WO2020259386A1 - 变焦镜头、变焦方法、终端及计算机可读存储介质 - Google Patents

变焦镜头、变焦方法、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2020259386A1
WO2020259386A1 PCT/CN2020/096845 CN2020096845W WO2020259386A1 WO 2020259386 A1 WO2020259386 A1 WO 2020259386A1 CN 2020096845 W CN2020096845 W CN 2020096845W WO 2020259386 A1 WO2020259386 A1 WO 2020259386A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lenses
zoom
curvature
focal length
Prior art date
Application number
PCT/CN2020/096845
Other languages
English (en)
French (fr)
Inventor
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20832711.4A priority Critical patent/EP3978980A4/en
Publication of WO2020259386A1 publication Critical patent/WO2020259386A1/zh
Priority to US17/563,202 priority patent/US20220121018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/04Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms

Definitions

  • the embodiments of the present application relate to optical zoom technology in the electronic application field, and in particular, to a zoom lens, a zoom method, a terminal, and a computer-readable storage medium.
  • a zoom lens refers to a lens that can change the focal length within a certain range, so as to obtain different wide and narrow angles of view, images of different sizes, and different scene ranges.
  • the zoom lens can change the shooting range by changing the focal length without changing the shooting distance. Therefore, a zoom lens can achieve the function of several fixed focus lenses, which is very conducive to picture composition.
  • the zoom lens is applied to the terminal to realize the shooting function.
  • the embodiments of the present application provide a zoom lens, a zoom method, a terminal, and a computer-readable storage medium, which can reduce the size of the zoom lens and improve the imaging quality and performance of the lens.
  • An embodiment of the application provides a zoom lens, including:
  • n lenses are arranged in order along the optical axis direction; n is a positive integer greater than or equal to 2;
  • a diaphragm arranged parallel to the n lenses along the optical axis direction;
  • An imaging surface arranged at the end of the optical axis and parallel to the n lenses;
  • the n lenses include m variable curvature lenses and nm aspheric lenses; each of the m variable curvature lenses is provided with driving devices at the top and bottom ends; m is greater than 1. A positive integer less than n;
  • the incident angle is obtained; after receiving the incident light corresponding to the object side, the beam at the diaphragm Under the action of light, through the n lenses, the incident light is reflected to the imaging surface at the incident angle for imaging.
  • the diaphragm is arranged at a position between any two of the n lenses along the optical axis direction;
  • the diaphragm is used for constraining the incident reflected light and then emitting it.
  • the m variable curvature lenses and the n-m aspheric lenses are arranged crosswise along the optical axis direction.
  • the m variable curvature lenses are continuously arranged between any two aspheric lenses among the n-m aspheric lenses along the optical axis direction.
  • the imaging surface is a light receiving surface configured with a charge coupled device CCD or a complementary metal oxide semiconductor CMOS.
  • the driving device is an electrode
  • the power of the driving device is the voltage of the electrode
  • the zoom lens further includes: a connector connecting the n lenses, the diaphragm and the imaging surface.
  • the embodiment of the present application provides a zoom method, which is applied to a terminal equipped with a zoom lens, and includes:
  • the zoom focal length is adopted to realize the shooting of the object.
  • the obtaining the zoom focal length based on the at least one radius of curvature includes:
  • the zoom focal length is obtained.
  • the embodiment of the present application provides a terminal, including:
  • the receiving part is configured to receive a zoom instruction
  • the obtaining part is configured to change the power of at least one driving device in response to the zoom instruction to obtain at least one current power value; and to obtain at least one curvature corresponding to the at least one variable curvature lens based on the at least one current power value Radius; and based on the at least one radius of curvature, obtaining a zoom focal length;
  • the shooting part is configured to adopt the zoom focal length to realize shooting of the object.
  • the acquisition part is further configured to acquire at least one lens thickness and at least one refractive index corresponding to each of the at least one variable curvature lens; and according to the at least one radius of curvature, the at least one lens thickness and For the at least one refractive index, at least one lens focal length corresponding to each of the at least one variable curvature lens is respectively calculated; and the zoom focal length is obtained based on a combined transformation of the at least one lens focal length.
  • the embodiment of the present application also provides a terminal, including:
  • the body is provided with a controller and a memory;
  • a shell arranged around the body
  • a zoom lens arranged on the back of the body and protruding from the housing, the zoom lens being electrically connected to the controller;
  • the memory is configured to store executable instructions
  • the controller is configured to implement the zoom method provided in the embodiment of the present application when executing the executable instructions stored in the memory.
  • the controller is further configured to change the power of the driving device in the zoom lens under the action of a zoom instruction.
  • An embodiment of the present application provides a computer-readable storage medium, which is characterized by storing executable instructions for causing a controller to execute, to implement the zoom method provided by the embodiment of the present application.
  • the embodiments of the application provide a zoom lens, a zoom method, a terminal, and a computer readable storage medium.
  • the zoom lens is provided with a variable curvature lens, and each variable curvature lens is provided with a driving device, so that By changing the power of the driving device, the curvature of the variable curvature lens is changed, and then the focal length of the variable curvature lens is changed, thereby affecting the focal length of the entire zoom lens and realizing the zoom function. Since the zoom lens can realize the zoom function only by the set driving device, the arrangement position of the n lenses along the optical axis direction can be unchanged, and the arrangement position of the lens must be less than the distance required to move the lens. Therefore, such a zoom lens Small size, short optical path, good imaging performance, no eccentricity, tilt and other errors caused by moving the lens, thereby improving the imaging quality of the lens.
  • FIG. 1 is a schematic structural diagram of a zoom lens provided by an embodiment of the application
  • FIG. 2A is a schematic diagram 1 of an exemplary arrangement of apertures provided by an embodiment of the application.
  • 2B is a second schematic diagram of an exemplary arrangement of apertures provided by an embodiment of the application.
  • 2C is a third schematic diagram of an exemplary arrangement of apertures provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram 1 of an exemplary lens arrangement provided by an embodiment of the application.
  • FIG. 4 is a second schematic diagram of an exemplary lens arrangement provided by an embodiment of the application.
  • 5A is a third schematic diagram of an exemplary lens arrangement provided by an embodiment of the application.
  • 5B is a fourth schematic diagram of an exemplary lens arrangement provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram 5 of an exemplary lens arrangement provided by an embodiment of the application.
  • FIG. 7 is a sixth schematic diagram of an exemplary lens arrangement provided by an embodiment of the application.
  • FIG. 8 is a flowchart of a zoom method provided by an embodiment of the application.
  • Fig. 9 is a top view of an exemplary variable curvature lens provided by an embodiment of the application.
  • FIG. 10 is a first structural diagram of a terminal provided by an embodiment of the application.
  • FIG. 11 is a second structural diagram of a terminal provided by an embodiment of this application.
  • the embodiment of the present invention provides a zoom lens.
  • a variable curvature lens in the middle of the zoom lens, the focal length of the lens can be changed, so that the focal length of the zoom lens can be changed, which breaks through the limitations of the zoom lens of the zoom lens.
  • FIG. 1 is a schematic structural diagram of a zoom lens 1 according to an embodiment of the present application.
  • the zoom lens 1 may include:
  • n lenses 10 are arranged in order along the optical axis direction; n is a positive integer greater than or equal to 2;
  • a diaphragm 11 arranged parallel to the n lenses 10 along the optical axis direction;
  • An imaging surface 12 arranged at the end of the optical axis and parallel to the n lenses 10;
  • the n lenses 10 include m variable curvature lenses and nm aspheric lenses; each of the m variable curvature lenses is provided with a driving device 14 at the top and bottom ends; m is A positive integer greater than 1 and less than n.
  • n lenses are used as a group of lens groups of the zoom lens to transmit incident light from the object side.
  • the lens here refers to the optical lens.
