WO2020258962A1 - 一种传输时延指示方法及装置 - Google Patents

一种传输时延指示方法及装置 Download PDF

Info

Publication number
WO2020258962A1
WO2020258962A1 PCT/CN2020/082189 CN2020082189W WO2020258962A1 WO 2020258962 A1 WO2020258962 A1 WO 2020258962A1 CN 2020082189 W CN2020082189 W CN 2020082189W WO 2020258962 A1 WO2020258962 A1 WO 2020258962A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission delay
rtt
transmission
delay
Prior art date
Application number
PCT/CN2020/082189
Other languages
English (en)
French (fr)
Inventor
缪德山
邢艳萍
赵亚利
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20831483.1A priority Critical patent/EP3993519A4/en
Priority to US17/621,465 priority patent/US11917572B2/en
Priority to KR1020217042605A priority patent/KR20220011736A/ko
Publication of WO2020258962A1 publication Critical patent/WO2020258962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method and device for indicating transmission delay.
  • the satellite moves around the earth at high speed, which makes the link distance between the satellite and the user constantly change.
  • the satellite moves around the earth at a speed of about 7.9km/s.
  • the data transmission delay of the terminal also changes, which will cause the user's uplink timing and scheduling timing to change, and therefore, the consistency of the transmission timing between the terminal and the network side cannot be guaranteed.
  • the embodiments of the present disclosure provide a transmission delay indication method and device.
  • a transmission delay indication method which includes: a network device determines a common transmission delay of at least one cell, and sends the common transmission delay to a terminal in the at least one cell. Wherein, the common transmission delay is used for the terminal in the at least one cell to determine the transmission timing with the network side.
  • the value of the public transmission delay is equal to an integer multiple of the length of the data transmission time slot.
  • the public transmission delay includes at least one of the following information:
  • RTT Reference loopback time
  • the transmission delay of the feeder link in the satellite communication system is the link between the gateway and the satellite;
  • the reference transmission delay of the user link in the satellite communication system, the user link Road is the link between the satellite and the terminal;
  • the difference between the maximum transmission delay of the user link in the satellite communication system and the reference transmission delay is the difference between the maximum transmission delay of the user link in the satellite communication system and the reference transmission delay.
  • the transmission delay of the feeder link in the satellite communication system further includes: the difference between the transmission delay of the feeder link of the current serving cell and the target cell after the handover during feed handover.
  • that the network device sends the public transmission delay to the terminal includes: the network device sends the public transmission delay to the terminal through broadcast information or dedicated signaling.
  • the method further includes: the network device receives the terminal advance (TA) sent by the terminal; the network device determines an offset according to the TA, and updates the At least one of the first time interval and the second time interval for the terminal to perform hybrid automatic repeat request (HARQ) transmission scheduling, and the updated first time interval is the first time interval configured for the terminal and the offset
  • the updated second time interval is the sum of the second time interval configured for the terminal and the offset; wherein, the first time interval is the physical downlink shared channel (PDSCH) and the physical uplink The transmission time interval between control channels (PUCCH), and the second time interval is the transmission time interval between the physical downlink control channel (PDCCH) and the physical uplink shared channel (PUSCH).
  • TA terminal advance
  • HARQ hybrid automatic repeat request
  • the value of the offset is equal to an integer multiple of the length of the data transmission slot.
  • the network device is a gateway station or a base station.
  • the public transmission delay determined by the gateway station is the public transmission delay of all cells under the satellite associated with the gateway station or all terminals in a cell
  • the public transmission delay of the network device; sending the public delay to the terminal includes: the gateway station sends the public transmission delay to at least one terminal in at least one of the cells.
  • the public transmission delay determined by the base station is the public transmission delay of a beam cell of the base station; the network equipment sending the public delay to the terminal includes : The base station sends the common transmission delay to at least one terminal in the beam cell.
  • the public transmission delay information includes: transmission delay information of a common reference point between a satellite or a gateway station and at least one cell, or a common reference point between a satellite or a gateway station and multiple different cells The difference between the transmission delays.
  • the public transmission delay information includes: a timing advance TA determined based on the transmission delay of a common reference point between a satellite or a gateway station and at least one cell, or between timing advances TA of different cells Difference.
  • a method for indicating a transmission delay which includes: a terminal receives a public transmission delay sent by a network device, and determines a transmission timing between the terminal and the network side according to the public transmission delay. Wherein, the common transmission delay is used for the terminal in at least one cell to determine the transmission timing with the network side.
  • the value of the public transmission delay is equal to an integer multiple of the length of the data transmission time slot.
  • the terminal determining the transmission timing between the terminal and the network side according to the common transmission delay includes: the terminal determining the random access response of the terminal according to the common transmission delay (RAR) The starting position and length of the window.
  • the starting position of the RAR window is based on the time at which the terminal sends the random access preamble sequence as the starting point and is delayed by at least a reference RTT time length, and the length of the RAR window is equal to between the maximum RTT and the reference RTT The sum of the difference and the processing delay of the base station.
  • the common transmission delay includes at least two of the reference RTT, the maximum RTT, the maximum RTT, and the difference between the reference RTT of the data transmission, and the terminal is used to determine the reference for the start position and length of the RAR window
  • the RTT, the maximum RTT, and the difference between the maximum RTT and the reference RTT are determined by the terminal from the delay information contained in the common transmission delay; or, the terminal is used to determine the starting position of the RAR window and At least one of the length reference RTT and the maximum RTT is determined by the terminal according to the delay information included in the common transmission delay.
  • the length of the backward delay is equal to the sum of the reference RTT and the first offset.
  • the value of the offset is equal to an integer multiple of the length of the data transmission slot.
  • the first offset is equal to the difference obtained by subtracting the reference RTT from the actual RTT of the terminal.
  • the terminal determining the transmission timing between the terminal and the network side according to the common transmission delay includes: the terminal determining the contention of the terminal according to the common transmission delay
  • the starting time and timing length of the resolution timer, the starting time of the contention resolution timer is based on the sending time of the terminal sending the Msg3 message as a starting point, and the contention resolution timer is delayed at least by reference to the RTT time length.
  • the timing duration of is equal to the sum of the difference between the maximum RTT and the reference RTT and the processing delay of the base station.
  • the common transmission delay includes at least two of the reference RTT, the maximum RTT, the maximum RTT, and the difference between the reference RTT of the data transmission, and the terminal is used to determine the reference for the start position and length of the RAR window
  • the RTT, the maximum RTT, and the difference between the maximum RTT and the reference RTT are determined by the terminal from the delay information contained in the common transmission delay; or, the terminal is used to determine the starting position of the RAR window and At least one of the length reference RTT and the maximum RTT is determined by the terminal according to the delay information included in the common transmission delay.
  • the length of the backward delay is equal to the sum of the reference RTT and the second offset.
  • the second offset is equal to the difference obtained by subtracting the reference RTT from the actual RTT of the terminal.
  • the terminal determining the transmission timing between the terminal and the network side according to the common transmission delay includes: the terminal updates the timing for HARQ transmission according to the common transmission delay At least one of the scheduled first time interval and the second time interval, the updated first time interval is the sum of the first time interval and the third offset configured for the terminal, and the updated second time interval To be the sum of the second time interval configured for the terminal and the third offset, the third offset is equal to the difference between the maximum RTT of data transmission minus the reference RTT or the maximum RTT; where, The first time interval is a transmission time interval between PDSCH and PUCCH, and the second time interval is a transmission time interval between PDCCH and PUSCH.
  • the common transmission delay includes at least two of the reference RTT, the maximum RTT, the maximum RTT, and the difference between the reference RTT of data transmission, and the terminal is used to update the first time interval and the first time interval.
  • the reference RTT, the maximum RTT, and the difference between the maximum RTT and the reference RTT of the two time intervals are determined by the terminal from the delay information included in the common transmission delay; or, the terminal is used to update the At least one of the reference RTT and the maximum RTT of the first time interval and the second time interval is determined by the terminal according to the delay information included in the common transmission delay.
  • the method further includes: the terminal determines the reference RTT according to the transmission delay of the feeder link of the satellite communication system and the reference transmission delay of the user link of the satellite communication system; The transmission delay of the link and the maximum transmission delay of the user link of the satellite communication system are determined to determine the maximum RTT; wherein the transmission delay of the feeder link, the reference transmission delay of the user link, and the user link The maximum transmission delay of is included in the public transmission delay information.
  • the transmission delay of the feeder link of the satellite communication system includes: the difference between the transmission delay of the feeder link of the current serving cell and the target cell after the handover during feed handover.
  • the method further includes: the terminal determines the reference RTT according to the reference transmission delay of the user link of the satellite communication system; and the terminal determines the maximum RTT according to the maximum transmission delay of the user link of the satellite communication system ; Wherein, the reference transmission delay of the user link and the maximum transmission delay of the user link are included in the common transmission delay information.
