WO2020262036A1 - 電子機器、タッチセンサ及び位置検出装置 - Google Patents

電子機器、タッチセンサ及び位置検出装置 Download PDF

Info

Publication number
WO2020262036A1
WO2020262036A1 PCT/JP2020/023170 JP2020023170W WO2020262036A1 WO 2020262036 A1 WO2020262036 A1 WO 2020262036A1 JP 2020023170 W JP2020023170 W JP 2020023170W WO 2020262036 A1 WO2020262036 A1 WO 2020262036A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
touch sensor
electrode
electronic device
signal
Prior art date
Application number
PCT/JP2020/023170
Other languages
English (en)
French (fr)
Inventor
淳 門脇
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Priority to JP2021528170A priority Critical patent/JP7503550B2/ja
Priority to CN202080042156.XA priority patent/CN113994305A/zh
Publication of WO2020262036A1 publication Critical patent/WO2020262036A1/ja
Priority to US17/542,085 priority patent/US11755160B2/en
Priority to US18/357,543 priority patent/US20230367435A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04114Touch screens adapted for alternating or simultaneous interaction with active pens and passive pointing devices like fingers or passive pens

Definitions

  • the present invention relates to an electronic device, a touch sensor and a position detecting device.
  • Patent Document 1 discloses a so-called "differential amplification method" position detection device that amplifies and outputs the difference between the signal of the positive electrode and the signal of the negative electrode of the touch sensor. By taking the difference between the signals from the two electrodes parallel to each other, the effect of canceling the common mode noise generated in the same direction can be obtained.
  • a component made of or containing a conductive material (hereinafter referred to as a conductive component) is mounted inside the electronic device. Due to electromagnetic interference with the conductive component, common mode noise may be mixed in the detection signal of the touch sensor. Usually, this conductive component has a smaller size than the sensor area formed by the touch sensor, and is arranged so as to partially overlap the sensor area in a plan view. Therefore, the magnitude of noise contained in the detection signal may differ depending on the position in the sensor region.
  • An object of the present invention is to provide an electronic device capable of more exerting a noise canceling effect by a differential amplification method while considering a relationship with a conductive component that can be a source of noise.
  • the first electronic device of the present invention is a touch sensor including a plurality of electrodes arranged in a plane while being separated from each other along an arrangement direction, and is selectively output from the plurality of electrodes.
  • a differential amplifier that amplifies and outputs the difference between the positive and negative signals, and a position detector that detects the touch position in the sensor region formed by the touch sensor based on the output signal from the differential amplifier.
  • the second touch sensor of the present invention can display an image or a video in a display area by applying a driving voltage to a matrix-shaped signal line arranged in a row direction and a column direction to drive a plurality of pixels.
  • a sensor used together with a display panel which is arranged so as to at least partially overlap the display area in a plan view, and includes a plurality of electrodes arranged in a rectangular shape. Is provided so as to extend in the first direction, and extends in the second direction intersecting the first direction with a plurality of first electrodes arranged so as to be separated from each other along the orthogonal direction of the first direction.
  • a plurality of second electrodes provided and arranged so as to be separated from each other along the orthogonal direction of the second direction, and at least one of the first direction and the second direction is said. It is inclined with respect to both the row direction and the column direction.
  • the third position detection device includes the touch sensor according to the second invention, a position detection unit that detects a touch position in the sensor region formed by the touch sensor based on a detection signal from the touch sensor, and a position detection unit. To be equipped.
  • the noise canceling effect of the differential amplification method can be further exhibited while considering the relationship with the conductive component that can be a noise source.
  • the second and third inventions it is possible to suppress the common mode noise caused by the electronic interference with the display panel from being mixed in the detection signal of the touch sensor.
  • FIG. 1st Embodiment of this invention It is a circuit block diagram which concerns on the position detection function of the electronic device in 1st Embodiment of this invention. It is an exploded perspective view of the electronic device shown in FIG. It is a figure which shows the relative positional relationship of the main board, a display panel and a touch sensor shown in FIG. It is an enlarged view of part A of FIG. It is an enlarged view of part B of FIG. It is a figure which shows another structure of the heat dissipation plate of FIG. It is a figure which shows another structure of the heat dissipation plate of FIG. It is a figure which shows the comparative example corresponding to FIG. It is a figure which shows the effect by the arrangement relation of FIG.
  • FIG. 9 It is a circuit block diagram which concerns on the position detection function of the electronic device in 2nd Embodiment of this invention. It is an exploded perspective view of the electronic device shown in FIG. It is a figure which shows the structure of the drive circuit provided in the display panel of FIG. It is a schematic diagram about a line inversion drive system. It is a schematic diagram about a line inversion drive system. It is a partially enlarged view of the 1st electrode shown in FIG. 9 is a plan view of the touch sensor shown in FIGS. 9 and 10. It is a figure which shows the comparative example in explaining the 1st effect by the touch sensor of FIG. It is a figure which shows the Example in explaining the 1st effect by the touch sensor of FIG. It is a figure which shows the comparative example in explaining the 2nd effect by the touch sensor of FIG. It is a figure which shows the Example in explaining the 2nd effect by the touch sensor of FIG.
  • FIG. 1 is a circuit configuration diagram related to a position detection function of the electronic device 10 according to the first embodiment of the present invention.
  • the electronic device 10 is composed of, for example, a tablet terminal, a smartphone, and a personal computer.
  • the user can write a picture or a character on the electronic device 10 by grasping the electronic pen 12 and moving the pen tip while pressing the pen tip against the touch surface of the electronic device 10.
  • the electronic pen 12 is, for example, an active electrostatic type (AES) or electromagnetic induction type (EMR) stylus.
  • AES active electrostatic type
  • EMR electromagnetic induction type
  • the electronic device 10 includes a touch sensor 14 that detects the approach of a conductor such as an electronic pen 12 or a user's finger, and an integrated circuit (IC: Integrated Circuit; hereinafter, touch) for controlling the touch sensor 14.
  • IC Integrated Circuit
  • the IC 16) and a host processor 18 electrically connected to the touch IC 16 are included.
  • the touch sensor 14 is a capacitance type sensor arranged so as to be superimposed on the display panel 44 (FIG. 2).
  • the touch sensor 14 may be a mutual capacitance type sensor or a self-capacity type sensor.
  • the touch sensor 14 is configured to include a plurality of electrodes 20 arranged in a plane while being separated from each other along the arrangement direction.
  • the material of the electrode 20 may be indium tin oxide (ITO) or a metal such as copper, silver, or gold.
  • the linear or strip-shaped electrode 20 includes a first electrode 21 for detecting a position in the X direction (X coordinate) and a second electrode 22 for detecting a position in the Y direction (Y coordinate).
  • the first electrode 21 and the second electrode 22 are each insulated by the presence of an insulating substrate (not shown) made of glass or resin.
  • the plurality of first electrodes 21 are provided so as to extend in the Y direction, and are arranged at equal intervals while being separated from each other along the X direction.
  • the plurality of second electrodes 22 are provided so as to extend in the X direction, and are arranged at equal intervals while being separated from each other along the Y direction.
  • the X and Y directions shown in this figure correspond to the X and Y axes of the "sensor coordinate system" defined in the sensor region As formed by the touch sensor 14.
  • the sensor coordinate system corresponds to the "display coordinate system” defined in the display area formed by the display panel 44 (FIG. 2).
  • the touch IC 16 includes an X selection circuit 24, a Y selection circuit 26, a switch 28, a differential amplifier 30, a bandpass filter (hereinafter referred to as a BP filter 32), a detection circuit 34, an AD converter 36, and the like. It includes a micro control unit (hereinafter referred to as MCU38).
  • MCU38 micro control unit
  • the X selection circuit 24 is a multiplexer connected to a plurality of first electrodes 21 respectively.
  • the X selection circuit 24 selects two electrodes from a plurality of first electrodes 21 in response to a command signal from the MCU 38, and two types of signals (X positive side signal and X negative side) from each electrode. Signal) is output at the same time.
  • the Y selection circuit 26 is a multiplexer connected to a plurality of second electrodes 22 respectively.
  • the Y selection circuit 26 selects two electrodes from the plurality of second electrodes 22 in response to a command signal from the MCU 38, and two types of signals (Y positive side signal and Y negative side) from each electrode. Signal) is output at the same time.
  • the switch 28 is connected to the output side of the X selection circuit 24 and the Y selection circuit 26, respectively.
  • the switch 28 selectively outputs one of the positive side signal and the negative side signal in response to the command signal from the MCU 38.
  • the differential amplifier 30 amplifies and outputs the difference between the positive side signal and the negative side signal selectively output from the plurality of electrodes 20 through the switch 28.
  • the BP filter 32 is a filter circuit that passes a predetermined bandwidth centered on the frequency corresponding to the output signal from the electronic pen 12.
  • the detection circuit 34 is a circuit that generates a detection signal from an output signal that has passed through the BP filter 32.
  • the AD converter 36 is a signal converter that converts an analog signal into a digital signal.
  • the MCU 38 is a device that can process the digital signal output from the AD converter 36 and detect the touch position in the sensor area As.
  • the MCU 38 exerts a "pen detection function” for detecting the state of the electronic pen 12 and a "touch detection function” for detecting a touch by a user's finger or the like by reading and executing a position detection program from a memory (not shown). ..
  • the pen detection function includes, for example, a touch sensor 14 scan function (global scan or sector scan), a downlink signal reception / analysis function, an electronic pen 12 state (for example, position, orientation, pen pressure) estimation function, and electronic devices. It includes an uplink signal generation / transmission function including a command to the pen 12. Further, the touch detection function includes, for example, a scan function of the touch sensor 14, a function of creating a detection map (two-dimensional distribution of detection levels) in the sensor area As, and an area classification function (for example, fingers, palms, etc.) on the detection map. Classification) is included.
  • the host processor 18 is composed of a processing unit including a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and a GPU (Graphics Processing Unit).