  • the lens is an optical element made of a transparent material whose surface is a part of a spherical surface. It can be divided into different types such as convex lens, concave lens, biconvex lens, plano-convex lens, and meniscus lens. The embodiment of the present application does not limit it.
  • the n lenses 10 include m variable curvature lenses and nm aspheric lenses; each of the m variable curvature lenses is provided with a driving device at the top and bottom ends of each variable curvature lens; m It is a positive integer greater than 1 and less than n.
  • the material of the m variable curvature lenses may be liquid or silica gel, etc., which is not limited in the embodiment of the present application.
  • the zoom lens is also provided with an aperture, which is a physical device that restricts the light beam in the optical system.
  • the diaphragm here can be the edge of the lens, the frame or a specially set aperture screen.
  • the function of the diaphragm can be divided into two aspects: limiting the light beam or limiting the size of the field of view (imaging range).
  • the diaphragm that restricts the most light beams in the optical system is called the aperture diaphragm, and the diaphragm that restricts the field of view (size) the most is called the field diaphragm.
  • the function of limiting the light beam is adopted, that is, the aperture stop.
  • the general rule of the aperture diaphragm is: viewing the diaphragm or the image of the diaphragm from the object side, the aperture diaphragm of the optical system is determined by the one with the smallest opening angle. If the smallest aperture is the image of a certain diaphragm, then the diaphragm itself is an aperture diaphragm. It is defined as: A diaphragm that limits the aperture (solid angle or light-emitting section) of the beam of incident light on the object side on the optical axis is called an aperture diaphragm.
  • the imaging surface is a light receiving surface configured with a solid-state imaging element such as a charge-coupled device (CCD) or a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS).
  • a solid-state imaging element such as a charge-coupled device (CCD) or a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS).
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the n lenses, the diaphragm and the imaging surface are all arranged in parallel along the optical axis direction.
  • the imaging surface is set at the end of the optical axis.
  • the optical axis is the centerline of the light beam (light beam), or the symmetry axis of the optical system.
  • the light beam rotates around this axis without any changes in optical characteristics.
  • the straight line passing through the centers of the two spherical surfaces of the lens is called the main optical axis.
  • the optical axis of a single spherical lens is a straight line that passes through the center of the spherical surface and is perpendicular to the mirror;
  • the optical axis of a lens or a coaxial optical system is a line connecting the centers of the spherical surfaces of each lens.
  • any straight lines passing through the optical center can be referred to as the optical axis of the lens, and they are generally referred to as the secondary optical axis.
  • the direction of the optical axis may be the direction connecting the spherical centers of n lenses L1...Ln.
  • the zoom lens 1 further includes: a connecting member 13 connecting n lenses 10, a diaphragm 11 and an imaging surface 12.
  • the connecting piece is a housing of a zoom lens or a packaging shell that wraps n lenses, a diaphragm and an imaging surface, etc.
  • the specific shape and material of the connecting piece are not limited in the embodiment of the application.
  • the diaphragm 11 is arranged at a position between any two of the n lenses along the optical axis direction; the diaphragm 11 is used to reflect the incident The light is emitted after being restrained.
  • the diaphragm G can be set between L1 and L2 (as shown in Figure 2A), between L2 and L3 (as shown in Figure 2B), or between L3 and L4 (as shown in Figure 2C). Show) etc.
  • the n lenses L1...Ln, the stop G, and the imaging surface S can be arranged in order along the optical axis direction, that is to say, there are L1... Ln, stop G, and imaging surface S.
  • the arrangement sequence of the n lenses L1...Ln and the aperture G is variable, which is not limited in the embodiment of the present application.
  • G can be set between any two lenses between L1...Ln, before L1...Ln, or behind L1...Ln , And before S, the embodiment of the application does not limit it.
  • front and back mentioned in the examples of this application are determined by the order of the optical axis direction starting from the position where the incident light starts to enter.
  • the positions of L1...Ln are set in the order from front to back of.
  • the terminal changes the radius of curvature of the m variable curvature lenses by changing the power of the driving device corresponding to the m variable curvature lenses to obtain the incident angle; after receiving the incident light corresponding to the object, Under the action of the light beam of the diaphragm, the incident light is reflected to the imaging surface at an incident angle through n lenses for imaging.
  • the driving device can be an electrode
  • the terminal can change the radius of curvature of the m variable curvature lens by changing the voltage of the electrode corresponding to the m variable curvature lens to obtain the incident angle; after receiving the incident light corresponding to the object , Under the action of the light beam of the diaphragm, through n lenses, the incident light is reflected to the imaging surface at an incident angle for imaging.
  • the focal lengths of the m variable curvature lenses are changed.
  • the focal length of the zoom lens is changed.
  • the incident angle can be determined based on the focal length of the lens. In this way, through n lenses, the incident light is reflected to the imaging surface at the incident angle for imaging, and the object side can be obtained. The image is taken.
  • the m variable curvature lenses and the n-m aspheric lenses are arranged crosswise along the optical axis direction.
  • the m variable curvature lenses are continuously arranged between any two aspheric lenses in the n-m aspheric lenses along the optical axis direction.
  • the arrangement of the m variable curvature lenses and the n-m aspheric lenses 101 is various.
  • m variable curvature lenses can be alternately arranged with nm aspheric lenses along the optical axis; m variable curvature lenses can also be arbitrarily inserted between nm aspheric lenses; m variable curvature lenses also It can be continuously arranged between any two aspheric lenses in nm aspheric lenses along the optical axis direction; or nm aspheric lenses can be continuously arranged at any m variable curvatures along the optical axis direction Between the lenses; or, m variable curvature lenses are arranged before nm aspheric lenses along the optical axis direction; or, m variable curvature lenses are arranged after nm aspheric lenses along the optical axis direction, etc., this application implements The example does not limit the arrangement of m variable curvature lenses and nm aspheric lenses along
  • the two variable curvature lenses L5 and L6 and the four aspheric lenses L1...L4 can be alternately arranged in order along the optical axis.
  • the two variable curvature lenses L5 and L6 can also be inserted between the four aspheric lenses L1 and L2, and between L3 and L4; as shown in Figures 5A and 5B,
  • the two variable curvature lenses L5 and L6 can also be continuously arranged between any two of the four aspheric lenses L1...L4 along the optical axis, for example between L2 and L3 ( Figure 5A), or between L3 and L4 ( Figure 5B), etc.; or, as shown in Figure 6, the two variable curvature lenses L5 and L6 are arranged in front of the four aspheric lenses L1...L4 along the optical axis; Or, as shown in FIG. 7, two variable curvature lenses L5 and L6 are arranged behind four asphe
  • variable curvature lens is provided in the zoom lens, and each variable curvature lens is provided with a driving device.
  • the curvature of the variable curvature lens can be changed by changing the power of the driving device, thereby changing
  • the focal length of the variable curvature lens affects the focal length of the entire zoom lens and realizes the zoom function. Since the zoom lens can realize the zoom function only by the set driving device, the arrangement position of the n lenses along the optical axis direction can be unchanged, and the arrangement position of the lens must be less than the distance required to move the lens.
  • the zoom lens can be provided in the terminal, and the terminal is also provided with a body; the body is provided with a controller; a housing is provided around the body; in detail, the zoom lens is provided on the back of the body, and Protruding from the housing, the zoom lens is electrically connected with the controller.
  • An embodiment of the present application provides a zoom method, which is proposed based on the structure of the terminal described above. As shown in FIG. 8, it is applied to a terminal provided with the above zoom lens.
  • the method may include:
  • the user when the user is in a scene where the terminal is used for shooting, if the focal length needs to be adjusted, the user can trigger the zoom function in the shooting setting interface of the terminal, and generate a zoom instruction through the trigger, namely The terminal has received a zoom command.