  • the public transmission delay information includes at least one of the following information:
  • the maximum RTT of data transmission between the network device and the terminal in the at least one cell is the maximum RTT of data transmission between the network device and the terminal in the at least one cell
  • the transmission delay of the feeder link in the satellite communication system is the link between the gateway and the satellite;
  • the reference transmission delay of the user link in the satellite communication system, the user link Road is the link between the satellite and the terminal;
  • the difference between the maximum transmission delay of the user link in the satellite communication system and the reference transmission delay is the difference between the maximum transmission delay of the user link in the satellite communication system and the reference transmission delay.
  • the public transmission delay received by the terminal includes: the transmission delay of a common reference point between a satellite or a gateway station and at least one cell, or the difference between the transmission delays of different cells.
  • the public transmission delay received by the terminal includes: a timing advance TA determined based on the transmission delay of a common reference point between a satellite or a gateway station and at least one cell, or a timing advance TA of different cells The difference between.
  • the method further includes: the terminal obtains a transmission delay difference value, increases the transmission delay difference value based on the time of the current serving cell to obtain a new time point, and measures the neighboring cell at the new time point Or the synchronization signal block (SSB) of the target cell, and establish downlink synchronization with the network or obtain broadcast information in neighboring cells or in the target cell.
  • the transmission delay difference is the transmission delay difference between the current serving cell and the neighboring cell received by the terminal, or the transmission delay difference between the current serving cell and the target cell after the cell is handed over , Or the terminal performs a subtraction operation after obtaining the timing advance TA or transmission delay of multiple cells to derive the obtained transmission delay difference.
  • a network device including: a processing module, configured to determine a public transmission delay of at least one cell, where the public transmission delay is used by a terminal in the at least one cell to determine a transmission timing with the network side ; Sending module, used to send the public transmission delay to the terminal in the at least one cell.
  • a terminal including: a receiving module configured to receive a public transmission delay sent by a network device, the public transmission delay being used by a terminal in at least one cell to determine a transmission timing with the network side; a processing module , Used to determine the transmission timing between the terminal and the network side according to the public transmission delay.
  • a network device including: a processor, a memory, and a transceiver; the processor is configured to read computer instructions in the memory, and execute any one of the above-mentioned first aspects method.
  • a terminal including: a processor, a memory, and a transceiver; the processor is configured to read computer instructions in the memory and execute the method according to any one of the above second aspects .
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any of the above-mentioned first aspects. The method described.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any of the above-mentioned second aspects. The method described.
  • the network device determines the common transmission delay, and sends the common transmission delay to the terminal in at least one cell.
  • the common transmission delay is used for the terminal in at least one cell to determine the transmission timing between the terminal and the network side, so that the consistency of the transmission timing between the terminal and the network side is maintained.
  • Fig. 1 exemplarily shows a schematic diagram of two communication modes in a satellite communication system in an embodiment of the present disclosure
  • Figure 2 exemplarily shows a contention-based random access procedure signaling interaction diagram in an embodiment of the present disclosure
  • Fig. 3 exemplarily shows a schematic diagram of RAR reception in an embodiment of the present disclosure
  • FIG. 4 exemplarily shows a schematic diagram of receiving a contention resolution message in an embodiment of the present disclosure
  • FIG. 5 exemplarily shows a schematic diagram of a downlink scheduling sequence in an embodiment of the present disclosure
  • FIG. 6 exemplarily shows a schematic diagram of the scheduling sequence of uplink PUSCH in an embodiment of the present disclosure
  • Fig. 7 exemplarily shows a schematic diagram of a process on the network device side in an embodiment of the present disclosure
  • FIG. 8 exemplarily shows a schematic flowchart of a terminal side in an embodiment of the present disclosure
  • Fig. 9 exemplarily shows a schematic diagram of the RAR window configuration in an embodiment of the present disclosure.
  • FIG. 10 exemplarily shows a configuration diagram of a contention resolution timer in an embodiment of the present disclosure
  • FIG. 11 and FIG. 12 exemplarily show a schematic diagram of a downlink scheduling sequence in an embodiment of the present disclosure
  • FIG. 13 exemplarily shows a schematic diagram of adjacent satellite handover in an embodiment of the present disclosure
  • FIG. 14 exemplarily shows a schematic diagram of synchronization signal time differences of adjacent cells in an embodiment of the present disclosure
  • FIG. 15 exemplarily shows a schematic diagram of a terminal switching between neighboring gateway stations in an embodiment of the present disclosure
  • FIG. 16 exemplarily shows a schematic structural diagram of a network device provided by an embodiment of the present disclosure
  • FIG. 17 exemplarily shows a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 18 exemplarily shows a schematic structural diagram of a network device provided by another embodiment of the present disclosure.
  • FIG. 19 exemplarily shows a schematic structural diagram of a terminal provided by another embodiment of the present disclosure.
  • Figure 1 exemplarily shows two communication modes in a satellite communication system.
  • the satellite communication there are two working modes.
  • One is the bent-pipe communication mode. In this mode, the satellite only transmits signals transparently without other processing, and the terminal communicates with the gateway station.
  • the other is the regenerative communication mode.
  • the satellite can detect the information of the received signal and process and forward it, realize the function of the base station, and connect the terminal and the customs station.
  • the link between the terminal and the satellite is called the user link
  • the link between the satellite and the gateway is called the feeder link.
  • the terminal and the gateway will experience the transmission delay T1 of the feeder link and the transmission delay T2 of the user link when data communication, and the round trip time (RTT) of its transmission is equal to 2.
  • TTT round trip time
  • the transmission delay of the terminal and the satellite includes the transmission delay T2 of the user link, and the transmission RTT is equal to 2 ⁇ T2.
  • the maximum RTT corresponds to the longest distance terminal and the network side (gateway or satellite) transmission delay
  • the minimum RTT corresponds to the closest distance terminal and the network side (gateway or satellite) transmission delay. Because the satellite is moving, the radius and coverage area of the cell also change, so the value of RTT is variable.
  • different users are in different geographical locations, and their distances from the network side are also different.
  • Figure 2 exemplarily shows a contention-based random access process.
  • the terminal accesses the network through a contention-based random access process.
  • the process basically includes the following 4 steps:
  • Msg1 The terminal selects a random access preamble (preamble) and a physical random access channel (PRACH) resource, and uses the PRACH resource to send the selected random access preamble to the base station.
  • preamble a random access preamble
  • PRACH physical random access channel
  • Msg2 The first physical downlink control channel (PDCCH) opportunity (occasion) after the terminal sends the random access preamble sequence to start the random access response (random access response, RAR) window (RAR window), and Monitor RAR messages in the RAR window.
  • the RAR message includes the random access preamble sequence identifier, timing advance (timing advance, TA) information, uplink grant resources (UL grant), and the temporary C-RNTI (Cell-Radio Network Tempory Identity) allocated by the network to the terminal. Cell-wireless network temporary identification).
  • Msg3 The terminal sends uplink transmission on the UL grant specified by Msg2.
  • the uplink transmission content of Msg3 corresponding to random access triggered by different random access reasons is different. For example, for initial access, Msg3 transmits Radio resource control (Radio Resource Control, RRC) connection establishment request message.
  • RRC Radio Resource Control
  • Msg4 After the terminal sends Msg3, the first symbol after Msg3 is sent starts the contention resolution timer (ra-ContentionResolutionTimer), and monitors the PDCCH during the running of the timer, receives the contention resolution message, and the terminal judges randomly according to whether the contention is resolved Whether the access is successful.
  • the temporary C-RNTI is automatically converted into the unique terminal identification C-RNTI of the terminal in the cell after the contention is resolved successfully.
  • Fig. 3 exemplarily shows a schematic diagram of RAR reception.
  • the terminal After sending the random access preamble sequence, the terminal receives the RAR message sent by the network side at a designated location. At this time, the terminal needs to know the starting position and the length of the RAR window.
  • the terminal After sending the random access preamble sequence, the terminal needs to start RAR detection at the interval of RTT, that is, the starting offset of the RAR window is equal to one RTT, and the RAR window length is configured based on the processing delay of the base station. That is, the length of the RAR window is equal to the processing delay of the base station. Since the network side does not know the actual location of the terminal at the time of initial access, the RAR window length needs to consider the difference in RTT of different terminals.
  • Fig. 4 exemplarily shows a schematic diagram of receiving a contention resolution message.
  • the terminal For random access contention resolution, after sending the Msg 3 message, the terminal needs to wait for the arrival of the contention resolution (Msg4) message. At this time, it is necessary to consider the starting point for receiving the contention resolution (Msg4) message and the contention resolution timer (ra-ContentionResolutionTimer) The timing length.
  • the terminal can start the detection starting point of the contention resolution (Msg4) message according to RTT, that is, determine the start time of the timer, and configure the timing length of the timer according to the processing delay of the base station, and the timing length of the timer is equal to the processing delay of the base station . Since the network does not know the actual location of the terminal at the time of initial access, the timing length of the timer needs to consider the difference in RTT of different terminals.
  • Msg4 contention resolution
  • hybrid automatic retransmission request (Hybrid Automatic retransmission reQuest) transmission
  • the base station is scheduling physical downlink shared channel (PDSCH) and physical uplink shared channel (PUSCH) It is necessary to consider the terminal's uplink timing advance TA and the terminal's processing time.