  • the host processor 18 can execute various functions including digital ink generation, image signal creation, and data transmission / reception control by reading and executing a program stored in a memory (not shown).
  • FIG. 2 is an exploded perspective view of the electronic device 10 shown in FIG.
  • FIG. 3 is a diagram showing a relative positional relationship between the main board 42, the display panel 44, and the touch sensor 14 shown in FIG.
  • the electronic device 10 is configured by stacking a back cover 40, a main board 42, a display panel 44, a touch sensor 14, and a front cover 46 in this order from the back side.
  • the touch sensor 14 is an "external type” sensor attached to the display panel 44 from the outside, but instead of the "external type” sensor, it is integrally configured with the display panel 44 (further classification). Then, it may be an on-cell type or an in-cell type sensor.
  • the back cover 40 and the front cover 46 are members that form a housing for accommodating electronic components in the electronic device 10.
  • the front cover 46 is provided with a protective panel 48 having high translucency so as to cover the entire surface of the opening formed on the main surface thereof.
  • the display panel 44 is composed of, for example, a liquid crystal panel, an organic EL (ElectroLuminescence) panel, electronic paper, or the like.
  • the display panel 44 displays an image or a video in the display area by applying a driving voltage to the matrix-shaped signal lines arranged in the row direction and the column direction to drive a plurality of pixels.
  • the main board 42 is a board that constitutes an electric circuit for operating the electronic device 10.
  • a connector 50 and various electronic components 52 are arranged on the main board 42.
  • the connector 50 is configured so that the flexible printed circuit board (hereinafter, FPC board 54) provided at the end of the touch sensor 14 and the touch IC 16 can be electrically connected.
  • the electronic component 52 include a drive IC, a memory, a wireless communication module, a power supply circuit, and an electronic element (for example, a coil) of the display panel 44.
  • the electronic device 10 may be provided with a heat radiating plate or a heat conduction path for releasing heat generated inside the own device.
  • a heat radiating plate 56 conductive component
  • a conductive material such as aluminum (Al) and copper (Cu) is mounted on the host processor 18 and the electronic component 52.
  • FIG. 4 is an enlarged view of part A in FIG. 3, showing the relative positional relationship between the touch sensor 14 and the heat radiating plate 56.
  • the plurality of first electrodes 21 are distinguished by assigning identification numbers to # 1, # 2, # 3, # 4 in order from the left side. Further, for convenience of illustration, only the first electrode 21 is shown among the plurality of electrodes 20 constituting the touch sensor 14, and the second electrode 22 is omitted.
  • the broken line shown in the lower plan view of FIG. 4 corresponds to the contour line 60 of the heat radiating plate 56 having a rectangular shape. Assuming that the outermost point in the X direction of the contour line 60 is the "end point 62", this end point 62 is located on the first electrode 21 of "# 2". Hereinafter, the first electrode 21 that overlaps with the position of the end point 62 is referred to as “end side electrode 64”. In this case, the first electrode 21 of "# 1" is outside the end side electrode 64, while the first electrode 21 of "# 3, # 4" is inside the end side electrode 64.
  • the graph on the upper side of FIG. 4 shows the correspondence between the X coordinate (unit: mm) and the overlapping area S (unit: mm 2 ).
  • This "overlapping area S" corresponds to the area of the overlapping portion of each of the first electrode 21 and the heat radiating plate 56.
  • the overlapping area in "# 3, # 4" is the maximum value.
  • the overlapping area S in "# 2" is a value between the maximum value and the minimum value (that is, an intermediate value).
  • FIG. 5 is an enlarged view of part B in FIG. 3, showing the relative positional relationship between the first electrode 21, the second electrode 22, and the heat radiating plate 56 in the vicinity of the end point 62.
  • first electrode 21 and one second electrode 22 are shown.
  • the heat radiating plate 56 is arranged so that the long side is parallel to the X direction and the short side is parallel to the Y direction.
  • the end point 62 is the outermost point in the X direction of the contour line 60 and also the outermost point in the Y direction.
  • the end point 62 is one of a plurality of first electrodes 21 (that is, the end side electrode 64) and one of the plurality of second electrodes 22 (that is, the end side electrode 66). ) Are located on the intersection area 68 where they intersect.
  • the arrangement or shape of the heat radiating plate 56 is not limited to the examples shown in FIGS. 4 and 5.
  • the heat radiating plate 56 may be arranged in an inclined state with respect to the sensor region As of the touch sensor 14.
  • the contour line 60 of the heat radiating plate 56 may include not only a linear component but also a curved component.
  • the electronic device 10 in the first embodiment is configured as described above. Subsequently, the action / effect of the electronic device 10 will be described with reference to FIGS. 7 and 8.
  • FIG. 7 is a diagram showing a comparative example corresponding to FIG. 4 which is an embodiment, and shows a relative positional relationship between the touch sensor 14 and the heat radiating plate 56.
  • the end points 62 on the contour line 60 are located in the gaps between the first electrodes 21 of “# 2, # 3”.
  • the overlapping area S changes abruptly in the section of "# 1, # 2".
  • FIG. 8 is a diagram showing the effect of the arrangement relationship of FIG.
  • the horizontal axis of the graph shows the X coordinate (unit: mm), and the vertical axis of the graph shows the detected value (unit: none) acquired by the MCU 38.
  • the electronic pen 12 is in a “hover state” in which it is not in contact with the touch surface (protective panel 48 in FIG. 2) of the electronic device 10.
  • the height of the peaks generated at both ends of the heat radiating plate 56 is significantly suppressed.
  • the reason for this is that by taking an intermediate value in the section where the overlapping area S shown in FIG. 4 is "# 2", the sudden change in the overlapping area S is alleviated as compared with the case of the comparative example, and the above-mentioned common mode noise This is thought to be because the size difference is relatively small.
  • the heat radiating plate 56 by arranging the heat radiating plate 56 so that the length of the contour line 60 overlapping the end side electrode 64 (the part indicated by the thick broken line on the lower side of FIG. 4) is 10 mm or more, the effect of mitigating the above-mentioned change is further enhanced. It appears prominently.
  • the end point 62 should be located near the center line of the end side electrodes 64 and 66 (for example, if the width of the end side electrodes 64 and 66 is defined as W, the range is within ⁇ W / 4 from the center line). preferable.
  • the conductive component may be various electronic components 52 arranged on the main board 42 (FIG. 3), and is different from the main board 42.
  • Module eg, battery pack.
  • the conductive component is a component having a relatively large occupied area, for example, a heat radiating plate 56, heat conduction. It is preferably a road or a battery pack.
  • the electronic device 10 is selectively selected from the touch sensor 14 including a plurality of electrodes 20 arranged in a plane while being separated from each other along the arrangement direction, and the plurality of electrodes 20.
  • the differential amplifier 30 that amplifies and outputs the difference between the output positive signal and the negative signal, and the touch position in the sensor region As formed by the touch sensor 14 based on the output signal from the differential amplifier 30 are detected.
  • a conductive component here, a heat dissipation plate that is composed of an MCU38 (position detection unit) and a conductive material or contains a conductive material and is arranged so as to partially overlap the sensor region As in a plan view. 56) and.
  • the heat radiating plate 56 is arranged so that the outermost end point 62 in the arrangement direction is located on any one of the plurality of electrodes 20.
  • the outermost end point 62 in the arrangement direction is configured to be located on any one of the plurality of electrodes 20, so that each of the first electrode 21 and the heat dissipation plate 56 It is possible to alleviate the sudden change of the overlapping area S, which is the area of the overlapping portion, along the arrangement direction, and reduce the difference in the magnitude of the common mode noise mixed in the signal of the positive electrode and the signal of the negative electrode. be able to. As a result, the noise canceling effect of the differential amplification method is more exerted while considering the relationship with the heat radiating plate 56 which can be a source of noise.
  • the plurality of electrodes 20 are arranged along the X direction (first direction) while being separated from each other, and the plurality of electrodes 20 are arranged along the Y direction (second direction) intersecting with the plurality of first electrodes 21 in the X direction.
  • the heat radiating plate 56 includes a plurality of second electrodes 22 arranged so as to be separated from each other, and the heat radiating plate 56 is an electrode of any one of the plurality of first electrodes 21 and the plurality of second electrodes 22.
  • the end point 62 may be arranged so as to be located on the intersection region 68 where the end side electrodes 64, 66) intersect.
  • FIG. 9 is a circuit configuration diagram related to the position detection function of the electronic device 100 according to the second embodiment of the present invention.
  • the electronic device 100 is composed of, for example, a tablet terminal, a smartphone, and a personal computer, as in the case of the first embodiment (electronic device 10 in FIG. 1).
  • the electronic device 100 includes a touch sensor 102 having a configuration different from that of the first embodiment (touch sensor 14 in FIG. 1), a touch IC 104 for controlling the touch sensor 102, a touch IC 104, and electricity. It is configured to include a host processor 18 connected to the object.
  • the touch sensor 102 and the touch IC 104 correspond to the position detection device 106 that detects the touch position of the electronic device 100.
  • the touch sensor 102 is a capacitance type (specifically, mutual capacity type or self-capacity type) sensor arranged so as to be overlapped with the display panel 130 (FIG. 10).
  • the touch sensor 102 is configured to include a plurality of electrodes 110 arranged in a plane while being separated from each other along the arrangement direction.
  • the material of the electrode 110 may be indium tin oxide (ITO), but here, it is assumed that the material is a metal such as copper, silver, or gold.
  • the P and Q directions shown in this figure correspond to the P and Q axes of the "sensor coordinate system” defined in the sensor area As formed by the touch sensor 102. Note that in this second embodiment, the sensor coordinate system does not match the "display coordinate system" defined within the display area formed by the display panel 130 (FIG. 10).
  • the electrode 110 includes a first electrode 111 for detecting the position in the P direction (second direction) and a second electrode 112 for detecting the position in the Q direction (first direction).
  • the plurality of first electrodes 111 are provided so as to extend in the Q direction, and are arranged at equal intervals while being separated from each other along the orthogonal direction (that is, the P direction) in the Q direction.
  • the plurality of second electrodes 112 are provided so as to extend in the P direction, and are arranged at equal intervals while being separated from each other along the orthogonal direction (that is, the Q direction) in the P direction.
  • the touch IC 104 includes a P selection circuit 114, a Q selection circuit 116, a switch 118, a BP filter 32, a detection circuit 34, an AD converter 36, and an MCU 120.