  • the lens set in the terminal is a zoom lens, and the zoom command is used to adjust the focal length of the zoom lens and change the focal length of the zoom lens.
  • the terminal knows that the zoom lens needs to be zoomed. Since the zoom lens is electrically connected to the terminal's controller, the zoom command can be driven by the controller to control at least one variable curvature lens in the zoom lens through the bus system. Power at both ends of the device.
  • the terminal obtains at least one current power value by changing the power of at least one driving device corresponding to each of the at least one variable curvature lens; and then acts on the corresponding at least one variable curvature lens according to each current power value to obtain the corresponding at least one curvature
  • the radius based on the change in the radius of curvature, changes the focal length of the variable curvature lens.
  • the controller may control the power of some or all of the driving devices in the at least one variable curvature lens on the terminal, which is not limited in the embodiment of the present application.
  • the driving device here can be understood as a group of driving device pairs arranged on the top and bottom of each variable curvature lens, and what the terminal changes is the power of a group of driving device pairs corresponding to each variable curvature lens.
  • the driving device may be an electrode, or may also be another drive that can deform the variable curvature lens, which is not limited in the embodiment of the present application.
  • the terminal in response to the zoom instruction, changes the voltage of at least one electrode to obtain at least one current voltage value; based on the at least one current voltage value, obtains at least one radius of curvature corresponding to the at least one variable curvature lens.
  • the principle of the voltage changing the curvature is: based on the interaction of the electricity and the magnet, a force is generated to cause the variable curvature to bend.
  • the terminal changing the radius of curvature of the variable curvature lens refers to the radius of curvature of the front and rear surfaces of a lens along the optical axis direction.
  • variable curvature lenses in the zoom lens in the terminal may be multiple, but only by changing the radius of curvature of at least one variable curvature lens, the focal length of the lens can be changed, thereby affecting the focal length of the entire lens. Therefore, the number of variable-curvature lenses to be changed is not limited in the embodiments of the present application.
  • S104 Obtain a zoom focal length based on at least one radius of curvature
  • the terminal After acquiring at least one radius of curvature corresponding to the at least one variable curvature lens, the terminal can change the respective focal lengths of the at least one variable curvature lens based on the at least one curvature radius. Since the focal length of the zoom lens is affected by the focal length of the lens of the n lens combination, if the lens focal length of at least one variable curvature lens in the n lens combination is changed, the focal length of the entire zoom lens will change. The zoom focal length of the zoom lens can be obtained.
  • the terminal obtains at least one lens thickness and at least one refractive index corresponding to each of the at least one variable curvature lens; according to the at least one radius of curvature, the at least one lens thickness, and the at least one refractive index, the at least At least one lens focal length corresponding to each variable curvature lens; based on the combined transformation of the at least one lens focal length, the zoom focal length is obtained.
  • the refractive index is the refractive index of the lens material.
  • variable curvature lens its lens thickness and refractive index and other parameters can be stored in the database in advance.
  • the zoom function it will be retrieved from the database for use, so that the terminal can be used for each variable
  • the lens thickness corresponding to the curvature lens, the changed radius of curvature, and the refractive index thereof are used to obtain the lens focal length of each variable curvature lens, and then at least one lens focal length corresponding to at least one variable curvature lens is obtained.
  • one or more optical lenses with variable curvature are added, the focal length of the entire group of lenses is changed by changing the curvature of the variable curvature lens, and then the focus is coordinated with the motor to achieve clear imaging of scenes at different distances.
  • a single spherical optical lens variable curvature lens lens
  • its focal length is determined by the refractive index, thickness, and curvature of the material.
  • the curvature of the mirror surface can be changed by means of electrode drive, so that the focal length of the lens can be changed, and the entire lens group is finally realized.
  • the zoom function meets the requirements for clear imaging of the scene at different distances, and there is no need for a motor during the zoom process, which can save system costs; no lens movement, avoiding image quality degradation caused by errors in the lens movement process, etc.
  • the terminal can obtain a lens focal length according to formula (1).
  • r1 and r2 are the radii of curvature of the front and back surfaces of a variable curvature lens along the optical axis direction, d is the lens thickness, n is the refractive index, and f is the lens focal length. It can be seen from formula (1) that when the radius of curvature of the lens is changed, its focal length f also changes.
  • the terminal calculates the zoom focal length based on the combined transformation of at least one lens focal length, and the method is a calculation method determined according to the lens type.
  • the convex lens imaging law formula (2) can be used to calculate the position v2 of the image formed by the convex lens 2 at this time. With this image distance, the convex lens can be calculated The combined focal length.
  • the formula (2) is as follows:
  • v2 is calculated according to formula (3), as follows:
  • V2 is expressed by formula (4), as follows:
  • the change of the lens focal length of one lens in the zoom lens can affect the zoom focal length of the entire zoom lens.
  • the zoom focal length is adopted to realize the shooting of the object.
  • the terminal After the terminal obtains the zoom focal length of the zoom lens, it can realize the shooting of the object based on the imaging principle and obtain the captured image.
  • the reciprocal of the object distance u plus the reciprocal of the image distance v is equal to the reciprocal of the focal length F, based on which imaging is performed.
  • variable curvature lens is provided in the zoom lens, and each variable curvature lens is provided with a driving device.
  • the curvature of the variable curvature lens can be changed by changing the power of the driving device, thereby changing
  • the focal length of the variable curvature lens affects the focal length of the entire zoom lens and realizes the zoom function. Since the zoom lens can realize the zoom function only by the set driving device, the arrangement position of the n lenses along the optical axis direction can be unchanged, and the arrangement position of the lens must be less than the distance required to move the lens. Therefore, such a zoom lens Small size, short optical path, good imaging performance, no eccentricity, tilt and other errors caused by moving the lens, thereby improving the imaging quality of the lens.
  • an embodiment of the present application provides a terminal 1, including:
  • the receiving part 10 is configured to receive a zoom instruction
  • the obtaining part 11 is configured to change the power of at least one driving device in response to the zoom instruction to obtain at least one current power value; and to obtain at least one corresponding to at least one variable curvature lens based on the at least one current power value A radius of curvature; and obtaining a zoom focal length based on the at least one radius of curvature;
  • the photographing part 12 is configured to adopt the zoom focal length to realize photographing of the object.
  • the acquiring part 11 is further configured to acquire at least one lens thickness and at least one refractive index corresponding to each of the at least one variable curvature lens; and according to the at least one radius of curvature, the The at least one lens thickness and the at least one refractive index are respectively calculated to at least one lens focal length corresponding to each of the at least one variable curvature lens; and the zoom focal length is obtained based on the combined transformation of the at least one lens focal length.
  • an embodiment of the present application also provides a terminal, including:
  • Body 20 The body is provided with a controller 24 and a memory 23;
  • a housing 21 provided around the body 20;
  • the memory 23 is configured to store executable instructions
  • the controller 24 is configured to implement the zoom method provided in the embodiment of the present application when executing the executable instructions stored in the memory 23.
  • the controller 24 is further configured to change the power of the driving device in the zoom lens under the action of a zoom instruction.
  • the embodiment of the present application provides a computer-readable storage medium that stores executable instructions for causing the controller to execute to implement the zoom method provided by the embodiment of the present application.
  • the terminal may also include a bus system, and various components in the terminal are coupled together through the bus system. It can be understood that the bus system is used to realize the connection and communication between these components.
  • the bus system also includes a power bus, a control bus, and a status signal bus.
  • the controller can be implemented by software, hardware, firmware, or a combination thereof, and can use circuits, single or multiple application specific integrated circuits (ASIC), single or multiple general integrated circuits, single or multiple microprocessors A device, a single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, so that the controller 24 can execute the corresponding steps of the zoom method in the embodiment.
  • ASIC application specific integrated circuits
  • microprocessors A device, a single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, so that the controller 24 can execute the corresponding steps of the zoom method in the embodiment.