  • the base station can configure K0, K1, and K2 for the terminal, where K0 is the time interval between PDCCH and PDSCH, K1 is the time interval between PDSCH and physical uplink control channel (PUCCH), and K2 is the time interval between PDCCH and PUSCH These intervals are generally related to the processing capacity of the terminal and the timing advance TA.
  • Fig. 5 exemplarily shows a schematic diagram of a downlink scheduling sequence.
  • the base station sends PDCCH at T0, and the terminal receives PDSCH at T0+TD+K0, where K0 is the time interval between the PDCCH and PDSCH configured by the base station, and TD is the transmission delay from the base station to the terminal.
  • the base station specifies that the PUCCH feedback HARQ-ACK time is at time K1 after receiving the PDSCH.
  • the scheduled transmission time of the PUCCH is T0+TD+K0+K1+offset1
  • the transmission time after the actual TA advance is T0+TD+K0+K1+offset1-TA.
  • the value of TA is based on the compensation algorithm of the actual TA. If the absolute TA compensation is adopted, then TA is equal to 2 ⁇ TD.
  • the network side does not know the value of the advance TA, so there is a timing inconsistency between the terminal and the network.
  • the network does not know the value of the TA compensated by the terminal, so the network side may have problems in receiving the uplink signal.
  • Fig. 6 exemplarily shows the scheduling timing of the uplink PUSCH.
  • the scheduled transmission time of the PUSCH is T0+TD+K2+offset2, and the transmission time after the actual TA advance is T0+TD+K2+offset2-TA.
  • the transmission timing between the terminal and the network side will be inconsistent, which can be manifested in the following aspects:
  • the terminal does not know the RTT range of the cell, so that it cannot set an appropriate random access detection window (such as RAR window, contention resolution timer);
  • the terminal does not know the reference RTT, so that it cannot perform TA compensation
  • the network side does not know the compensation value of the timing advance TA of the terminal, so that the uplink data signal cannot be received in the correct time window.
  • the transmission delay of the terrestrial 5G system is relatively short. Therefore, the configuration of the RAR window or the configuration of the contention resolution timer in the current 5G system cannot be directly applied to the satellite communication system.
  • the TA compensation value of different terminals Different, it is difficult for the network side to track the timing of different terminals or the terminal side cannot maintain synchronization with the network side based on a specific timing. Therefore, a new technical solution is needed to solve the above problems.
  • an embodiment of the present disclosure proposes a method for indicating transmission delay.
  • the network side can send the common transmission delay to the terminal, so that the network side and the terminal can determine the detection window of random access and the HARQ scheduling timing relationship based on the common transmission delay, so that the terminal and the network side Keep the consistency of the transmission timing between.
  • Fig. 7 exemplarily shows the process executed by the network side in the embodiment of the present disclosure.
  • the process can include:
  • the network device determines the public transmission delay.
  • the public transmission delay is the public transmission delay of at least one cell, which can be shared by the terminals in the at least one cell, and is used for the terminals in the at least one cell to determine the transmission timing between the terminal and the network side.
  • the network device sends the public transmission delay to the terminal in the at least one cell.
  • the public transmission delay may include at least one of the following information:
  • the data transmission refers to data transmission between the terminal and the network side.
  • the reference RTT can be used as a reference RTT.
  • the reference RTT is the timing reference RTT of the terminal in the cell, which can be determined according to the smallest RTT in the cell, but it is not necessarily the same as the smallest RTT of a cell. This depends on the network configuration, because the minimum RTT directly corresponds to the cell coverage.
  • the reference RTT is the timing reference for all terminals in the cell, and it may change relatively slowly.
  • the network device can set at least two parameters among the reference RTT, the maximum RTT, and the difference between the reference RTT and the maximum RTT of the data transmission. Send to the terminal, so that the terminal can directly obtain the reference RTT and the maximum RTT of the data transmission, and then can directly determine the random access detection window and the HARQ scheduling timing relationship based on the reference RTT and the maximum RTT.
  • the network device sends the reference RTT, the maximum RTT, and the difference between the reference RTT and the maximum RTT for data transmission in the elbow communication mode; if the terminal and When the regeneration communication mode is adopted between the network sides, the network device sends the reference RTT, the maximum RTT, and the difference between the reference RTT and the maximum RTT for data transmission in the regeneration communication mode.
  • the network device when the network side and the terminal adopt the elbow communication mode for communication, can compare the transmission delay related to the feeder link and the user The link-related transmission delay is sent to the terminal. Specifically, the network device can send the transmission delay of the feeder link, the reference transmission delay of the user link, and the maximum transmission delay of the user link to the terminal, so that the terminal can determine the bent pipe communication mode according to these parameters
  • the reference RTT, the maximum RTT and at least two of the reference RTT and the maximum RTT of the data transmission under the following data transmission so as to further determine the random access detection based on at least two of the determined reference RTT and the maximum RTT Scheduling timing relationship between window and HARQ.
  • the network device when the network side and the terminal adopt the regenerative communication mode for communication, can send the transmission delay related to the user link to the terminal.
  • the network device may send the reference transmission delay of the user link and the maximum transmission delay of the user link to the terminal, so that the terminal can determine the reference RTT, the maximum RTT, and the maximum RTT of data transmission in the regeneration communication mode according to these parameters. At least two of the reference RTT and the maximum RTT, so as to further determine the random access detection window and the HARQ scheduling timing relationship according to at least two of the determined reference RTT and the maximum RTT.
  • the network device can also send the reference RTT and the transmission delay of the feeder link and the maximum transmission delay of the feeder link used to derive the maximum RTT to the terminal; use regeneration between the network side and the terminal
  • the network device may also send the reference RTT and the maximum transmission delay of the user link used to derive the maximum RTT to the terminal. In this way, some of the parameters required by the terminal for the random access detection window and the HARQ scheduling timing relationship can be obtained directly from the received public transmission delay, and the other part can be derived from the parameters in the received public transmission delay get.
  • the network equipment in Figure 7 can be a gateway station or a base station.
  • the public transmission delay determined by the gateway station may be the public transmission delay of all cells under the satellite associated with the gateway station or It is the common transmission delay of all terminals in a cell; in S702, the gateway sends the common transmission delay to at least one terminal in at least one of the cells.
  • the gateway station may send the common transmission delay to at least one base station among all base stations connected to the gateway station, and then the base station can send it to the terminal.
  • the public transmission delay determined by the base station may be the public transmission delay of a beam cell of the base station; in S702, the base station transmits the public transmission time Delayed transmission to at least one terminal in the beam cell.
  • the network device may send the public transmission delay to the terminal through broadcast information or dedicated signaling.
  • the broadcast information may specifically be a system information block (SIB), and the dedicated signaling may be RRC signaling. Since the terminal can monitor the broadcast channel, the public transmission delay is sent through broadcast information, so that all terminals in a cell can receive the public transmission delay.
  • SIB system information block
  • RRC radio resource control
  • the transmission delay of the feeder link in the satellite communication system further includes: the transmission delay of the feeder link of the current serving cell and the target cell after the handover during the feed handover The difference.
  • the public transmission delay information includes: the transmission delay information of a common reference point between a satellite or a gateway station and at least one cell, or a satellite or a gateway station and multiple different The difference between the transmission delays of the common reference point of the cell.
  • the common transmission delay information includes: a timing advance (TA) determined based on the transmission delay of a common reference point between a satellite or a gateway station and at least one cell, or different The difference between the cell's timing advance (TA).
  • TA timing advance
  • Fig. 8 exemplarily shows a process on the terminal side in an embodiment of the present disclosure.
  • the process may include:
  • S801 The terminal receives the public transmission delay sent by the network device.
  • S802 The terminal determines the transmission timing between the terminal and the network side according to the public transmission delay.
  • determining the transmission timing between the terminal and the network side includes configuring a detection window in the random access process. More specifically, configuring the detection window in the random access process includes at least one of the following configuration operations: configuring a RAR window (RAR window), and configuring a contention resolution timer (ra-ContentionResolutionTimer).
  • RAR window configuring a RAR window
  • ra-ContentionResolutionTimer configuring a contention resolution timer
  • the terminal configures the RAR window in the random access process, including configuring the starting position and length of the RAR window.
  • the starting position of the RAR window is based on the time when the terminal sends the random access preamble sequence (Msg1 message) as the starting point. It is delayed by at least the reference RTT time length.
  • the length of the RAR window is equal to the maximum RTT and the reference RTT. The sum of the difference between the two and the processing delay of the base station.
  • the terminal may also configure a first offset for offsetting based on the starting position of the RAR window determined above.
  • the starting position of the RAR window is: taking the sending moment of the random access preamble sequence (Msg1 message) sent by the terminal as the starting point, and delaying the time length of the sum of the reference RTT and the first offset backward.
  • different terminals may configure the size of the first offset according to their own conditions, and the size of the first offset configured by different terminals may be different.