  • the touch IC 104 may be provided with a differential amplifier 30 (FIG. 1) as in the circuit configuration of the first embodiment.
  • the P selection circuit 114 is a multiplexer connected to a plurality of first electrodes 111, respectively.
  • the P selection circuit 114 selects one electrode from the plurality of first electrodes 111 in response to the command signal from the MCU 120, and sequentially outputs the P signal from the selected electrodes.
  • the Q selection circuit 116 is a multiplexer connected to a plurality of second electrodes 112, respectively.
  • the Q selection circuit 116 selects one electrode from the plurality of second electrodes 112 in response to the command signal from the MCU 120, and sequentially outputs the Q signal from the selected electrode.
  • the switch 118 is connected to the output side of the P selection circuit 114 and the Q selection circuit 116, respectively.
  • the switch 118 selectively outputs one of the signals in response to the command signal from the MCU 120.
  • the MCU 120 is a device that can process the digital signal output from the AD converter 36 and detect the touch position in the sensor area As.
  • the MCU 120 calculates the position of the sensor coordinate system by the pen detection function or the touch detection function described above, and performs coordinate conversion on the obtained PQ coordinate value to obtain the position of the display coordinate system (XY coordinates. Value).
  • This coordinate transformation is uniquely specified according to the relative positional relationship between the touch sensor 102 and the display panel 130.
  • this coordinate transformation is a two-dimensional affine transformation that rotates the angle ⁇ [rad] (however, 0 ⁇ ⁇ / 2) around the fixed point. is there.
  • FIG. 10 is an exploded perspective view of the electronic device 100 shown in FIG. Similar to the case of the first embodiment (electronic device 10 in FIG. 2), the electronic device 100 includes a back cover 40, a main board 42, a display panel 130, a touch sensor 102, and a front cover 46 in this order from the back side. It is composed of layers. As in the case of the first embodiment, the touch sensor 102 may be an external type sensor or a built-in type (on-cell type or in-cell type) sensor.
  • the display panel 130 is composed of, for example, a liquid crystal panel, an organic EL panel, electronic paper, or the like.
  • the display panel 130 displays an image or a video in the display area by applying a driving voltage to the matrix-shaped signal lines arranged in the row direction and the column direction to drive the plurality of pixels 134.
  • FIG. 11 is a diagram showing the structure of the drive circuit 132 included in the display panel 130 of FIG.
  • the drive circuit 132 includes a matrix-like signal lines arranged in the row direction and the column direction, and a plurality of pixels 134 corresponding to the intersections of the matrix.
  • the matrix-shaped signal lines include a plurality of source signal lines 136 extending in the Y direction and arranged at equal intervals in the X direction, and a plurality of gate signal lines extending in the X direction and arranged at equal intervals in the Y direction. It consists of 138 and.
  • Each pixel 134 is configured to include a thin film transistor (hereinafter referred to as TFT 140) and a pixel electrode 142.
  • TFT 140 thin film transistor
  • a source signal line 136 corresponding to the pixel 134 is connected to the source terminal of the TFT 140.
  • a gate signal line 138 corresponding to the pixel 134 is connected to the gate terminal of the TFT 140.
  • a pixel electrode 142 corresponding to the pixel 134 is connected to the drain terminal of the TFT 140.
  • the drive circuit 132 drives the display panel 130 by a "frame inversion method" in which an AC drive voltage is applied to a matrix-shaped signal line.
  • a "frame inversion method” in which an AC drive voltage is applied to a matrix-shaped signal line.
  • the drive circuit 132 applies a drive voltage to a plurality of gate signal lines 138 while alternately inverting the positive and negative directions.
  • the drive circuit 132 applies a drive voltage to the plurality of source signal lines 136 while alternately inverting the positive and negative directions.
  • FIG. 13 is a partially enlarged view of the first electrode 111 shown in FIG.
  • Each of the first electrodes 111 is composed of thin metal wires 152 and 154 having a mesh structure in which meshes 150 having the same shape are arranged without gaps in the Q direction.
  • One metal wire 152 is arranged so as to extend along the P direction
  • the other metal wire 154 is arranged so as to extend along a direction intersecting the P direction (intersection angle is 2 ⁇ ).
  • a diamond-shaped mesh 150 having one of the internal angles of 2 ⁇ [rad] is formed by being surrounded by two adjacent thin metal wires 152 and 154.
  • the shape of the mesh 150 may be a quadrangle other than the rhombus described above, or may be a polygon including a triangle and a hexagon (so-called polygon).
  • each second electrode 112 (FIG. 9) is composed of fine metal wires 152 and 154 having a mesh structure in which meshes 150 having the same shape are arranged without gaps in the P direction. That is, the second electrode 112 has basically the same shape as the first electrode 111, and is arranged along a direction different from that of the first electrode 111.
  • FIG. 14 is a plan view of the touch sensor 102 shown in FIGS. 9 and 10.
  • the touch sensor 102 further includes a bezel region Ab and an aggregation region Aa in addition to the rectangular sensor region As described above.
  • the bezel area Ab is a frame-shaped area that surrounds the entire peripheral edge of the sensor area As. Leader wires 156 provided at one end of each of the plurality of electrodes 110 are wired in the bezel region Ab.
  • the lead wire 156 is a signal line for electrically connecting the touch sensor 102 and the touch IC 104 (P selection circuit 114 and Q selection circuit 116 in the example of FIG. 9).
  • the portion of the bezel region Ab indicated by halftone dots corresponds to the portion where the lead wire 156 of the first electrode 111 is wired.
  • the portion of the bezel region Ab indicated by the hatching of the vertical line corresponds to the portion where the lead wire 156 of the second electrode 112 is wired.
  • the aggregation area Aa is a strip-shaped area corresponding to the FPC substrate 54 (FIG. 10).
  • a plurality of leader wires 156 are wired in the aggregation region Aa so as to be parallel to each other while being separated from each other.
  • the aggregation region Aa is provided in the lower left corner of the sensor region As, but may be provided in another portion (for example, the center of the long side, the center of the short side, etc.) instead.
  • the electronic device 100 in the second embodiment is configured as described above. Subsequently, the action / effect of the electronic device 100 will be described with reference to FIGS. 1A to 16B.
  • FIG. 15A and 15B are diagrams showing the first effect of the touch sensor 102 of FIG. Specifically, FIG. 15A shows a “comparative example”, and FIG. 15B shows an “example”. For convenience of illustration, the first electrode 21 (111), the second electrode 22 (112), the source signal line 136, and the gate signal line 138 are shown one by one.
  • FIG. 15A it is assumed that the touch sensor 14 of the first embodiment is used, that is, the X direction coincides with the P direction and the Y direction coincides with the Q direction.
  • the first electrode 21 and the source signal line 136 tend to have a positional relationship parallel to each other. Therefore, the electromagnetic interference with the source signal line 136 is likely to cause common mode noise to be mixed in the detection signal of the touch sensor 14.
  • the same tendency as described above can be seen in the relationship between the second electrode 22 and the gate signal line 138.
  • the touch sensor 102 of the second embodiment is used, that is, the X direction does not match the P direction and the Y direction does not match the Q direction.
  • the first electrode 111 and the source signal line 136 are always in a “twisted position” relationship, electromagnetic interference with the source signal line 136 is less likely to occur, and common mode noise with respect to the detection signal of the touch sensor 14 is generated. Contamination is suppressed.
  • the same tendency as described above can be seen in the relationship between the second electrode 112 and the gate signal line 138.
  • the touch sensor 102 applies a drive voltage to the matrix-shaped signal lines (source signal line 136, gate signal line 138) arranged in the X direction (row direction) and the Y direction (column direction). It is a sensor used together with a display panel 130 capable of displaying an image or a moving image in a display area by driving a plurality of pixels 134.
  • the touch sensor 102 is arranged so as to at least partially overlap the display area in a plan view, and includes a plurality of electrodes 110 arranged in a rectangular shape.
  • the plurality of electrodes 110 are provided so as to extend in the Q direction (first direction), and P intersect with the plurality of first electrodes 111 arranged so as to be separated from each other along the orthogonal direction thereof in the Q direction.
  • a plurality of second electrodes 112 extending in a direction (second direction) and arranged so as to be separated from each other along the orthogonal direction thereof are included, and at least one of the P direction and the Q direction is X. It is tilted in both the direction and the Y direction.
  • At least one of the Q direction in which the first electrode 111 extends and the P direction in which the second electrode 112 extends is inclined with respect to both the X direction and the Y direction, so that the electrode 110 and the matrix-like signal line are inclined. It is possible to always maintain the relationship of "twisted position" between them, and it is possible to suppress the common mode noise caused by the electronic interference with the display panel 130 from being mixed in the detection signal of the touch sensor 102.
  • the display panel 130 displays an image or video for each frame by the "row line inversion method" (see FIG. 12A) in which the drive voltage is applied alternately and while inverting the positive and negative directions.
  • the P direction and the Q direction are inclined with respect to the X direction, respectively.
  • the display panel 130 displays an image or video for each frame by the "column line inversion method" (see FIG. 12B) in which the drive voltage is applied alternately and while inverting the positive and negative directions.
  • the P direction and the Q direction are inclined with respect to the Y direction, respectively.
  • FIG. 16A shows a "comparative example” using the touch sensor 14 of the first embodiment
  • FIG. 16B shows a “example” using the touch sensor 102 of the second embodiment.
  • the aggregation region Aa is provided in the lower left corner of the sensor region As and the wiring layout in the second electrodes 22 and 112 closest to the upper long side is designed.
  • the wiring length L1 at the specific electrode 20 becomes relatively long, and the wiring length L1 becomes relatively long.
  • the electrical resistance increases.
  • the wiring length L2 in the specific electrode 110 becomes relatively short. , The electrical resistance is reduced accordingly.
  • the electrode 110 that bridges the two adjacent sides (that is, the long side and the short side) of the sensor region As is close to the MCU 120.
  • a leader wire 156 may be provided at the side end. This makes it easier to shorten the wiring length at the specific electrode 110 as compared with the case of wiring along the peripheral edge of the sensor region As.
  • an electrode 110 that bridges two opposing sides may coexist.
  • an electrode 110 that bridges two opposing sides that is, long sides or short sides
  • the touch sensor 14 (FIG. 1) of the first embodiment another effect that the degree of freedom in design regarding the arrangement of the leader wire 156 is increased can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