  • each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module.
  • the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this embodiment is essentially or It is said that the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can A personal computer, server, or network device, etc.) or a processor (processor) executes all or part of the steps of the method described in this embodiment.
  • the aforementioned storage media include: magnetic random access memory (FRAM, ferromagnetic random access memory), read-only memory (ROM, Read Only Memory), programmable read-only memory (PROM, Programmable Read-Only Memory), erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Flash Memory, Magnetic Surface Memory, Optical Disk
  • FRAM magnetic random access memory
  • ROM read-only memory
  • PROM programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • Flash Memory Magnetic Surface Memory
  • Optical Disk Various media that can store program codes, such as CD-ROM (Compact Disc Read-Only Memory), etc., are not limited in the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium that stores executable instructions for causing a processor to execute the zoom method provided in the embodiment of the present application.
  • the zoom lens is provided with a variable curvature lens, and each variable curvature lens is provided with a driving device, so that the driving device can be changed by changing the Power, to change the curvature of the variable curvature lens, and then change the focal length of the variable curvature lens, thereby affecting the focal length of the entire zoom lens to achieve the zoom function.
  • the zoom lens can realize the zoom function only by the set driving device, the arrangement position of the n lenses along the optical axis direction can be unchanged, and the arrangement position of the lens must be less than the distance required to move the lens. Therefore, such a zoom lens Small size, short optical path, good imaging performance, no eccentricity, tilt and other errors caused by moving the lens, thereby improving the imaging quality of the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

一种变焦镜头(1)、变焦方法、终端及计算机可读存储介质;变焦镜头(1)包括:n个透镜(10);n个透镜(10)沿光轴方向依次排列;n为大于等于2的正整数;与n个透镜(10)沿光轴方向平行设置的光阑(11);设置在光轴的末端,与n个透镜(10)平行的成像面(12);其中,n个透镜(10)中包括m个可变曲率透镜和n-m个非球面透镜(101);m个可变曲率透镜中的每个可变曲率透镜的顶端和底端设置有驱动器件;m为大于1小于n的正整数;通过改变m个可变曲率透镜对应的驱动器件的动力,而改变m个可变曲率透镜的曲率半径,得到入射角度;在接收物方对应的入射光后,在光阑(11)的束光作用下,通过n个透镜(10),以入射角度将入射光反射至成像面(12)进行成像。

Description

变焦镜头、变焦方法、终端及计算机可读存储介质
本申请基于申请号为201910574067.9、申请日为2019年06月28日、申请名称为“变焦镜头、变焦方法、终端及计算机可读存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及电子应用领域中的光学变焦技术,尤其涉及一种变焦镜头、变焦方法、终端及计算机可读存储介质。
背景技术
变焦镜头是指在一定范围内可以变换焦距、从而得到不同宽窄的视场角、不同大小的影像以及不同景物范围的镜头。也就是说,变焦镜头可以在不改变拍摄距离的情况下,通过变动焦距来改变拍摄范围,因此,一个变焦镜头可以实现若干个定焦镜头的作用,非常有利于画面构图。变焦镜头应用于终端上,实现拍摄功能。
目前,在采用终端上的变焦镜头在实现变焦时,通过马达控制改变变焦镜头中的透镜的排列距离来改变焦距来实现的。然而,这样的方式需要预留出透镜的移动距离,那么会导致变焦镜头的尺寸会较大,整体的光路会很长,同时由于马达在移动过程中不可避免的引入偏心、倾斜等误差,会降低了镜头成像质量。
发明内容
本申请实施例提供一种变焦镜头、变焦方法、终端及计算机可读存储介质,能够减小变焦镜头的尺寸,提高镜头成像质量和性能。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种变焦镜头,包括:
n个透镜;所述n个透镜沿光轴方向依次排列;n为大于等于2的正整数;
与所述n个透镜沿所述光轴方向平行设置的光阑;
设置在光轴的末端,与所述n个透镜平行的成像面;
其中,所述n个透镜中包括m个可变曲率透镜和n-m个非球面透镜;m个可变曲率透镜中的每个可变曲率透镜的顶端和底端设置有驱动器件;m为大于1小于n的正整数;
通过改变所述m个可变曲率透镜对应的驱动器件的动力,而改变m个可变曲率透镜的曲率半径,得到入射角度;在接收物方对应的入射光后,在所述光阑的束光作用下,通过所述n个透镜,以所述入射角度将所述入射光反射至所述成像面进行成像。
在上述变焦镜头中,所述光阑沿所述光轴方向设置在所述n个透镜中任意两个透镜之间的位置;
所述光阑,用于将射入的反射光进行约束后射出。
在上述变焦镜头中,所述m个可变曲率透镜和所述n-m个非球面透镜沿所述光轴方向交叉排列。
在上述变焦镜头中,所述m个可变曲率透镜沿所述光轴方向,连续设置在所述n-m个非球面透镜中的任意两个非球面透镜之间。
在上述变焦镜头中,所述成像面为配置有电荷耦合器件CCD或互补金属氧化物半导体CMOS的光接收面。
在上述变焦镜头中,所述驱动器件为电极,所述驱动器件的动力为电极的电压。
在上述变焦镜头中,所述变焦镜头还包括:连接所述n个透镜、所述 光阑和所述成像面的连接件。
本申请实施例提供了一种变焦方法,应用于设置有变焦镜头的终端中,包括:
接收变焦指令;
响应于所述变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;
基于所述至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;