  • the first offset configured by a terminal is equal to the difference obtained by subtracting the reference RTT from the actual RTT of the terminal.
  • the starting position of the RAR window is: the terminal sends the random access preamble sequence ( The sending time of the Msg1 message) is the starting point, and the actual RTT of the terminal is delayed backward.
  • Fig. 9 exemplarily shows a schematic diagram of the RAR window configuration in an embodiment of the present disclosure.
  • the terminal needs to receive the RAR message (Msg2 message) sent by the network side at a designated location. At this time, the terminal needs to determine The starting position and length of the RAR window.
  • the terminal closest to the base station (terminal 1) and the terminal farthest from the base station (terminal 2) both send Msg1 messages at the same time.
  • the RAR message sent by the base station to the terminal 1 (shown as Msg2_1 in the figure) and the RAR message sent to the terminal 2 (shown as Msg2_2 in the figure) have different arrival times.
  • the time length between the time when the base station sends the Msg2_1 message to the terminal 1 and the time when the terminal 1 sends the Msg1 message is roughly the sum of the minimum RTT time length and the base station processing delay, and the time when the base station sends the Msg2_2 message to the terminal 2 is equal to
  • the length of time between the moments when the terminal 2 sends the Msg1 message is roughly the sum of the maximum RTT time length and the base station processing delay.
  • the RAR windows of terminal 1 and terminal 2 are offset by a reference RTT time length from the moment of sending the Msg1 message, and the window length is equal to the base station processing delay +(Max RTT-reference RTT). It can be seen that the arrival time of the Msg2_1 message is within the RAR window of the terminal 1, and the arrival time of the Msg2_2 message is within the RAR window of the terminal 2. Therefore, the method provided in the embodiments of the present disclosure is used to configure the RAR window to ensure that the terminal can receive the base station's transmission. RAR message.
  • the terminal configures the contention resolution timer in the random access process, including configuring the start time and timing length of the timer.
  • the starting time of the contention resolution timer is based on the sending time of the terminal sending the Msg3 message as the starting point, and the time that is delayed by at least the reference RTT time length, and the time duration of the contention resolution timer is equal to the difference between the maximum RTT and the reference RTT The sum of the value and the processing delay of the base station.
  • the terminal may also configure a second offset for offsetting on the basis of the determined starting time of the contention resolution timer.
  • the starting time of the contention resolution timer is: taking the sending time of the Msg3 message sent by the terminal as the starting point, and delaying the time length of the sum of the reference RTT and the second offset backward.
  • different terminals may configure the size of the second offset according to their own conditions, and the size of the second offset configured by different terminals may be different.
  • the second offset configured by a terminal is equal to the difference obtained by subtracting the reference RTT from the actual RTT of the terminal.
  • Fig. 10 exemplarily shows a configuration diagram of a contention resolution timer in an embodiment of the present disclosure.
  • the terminal needs to receive the contention resolution message (Msg4 message) sent by the network side at a designated location. At this time, the terminal needs to determine the contention resolution timer (ra -ContentionResolutionTimer) start time and timing duration.
  • ra -ContentionResolutionTimer the contention resolution timer
  • the terminal closest to the base station (terminal 1) and the terminal farthest from the base station (terminal 2) both send Msg3 messages at the same time.
  • the Msg4 message sent by the base station to the terminal 1 (shown as Msg4_1 in the figure) and the Msg4 message sent to the terminal 2 (shown as Msg4_2 in the figure) have different arrival times.
  • the time length between the time when the base station sends the Msg4_1 message to the terminal 1 and the time when the terminal 1 sends the Msg3 message is roughly the sum of the minimum RTT time length and the base station processing delay, and the time when the base station sends the Msg4_2 message to the terminal 2 is equal to
  • the length of time between the moments when the terminal 2 sends the Msg3 message is roughly the sum of the maximum RTT time length and the base station processing delay.
  • the contention resolution timers of both terminal 1 and terminal 2 start at a time offset from the time of sending the Msg3 message by one reference RTT.
  • the timing length Both are equal to the base station processing delay + (maximum RTT-reference RTT). It can be seen that the arrival time of the Msg4_1 message is within the timed time of the contention resolution timer of the terminal 1, and the arrival time of the Msg4_2 message is within the timed time of the contention resolution timer of the terminal 2. Therefore, the method provided by the embodiment of the present disclosure is used to configure The contention resolution timer can ensure that the terminal can receive the Mag4 message sent by the base station.
  • the reference RTT, the maximum RTT, and the difference between the maximum RTT and the reference RTT, which are used to configure the detection window (RAR window or contention resolution timer) in the random access process are among the three At least two of are included in the public transmission delay sent by the network device, that is, are included in the public transmission delay parameter set as the public transmission delay parameter.
  • at least one of the reference RTT and the maximum RTT used to configure the detection window (RAR window or contention resolution timer) in the random access process is determined by the terminal according to the common transmission delay , That is, it is derived by the terminal according to the parameters in the parameter set of the public transmission delay.
  • the public transmission delay sent by the network device includes the reference RTT and the maximum RTT of data transmission, and the terminal can directly obtain the reference RTT, the maximum RTT, and the difference between the maximum RTT and the reference RTT according to the public transmission delay sent by the network device Value to configure the detection window (RAR window or contention resolution timer) in the random access process.
  • the detection window RAR window or contention resolution timer
  • the reference RTT and the maximum RTT sent by the network device are the reference RTT and the maximum RTT in the bent pipe communication mode.
  • the reference RTT and the maximum RTT sent by the network device are the reference RTT and the maximum RTT in the regeneration communication mode.
  • the public transmission delay sent by the network device includes the reference RTT of the data transmission, the difference between the maximum RTT and the reference RTT, and the terminal can directly obtain the reference RTT, the maximum RTT, and the maximum RTT according to the public transmission delay sent by the network device.
  • the difference between the reference RTT and the RTT sent by the network device is the difference between the reference RTT and the RTT in the bent pipe communication mode.
  • the difference between the reference RTT and the RTT sent by the network device is the difference between the reference RTT and the RTT in the regeneration communication mode.
  • the public transmission delay sent by the network device includes the maximum RTT of the data transmission, the difference between the maximum RTT and the reference RTT, and the terminal can directly obtain the reference RTT, the maximum RTT, and the maximum RTT according to the public transmission delay sent by the network device.
  • the difference between the RTT and the reference RTT so as to configure the detection window (RAR window or contention resolution timer) in the random access process.
  • the maximum RTT and the difference between the RTT sent by the network device are the difference between the maximum RTT and the RTT in the bent pipe communication mode.
  • the maximum RTT and the difference between the RTT sent by the network device are the maximum RTT and the difference between the RTT in the regeneration communication mode.
  • the public transmission delay sent by the network equipment includes the transmission delay of the feeder link, the reference transmission delay of the user link, and the maximum transmission delay of the user link.
  • the terminal calculates the reference RTT and the maximum RTT according to the above parameters, and the difference between the maximum RTT and the reference RTT:
  • Reference RTT 2 ⁇ (transmission delay of feeder link + reference transmission delay of user link);
  • RTT difference maximum RTT-reference RTT.
  • the public transmission delay sent by the network equipment includes the reference transmission delay of the user link and the maximum transmission delay of the user link, and the terminal calculates the reference RTT and the maximum transmission delay according to the above parameters.
  • Reference RTT 2 ⁇ reference transmission delay of user link
  • RTT difference maximum RTT-reference RTT.
  • the network device and the terminal configure the HARQ timing.
  • the TA value of satellite communication is relatively large.
  • the base station needs to consider the user's uplink timing advance TA and terminal processing time when scheduling PDSCH and PUSCH. .
  • the uplink timing of the terminal is aligned with the reference RTT, that is, no matter where the terminal is located, after the timing of sending is advanced Align with the time point of the reference RTT. Because the transmission delays of different terminals are different, the value of TA is also different.
  • the network side uses the difference between the maximum RTT and the reference RTT as the maximum possible TA for scheduling time interval configuration.
  • the terminal when the terminal performs relative TA compensation, on the terminal side, the terminal updates K1 (transmission time interval between PDSCH and PUCCH) and K2 (between PDCCH and PUSCH) for HARQ transmission scheduling. Transmission time interval between).
  • the updated K1 is equal to the sum of K1 configured to the terminal and an offset
  • the updated K2 is equal to the sum of K2 configured to the terminal and an offset.
  • the offset is equal to the maximum RTT of the data transmission minus the difference obtained by the reference RTT, that is, the offset needs to be equal to the maximum relative TA value.
  • the same method can also be used to increase the offset (the maximum RTT minus the reference RTT on the basis of the K1 and K2 configured for the terminal). The obtained difference), and perform HARQ transmission scheduling on the terminal based on the adjusted K1 and K2.
  • the uplink timing of the terminal needs to compensate for all transmission delays. Because it is absolute compensation, the base station's downlink and uplink timings are aligned, but the terminal's transmission time needs to be advanced by 2 ⁇ max RTT. However, because the terminal receives the base station's scheduling signal, there is an absolute timing difference than the base station. Adjust the scheduling time interval, that is, a backward delay of 2 ⁇ maximum RTT as the base station's scheduled terminal transmission time, but the actual transmission of the terminal is advanced to ensure the timing alignment of the terminal and the base station.