電子機器(10)は、タッチセンサ(14)に含まれる複数本の電極(20)から選択的に出力される正側信号と負側信号の差分を増幅して出力する差動増幅器(30)と、導電性材料からなり又は導電性材料を含み、平面視にてタッチセンサ(14)がなすセンサ領域(R)と部分的に重なるように配置される導電性部品(56)と、を備える。導電性部品(56)は、配列方向の最も外側にある端点(62)が、複数本の電極(20)のうちいずれか1本の電極(20)上に位置するように配置される。

Description

電子機器、タッチセンサ及び位置検出装置
 本発明は、電子機器、タッチセンサ及び位置検出装置に関する。
 特許文献1には、タッチセンサの正側電極の信号と負側電極の信号の間の差分を増幅して出力する、いわゆる「差動増幅方式」の位置検出装置が開示されている。互いに平行な2本の電極からの信号の差分をとることで、同一方向に発生するコモンモードノイズを打ち消す効果が得られる。
特開平8-095701号公報
 ところで、電子機器の内部には、タッチセンサの他に、導電性材料からなり又は導電性材料を含む部品(以下、導電性部品という)が実装されている。この導電性部品との電磁干渉が生じることで、タッチセンサの検出信号にコモンモードノイズが混入することがある。通常、この導電性部品は、タッチセンサがなすセンサ領域と比べて小さいサイズを有しており、平面視にてセンサ領域と部分的に重なるように配置される。このため、検出信号に含まれるノイズの大きさは、センサ領域内の位置に応じて異なる可能性がある。
 しかしながら、特許文献1のような差動増幅方式では、正側電極の信号と負側電極の信号に混入するノイズの大きさが異なる場合、コモンモードノイズの相殺効果が得られず、増幅によってノイズの影響がより大きくなってしまう。
 本発明の目的は、ノイズの発生源となり得る導電性部品との関係を考慮しつつ、差動増幅方式によるノイズの相殺効果をより発揮可能な電子機器を提供することである。
 第1の本発明における電子機器は、配列方向に沿って互いに離間しながら面状に配置される複数本の電極を含んで構成されるタッチセンサと、前記複数本の電極から選択的に出力される正側信号と負側信号の差分を増幅して出力する差動増幅器と、前記差動増幅器からの出力信号に基づいて前記タッチセンサがなすセンサ領域内のタッチ位置を検出する位置検出部と、導電性材料からなり又は導電性材料を含む部品であって、平面視にて前記センサ領域と部分的に重なるように配置される導電性部品と、を備え、前記導電性部品は、前記配列方向の最も外側にある端点が、前記複数本の電極のうちいずれか1本の電極上に位置するように配置される。
 第2の本発明におけるタッチセンサは、行方向及び列方向に配列されたマトリクス状の信号線に駆動電圧を印加して複数の画素を駆動することで、表示領域内に画像又は映像を表示可能な表示パネルとともに用いられるセンサであって、平面視にて前記表示領域と少なくとも部分的に重なるように配置され、矩形状に配置される複数本の電極を含んで構成され、前記複数本の電極は、第1方向に延びて設けられ、かつ該第1方向の直交方向に沿って互いに離間しながら配置される複数本の第1電極と、前記第1方向に交差する第2方向に延びて設けられ、かつ該前記第2方向の直交方向に沿って互いに離間しながら配置される複数本の第2電極と、を含み、前記第1方向及び前記第2方向のうちの少なくとも一方は、前記行方向及び前記列方向の両方に対して傾斜している。
 第3の本発明における位置検出装置は、第2の本発明におけるタッチセンサと、前記タッチセンサからの検出信号に基づいて前記タッチセンサがなすセンサ領域内のタッチ位置を検出する位置検出部と、を備える。
 第1の本発明によれば、ノイズの発生源となり得る導電性部品との関係を考慮しつつ、差動増幅方式によるノイズの相殺効果をより発揮することができる。
 第2,第3の本発明によれば、表示パネルとの電子干渉に起因するコモンモードノイズがタッチセンサの検出信号に混入するのを抑制することができる。
本発明の第1実施形態における電子機器の位置検出機能に関わる回路構成図である。 図1に示す電子機器の分解斜視図である。 図2に示すメイン基板、表示パネル及びタッチセンサの相対的位置関係を示す図である。 図3のA部拡大図である。 図3のB部拡大図である。 図4の放熱板の別の構成を示す図である。 図4の放熱板の別の構成を示す図である。 図4に対応する比較例を示す図である。 図4の配置関係による効果を示す図である。 本発明の第2実施形態における電子機器の位置検出機能に関わる回路構成図である。 図9に示す電子機器の分解斜視図である。 図10の表示パネルが備える駆動回路の構造を示す図である。 ライン反転駆動方式に関する模式図である。 ライン反転駆動方式に関する模式図である。 図9に示す第1電極の部分拡大図である。 図9及び図10に示すタッチセンサの平面図である。 図14のタッチセンサによる第1の効果を説明するに際し、比較例を示す図である。 図14のタッチセンサによる第1の効果を説明するに際し、実施例を示す図である。 図14のタッチセンサによる第2の効果を説明するに際し、比較例を示す図である。 図14のタッチセンサによる第2の効果を説明するに際し、実施例を示す図である。
 以下、本発明における電子機器、タッチセンサ及び位置検出装置について好適な実施形態を挙げ、添付の図面を参照しながら説明する。なお、本発明は、以下の実施形態及び変形例に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。あるいは、技術的に矛盾が生じない範囲で各々の構成を任意に組み合わせてもよい。
[第1実施形態]
 以下、本発明の第1実施形態における電子機器について、図1~図8を参照しながら説明する。
<電子機器10の回路構成>
 図1は、本発明の第1実施形態における電子機器10の位置検出機能に関わる回路構成図である。電子機器10は、例えば、タブレット型端末、スマートフォン、パーソナルコンピュータで構成される。ユーザは、電子ペン12を把持し、電子機器10のタッチ面にペン先を押し当てながら移動させることで、電子機器10に絵や文字を書き込むことができる。この電子ペン12は、例えば、アクティブ静電方式(AES)又は電磁誘導方式(EMR)のスタイラスである。
 電子機器10は、具体的には、電子ペン12やユーザの指などの導電体の接近を検出するタッチセンサ14と、タッチセンサ14を制御するための集積回路(IC:Integrated Circuit;以下、タッチIC16)と、タッチIC16と電気的に接続されるホストプロセッサ18と、を含んで構成される。
 タッチセンサ14は、表示パネル44(図2)に重ねて配置される静電容量方式のセンサである。タッチセンサ14は、相互容量方式のセンサであってもよいし、自己容量方式のセンサであってもよい。タッチセンサ14は、配列方向に沿って互いに離間しながら面状に配置される複数本の電極20を含んで構成される。電極20の材料は、酸化インジウムスズ(ITO)であってもよいし、銅、銀、金などの金属であってもよい。
 線状又は帯状の電極20は、X方向の位置(X座標)を検出するための第1電極21と、Y方向の位置(Y座標)を検出するための第2電極22と、を含む。第1電極21と第2電極22は、ガラス又は樹脂からなる絶縁性基板(不図示)の介在によってそれぞれ絶縁されている。複数本の第1電極21は、Y方向に延びて設けられ、かつX方向に沿って互いに離間しながら等間隔に配置されている。複数本の第2電極22は、X方向に延びて設けられ、かつY方向に沿って互いに離間しながら等間隔に配置されている。すなわち、本図に示すX方向,Y方向は、タッチセンサ14がなすセンサ領域As内において定義される「センサ座標系」のX軸,Y軸に相当する。この第1実施形態では、センサ座標系は、表示パネル44(図2)がなす表示領域内にて定義される「表示座標系」に一致している。
 タッチIC16は、X選択回路24と、Y選択回路26と、スイッチ28と、差動増幅器30と、バンドパスフィルタ(以下、BPフィルタ32という)と、検波回路34と、AD変換器36と、マイクロコントロールユニット(以下、MCU38という)を含んで構成される。
 X選択回路24は、複数本の第1電極21にそれぞれ接続されているマルチプレクサである。X選択回路24は、MCU38からの指令信号に応じて、複数本の第1電極21の中から2本の電極を選択し、それぞれの電極から2種類の信号(X正側信号及びX負側信号)を同時に出力する。Y選択回路26は、複数本の第2電極22にそれぞれ接続されているマルチプレクサである。Y選択回路26は、MCU38からの指令信号に応じて、複数本の第2電極22の中から2本の電極を選択し、それぞれの電極から2種類の信号(Y正側信号及びY負側信号)を同時に出力する。