基于所述至少一个曲率半径,得到变焦焦距;
采用所述变焦焦距,实现对物方的拍摄。
在上述方案中,所述基于所述至少一个曲率半径,得到变焦焦距,包括:
获取所述至少一个可变曲率透镜各自对应的至少一个透镜厚度和至少一个折射率;
根据至少一个曲率半径、所述至少一个透镜厚度和所述至少一个折射率,分别计算出所述至少一个可变曲率透镜各自对应的至少一个透镜焦距;
基于所述至少一个透镜焦距的组合变换,得到所述变焦焦距。
本申请实施例提供了一种终端,包括:
接收部分,被配置为接收变焦指令;
获取部分,被配置为响应于所述变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;级基于所述至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;以及基于所述至少一个曲率半径,得到变焦焦距;
拍摄部分,被配置为采用所述变焦焦距,实现对物方的拍摄。
在上述终端中,所述获取部分,还被配置为获取所述至少一个可变曲 率透镜各自对应的至少一个透镜厚度和至少一个折射率;及根据至少一个曲率半径、所述至少一个透镜厚度和所述至少一个折射率,分别计算出所述至少一个可变曲率透镜各自对应的至少一个透镜焦距;以及基于所述至少一个透镜焦距的组合变换,得到所述变焦焦距。
本申请实施例还提供了一种终端,包括:
本体;所述本体中设置有控制器和存储器;
围绕所述本体设置的壳体;
设置在所述本体背部、且突出于所述壳体的变焦镜头,所述变焦镜头与所述控制器电连接;
所述存储器,被配置为存储可执行指令;
所述控制器,被配置为执行所述存储器中存储的可执行指令时,实现本申请实施例提供的变焦方法。
在上述终端中,所述控制器,还被配置为在变焦指令的作用下,改变所述变焦镜头中的驱动器件的动力。
本申请实施例提供了一种计算机可读存储介质,其特征在于,存储有可执行指令,用于引起控制器执行时,实现本申请实施例提供的变焦方法。
本申请实施例提供了一种变焦镜头、变焦方法、终端及计算机可读存储介质,该变焦镜头中设置有可变曲率透镜,且每个可变曲率透镜中都设置有驱动器件,这样就可以通过改变驱动器件的动力,来改变可变曲率透镜的曲率,进而改变可变曲率透镜的焦距,从而影响整个变焦镜头的焦距,实现变焦功能。由于变焦镜头只通过设置的驱动器件就能实现变焦功能,n个透镜沿光轴方向的排列位置可以不变,且透镜的排列位置一定小于移动透镜所需的距离,因此,这样的变焦镜头的尺寸小,且光路短,成像性能好,不会出现由于移动透镜造成的偏心、倾斜等误差,从而提高了镜头成像质量。
附图说明
图1为本申请实施例提供的一种变焦镜头的结构示意图;
图2A为本申请实施例提供的一种示例性的光阑的排列方式示意图一;
图2B为本申请实施例提供的一种示例性的光阑的排列方式示意图二;
图2C为本申请实施例提供的一种示例性的光阑的排列方式示意图三;
图3为本申请实施例提供的一种示例性的透镜的排列方式示意图一;
图4为本申请实施例提供的一种示例性的透镜的排列方式示意图二;
图5A为本申请实施例提供的一种示例性的透镜的排列方式示意图三;
图5B为本申请实施例提供的一种示例性的透镜的排列方式示意图四;
图6为本申请实施例提供的一种示例性的透镜的排列方式示意图五;
图7为本申请实施例提供的一种示例性的透镜的排列方式示意图六;
图8为本申请实施例提供的一种变焦方法的流程图;
图9为本申请实施例提供的一种示例性的可变曲率透镜的俯视图;
图10为本申请实施例提供的一种终端的结构示意图一;
图11为本申请实施例提供的一种终端的结构示意图二。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
本发明实施例提供了一种变焦镜头,通过在变焦镜头中间***可变曲透镜的方式,实现透镜焦距的改变,从而可以改变变焦镜头的焦距,突破了变焦镜头变焦方式的局限性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请一实施例提供了一种变焦镜头,图1为本申请实施例提出的一种变焦镜头1的结构示意图。如图1所示,在本申请的实施例中,变焦镜头1可以包括:
n个透镜10;所述n个透镜10沿光轴方向依次排列;n为大于等于2的正整数;
与所述n个透镜10沿所述光轴方向平行设置的光阑11;
设置在光轴的末端,与所述n个透镜10平行的成像面12;
其中,所述n个透镜10中包括m个可变曲率透镜和n-m个非球面透镜;m个可变曲率透镜中的每个可变曲率透镜的顶端和底端设置有驱动器件14;m为大于1小于n的正整数。
需要说明的是,在本申请实施例中,n个透镜作为变焦镜头的一组透镜组,用于进行物方入射光的传输。这里的透镜指的是光学镜片。
在本申请实施例中,透镜是用透明物质制成的表面为球面一部分的光学元件,可以分为凸透镜、凹透镜、双凸透镜、平凸透镜以及凹凸透镜等不同种类,本申请实施例不作限制。
其中,本申请中,n个透镜10中包括m个可变曲率透镜和n-m个非球面透镜;m个可变曲率透镜中的每个可变曲率透镜的顶端和底端设置有驱动器件;m为大于1小于n的正整数。
这里,m个可变曲率透镜的材料可以为液体或硅胶等,本申请实施例不作限制。
在本申请实施例中,变焦镜头中还设置有光阑,它是光学***中对光束起着限制作用的实体器件。这里的光阑可以为透镜的边缘、框架或特别设置的带孔屏。光阑的作用可分两方面:限制光束或限制视场(成像范围)大小。光学***中限制光束最多的光阑,称为孔径光阑,限制视场(大小)最多的光阑,称为视场光阑。本申请实施例中,采用的是限制光束的作用,即孔径光阑。
其中,孔径光阑的一般规则是:从物方看光阑或光阑的像,由其中张角最小的那一个,来决定光学***的孔径光阑。如果张角最小的是某光阑的像,则该光阑本身就是孔径光阑。其定义为:对光轴上物方的入射光的光束的口径(立体角或者发光截面)限制的光阑称为孔径光阑。
进一步地,在本申请的实施例中,成像面为配置有电荷耦合器件(Charge-coupled Device,CCD)或互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)等固体摄像元件的光接收面。
在本申请实施例中,n个透镜、光阑和成像面都是沿光轴方向平行设置的。其中,成像面设置在光轴末端。
在本申请的实施例中,光轴即为光束(光柱)的中心线,或光学***的对称轴。光束绕此轴转动,不应有任何光学特性的变化。其中,通过透镜两个球面中心的直线称为主光轴。具体地,单球面镜的光轴是通过球面中心,并与镜面垂直的直线;透镜或共轴光具组的光轴是各透镜球面中心的连线。应该说明的是,通过光心的任何直线都可称作透镜的光轴,一般称它们为副光轴。
在本申请的实施例中,光轴方向可以为n个透镜L1……Ln的球面中心连线的方向。
在本申请的一些实施例中,如图1所示,变焦镜头1还包括:连接n个透镜10、光阑11和成像面12的连接件13。
其中,连接件为变焦镜头的外壳或者包裹n个透镜、光阑和成像面的包装壳等,具体的连接件的形状和材料等本申请实施例不作限制。
在本申请的一些实施例中,所述光阑11沿所述光轴方向设置在所述n个透镜中任意两个透镜之间的位置;所述光阑11,用于将射入的反射光进行约束后射出。
示例性的,针对n个透镜L1……L4、光阑G与成像面S。光阑G可以设置在L1与L2之间(如图2A所示),也可以设置在L2与L3之间(如图2B所示),还可以设置在L3与L4之间(如图2C所示)等。
需要说明的是,在本申请的实施例中,n个透镜L1……Ln、光阑G与成像面S可以沿光轴方向依次排列,也就是说,沿光轴方向依次排列有L1……Ln、光阑G以及成像面S。其中,所述的n个透镜L1……Ln与光阑G的设置顺序是可变的,本申请实施例不作限制。
在本申请的一些实施例中,G可以设置在L1……Ln之间的任意透镜中任意两个透镜之间,也可以设置在L1……Ln之前,还可以设置在L1……Ln的后面,且S的前面,本申请实施例不作限制。
需要说明的是,本申请实施例中所说的前和后,是由入射光开始入射的位置起,依据光轴方向的顺序决定的,L1……Ln的位置就是按照从前往后的顺序设置的。
在本申请实施例中,终端通过改变m个可变曲率透镜对应的驱动器件的动力,而改变m个可变曲率透镜的曲率半径,得到入射角度;在接收物方对应的入射光后,在光阑的束光作用下,通过n个透镜,以入射角度将入射光反射至成像面进行成像。
其中,驱动器件可以为电极,那么终端可以通过改变m个可变曲率透镜对应的电极的电压,而改变m个可变曲率透镜的曲率半径,得到入射角度;在接收物方对应的入射光后,在光阑的束光作用下,通过n个透镜, 以入射角度将入射光反射至成像面进行成像。
需要说明的是,在本申请实施例中,通过改变m个可变曲率透镜对应的驱动器件的动力,而改变m个可变曲率透镜的曲率半径,就改变了m个可变曲率透镜的焦距了,进而改变了变焦镜头的焦距了,此时就可以基于镜头的焦距确定出入射角度了,这样经过n个透镜,采用入射角度将入射光反射至成像面进行成像,就可以得到物方的拍摄图像了。
