation training prepared therewith
WO2020045552A1 (en) * 2018-08-30 2020-03-05 デンカ株式会社 Electroconductive resin composition and molded article of same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372049B2 (en) 2013-03-25 2018-08-15 株式会社マルイ Artificial blood vessel and method for forming artificial blood vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206715A (en) * 2005-01-27 2006-08-10 Dow Corning Toray Co Ltd Thermoplastic elastomer composition for vehicle molding and glass plate with vehicle molding
WO2017030145A1 (en) * 2015-08-19 2017-02-23 デンカ株式会社 Resin composition for organ models
WO2018097311A1 (en) * 2016-11-28 2018-05-31 クラレトレーディング株式会社 Compound resin and human body model
WO2018117212A1 (en) * 2016-12-21 2018-06-28 デンカ株式会社 Resin composition
WO2018151320A1 (en) * 2017-02-20 2018-08-23 デンカ株式会社 Resin composition and biological model
JP2019065080A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Conductive resin composition and model for manipulation training prepared therewith
WO2020045552A1 (en) * 2018-08-30 2020-03-05 デンカ株式会社 Electroconductive resin composition and molded article of same

Also Published As

Publication number Publication date
JP7482867B2 (en) 2024-05-14
JPWO2020262104A1 (en) 2020-12-30
DE112020003114T5 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP6707547B2 (en) Resin composition for organ model
JP7065173B2 (en) Compound resin and mannequin
JP6913735B2 (en) Resin composition and biological model
JP7340539B2 (en) Resin composition and biological model using the same
JP7008033B2 (en) Resin composition
WO2020262104A1 (en) Resin composition and lesion tubular tissue model
JP7366055B2 (en) Artificial blood vessel
JP6948207B2 (en) Conductive resin composition and a model for practicing procedures using it
WO2019004374A1 (en) Ulcer model used to practice procedure including hemorrhage arrest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528254

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20831570

Country of ref document: EP

Kind code of ref document: A1