 スイッチ28は、X選択回路24及びY選択回路26の出力側にそれぞれ接続されている。スイッチ28は、MCU38からの指令信号に応じて、いずれか一方の正側信号及び負側信号を択一的に出力する。差動増幅器30は、スイッチ28を通じて、複数本の電極20から選択的に出力される正側信号と負側信号の差分を増幅して出力する。
 BPフィルタ32は、電子ペン12からの出力信号に対応する周波数を中心とする所定の帯域幅を通過させるフィルタ回路である。検波回路34は、BPフィルタ32を通過した出力信号から検波信号を生成する回路である。AD変換器36は、アナログ信号をデジタル信号に変換する信号変換器である。
 MCU38は、AD変換器36から出力されたデジタル信号を処理し、センサ領域As内のタッチ位置を検出可能な装置である。MCU38は、図示しないメモリから位置検出プログラムを読み出して実行することで、電子ペン12の状態を検出する「ペン検出機能」や、ユーザの指などによるタッチを検出する「タッチ検出機能」を発揮する。
 ペン検出機能は、例えば、タッチセンサ14のスキャン機能(グローバルスキャン又はセクタスキャン)、ダウンリンク信号の受信・解析機能、電子ペン12の状態(例えば、位置、姿勢、筆圧)の推定機能、電子ペン12に対する指令を含むアップリンク信号の生成・送信機能を含む。また、タッチ検出機能は、例えば、タッチセンサ14のスキャン機能、センサ領域As内の検出マップ(検出レベルの二次元分布)の作成機能、検出マップ上の領域分類機能(例えば、指、手の平などの分類)を含む。
 ホストプロセッサ18は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)を含む処理演算装置によって構成される。ホストプロセッサ18は、図示しないメモリに格納されたプログラムを読み出して実行することで、デジタルインクの生成、画像信号の作成、データの送受信制御を含む様々な機能を実行可能である。
<電子機器10の装置構成>
 図2は、図1に示す電子機器10の分解斜視図である。図3は、図2に示すメイン基板42、表示パネル44及びタッチセンサ14の相対的位置関係を示す図である。この電子機器10は、背面側から順に、背面カバー40、メイン基板42、表示パネル44、タッチセンサ14、及び正面カバー46を重ねて構成される。本図の例では、タッチセンサ14は、表示パネル44に外側から取り付ける「外付け型」のセンサであるが、これに代えて表示パネル44と一体的に構成される「内蔵型」(さらに分類すると、オンセル型又はインセル型)のセンサであってもよい。
 背面カバー40及び正面カバー46は、電子機器10内の電子部品を収容する筐体をなす部材である。正面カバー46には、その主面に形成された開口の全面を覆うように、透光性が高い保護パネル48が設けられている。
 表示パネル44は、例えば、液晶パネル、有機EL(Electro Luminescence)パネル、電子ペーパーなどによって構成される。表示パネル44は、行方向及び列方向に配列されたマトリクス状の信号線に駆動電圧を印加して複数の画素を駆動することで、表示領域内に画像又は映像を表示する。
 メイン基板42は、電子機器10を作動するための電気回路を構成する基板である。図3に示すように、メイン基板42の上には、上記したタッチIC16及びホストプロセッサ18の他に、コネクタ50や様々な電子部品52が配置されている。コネクタ50は、タッチセンサ14の端部に設けられたフレキシブルプリント回路基板(以下、FPC基板54)とタッチIC16を電気的に接続可能に構成される。電子部品52の例として、表示パネル44の駆動IC、メモリ、無線通信モジュール、電源回路、電子素子(例えば、コイル)などが挙げられる。
 ところで、プロセッサを含む電子部品は、内部温度又は周辺温度の上昇に伴って、処理性能が低下したり誤動作を行ったりする場合がある。この現象を抑制するために、電子機器10には、自機器の内部で発生する熱を放出するための放熱板又は熱伝導路が設けられることがある。本図の例では、ホストプロセッサ18及び電子部品52の上に、アルミニウム(Al)、銅(Cu)などの導電性材料を含む放熱板56(導電性部品)が取り付けられている。
<放熱板56の配置>
 図4は、図3のA部拡大図であり、タッチセンサ14と放熱板56の間の相対的位置関係を示している。以下の説明では、複数本の第1電極21は、左側から順に、#1,#2,#3,#4と識別番号を付して区別される。また、図示の便宜上、タッチセンサ14を構成する複数本の電極20のうち第1電極21のみを表記し、第2電極22を省略している。
 図4下側の平面図に示す破線は、矩形状である放熱板56の輪郭線60に相当する。この輪郭線60のうちX方向の最も外側にある点を「端点62」とすると、この端点62は、「#2」の第1電極21上に位置している。以下、端点62の位置と重なる第1電極21を「端側電極64」という。この場合、「#1」の第1電極21は端側電極64よりも外側にある一方、「#3,#4」の第1電極21は端側電極64よりも内側にある。
 図4上側のグラフは、X座標(単位:mm)と重複面積S(単位:mm)の間の対応関係を示している。この「重複面積S」とは、各々の第1電極21と放熱板56の重なり部分の面積に相当する。このグラフから理解されるように、「#1」における重複面積Sが最小値(=0)となり、「#3,#4」における重複面積が最大値となる。ここで、「#2」における重複面積Sが最大値と最小値の間の値(つまり、中間値)である点に留意する。
 図5は、図3のB部拡大図であり、端点62の近傍における第1電極21、第2電極22及び放熱板56の間の相対的位置関係を示している。図示の便宜上、1つずつの第1電極21及び第2電極22のみを表記している。
 放熱板56は、長辺がX方向に平行となり、かつ短辺がY方向に平行となるように配置されている。この場合、端点62は、輪郭線60のうちX方向の最も外側の点であるとともに、Y方向の最も外側の点でもある。そして、この端点62は、複数本の第1電極21のうちの1つの電極(つまり、端側電極64)と、複数本の第2電極22のうちの1つの電極(つまり、端側電極66)が交差する交差領域68上に位置している。
 なお、放熱板56の配置又は形状は、図4及び図5に示す例に限定されない。例えば、図6Aに示すように、放熱板56は、タッチセンサ14のセンサ領域Asに対して傾いた状態で配置されてもよい。また、図6Bに示すように、放熱板56の輪郭線60は、直線成分のみならず曲線成分を含んでもよい。
<電子機器10による作用・効果>
 第1実施形態における電子機器10は以上のように構成される。続いて、この電子機器10による作用・効果について、図7及び図8を参照しながら説明する。
 図7は、実施例である図4に対応する比較例を示す図であり、タッチセンサ14と放熱板56の間の相対的位置関係を示している。図7下側の平面図から理解されるように、輪郭線60上の端点62は、「#2,#3」の第1電極21同士の隙間に位置している。この場合、図7上側のグラフに示すように、「#1,#2」における重複面積Sが最小値(=0)となり、「#3,#4」における重複面積Sが最大値となる。ここで、重複面積Sが「#1,#2」の区間にて急激に変化する点に留意する。
 図8は、図4の配置関係による効果を示す図である。グラフの横軸はX座標(単位:mm)を示すとともに、グラフの縦軸はMCU38が取得する検出値(単位:なし)を示している。ここでは、電子ペン12が電子機器10のタッチ面(図2の保護パネル48)に接触していない「ホバー状態」であることを想定する。
 比較例(破線のグラフ)から理解されるように、放熱板56の両端の位置にて検出値のピークがそれぞれ発生する。この理由は、図7に示す重複面積Sが「#2,#3」の区間にて急激に変化するため、正側電極の信号と負側電極の信号に混入するコモンモードノイズの大きさに差異が生じ、差動増幅器30(図1)を通じてこの差異が増幅されるためと考えられる。
 一方、実施例(実線のグラフ)から理解されるように、放熱板56の両端の位置にて発生するピークの高さが大幅に抑制される。この理由は、図4に示す重複面積Sが「#2」の区間にて中間値をとることにより、重複面積Sの急激な変化が比較例の場合よりも緩和され、上記したコモンモードノイズの大きさの差分が相対的に小さくなるためと考えられる。