在本申请的一些实施例中,所述m个可变曲率透镜和所述n-m个非球面透镜沿所述光轴方向交叉排列。
在本申请的一些实施例中,所述m个可变曲率透镜沿所述光轴方向,连续设置在所述n-m个非球面透镜中的任意两个非球面透镜之间。
需要说明的是,在本申请实施例中,m个可变曲率透镜和n-m个非球面透镜101的排列方式是多样的。m个可变曲率透镜可以与n-m个非球面透镜可以是沿光轴方向依次交替排列的;m个可变曲率透镜也可以任意插在n-m个非球面透镜之间;m个可变曲率透镜还可以沿所述光轴方向,连续设置在n-m个非球面透镜中的任意两个非球面透镜之间;或者n-m个非球面透镜可以沿所述光轴方向,连续设置在任意m个可变曲率透镜之间;或者,m个可变曲率透镜沿光轴方向设置在n-m个非球面透镜之前;或者,m个可变曲率透镜沿光轴方向设置在n-m个非球面透镜之后等,本申请实施例不作限制m个可变曲率透镜和n-m个非球面透镜沿光轴方向的排列方式。
示例性的,假设n为6,m为2,则如图3所示,2个可变曲率透镜L5和L6可以与4个非球面透镜L1……L4可以是沿光轴方向依次交替排列的;如图4所示,2个可变曲率透镜L5和L6也可以任意插在4个非球面透镜L1和L2之间,以及L3和L4中的之间;如图5A和图5B所示,2个可变曲率透镜L5和L6还可以沿所述光轴方向,连续设置在4个非球面透镜 L1……L4中的任意两个非球面透镜之间,例如在L2和L3之间(图5A),或者在L3和L4之间(图5B)等;或者,如图6所示,2个可变曲率透镜L5和L6沿光轴方向设置在4个非球面透镜L1……L4之前;或者,如图7所示,2个可变曲率透镜L5和L6沿光轴方向设置在4个非球面透镜L1……L4之后。
可以理解的是,变焦镜头中设置有可变曲率透镜,且每个可变曲率透镜中都设置有驱动器件,这样就可以通过改变驱动器件的动力,来改变可变曲率透镜的曲率,进而改变可变曲率透镜的焦距,从而影响整个变焦镜头的焦距,实现变焦功能。由于变焦镜头只通过设置的驱动器件就能实现变焦功能,n个透镜沿光轴方向的排列位置可以不变,且透镜的排列位置一定小于移动透镜所需的距离,因此,这样的变焦镜头的尺寸小,有利于摄像头模组小型化,且光路短,成像性能好,不会出现由于移动透镜造成的偏心、倾斜等误差,从而提高了镜头成像质量。
在本申请实施例中,变焦镜头可以设置在终端中,该终端中还设置有本体;本体中设置有控制器;设置有围绕本体设置的壳体;详细的,变焦镜头设置在本体背部、且突出于所述壳体,变焦镜头与控制器电连接。
本申请一实施例提供了一种变焦方法,基于上述描述的终端的结构提出,如图8所示,应用于设置有上述的变焦镜头的终端中,该方法可以包括:
S101、接收变焦指令;
在本申请实施例中,当用户在采用终端在进行拍摄的场景中时,若需要对焦距进行调整时,用户可以在终端的拍摄设置界面中进行变焦功能的触发,通过触发生成变焦指令,即终端接收到了变焦指令。
其中,终端中设置的镜头为变焦镜头,变焦指令用于变焦镜头中的焦距进行调整,改变变焦镜头中的焦距。
S102、响应于变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;
S103、基于至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;
终端针对变焦指令,知道需要对变焦镜头进行变焦处理了,由于变焦镜头与终端的控制器电连接,那么变焦指令就可以由控制器通过总线***控制变焦镜头中的至少一个可变曲率透镜的驱动器件两端的动力。终端通过改变至少一个可变曲率透镜各自对应的至少一个驱动器件的动力,得到至少一个当前动力值;再依据每个当前动力值对相应的至少一个可变曲率透镜作用,得到对应的至少一个曲率半径,基于曲率半径的改变,对可变曲率透镜的焦距进行改变。
需要说明的是,在本申请实施例中,终端可以由控制器控制至少一个可变曲率透镜中的部分或者全部驱动器件的动力,本申请实施例不作限制。
这里的驱动器件可以理解为每个可变曲率透镜顶端和底部设置的一组驱动器件对,终端改变的是每个可变曲率透镜对应的一组驱动器件对的动力。
需要说明的是,动力越大,其对应的可变曲率透镜的曲率变化越大,即曲率半径越大。
在本申请的一些实施例中,驱动器件可以为电极,也可以为其他可以使得可变曲率透镜产生形变的驱动,本申请实施例不作限制。这里,终端响应于变焦指令,改变至少一个电极的电压,得到至少一个当前电压值;基于至少一个当前电压值,得到至少一个可变曲率透镜对应的至少一个曲率半径。
其中,电压改变曲率的原理为:基于电和磁铁的相互作用,产生一个作用力,使得可变曲率产生弯曲。
进一步地,在本申请实施例中,终端改变可变曲率透镜的曲率半径指的是一个透镜的沿光轴方向的前后两个面的曲率半径。
可以理解的是,终端中的变焦镜头中的可变曲率透镜的数量可能为多个,但是只需改变至少一个可变曲率透镜的曲率半径,即可改变透镜的焦距,进而影响整个镜头的焦距,因此,本申请实施例中不限制改变的可变曲率透镜的数量。
S104、基于至少一个曲率半径,得到变焦焦距;
终端的获取到了至少一个可变曲率透镜对应的至少一个曲率半径后,基于至少一个曲率半径就可以改变至少一个可变曲率透镜各自对应的焦距。由于变焦镜头的焦距是由n个透镜组合的透镜的焦距影响的,那么在改变了n个透镜组合中的至少一个可变曲率透镜的透镜焦距的话,整个变焦镜头的焦距就会改变,这样就可以得到变焦镜头的变焦焦距了。
在本申请的一些实施例中,终端获取至少一个可变曲率透镜各自对应的至少一个透镜厚度和至少一个折射率;根据至少一个曲率半径、至少一个透镜厚度和至少一个折射率,分别计算出至少一个可变曲率透镜各自对应的至少一个透镜焦距;基于至少一个透镜焦距的组合变换,得到变焦焦距。其中,折射率为透镜材料的折射率。
需要说明的是,针对一个可变曲率透镜,其透镜厚度以及折射率等参数可以事先存储在数据库中,在进行变焦功能的时候,再从数据库中获取到来使用,这样终端可以针对每个可变曲率透镜对应的透镜厚度,改变后的曲率半径以及其折射率,得到每个可变曲率透镜的透镜焦距,进而得到至少一个可变曲率透镜各自对应的至少一个透镜焦距了。
在本申请实施例中,加入一片或多片可变曲率的光学镜片,通过改变可变曲率透镜的曲率来改变整组镜头的焦距,再配合马达对焦,实现对不同距离景物清晰成像。对单个球面光学镜片(可变曲率透镜透镜)来说, 其焦距是由材料折射率、厚度、以及曲率决定的,通过电极驱动等方式可改变镜面曲率,使镜片焦距改变,最终实现整组镜头的变焦功能,满足不同距离下对景物清晰成像的要求,且变焦过程中无需马达,可节省***成本;无镜片移动,避免镜片移动过程中误差带来的像质劣化等等。
示例性的,如图9所示,终端可以根据公式(1)来得到一个透镜焦距。
f=(nr1r2)/{(n-1)[n(r2-r1)+(n-1)d]}      (1)
其中,r1和r2为一个可变曲率透镜的沿光轴方向的前后两个面的曲率半径,d为透镜厚度,n为折射率,f为透镜焦距。由公式(1)可以看出,当改变透镜的曲率半径时,其焦距f亦随之改变。
进一步地,在本申请实施例中,终端基于至少一个透镜焦距的组合变换,计算得到变焦焦距的方式是依据透镜类型决定的计算方式。
示例性的,以两个凸透镜为例进行说明。假设凸透镜1的焦距为f1,凸透镜2的焦距为f2,两者靠得很近,两个凸透镜的中心距离为d,以凸透镜1的透镜中心用为合并以后的透镜的中心。有一束平行光射入凸透镜1,在焦点处形成了一个亮点,放上凸透镜2后,以此亮点作为凸透镜2的物,那么这个物离开凸透镜2的距离为u2=-(f1-d)。由于凸透镜2的左侧为正,则右侧就是负,下面就可以利用凸透镜成像规律公式(2)计算此时凸透镜2所成的像的位置v2了,有了这个像距就可以来计算凸透镜组合的焦距了。其中,公式(2)如下:
1/u2+1/v2=1/f2    (2)
其中,v2根据公式(3)计算得到,如下:
1/[-(f1-d)]+1/v2=1/f2    (3)
这样得到V2为公式(4)表示,如下:
v2=1/[1/f2+1/(f1-d)]    (4)
那么基于v2,再计算由凸透镜2形成的像离开凸透镜1的距离为:v2+d, 这个距离就是凸透镜组合的焦距了。即凸透镜组合的公式为公式(5):
f=1/[1/f2+1/(f1-d)]+d     (5)
可以理解的是,变焦镜头中的一个透镜的透镜焦距的改变,是可以影响整个变焦镜头的变焦焦距的。
S105、采用变焦焦距,实现对物方的拍摄。
终端在得到了变焦镜头的变焦焦距后,就可以基于成像原理,实现对物方的拍摄,得到拍摄图像了。
示例性的,光学中最基本的高斯成像公式(6)如下:
1/u+1/v=1/F    (6)
物距u的倒数加上像距v的倒数等于焦距F的倒数,基于此进行成像。
可以理解的是,变焦镜头中设置有可变曲率透镜,且每个可变曲率透镜中都设置有驱动器件,这样就可以通过改变驱动器件的动力,来改变可变曲率透镜的曲率,进而改变可变曲率透镜的焦距,从而影响整个变焦镜头的焦距,实现变焦功能。由于变焦镜头只通过设置的驱动器件就能实现变焦功能,n个透镜沿光轴方向的排列位置可以不变,且透镜的排列位置一定小于移动透镜所需的距离,因此,这样的变焦镜头的尺寸小,且光路短,成像性能好,不会出现由于移动透镜造成的偏心、倾斜等误差,从而提高了镜头成像质量。