  • the terminal when the terminal performs absolute TA compensation, on the terminal side, the terminal updates K1 (transmission time interval between PDSCH and PUCCH) and K2 (between PDCCH and PUSCH) used for HARQ transmission scheduling. Transmission time interval between).
  • the updated K1 is equal to the sum of K1 configured to the terminal and an offset
  • the updated K2 is equal to the sum of K2 configured to the terminal and an offset.
  • the offset is equal to the maximum RTT of data transmission.
  • the same method can be used to increase the offset (maximum RTT) based on the K1 and K2 configured to the terminal, and based on The adjusted K1 and K2 perform HARQ transmission scheduling on the terminal.
  • the network side since the actual TA of the terminal is always changing, the network side does not know the terminal’s TA value, and the maximum TA is used for HARQ timing management.
  • the network side defaults to the terminal’s TA is equal to the difference obtained by subtracting the reference RTT from the maximum RTT (in the case where the terminal adopts relative TA compensation), or the TA of the default terminal is equal to the maximum RTT (in the case where the terminal adopts absolute TA compensation).
  • the timing offset of K1 and K2 is equal to the default TA value.
  • the network side can determine an offset according to the TA reported by the terminal, which is used to adjust the K1 and K2 for HARQ scheduling of the terminal.
  • the shift amount can be equal to the TA reported by the terminal.
  • Fig. 11 and Fig. 12 exemplarily show a schematic diagram of downlink scheduling sequence.
  • the base station sends PDCCH at T0, and the terminal receives PDSCH at T0+TD+K0, where K0 is the time interval between the PDCCH and PDSCH configured by the base station, and TD is The transmission delay from the base station to the terminal, and the base station specifies that the PUCCH feedback HARQ-ACK time is K1 after receiving the PDSCH.
  • the scheduled transmission time of the terminal's PUCCH is T0+TD+K0+K1+max_TA-real_TA.
  • max_TA represents the maximum TA, which is equal to the maximum RTT here
  • real_TA represents the actual TA of the terminal.
  • the scheduling offset value here is equal to max_TA, and the offset value can be selected equal to or greater than the maximum TA to ensure that the signal feedback transmission time cannot be earlier than the signal reception time.
  • the base station sends the PDCCH at T0, and the terminal receives the PDCCH at T0+TD, where TD is the transmission delay from the base station to the terminal.
  • the time when the terminal sends the PDSCH is T0+TD+K2+max_TA-real_TA.
  • max_TA represents the maximum TA, which is equal to the maximum RTT here
  • real_TA represents the actual TA of the terminal.
  • the scheduling sequence at this time needs to be configured in K1 or An offset is added to K2, and the offset can be determined according to the TA_UE reported by the terminal.
  • the offset can be equal to the TA_UE reported by the terminal.
  • the network device receives the TA_UE reported by the terminal, it updates at least one of K1 and K2 of the terminal as the offset value for scheduling the terminal, and the network device schedules the terminal according to the updated K1 and K2 for scheduling.
  • the updated K1 is equal to the sum of the pre-update K1 (that is, the K1 configured to the terminal) and the offset
  • the updated K2 is equal to the pre-update K2 (that is, the K2 configured to the terminal) and the offset Sum.
  • RTT parameters such as reference RTT, maximum RTT, actual RTT of the terminal, etc.
  • transmission delay parameters such as the transmission delay of the feeder link, the user link Refer to the transmission delay, the maximum transmission delay of the user link, etc.
  • the time offset such as the first offset, the second offset, and the third offset
  • the length of the time slot can be rounded according to the actual time value, for example, rounding up or down can be used, or the length of the time slot can be quantized according to the actual time value to make it equal to an integer multiple of the data transmission time slot length.
  • the terminal obtains the transmission delay difference value, and uses the time of the current serving cell as a reference, increases the transmission delay difference value to obtain a new time point, and measures at the new time point
  • the transmission delay difference is the transmission delay difference between the current serving cell and the neighboring cell received by the terminal, or the transmission delay difference between the current serving cell and the target cell after the cell is handed over , Or the terminal performs a subtraction operation after obtaining the timing advance TA or transmission delay of multiple cells to derive the obtained transmission delay difference.
  • the indication of the transmission delay can be used for the measurement of neighboring cells and the fast synchronization with the target cell after handover.
  • the terminal may need to connect to a new satellite or the same satellite may be connected to a new gateway. After connecting with a new satellite or connecting with a new gateway, if the terminal is switched The target cell and the current serving cell are inconsistent, and the terminal needs to know the difference in transmission delay between the handover cell and the serving cell in order to quickly obtain the location of the synchronization signal block (SSB) of the neighboring cell for downlink synchronization.
  • SSB synchronization signal block
  • Radio Resource Management if the transmission delay difference of adjacent cells is obtained, it is also conducive to rapid RRM measurement of adjacent cells.
  • Figures 13 and 15 show two situations.
  • Figure 13 shows the handover of adjacent satellites
  • Figure 15 shows the handover of adjacent gateway stations. In both cases, there is a transmission delay. difference.
  • the terminal is in the overlapping coverage area of two satellites.
  • the difference between the transmission distance d1 and the transmission distance d2 can be converted into a difference in transmission time, but because there are many users under the satellite,
  • the network only indicates the common transmission distance d01 and d02 of cell 1 and cell 2, or the transmission delay values T1 and T2. It can also indicate the absolute value or difference value of the timing advance TA of the two cells.
  • the calculation of TA is based on the common TA It is a benchmark, that is, twice the common time delay between the satellite and the reference point. This TA value is used to help the terminal perform uplink synchronization, and it can also indicate the TA difference between the two cells.
  • the terminal can obtain transmission delay difference information based on network instructions. Based on this difference information, the terminal performs synchronization signal block (SSB) detection and estimation on neighboring cells or target cells to obtain synchronization information or cell broadcast information.
  • SSB synchronization signal block
  • Figure 14 shows the synchronization signal time difference between two adjacent cells or the current cell and the target cell after the handover, plus the synchronization signal cycle and time position of the two cells are exactly the same, but due to the satellite or gateway to the two cells There is a time difference. This time difference will be reflected in the time difference when the terminal receives the synchronization signal.
  • the terminal derives the time difference of the SSB signal according to the indicated point time difference, and can quickly detect the synchronization signal and the broadcast signal.
  • Figure 15 shows the scenario of feeder switching.
  • the same satellite is switched at different gateways.
  • the satellite can switch the feeder link according to the coverage area of the gateway.
  • the distance between the satellite and the terminal remains unchanged. , That is, the transmission delay has not changed, but the feed distance has changed, and the transmission delay has also changed.
  • the network can indicate the absolute value of the feed transmission delay, and it can also indicate the feeder link transmission of two gateways and satellites. The relative value of the delay, based on this difference, the terminal quickly obtains the SSB signal of the synchronization signal block of the target cell to the new target cell after the feeder link is switched, thereby obtaining synchronization information or cell broadcast information.
  • the embodiments of the present disclosure also provide a terminal and a network device, and the terminal and the network device can be respectively applied to the foregoing embodiments.
  • Fig. 16 exemplarily shows a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device may include: a processing module 1301 and a sending module 1302, where:
  • the processing module 1301 is configured to determine the public transmission delay of at least one cell, and the public transmission delay is used to determine the transmission timing between the terminal in the at least one cell and the network side; the sending module 1302 is configured to transfer the public The transmission delay is sent to the terminal in the at least one cell.
  • each module in the above-mentioned network device can refer to the description of the function implemented by the network device in the foregoing embodiment, and will not be repeated here.
  • FIG. 17 exemplarily shows a schematic structural diagram of a terminal in an embodiment of the present disclosure.
  • the network device may include: a receiving module 1401 and a processing module 1402, where:
  • the receiving module 1401 is configured to receive a public transmission time delay sent by a network device, and the public transmission time delay is used for terminals in at least one cell to determine the transmission timing with the network side; the processing module 1402 is configured to receive the public transmission time delay according to the public transmission time. Delay, determine the transmission timing between the terminal and the network side.
  • the embodiments of the present disclosure also provide a network device and a terminal, which can respectively implement the terminal-side function and the network-side function in the foregoing embodiment.
  • Fig. 18 exemplarily shows a schematic structural diagram of a network device in an embodiment of the present disclosure.
  • the network device may include a processor 1501, a memory 1502, a transceiver 1503, and a bus interface 1504.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1502 can store data used by the processor 1501 when performing operations.
  • the transceiver 1503 is used to receive and send data under the control of the processor 1501.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1501 and various circuits of the memory represented by the memory 1502 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1502 can store data used by the processor 1501 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 1501 or implemented by the processor 1501.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 1501 or instructions in the form of software.
  • the processor 1501 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the embodiments of the present disclosure The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1502, and the processor 1501 reads the information in the memory 1502, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1501 is configured to read computer instructions in the memory 1502 and execute functions implemented on the network side in the process shown in FIG. 7.