 特に、端側電極64と重なる輪郭線60の長さ(図4下側の太い破線で示す箇所)が10mm以上となるように放熱板56を配置することで、上記した変化の緩和効果がより顕著に現われる。また、端点62が、端側電極64,66の中心線に近い位置(例えば、端側電極64,66の幅をWと定義すると、中心線から±W/4以内の範囲)にある方が好ましい。
 なお、導電性部品は、上記した放熱板56や熱伝導路の他に、メイン基板42(図3)上に配置された様々な電子部品52であってもよいし、メイン基板42とは別のモジュール(例えば、バッテリパック)であってもよい。特に、輪郭線60が長くなるにつれてタッチセンサ14との電磁干渉を引き起こす可能性が高くなる点を考慮すると、導電性部品は、占有面積が相対的に大きい部品、例えば、放熱板56、熱伝導路、又はバッテリパックであることが好ましい。
 以上のように、電子機器10は、配列方向に沿って互いに離間しながら面状に配置される複数本の電極20を含んで構成されるタッチセンサ14と、複数本の電極20から選択的に出力される正側信号と負側信号の差分を増幅して出力する差動増幅器30と、差動増幅器30からの出力信号に基づいてタッチセンサ14がなすセンサ領域As内のタッチ位置を検出するMCU38(位置検出部)と、導電性材料からなり又は導電性材料を含む部品であって、平面視にてセンサ領域Asと部分的に重なるように配置される導電性部品(ここでは、放熱板56)と、を備える。そして、放熱板56は、配列方向の最も外側にある端点62が、複数本の電極20のうちいずれか1本の電極20上に位置するように配置される。
 このように、配列方向の最も外側にある端点62が、複数本の電極20のうちいずれか1本の電極20上に位置するように構成したので、各々の第1電極21と放熱板56の重なり部分の面積である重複面積Sが配列方向に沿って急激に変化することを緩和可能となり、正側電極の信号と負側電極の信号に混入するコモンモードノイズの大きさの差分を小さくすることができる。これにより、ノイズの発生源となり得る放熱板56との関係を考慮しつつ、差動増幅方式によるノイズの相殺効果がより発揮される。
 また、複数本の電極20は、X方向(第1方向)に沿って互いに離間しながら配置される複数本の第1電極21と、X方向に交差するY方向(第2方向)に沿って互いに離間しながら配置される複数本の第2電極22と、を含むとともに、放熱板56は、複数本の第1電極21と複数本の第2電極22のうちいずれか1本ずつの電極(端側電極64,66)が交差する交差領域68上に、端点62が位置するように配置されてもよい。これにより、第1電極21及び第2電極22の両方に対して上記したノイズの相殺効果が同時に発揮される。
[第2実施形態]
 続いて、第2実施形態における電子機器100について、図9~図16Bを参照しながら説明する。なお、第1実施形態と同様の構成又は機能については、同一の参照符号を付するとともに、その説明を省略する場合がある。
<電子機器100の装置構成>
 図9は、本発明の第2実施形態における電子機器100の位置検出機能に関わる回路構成図である。電子機器100は、第1実施形態(図1の電子機器10)の場合と同様に、例えば、タブレット型端末、スマートフォン、パーソナルコンピュータで構成される。
 電子機器100は、具体的には、第1実施形態(図1のタッチセンサ14)の場合とは構成が異なるタッチセンサ102と、タッチセンサ102を制御するためのタッチIC104と、タッチIC104と電気的に接続されるホストプロセッサ18と、を含んで構成される。ここで、タッチセンサ102及びタッチIC104は、電子機器100のタッチ位置を検出する位置検出装置106に相当する。
 タッチセンサ102は、表示パネル130(図10)に重ねて配置される静電容量方式(具体的には、相互容量方式又は自己容量方式)のセンサである。このタッチセンサ102は、配列方向に沿って互いに離間しながら面状に配置される複数本の電極110を含んで構成される。電極110の材料は、酸化インジウムスズ(ITO)であってもよいが、ここでは、銅、銀、金などの金属であるとする。
 本図に示すP方向,Q方向は、タッチセンサ102がなすセンサ領域As内において定義される「センサ座標系」のP軸,Q軸に相当する。この第2実施形態では、センサ座標系は、表示パネル130(図10)がなす表示領域内にて定義される「表示座標系」に一致しない点に留意する。
 電極110は、P方向(第2方向)の位置を検出するための第1電極111と、Q方向(第1方向)の位置を検出するための第2電極112と、を含む。複数本の第1電極111は、Q方向に延びて設けられ、かつQ方向の直交方向(つまり、P方向)に沿って互いに離間しながら等間隔に配置されている。複数本の第2電極112は、P方向に延びて設けられ、かつP方向の直交方向(すなわち、Q方向)に沿って互いに離間しながら等間隔に配置されている。
 タッチIC104は、P選択回路114と、Q選択回路116と、スイッチ118と、BPフィルタ32と、検波回路34と、AD変換器36と、MCU120と、を含んで構成される。なお、このタッチIC104には、第1実施形態の回路構成と同様に、差動増幅器30(図1)が設けられてもよい。
 P選択回路114は、複数本の第1電極111にそれぞれ接続されているマルチプレクサである。P選択回路114は、MCU120からの指令信号に応じて、複数本の第1電極111の中から1本の電極を選択し、選択された電極からP信号を順次出力する。Q選択回路116は、複数本の第2電極112にそれぞれ接続されているマルチプレクサである。Q選択回路116は、MCU120からの指令信号に応じて、複数本の第2電極112の中から1本の電極を選択し、選択された電極からQ信号を順次出力する。
 スイッチ118は、P選択回路114及びQ選択回路116の出力側にそれぞれ接続されている。スイッチ118は、MCU120からの指令信号に応じて、いずれか一方の信号を択一的に出力する。
 MCU120は、AD変換器36から出力されたデジタル信号を処理し、センサ領域As内のタッチ位置を検出可能な装置である。MCU120は、上記したペン検出機能又はタッチ検出機能によりセンサ座標系の位置を算出し、得られたP-Q座標値に対して座標変換を行うことで、表示座標系の位置(X-Y座標値)に変換する。この座標変換は、タッチセンサ102と表示パネル130の間の相対的位置関係に応じて一意に特定される。センサ座標系及び表示座標系がともに直交座標系である場合、この座標変換は、固定点を中心に角度θ[rad](ただし、0<θ<π/2)だけ回転させる2次元アフィン変換である。
<電子機器100の装置構成>
 図10は、図9に示す電子機器100の分解斜視図である。この電子機器100は、第1実施形態(図2の電子機器10)の場合と同様に、背面側から順に、背面カバー40、メイン基板42、表示パネル130、タッチセンサ102、及び正面カバー46を重ねて構成される。第1実施形態の場合と同様に、タッチセンサ102は、外付け型のセンサであってもよいし、内蔵型(オンセル型又はインセル型)のセンサであってもよい。
 表示パネル130は、例えば、液晶パネル、有機ELパネル、電子ペーパーなどによって構成される。表示パネル130は、行方向及び列方向に配列されたマトリクス状の信号線に駆動電圧を印加して複数の画素134を駆動することで、表示領域内に画像又は映像を表示する。
 図11は、図10の表示パネル130が備える駆動回路132の構造を示す図である。この駆動回路132は、行方向及び列方向に配列されたマトリクス状の信号線と、当該マトリクスの交差部に対応する複数の画素134と、を含んで構成される。マトリクス状の信号線は、Y方向に延びてX方向に等間隔で配置される複数本のソース信号線136と、X方向に延びてY方向に等間隔で配置される複数本のゲート信号線138と、からなる。
 各々の画素134は、薄膜トランジスタ(Thin Film Transistor;以下、TFT140)及び画素電極142を含んで構成される。TFT140のソース端子には、画素134に対応するソース信号線136が接続されている。TFT140のゲート端子には、画素134に対応するゲート信号線138が接続されている。TFT140のドレイン端子には、画素134に対応する画素電極142が接続されている。
 駆動回路132は、マトリクス状の信号線に交流駆動電圧を印加する「フレーム反転方式」により表示パネル130の表示駆動を行う。例えば、図12Aの「行ライン反転方式」では、駆動回路132は、複数本のゲート信号線138に関して、互い違いにかつ正負を反転させながら駆動電圧を印加する。一方、図12Bの「列ライン反転方式」では、駆動回路132は、複数本のソース信号線136に関して、互い違いにかつ正負を反転させながら駆動電圧を印加する。