基于前述实施例的同一发明构思,如图10所示,本申请实施例提供了一种终端1,包括:
接收部分10,被配置为接收变焦指令;
获取部分11,被配置为响应于所述变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;级基于所述至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;以及基于所述至少一个曲率半径,得到变焦焦距;
拍摄部分12,被配置为采用所述变焦焦距,实现对物方的拍摄。
在本申请的一些实施例中,所述获取部分11,还被配置为获取所述至少一个可变曲率透镜各自对应的至少一个透镜厚度和至少一个折射率;及根据至少一个曲率半径、所述至少一个透镜厚度和所述至少一个折射率,分别计算出所述至少一个可变曲率透镜各自对应的至少一个透镜焦距;以及基于所述至少一个透镜焦距的组合变换,得到所述变焦焦距。
如图11所示,本申请实施例还提供了一种终端,包括:
本体20;所述本体中设置有控制器24和存储器23;
围绕所述本体20设置的壳体21;
设置在所述本体背部、且突出于所述壳体21的变焦镜头22,所述变焦镜头22与所述控制器24电连接;
所述存储器23,被配置为存储可执行指令;
所述控制器24,被配置为执行所述存储器23中存储的可执行指令时,实现本申请实施例提供的变焦方法。
在本申请的一些实施例中,所述控制器24,还被配置为在变焦指令的作用下,改变所述变焦镜头中的驱动器件的动力。
本申请实施例提供了一种计算机可读存储介质,存储有可执行指令,用于引起控制器执行时,实现本申请实施例提供的变焦方法。
终端还可以包括总线***,终端中的各个组件通过总线***耦合在一起。可理解,总线***用于实现这些组件之间的连接通信。总线***除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
其中,控制器可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件, 从而使得该控制器24可以执行实施例中的变焦方法的相应步骤。
在本申请实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:磁性随机存取存储器(FRAM,ferromagnetic random access memory)、只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory)等各种可以存储程序代码的介质,本申请实施例不作限制。
由此,本申请实施例提供了一种计算机可读存储介质,存储有可执行指令,用于引起处理器执行时,实现本申请实施例提供的变焦方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本申请实施例提供的网络连接的控制方法、终端及存储介质,该变焦镜头中设置有可变曲率透镜,且每个可变曲率透镜中都设置有驱动器件,这样就可以通过改变驱动器件的动力,来改变可变曲率透镜的曲率,进而改变可变曲率透镜的焦距,从而影响整个变焦镜头的焦距,实现变焦功能。由于变焦镜头只通过设置的驱动器件就能实现变焦功能,n个透镜沿光轴方向的排列位置可以不变,且透镜的排列位置一定小于移动透镜所需的距离,因此,这样的变焦镜头的尺寸小,且光路短,成像性能好,不会出现由于移动透镜造成的偏心、倾斜等误差,从而提高了镜头成像质量。

Claims (14)

  1. 一种变焦镜头,包括:
    n个透镜;所述n个透镜沿光轴方向依次排列;n为大于等于2的正整数;
    与所述n个透镜沿所述光轴方向平行设置的光阑;
    设置在光轴的末端,与所述n个透镜平行的成像面;
    其中,所述n个透镜中包括m个可变曲率透镜和n-m个非球面透镜;m个可变曲率透镜中的每个可变曲率透镜的顶端和底端设置有驱动器件;m为大于1小于n的正整数;
    通过改变所述m个可变曲率透镜对应的驱动器件的动力,而改变m个可变曲率透镜的曲率半径,得到入射角度;在接收物方对应的入射光后,在所述光阑的束光作用下,通过所述n个透镜,以所述入射角度将所述入射光反射至所述成像面进行成像。
  2. 根据权利要求1所述的变焦镜头,其中,
    所述光阑沿所述光轴方向设置在所述n个透镜中任意两个透镜之间的位置;
    所述光阑,用于将射入的反射光进行约束后射出。
  3. 根据权利要求1或2所述的变焦镜头,其中,
    所述m个可变曲率透镜和所述n-m个非球面透镜沿所述光轴方向交叉排列。
  4. 根据权利要求1至3任一项所述的变焦镜头,其中,
    所述m个可变曲率透镜沿所述光轴方向,连续设置在所述n-m个非球面透镜中的任意两个非球面透镜之间。
  5. 根据权利要求1至4任一项所述的变焦镜头,其中,
    所述成像面为配置有电荷耦合器件CCD或互补金属氧化物半导体CMOS的光接收面。
  6. 根据权利要求1至5任一项所述的变焦镜头,其中,
    所述驱动器件为电极,所述驱动器件的动力为电极的电压。
  7. 根据权利要求1至6任一项所述的变焦镜头,其中,所述变焦镜头还包括:
    连接所述n个透镜、所述光阑和所述成像面的连接件。
  8. 一种变焦方法,应用于设置有如权利要求1至7所述的变焦镜头的终端中,包括:
    接收变焦指令;
    响应于所述变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;
    基于所述至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;
    基于所述至少一个曲率半径,得到变焦焦距;
    采用所述变焦焦距,实现对物方的拍摄。
  9. 根据权利要求8所述的方法,其中,所述基于所述至少一个曲率半径,得到变焦焦距,包括:
    获取所述至少一个可变曲率透镜各自对应的至少一个透镜厚度和至少一个折射率;
    根据至少一个曲率半径、所述至少一个透镜厚度和所述至少一个折射率,分别计算出所述至少一个可变曲率透镜各自对应的至少一个透镜焦距;
    基于所述至少一个透镜焦距的组合变换,得到所述变焦焦距。
  10. 一种终端,包括:
    接收部分,被配置为接收变焦指令;
    获取部分,被配置为响应于所述变焦指令,改变至少一个驱动器件的动力,得到至少一个当前动力值;级基于所述至少一个当前动力值,得到至少一个可变曲率透镜对应的至少一个曲率半径;以及基于所述至少一个曲率半径,得到变焦焦距;
    拍摄部分,被配置为采用所述变焦焦距,实现对物方的拍摄。
  11. 根据权利要求10所述的终端,其中,
    所述获取部分,还被配置为获取所述至少一个可变曲率透镜各自对应的至少一个透镜厚度和至少一个折射率;及根据至少一个曲率半径、所述至少一个透镜厚度和所述至少一个折射率,分别计算出所述至少一个可变曲率透镜各自对应的至少一个透镜焦距;以及基于所述至少一个透镜焦距的组合变换,得到所述变焦焦距。
  12. 一种终端,包括:
    本体;所述本体中设置有控制器和存储器;
    围绕所述本体设置的壳体;
    设置在所述本体背部、且突出于所述壳体的变焦镜头,所述变焦镜头与所述控制器电连接;
    所述存储器,被配置为存储可执行指令;
    所述控制器,被配置为执行所述存储器中存储的可执行指令时,实现权利要求8或9所述的方法。
  13. 根据权利要求12所述的终端,其中,
    所述控制器,还被配置为在变焦指令的作用下,改变所述变焦镜头中的驱动器件的动力。
  14. 一种计算机可读存储介质,存储有可执行指令,用于引起控制器执行时,实现权利要求8或9所述的方法。
PCT/CN2020/096845 2019-06-28 2020-06-18 变焦镜头、变焦方法、终端及计算机可读存储介质 WO2020259386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20832711.4A EP3978980A4 (en) 2019-06-28 2020-06-18 VARIABLE FOCAL LENS, ZOOM METHOD, TERMINAL AND COMPUTER READABLE STORAGE MEDIA
US17/563,202 US20220121018A1 (en) 2019-06-28 2021-12-28 Zoom lens, zoom method, terminal, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910574067.9A CN110221416A (zh) 2019-06-28 2019-06-28 变焦镜头、变焦方法、终端及计算机可读存储介质