  • the embodiments of the present disclosure also provide a terminal, which can implement the terminal side functions in the foregoing embodiments.
  • FIG. 19 exemplarily shows a schematic structural diagram of a terminal in an embodiment of the present disclosure.
  • the terminal may include a processor 1601, a memory 1602, a transceiver 1603, and a bus interface 1604.
  • the processor 1601 is responsible for managing the bus architecture and general processing, and the memory 1602 can store data used by the processor 1601 when performing operations.
  • the transceiver 1603 is used to receive and send data under the control of the processor 1601.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1601 and various circuits of the memory represented by the memory 1602 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 1601 is responsible for managing the bus architecture and general processing, and the memory 1602 can store data used by the processor 1601 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 1601 or implemented by the processor 1601.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 1601 or instructions in the form of software.
  • the processor 1601 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the embodiments of the present disclosure
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1602, and the processor 1601 reads the information in the memory 1602, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1601 is configured to read computer instructions in the memory 1602 and execute functions implemented on the terminal side in the process shown in FIG. 8.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute what is executed by the terminal in the foregoing embodiment method.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the execution of the network device in the above-mentioned embodiment Methods.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种传输时延指示方法及装置。本公开实施例中,网络设备确定至少一个小区的公共传输时延,并将所述公共传输时延发送给所述至少一个小区内的终端。其中,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序。本公开使得终端与网络侧之间保持传输时序的一致性。

Description

一种传输时延指示方法及装置
相关申请的交叉引用
本公开要求在2019年06月28日提交中国专利局、申请号为201910580567.3、申请名称为“一种传输时延指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开实施例中;本公开要求在2019年11月15日提交中国专利局、申请号为201911122241.2、申请名称为“一种传输时延指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开实施例中。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输时延指示方法及装置。
背景技术
卫星通信***中,卫星高速环绕地球运动,这使得卫星和用户的链路距离不断发生变化。比如,低轨卫星通信***中,卫星大约以7.9km/s的速度环绕地球运动。
一方面,由于距离的变化,导致终端的数据传输时延也发生变化,这会带来用户的上行定时和调度时序发生变化,因而无法保证终端与网络侧的传输时序的一致性。
另一方面,由于波束的移动,一个波束在地面的小区覆盖区域也是变化的,不同位置地点的终端的上行传输时延也是变化的,这对多个用户的上行传输时序的管理,是一个巨大的挑战。
因此,如何在卫星通信***中,保持终端与网络侧的传输时序,是目前需要解决的技术问题。
发明内容
本公开实施例提供了一种传输时延指示方法及装置。
第一方面,提供一种传输时延指示方法,包括:网络设备确定至少一个小区的公共传输时延,并将所述公共传输时延发送给所述至少一个小区内的终端。其中,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序。
可选地,所述公共传输时延的取值等于数据传输时隙长度的整数倍。
在一种可能的实现方式中,所述公共传输时延,包括以下信息中的至少一个:
所述至少一个小区内的终端与网络侧之间数据传输的参考环回时间(RTT);
所述至少一个小区内的终端与网络侧之间数据传输的最大RTT;
所述至少一个小区内的终端与网络侧之间数据传输的最大RTT和参考RTT之间的差值;
卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
卫星通信***中的用户链路的最大传输时延;
卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
可选地,所述卫星通信***中的馈电链路的传输时延,还包括;进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
在一种可能的实现方式中,所述网络设备将所述公共传输时延发送给终端,包括:所述网络设备通过广播信息或专用信令,将所述公共传输时延发送给终端。
在一种可能的实现方式中,还包括:所述网络设备接收终端发送的所述终端的提前量(TA);所述网络设备根据所述TA确定一个偏移量,更新用于对所述终端进行混合自动重传请求(HARQ)传输调度的第一时间间隔和第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与所述偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述偏移量之和;其中,所述第一时间间隔为物理下行共享信道(PDSCH)和物理上行控制信道(PUCCH)之间的传输时间间隔,所述第二时间间隔为物理下行控制信道(PDCCH)和物理上行共享信道(PUSCH)之间的传输时间间隔。
可选地,所述偏移量的取值等于数据传输时隙长度的整数倍。
在一种可能的实现方式中,所述网络设备为信关站或基站。
可选地,所述网络设备为信关站时,所述信关站确定的公共传输时延为所述信关站关联的卫星下的所有小区的公共传输时延或者是一个小区内所有终端的公共传输时延;所述网络设备将所述公共时延发送给终端,包括:所述信关站将所述公共输时延发送给所述所有小区中至少一个小区内的至少一个终端。
可选地,所述网络设备为基站时,所述基站确定的公共传输时延为所述基站的一个波束小区的公共传输时延;所述网络设备将所述公共时延发送给终端,包括:所述基站将所述公共传输时延发送给所述波束小区内的至少一个终端。
可选地,所述公共传输时延信息,包括:卫星或信关站与至少一个小区的公共参考点的传输时延信息,或者,卫星或信关站与多个不同小区的公共参考点的传输时延之间的差值。
可选地,所述公共传输时延信息,包括:基于卫星或信关站与至少一个小区的公共参 考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
第二方面,提供一种传输时延指示方法,包括:终端接收网络设备发送的公共传输时延,根据所述公共传输时延,确定所述终端与网络侧的传输时序。其中,所述公共传输时延用于至少一个小区内的终端确定与网络侧的传输时序。
所述公共传输时延的取值等于数据传输时隙长度的整数倍。
在一种可能的实现方式中,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:所述终端根据公共传输时延确定所述终端的随机接入响应(RAR)窗口的起始位置和长度。所述RAR窗口的起始位置是以所述终端发送随机接入前导序列的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述RAR窗口的长度等于最大RTT和参考RTT之间的差值与基站处理时延之和。其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
可选地,以所述终端发送随机接入前导序列的发送时刻为起点,向后推迟的时间长度等于所述参考RTT与第一偏移量之和。可选地,所述偏移量的取值等于数据传输时隙长度的整数倍。
可选地,所述第一偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
在一种可能的实现方式中,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:所述终端根据所述公共传输时延,确定所述终端的竞争解决定时器的启动时刻和定时长度,所述竞争解决定时器的启动时刻是以所述终端发送Msg3消息的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述竞争解决定时器的定时时长等于最大RTT和参考RTT之间的差值与基站处理时延之和。其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