<タッチセンサ102の構成>
 図13は、図9に示す第1電極111の部分拡大図である。各々の第1電極111は、同一形状のメッシュ150がQ方向に隙間なく配列されたメッシュ構造の金属細線152,154からなる。一方の金属細線152はP方向に沿って延びるように、他方の金属細線154はP方向と交差する方向(交差角度は2θ)に沿って延びるようにそれぞれ配置される。本図から理解されるように、隣り合う2本ずつの金属細線152,154に囲まれることで、内角の1つが2θ[rad]である菱形状のメッシュ150が形成される。なお、メッシュ150の形状は、上記した菱形以外の他の四角形であってもよいし、あるいは三角形、六角形を含む多角形(いわゆるポリゴン)であってもよい。
 また、図示を省略しているが、各々の第2電極112(図9)は、同一形状のメッシュ150がP方向に隙間なく配列されたメッシュ構造の金属細線152,154からなる。つまり、第2電極112は、第1電極111と基本的には同じ形状を有し、第1電極111とは異なる方向に沿って配置されている。
 図14は、図9及び図10に示すタッチセンサ102の平面図である。タッチセンサ102は、上記した矩形状のセンサ領域Asの他に、ベゼル領域Abと、集約領域Aaと、をさらに備える。
 ベゼル領域Abは、センサ領域Asの周縁部全体を囲む額縁状の領域である。ベゼル領域Abには、複数本の電極110のそれぞれ一端に設けられた引き出し線156が配線されている。この引き出し線156は、タッチセンサ102とタッチIC104(図9の例では、P選択回路114及びQ選択回路116)を電気的に接続するための信号線である。なお、ベゼル領域Abのうち網点で示した部位は、第1電極111の引き出し線156が配線される箇所に相当する。一方、ベゼル領域Abのうち縦線のハッチングで示した部位は、第2電極112の引き出し線156が配線される箇所に相当する。
 集約領域Aaは、FPC基板54(図10)に対応する帯状の領域である。集約領域Aaには、複数本の引き出し線156が互いに離間しながら平行になるように配線されている。本図の例では、集約領域Aaはセンサ領域Asの左下隅部に設けられているが、これに代えて他の部位(例えば、長辺中央、短辺中央など)に設けられてもよい。
<第1の効果>
 第2実施形態における電子機器100は以上のように構成される。続いて、この電子機器100による作用・効果について、図1A~図16Bを参照しながら説明する。
 図15A及び図15Bは、図14のタッチセンサ102による第1の効果を示す図である。具体的には、図15Aは「比較例」を、図15Bは「実施例」をそれぞれ示している。図示の便宜上、第1電極21(111)、第2電極22(112)、ソース信号線136、及びゲート信号線138をそれぞれ1本ずつ表記している。
 図15Aでは、第1実施形態のタッチセンサ14を用いた場合、すなわち、X方向がP方向に、Y方向がQ方向にそれぞれ一致する場合を想定する。このとき、第1電極21とソース信号線136は、互いに平行な位置関係になりやすい傾向がある。このため、ソース信号線136との電磁干渉が生じることで、タッチセンサ14の検出信号にコモンモードノイズが混入しやすくなる。なお、第2電極22とゲート信号線138の関係においても、上記と同様の傾向がみられる。
 図15Bでは、第2実施形態のタッチセンサ102を用いた場合、すなわち、X方向がP方向に、Y方向がQ方向にそれぞれ一致しない場合を想定する。このとき、第1電極111とソース信号線136は、常に「ねじれの位置」の関係にあるので、ソース信号線136との電磁干渉が起こりにくくなり、タッチセンサ14の検出信号に対するコモンモードノイズの混入が抑制される。なお、第2電極112とゲート信号線138の関係においても、上記と同様の傾向がみられる。
 以上のように、タッチセンサ102は、X方向(行方向)及びY方向(列方向)に配列されたマトリクス状の信号線(ソース信号線136,ゲート信号線138)に駆動電圧を印加して複数の画素134を駆動することで、表示領域内に画像又は映像を表示可能な表示パネル130とともに用いられるセンサである。このタッチセンサ102は、平面視にて表示領域と少なくとも部分的に重なるように配置され、矩形状に配置される複数本の電極110を含んで構成される。そして、複数本の電極110は、Q方向(第1方向)に延びて設けられ、その直交方向に沿って互いに離間しながら配置される複数本の第1電極111と、Q方向に交差するP方向(第2方向)に延びて設けられ、その直交方向に沿って互いに離間しながら配置される複数本の第2電極112と、を含み、P方向及びQ方向のうちの少なくとも一方は、X方向及びY方向の両方に対して傾斜している。
 このように、第1電極111が延びるQ方向及び第2電極112が延びるP方向のうち少なくとも一方が、X方向及びY方向の両方に対して傾斜するので、電極110とマトリクス状の信号線の間で常に「ねじれの位置」の関係を維持可能となり、表示パネル130との電子干渉に起因するコモンモードノイズがタッチセンサ102の検出信号に混入するのを抑制することができる。
 特に、X方向に延びるゲート信号線138に関して、互い違いにかつ正負を反転させながら駆動電圧を印加する「行ライン反転方式」(図12A参照)により、表示パネル130がフレーム毎の画像又は映像を表示する場合、P方向及びQ方向は、X方向に対してそれぞれ傾斜していることが好ましい。ゲート信号線138に対する駆動電圧の符号を空間的かつ時間的に周期変化させることで、コモンモードノイズの発生がさらに抑制される。
 同様に、Y方向に延びるソース信号線136に関して、互い違いにかつ正負を反転させながら駆動電圧を印加する「列ライン反転方式」(図12B参照)により、表示パネル130がフレーム毎の画像又は映像を表示する場合、P方向及びQ方向は、Y方向に対してそれぞれ傾斜していることが好ましい。ソース信号線136に対する駆動電圧の符号を空間的かつ時間的に周期変化させることで、コモンモードノイズの発生がさらに抑制される。
<第2の効果>
 このタッチセンサ102によれば、上記したコモンモードノイズの抑制効果とは別の効果も得られる。以下、タッチセンサ102による第2の効果について、図16A及び図16Bを参照しながら説明する。図16Aは第1実施形態のタッチセンサ14を用いる「比較例」を示すとともに、図16Bは第2実施形態のタッチセンサ102を用いる「実施例」をそれぞれ示している。
 例えば、集約領域Aaがセンサ領域Asの左下隅部に設けられ、かつ上側長辺に最も近い第2電極22,112における配線レイアウトを設計する場合を想定する。例えば、図16Aの「比較例」では、センサ領域Asの右上隅、左上隅、左下隅を経由するように配線されるので、特定の電極20における配線長L1が相対的に長くなり、その分だけ電気抵抗が大きくなってしまう。これに対して、図16Bの「実施例」では、センサ領域Asの右上隅、下中央、左下隅を経由するように配線されるので、特定の電極110における配線長L2が相対的に短くなり、その分だけ電気抵抗が小さくなる。
 このように、タッチセンサ102及びMCU120が複数本の引き出し線156により接続される場合、センサ領域Asの隣り合う2辺(つまり、長辺及び短辺)を架け渡す電極110には、MCU120に近い側の端部に引き出し線156が設けられてもよい。これにより、センサ領域Asの周縁に沿って配線する場合と比べて、特定の電極110における配線長を短くしやすくなる。
 また、このタッチセンサ102には、隣り合う2辺を架け渡す電極110の他にも、対向する2辺(つまり、長辺同士又は短辺同士)を架け渡す電極110も混在し得る。その分だけ、どちらの辺側に引き出し線156を設けるかに関する選択肢が増える。これにより、第1実施形態のタッチセンサ14(図1)と比べて、引き出し線156の配置に関する設計の自由度が高くなるという別の効果も得られる。
[符号の説明]
10,100‥電子機器、12‥電子ペン、14,102‥タッチセンサ、16‥タッチIC、20,110‥電極、21,111‥第1電極、22,112‥第2電極、30‥差動増幅器、38‥MCU(位置検出部)、44,130‥表示パネル、56‥放熱板(導電性部品)、60‥輪郭線、62‥端点、64,66‥端側電極、68‥交差領域、104‥タッチIC(位置検出部)、106‥位置検出装置、134‥画素、136‥ソース信号線、138‥ゲート信号線、150‥メッシュ、152,154‥金属細線、156‥引き出し線、Aa‥集約領域、Ab‥ベゼル領域、As‥センサ領域