CN201910574067.9 2019-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,202 Continuation US20220121018A1 (en) 2019-06-28 2021-12-28 Zoom lens, zoom method, terminal, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020259386A1 true WO2020259386A1 (zh) 2020-12-30

Family

ID=67815360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096845 WO2020259386A1 (zh) 2019-06-28 2020-06-18 变焦镜头、变焦方法、终端及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220121018A1 (zh)
EP (1) EP3978980A4 (zh)
CN (1) CN110221416A (zh)
WO (1) WO2020259386A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221416A (zh) * 2019-06-28 2019-09-10 Oppo广东移动通信有限公司 变焦镜头、变焦方法、终端及计算机可读存储介质
CN113219438B (zh) * 2020-01-21 2023-03-31 苏州一径科技有限公司 一种高精度mems激光雷达发射装置和方法
CN112435637B (zh) * 2020-11-30 2022-03-18 Oppo广东移动通信有限公司 曲面屏的亮度补偿方法、亮度补偿设备及亮度补偿***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145807A (ja) * 2004-11-19 2006-06-08 Nikon Corp 可変焦点液体レンズ
CN1914522A (zh) * 2004-01-30 2007-02-14 皇家飞利浦电子股份有限公司 可变透镜***
CN101042462A (zh) * 2006-03-23 2007-09-26 三丰株式会社 恒定放大率变焦距透镜组
CN101520544A (zh) * 2008-02-27 2009-09-02 全景科技有限公司 可变曲率的透镜结构
JP2015084037A (ja) * 2013-10-25 2015-04-30 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法
CN104939793A (zh) * 2015-07-06 2015-09-30 上海理工大学 基于液体透镜的可调焦3-d胶囊内窥镜***
CN110221416A (zh) * 2019-06-28 2019-09-10 Oppo广东移动通信有限公司 变焦镜头、变焦方法、终端及计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890118B1 (de) * 1996-03-26 2000-06-14 MANNESMANN Aktiengesellschaft Optoelektronisches abbildungssystem für industrielle anwendungen
US20050002113A1 (en) * 1997-10-08 2005-01-06 Varioptic Drop centering device
CN100342258C (zh) * 2002-10-25 2007-10-10 皇家飞利浦电子股份有限公司 变焦透镜
CN2706779Y (zh) * 2004-03-30 2005-06-29 鸿富锦精密工业(深圳)有限公司 变焦透镜模组
CN100495078C (zh) * 2007-03-16 2009-06-03 东南大学 焦距和视场可调的液体微镜头及其制造方法
CN101324716B (zh) * 2007-06-14 2012-03-07 奇美电子股份有限公司 显示器装置及其显像转换装置
CN103809225B (zh) * 2014-02-19 2015-08-19 浙江大学 一种仿生变焦透镜及其驱动装置
CN109884740A (zh) * 2019-03-12 2019-06-14 上海集成电路研发中心有限公司 一种柔性可变焦镜头、成像装置
CN109765774B (zh) * 2019-03-22 2022-04-19 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914522A (zh) * 2004-01-30 2007-02-14 皇家飞利浦电子股份有限公司 可变透镜***
JP2006145807A (ja) * 2004-11-19 2006-06-08 Nikon Corp 可変焦点液体レンズ
CN101042462A (zh) * 2006-03-23 2007-09-26 三丰株式会社 恒定放大率变焦距透镜组
CN101520544A (zh) * 2008-02-27 2009-09-02 全景科技有限公司 可变曲率的透镜结构
JP2015084037A (ja) * 2013-10-25 2015-04-30 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法
CN104939793A (zh) * 2015-07-06 2015-09-30 上海理工大学 基于液体透镜的可调焦3-d胶囊内窥镜***
CN110221416A (zh) * 2019-06-28 2019-09-10 Oppo广东移动通信有限公司 变焦镜头、变焦方法、终端及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978980A4

Also Published As

Publication number Publication date
EP3978980A1 (en) 2022-04-06
EP3978980A4 (en) 2022-08-17
CN110221416A (zh) 2019-09-10
US20220121018A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CN108351493B (zh) 远摄镜头和成像设备
WO2020259386A1 (zh) 变焦镜头、变焦方法、终端及计算机可读存储介质
KR102385167B1 (ko) 줌렌즈 및 이 줌렌즈를 갖는 촬상 장치
CN104101991A (zh) 变焦透镜和包含变焦透镜的图像拾取装置
TW201830081A (zh) 光學取像鏡片系統、取像裝置及電子裝置
JP2007279147A (ja) 変倍光学系および撮像装置
JPH1020191A (ja) ズームレンズ
CN111866328B (zh) 一种摄像头模组及移动终端
CN102914855B (zh) 变焦透镜和配有变焦透镜的图像拾取装置
CN111650719A (zh) 镜头、摄像模组及电子设备
KR102492348B1 (ko) 폴디드 카메라 렌즈 설계
CN106405798B (zh) 成像装置及电子装置
JP2015197655A5 (zh)
JP2018005002A (ja) 撮像光学系および撮像装置および複眼撮像装置
JP5959872B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2001066503A (ja) ズームレンズ
JP2007293051A (ja) ズームレンズ系、撮像装置及びカメラ
JP2013120326A (ja) ズームレンズ及びそれを有する撮像装置
JPH1031155A (ja) ズームレンズ
WO2021226792A1 (zh) 镜头、摄像模组及电子设备
CN213957737U (zh) 基于远心镜头的光探测器
JP6296803B2 (ja) 光学系及びそれを有する撮像装置
CN212410943U (zh) 镜头、摄像模组及电子设备
JP2022028242A (ja) 撮像光学系、撮像装置、ステレオカメラ装置及び情報処理装置
CN107632372B (zh) 一种可调焦的潜望式双路鱼眼全景***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832711

Country of ref document: EP

Effective date: 20211230