可选地,以所述终端发送Msg3消息的发送时刻为起点,向后推迟的时间长度等于所述参考RTT与第二偏移量之和。
可选地,所述第二偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
在一种可能的实现方式中,所述终端根据所述公共传输时延,确定所述终端与网络侧 的传输时序,包括:所述终端根据所述公共传输时延,更新用于进行HARQ传输调度的第一时间间隔、第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与第三偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述第三偏移量之和,所述第三偏移量等于数据传输的最大RTT减去参考RTT得到的差值或者等于最大RTT;其中,所述第一时间间隔为PDSCH和PUCCH之间的传输时间间隔,所述第二时间间隔为PDCCH和PUSCH之间的传输时间间隔。其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于更新所述第一时间间隔和所述第二时间间隔的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于更新所述第一时间间隔和所述第二时间间隔的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
可选地,还包括:所述终端根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的参考传输时延,确定所述参考RTT;所述终端根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的最大传输时延,确定所述最大RTT;其中,所述馈电链路的传输时延、用户链路的参考传输时延以及用户链路的最大传输时延包括在所述公共传输时延信息中。
可选地,所述卫星通信***馈电链路的传输时延,包括;进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
可选地,还包括:所述终端根据卫星通信***用户链路的参考传输时延,确定所述参考RTT;所述终端根据卫星通信***用户链路的最大传输时延,确定所述最大RTT;其中,所述用户链路的参考传输时延以及所述用户链路的最大传输时延包括在所述公共传输时延信息中。
在一种可能的实现方式中,所述公共传输时延信息,包括以下信息中的至少一个:
所述网络设备与所述至少一个小区内的终端之间数据传输的参考RTT;
所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT;
所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT和参考RTT之间的差值;
卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
卫星通信***中的用户链路的最大传输时延;
卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
可选地,所述终端接收的公共传输时延,包括:卫星或信关站与至少一个小区的公共参考点的传输时延,或者不同小区的传输时延之间的差值。
可选地,所述终端接收的公共传输时延,包括:基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
可选地,还包括:终端获取传输时延差值,以当前服务小区的时间为基准,增加所述传输时延差值,得到新的时间点,在所述新的时间点测量相邻小区或者目标小区的同步信号块(SSB),并在相邻小区或在目标小区,与网络建立下行同步或者获取广播信息。其中,所述传输时延差值是终端接收到的当前服务小区与相邻小区之间的传输时延差值,或者是当前服务小区与切换小区后的目标小区之间的传输时延差值,或者是终端在获得多个小区的定时提前量TA或传输时延后进行相减运算,推导获得的传输时延差值。
第三方面,提供一种网络设备,包括:处理模块,用于确定至少一个小区的公共传输时延,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序;发送模块,用于将所述公共传输时延发送给所述至少一个小区内的终端。
第四方面,提供一种终端,包括:接收模块,用于接收网络设备发送的公共传输时延,所述公共传输时延用于至少一个小区内的终端确定与网络侧的传输时序;处理模块,用于根据所述公共传输时延,确定所述终端与网络侧的传输时序。
第五方面,提供一种网络设备,包括:处理器、存储器、收发机;所述处理器,用于读取所述存储器中的计算机指令,执行如上述第一方面中任一项所述的方法。
第六方面,提供一种终端,包括:处理器、存储器、收发机;所述处理器,用于读取所述存储器中的计算机指令,执行如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如上述第一方面中任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如上述第二方面中任一项所述的方法。
本公开的上述实施例中,网络设备确定公共传输时延,并将所述公共传输时延发送给至少一个小区内的终端。其中,所述公共传输时延用于至少一个小区内的终端确定该终端与网络侧的传输时序,从而使得终端与网络侧之间保持传输时序的一致性。
附图说明
图1示例性示出了本公开实施例中卫星通信***中的两种通信模式示意图;
图2示例性示出了本公开实施例中基于竞争的随机接入过程信令交互图;
图3示例性示出了本公开实施例中RAR接收示意图;
图4示例性示出了本公开实施例中竞争解决消息的接收示意图;
图5示例性示出了本公开实施例中下行调度时序示意图;
图6示例性示出了本公开实施例中上行PUSCH的调度时序示意图;
图7示例性示出了本公开实施例中网络设备侧的流程示意图;
图8示例性示出了本公开实施例中终端侧的流程示意图;
图9示例性示出了本公开实施例中RAR窗口配置示意图;
图10示例性示出了本公开实施例中竞争解决定时器配置示意图;
图11和图12示例性示出了本公开实施例中下行调度时序示意图;
图13示例性示出了本公开实施例中相邻卫星切换的示意图;
图14示例性示出了本公开实施例中相邻小区的同步信号时间差示意图;
图15示例性示出了本公开实施例中终端在相邻信关站之间切换的示意图;
图16示例性示出了本公开实施例提供的网络设备的结构示意图;
图17示例性示出了本公开实施例提供的终端的结构示意图;
图18示例性示出了本公开另一实施例提供的网络设备的结构示意图;
图19示例性示出了本公开另一实施例提供的终端的结构示意图。
具体实施方式
图1示例性示出了卫星通信***中的两种通信模式。
卫星通信中,存在两种工作模式,一种是弯管通信模式,该模式下,卫星仅仅透明转发信号,不做其他处理,终端和信关站进行通信,另一种是再生通信模式,该模式下,卫星可以检测出接收信号的信息并进行处理转发,实现基站的功能,连接终端和信关站。在卫星通信***中,终端和卫星之间的链路称为用户链路,卫星和信关站之间的链路称为馈电链路。
对于弯管通信模式,终端和信关站进行数据通信时会经历馈电链路的传输时延T1和用户链路的传输时延T2,其传输的环回时间(round trip time,RTT)等于2×(T1+T2)。对于再生通信模式,终端和卫星的传输时延包括用户链路的传输时延T2,其传输的RTT等于2×T2。在一个波束小区里面,最大RTT对应最远距离的终端和网络侧(信关站或者卫星)的传输时延,最小RTT对应最近距离的终端和网络侧(信关站或者卫星)传输时延。由于卫星是移动的,小区的半径和覆盖区域也随之变动,因此RTT的数值是可变的。同时,不同用户处于不同的地理位置,它和网络侧的距离也是不同的。
图2示例性示出了基于竞争的随机接入过程。
在初始小区接入时,终端(UE)通过基于竞争的随机接入过程接入网络,其过程基本包括以下4个步骤:
Msg1:终端选择随机接入前导序列(preamble)和物理随机接入信道(physical random access channel,PRACH)资源,并利用所述PRACH资源向基站发送所选的随机接入前导序列。
Msg2:终端发送了随机接入前导序列后的第一个物理下行控制信道(physical downlink control channel,PDCCH)时机(occasion)启动随机接入响应(random access response,RAR)窗口(RAR window),并在RAR窗口内监听RAR消息。所述RAR消息中包含随机接入前导序列标识、定时提前量(timing advance,TA)信息、上行授权资源(UL grant)以及网络侧为终端分配的临时C-RNTI(Cell-Radio Network Tempory Identity,小区-无线网络临时标识)。
Msg3:终端在Msg2指定的上行授权资源(UL grant)上发送上行传输,不同随机接入原因触发的随机接入对应的Msg3的上行传输内容是不同的,比如对于初始接入,Msg3传输的是无线资源控制(radio resource control,RRC)连接建立请求消息。
Msg4:终端发送Msg 3后,在Msg3发送之后的第一个符号启动竞争解决定时器(ra-ContentionResolutionTimer),并在该定时器运行期间监听PDCCH,接收竞争解决消息,终端根据竞争是否解决判断随机接入是否成功。对于初始接入终端,竞争解决成功后临时C-RNTI自动转化为终端在该小区的唯一终端标识C-RNTI。
图3示例性示出了RAR接收示意图。
如图3所示,终端在发送完随机接入前导序列后,在一个指定的位置接收网络侧发送的RAR消息,此时终端需要知道RAR窗口的起始位置和窗口长度。
终端在发送完随机接入前导序列后需要按照RTT的间隔启动RAR的检测,即RAR窗口的起始时刻偏移量(starting offset)等于一个RTT,并且基于基站的处理时延配置RAR窗口长度,即RAR窗口长度等于基站处理时延。由于在初始接入时,网络侧并不知道终端的实际位置,因此RAR窗口长度需要考虑不同终端的RTT的差异。
图4示例性示出了竞争解决消息的接收示意图。
对于随机接入的竞争解决,终端发送完Msg 3消息后,需要等待竞争解决(Msg4)消息的到来,此时需要考虑接收竞争解决(Msg4)消息的起点和竞争解决定时器(ra-ContentionResolutionTimer)的定时长度。
终端可根据RTT启动竞争解决(Msg4)消息的检测起点,即确定该定时器的启动时刻,并且根据基站的处理时延配置该定时器的定时长度,该定时器的定时长度等于基站处理时延。由于在初始接入时,网络并不知道终端的实际位置,因此该定时器的定时长度需要考虑不同终端的RTT的差异。