 

Claims (10)

  1.  配列方向に沿って互いに離間しながら面状に配置される複数本の電極を含んで構成されるタッチセンサと、
     前記複数本の電極から選択的に出力される正側信号と負側信号の差分を増幅して出力する差動増幅器と、
     前記差動増幅器からの出力信号に基づいて前記タッチセンサがなすセンサ領域内のタッチ位置を検出する位置検出部と、
     導電性材料からなり又は導電性材料を含む部品であって、平面視にて前記センサ領域と部分的に重なるように配置される導電性部品と、
     を備え、
     前記導電性部品は、前記配列方向の最も外側にある端点が、前記複数本の電極のうちいずれか1本の電極上に位置するように配置されることを特徴とする電子機器。
  2.  前記複数本の電極は、
     第1方向に沿って互いに離間しながら配置される複数本の第1電極と、
     前記第1方向に交差する第2方向に沿って互いに離間しながら配置される複数本の第2電極と、
     を含み、
     前記導電性部品は、前記複数本の第1電極と前記複数本の第2電極のうちいずれか1本ずつの電極が交差する交差領域上に、前記端点が位置するように配置される
     ことを特徴とする請求項1に記載の電子機器。
  3.  前記導電性部品は、放熱板、熱伝導路、又はバッテリパックであることを特徴とする請求項1に記載の電子機器。
  4.  平面視にて前記端点と重なる電極を端側電極と定義するとき、
     前記導電性部品は、前記端側電極と重なる輪郭線の長さが10mm以上となるように配置されることを特徴とする請求項1に記載の電子機器。
  5.  行方向及び列方向に配列されたマトリクス状の信号線に駆動電圧を印加して複数の画素を駆動することで、表示領域内に画像又は映像を表示可能な表示パネルとともに用いられるタッチセンサであって、
     平面視にて前記表示領域と少なくとも部分的に重なるように配置され、
     矩形状に配置される複数本の電極を含んで構成され、
     前記複数本の電極は、
      第1方向に延びて設けられ、かつ該第1方向の直交方向に沿って互いに離間しながら配置される複数本の第1電極と、
      前記第1方向に交差する第2方向に延びて設けられ、かつ該前記第2方向の直交方向に沿って互いに離間しながら配置される複数本の第2電極と、
     を含み、
     前記第1方向及び前記第2方向のうちの少なくとも一方は、前記行方向及び前記列方向の両方に対して傾斜していることを特徴とするタッチセンサ。
  6.  前記行方向に延びる信号線に関して、互い違いにかつ正負を反転させながら駆動電圧を印加するライン反転方式により、前記表示パネルがフレーム毎の画像又は映像を表示する場合、
     前記第1方向及び前記第2方向は、前記行方向に対してそれぞれ傾斜していることを特徴とする請求項5に記載のタッチセンサ。
  7.  前記列方向に延びる信号線に関して、互い違いにかつ正負を反転させながら駆動電圧を印加するライン反転方式により、前記表示パネルがフレーム毎の画像又は映像を表示する場合、
     前記第1方向及び前記第2方向は、前記列方向に対してそれぞれ傾斜していることを特徴とする請求項5に記載のタッチセンサ。
  8.  前記複数本の第1電極のそれぞれは、同一形状のメッシュが前記第2方向に隙間なく配列されたメッシュ構造の金属細線からなり、
     前記複数本の第2電極のそれぞれは、同一形状のメッシュが前記第1方向に隙間なく配列されたメッシュ構造の金属細線からなる
     ことを特徴とする請求項5に記載のタッチセンサ。
  9.  請求項5~8のいずれか1項に記載のタッチセンサと、
     前記タッチセンサからの検出信号に基づいて前記タッチセンサがなすセンサ領域内のタッチ位置を検出する位置検出部と、
     を備えることを特徴とする位置検出装置。
  10.  前記タッチセンサ及び前記位置検出部は、前記複数本の電極のそれぞれの一端に設けられた複数本の引き出し線により接続されており、
     前記センサ領域の隣り合う2辺を架け渡す電極には、前記位置検出部に近い側の端部に前記引き出し線が設けられる
     ことを特徴とする請求項9に記載の位置検出装置。
PCT/JP2020/023170 2019-06-27 2020-06-12 電子機器、タッチセンサ及び位置検出装置 WO2020262036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021528170A JP7503550B2 (ja) 2019-06-27 2020-06-12 電子機器
CN202080042156.XA CN113994305A (zh) 2019-06-27 2020-06-12 电子设备、触摸传感器及位置检测装置
US17/542,085 US11755160B2 (en) 2019-06-27 2021-12-03 Electronic equipment, touch sensor, and position detection apparatus
US18/357,543 US20230367435A1 (en) 2019-06-27 2023-07-24 Electronic equipment, touch sensor, and position detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120181 2019-06-27
JP2019-120181 2019-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/542,085 Continuation US11755160B2 (en) 2019-06-27 2021-12-03 Electronic equipment, touch sensor, and position detection apparatus

Publications (1)

Publication Number Publication Date
WO2020262036A1 true WO2020262036A1 (ja) 2020-12-30

Family

ID=74061908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023170 WO2020262036A1 (ja) 2019-06-27 2020-06-12 電子機器、タッチセンサ及び位置検出装置

Country Status (3)

Country Link
US (2) US11755160B2 (ja)
CN (1) CN113994305A (ja)
WO (1) WO2020262036A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262036A1 (ja) * 2019-06-27 2020-12-30 株式会社ワコム 電子機器、タッチセンサ及び位置検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090623A (ja) * 2006-10-02 2008-04-17 Sharp Corp 表示装置、表示装置の駆動装置及び駆動方法
JP2012043394A (ja) * 2010-08-20 2012-03-01 Chi Mei Electronics Corp タッチパネル、タッチパネルの駆動方法、接触情報取得プログラム及び記録媒体
JP2012103761A (ja) * 2010-11-05 2012-05-31 Fujifilm Corp タッチパネル
JP2018005291A (ja) * 2016-06-27 2018-01-11 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895701A (ja) 1994-08-24 1996-04-12 Pentel Kk タッチパネル兼用透明デジタイザ
CN101158764A (zh) * 2007-11-07 2008-04-09 昆山龙腾光电有限公司 一种液晶面板、显示器及触摸传感开关
US8963852B2 (en) 2010-08-20 2015-02-24 Innolux Corporation Touch panel, driving method for the touch panel, program for getting touch information, and memory media
JP5984259B2 (ja) * 2012-09-20 2016-09-06 株式会社ワコム 位置検出装置
CN104737109A (zh) * 2012-10-15 2015-06-24 松下知识产权经营株式会社 输入装置及液晶显示装置
JP6406697B2 (ja) * 2014-09-17 2018-10-17 株式会社ワコム 位置検出装置及び位置検出方法
KR102606498B1 (ko) * 2016-08-29 2023-11-27 엘지전자 주식회사 이동 단말기
KR102374561B1 (ko) * 2017-06-19 2022-03-15 삼성디스플레이 주식회사 표시 장치 및 입력감지부재
KR102547854B1 (ko) * 2018-05-04 2023-06-26 삼성디스플레이 주식회사 폴더블 표시 장치 및 폴더블 표시 장치의 제조 방법
WO2020262036A1 (ja) * 2019-06-27 2020-12-30 株式会社ワコム 電子機器、タッチセンサ及び位置検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090623A (ja) * 2006-10-02 2008-04-17 Sharp Corp 表示装置、表示装置の駆動装置及び駆動方法
JP2012043394A (ja) * 2010-08-20 2012-03-01 Chi Mei Electronics Corp タッチパネル、タッチパネルの駆動方法、接触情報取得プログラム及び記録媒体
JP2012103761A (ja) * 2010-11-05 2012-05-31 Fujifilm Corp タッチパネル
JP2018005291A (ja) * 2016-06-27 2018-01-11 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
US20220091698A1 (en) 2022-03-24
CN113994305A (zh) 2022-01-28
US20230367435A1 (en) 2023-11-16
US11755160B2 (en) 2023-09-12
JPWO2020262036A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
US11042241B2 (en) Display device including touch sensor and driving method thereof
KR102124261B1 (ko) 터치 패널 구비 표시 장치
US10372273B2 (en) Self-capacitive touch device and calculation method thereof
US9778803B2 (en) Portable electronic device
JP5647202B2 (ja) タッチ認識機能を有する表示装置
KR102297204B1 (ko) 터치 센서
JP7190347B2 (ja) ペンが送信したペン信号を検出するためのセンサ
CN108008855B (zh) 一种显示面板和显示装置
WO2018120693A1 (zh) 柔性触摸屏及制作方法、显示屏及制作方法以及显示设备
CN102566842B (zh) 静电电容型触摸屏面板
JP7375094B2 (ja) センサパネル
US20230367435A1 (en) Electronic equipment, touch sensor, and position detection apparatus
TW201421311A (zh) 觸控面板
TWI603240B (zh) 觸控面板
TW202141247A (zh) 具指紋感測功能的觸控顯示裝置及觸控感測裝置
JP7503550B2 (ja) 電子機器
US11567605B2 (en) Display device having a blocking part covering sensing wirings
US12019822B2 (en) Display device having a blocking part covering sensing wirings
CN114051604B (zh) 触摸传感器
JP7059042B2 (ja) センサパネル
JPWO2020022108A1 (ja) タッチセンサ
KR20180025148A (ko) 터치 센서 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831959

Country of ref document: EP

Kind code of ref document: A1