在混合自动重传请求(Hybrid Automatic retransmission reQuest)传输中,为了保证时序的稳定运行,基站在调度物理下行共享信道(physical downlink shared channel,PDSCH)和物理上行共享信道(physical uplink shared channel,PUSCH)时需要考虑终端的上行定时提前量TA和终端的处理时间。基站可为终端配置K0、K1和K2,其中,K0是PDCCH和PDSCH的时间间隔,K1是PDSCH和物理上行控制信道(physical uplink control channel,PUCCH)的时间间隔,K2是PDCCH和PUSCH的时间间隔,这些间隔一般与终端的处理能力以及定时提前量TA相关,而且对于K1和K2,由于PUSCH/PUCCH的时序和PDSCH的时序是有TA的间隔的,因此K1和K2反映的PDSCH/PUCCH以及PDCCH/PUSCH的子桢索引上的差别,不是绝对的时间差。
图5示例性示出了下行调度时序示意图。
如图5所示,基站在T0时刻发送PDCCH,终端在T0+TD+K0时刻接收PDSCH,其中K0是基站配置的PDCCH和PDSCH之间的时间间隔,TD是基站到终端的传输时延,同时基站指定PUCCH反馈HARQ-ACK的时刻是在接收PDSCH后的K1时刻。考虑到终端的上行TA,因此PUCCH的调度传输时刻是T0+TD+K0+K1+offset1,而实际进行了TA提前量之后的传输时刻是T0+TD+K0+K1+offset1-TA。TA的取值基于实际TA的补偿算法,如果采用绝对TA补偿,则此时TA等于2×TD。
在初始接入时,对于提前量TA的数值,网络侧并不知道,因此终端和网络存在时序的不一致性。终端经过TA补偿后网络并不知道终端补偿的TA的取值,因此网络侧在接收上行信号会存在问题。
图6示例性示出了上行PUSCH的调度时序。PUSCH的调度传输时刻是T0+TD+K2+offset2,而实际进行了TA提前量之后的传输时刻是T0+TD+K2+offset2-TA。
综上所述,在卫星通信***,因传输时延的变化,将导致终端与网络侧的传输时序不一致,具体可表现在以下几个方面:
第一方面,终端并不知道小区的RTT范围,以致于无法设定合适的随机接入检测窗口(比如RAR窗口,竞争解决定时器);
第二方面,终端并不知道基准RTT,以致于无法进行TA补偿;
第三方面,网络侧并不知道终端的时间提前量TA的补偿值,以致于无法在正确的时间窗口内接收上行数据信号。
目前,地面5G***的传输时延较短,因此目前5G***中的RAR窗口的配置或者竞争解决定时器的配置,无法直接应用于卫星通信***,另外在HARQ控制时,不同终端的TA补偿数值不相同,网络侧很难跟踪不同终端的时序或者终端侧也无法基于一个特定的时序与网络侧保持同步,因此需要新的技术方案解决上述问题。
同时,由于波束的运动带来的小区切换,不同小区的时序关系有所不同,终端如何在 切换后保持和目标小区的快速同步也是一个比较重要问题。
为此,本公开实施例提出一种传输时延的指示方法。采用本公开实施例,网络侧可将公共传输时延发送给终端,使得网络侧和终端可以基于该公共传输时延确定随机接入的检测窗口和HARQ的调度时序关系,进而使终端和网络侧之间保持传输时序的一致性。
下面结合附图对本公开实施例进行详细描述。
图7示例性示出了本公开实施例中网络侧执行的流程。
如图所示,该流程可包括:
S701:网络设备确定公共传输时延。
其中,所述公共传输时延为至少一个小区的公共传输时延,可被所述至少一个小区内的终端所共享,用于所述至少一个小区内的终端确定终端与网络侧的传输时序。
S702:网络设备将所述公共传输时延发送给所述至少一个小区内的终端。
可选地,所述公共传输时延,可包括以下信息中的至少一个:
(1)数据传输的参考RTT,所述数据传输是指终端与网络侧之间的数据传输。
该参考RTT可以作为基准RTT使用。参考RTT是小区内终端的定时基准RTT,可以根据小区内最小的RTT确定,但不一定与一个小区最小的RTT相同,这取决于网络配置,因为最小RTT是与小区覆盖直接对应的。参考RTT是小区内所有终端的定时基准,可以是相对慢变的。
(2)数据传输的最大RTT;
(3)数据传输的最大RTT和参考RTT之间的差值;
(4)卫星通信***中的馈电链路(信关站与位置间的链路)的传输时延;
(5)卫星通信***中的用户链路(卫星与终端之间的链路)的参考传输时延;
(6)卫星通信***中的用户链路的最大传输时延;
(7)卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
根据以上公共传输时延的参数种类,在一些实施例中,网络设备可将数据传输的参考RTT、最大RTT,以及该参考RTT和最大RTT之间的差值这三者中的至少2个参数发送给终端,从而使得终端可以直接获得数据传输的参考RTT和最大RTT,进而可以直接根据该参考RTT和最大RTT确定出随机接入检测窗口和HARQ的调度时序关系。其中,若终端和网络侧之间采用弯管通信模式,则网络设备发送的是弯管通信模式下数据传输的参考RTT、最大RTT,以及参考RTT和最大RTT之间的差值;若终端和网络侧之间采用再生通信模式,则网络设备发送的是再生通信模式下数据传输的参考RTT、最大RTT,以及参考RTT和最大RTT之间的差值。
根据以上公共传输时延的参数种类,在另一些实施例中,在网络侧和终端之间采用弯管通信模式进行通信的情况下,网络设备可将馈电链路相关的传输时延和用户链路相关的 传输时延发送给终端。具体地,网络设备可将馈电链路的传输时延、用户链路的参考传输时延,以及用户链路的最大传输时延发送给终端,以使得终端根据这些参数确定出弯管通信模式下的数据传输的参考RTT、最大RTT以及该参考RTT和最大RTT三者中的至少两个,从而进一步根据确定出的参考RTT和最大RTT三者中的至少两个,确定出随机接入检测窗口和HARQ的调度时序关系。
根据以上公共传输时延的参数种类,在另一些实施例中,在网络侧和终端之间采用再生通信模式进行通信的情况下,网络设备可将用户链路相关的传输时延发送给终端。具体地,网络设备可将用户链路的参考传输时延、用户链路的最大传输时延发送给终端,以使得终端根据这些参数确定出再生通信模式下的数据传输的参考RTT、最大RTT以及该参考RTT和最大RTT三者中的至少两个,从而进一步根据确定出的参考RTT和最大RTT三者中的至少两个,确定出随机接入检测窗口和HARQ的调度时序关系。
考虑到终端确定随机接入检测窗口和HARQ的调度时序关系时,需要数据传输的参考RTT和最大RTT,在本公开另外的实施例中,在网络侧和终端之间采用弯管通信模式进行通信的情况下,网络设备还可以将参考RTT以及用于推导最大RTT的馈电链路的传输时延和馈电链路的最大传输时延,发送给终端;在网络侧和终端之间采用再生通信模式进行通信的情况下,网络设备还可以将参考RTT以及用于推导最大RTT的用户链路的最大传输时延,发送给终端。这样,使得终端对于随机接入检测窗口和HARQ的调度时序关系所需的参数,一部分可以直接从接收到的公共传输时延中获得,另一部分可以根据接收到的公共传输时延中的参数推导得到。
需要说明的是,上述各种公共传输时延中包含的参数的组合方式仅为示例,具体实施本公开实施例时,可以不受上述组合方式的限制。
上述流程可应用于卫星通信***。在卫星通信***中,图7中的网络设备可以是信关站,也可以是基站。
可选地,如果图7中的网络设备是信关站,则在S701中,信关站确定的公共传输时延可以是该信关站所关联的卫星下的所有小区的公共传输时延或者是一个小区内所有终端的公共传输时延;在S702中,该信关站将该公共传输时延发送给所述所有小区中至少一个小区内的至少一个终端。具体地,该信关站可将该公共传输时延发送给该信关站连接的所有基站中的至少一个基站,再由所述基站发送到终端。
可选地,如果图7中的网络设备是基站,则在S701中,基站确定的公共传输时延可以是该基站的一个波束小区的公共传输时延;在S702中,基站将该公共传输时延发送给该波束小区内的至少一个终端。
可选地,在图7中的S702中,网络设备可通过广播信息或专用信令,将所述公共传输时延发送给终端。其中,所述广播信息具体可以是***信息块(system information block, SIB),所述专用信令可以是RRC信令。由于终端可以监听广播信道,因此通过广播信息发送所述公共传输时延,可以使一个小区内的终端都可接收该公共传输时延。通过专用信令发送所述公共传输时延,可以将公共传输时延发送给特定的目标终端。具体实施时,可根据需要采用不同的发送方式。
可选地,在一些实施例中,卫星通信***中的馈电链路的传输时延,还包括:进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
可选地,在一些实施例中,所述公共传输时延信息,包括:卫星或信关站与至少一个小区的公共参考点的传输时延信息,或者,卫星或信关站与多个不同小区的公共参考点的传输时延之间的差值。
可选地,在一些实施例中,所述公共传输时延信息,包括:基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量(TA),或者不同小区的定时提前量(TA)之间差值。
图8示例性示出了本公开实施例中终端侧的流程。
如图8所示,该流程可包括:
S801:终端接收网络设备发送的公共传输时延。
其中,所述公共传输时延的相关说明以及发送方法,可参见前述实施例的,在此不再重复。
S802:终端根据所述公共传输时延,确定所述终端与网络侧的传输时序。
可选地,在本公开的一些实施例中,确定终端与网络侧的传输时序,包括对随机接入过程中的检测窗口进行配置。更具体地,对随机接入过程中的检测窗口进行配置包括以下配置操作中的至少一个:对RAR窗口(RAR window)进行配置,以及对竞争解决定时器(ra-ContentionResolutionTimer)进行配置。
可选地,终端对随机接入过程中的RAR窗口进行配置,包括对RAR窗口的起始位置和长度进行配置。其中,RAR窗口的起始位置是以该终端发送随机接入前导序列(Msg1消息)的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,RAR窗口的长度等于最大RTT和参考RTT之间的差值与基站处理时延之和。
可选地,终端还可配置第一偏移量,用于在上述确定的RAR窗口的起始位置基础上进行偏移。具体地,RAR窗口的起始位置为:以该终端发送随机接入前导序列(Msg1消息)的发送时刻为起点,向后推迟参考RTT与第一偏移量之和的时间长度。
其中,不同终端可以根据自身的情况配置该第一偏移量的大小,不同终端所配置的第一偏移量的大小可能不同。可选地,一个终端所配置的第一偏移量等于该终端的实际RTT减去参考RTT得到的差值,这样,RAR窗口的起始位置即为:以该终端发送随机接入前导序列(Msg1消息)的发送时刻为起点,向后推迟该终端的实际RTT的时间长度。
图9示例性示出了本公开实施例中RAR窗口配置示意图。
如图所示,在初始小区接入时,终端在发送完随机接入前导序列(Msg1消息)后,需要在一个指定的位置接收网络侧发送的RAR消息(Msg2消息),此时终端需要确定RAR窗口的起始位置和窗口长度。
为了便于比较,本例子中,与基站距离最近的终端(终端1)以及与基站距离最远的终端(终端2),两者在同一时刻发送Msg1消息。基站发送给终端1的RAR消息(图中示为Msg2_1),与发送给终端2的RAR消息(图中示为Msg2_2),两者的到达时间不一致。其中,基站向终端1发送的Msg2_1消息的时刻与终端1发送Msg1消息的时刻之间的时间长度大致为最小RTT时间长度与基站处理时延之和,基站向终端2发送的Msg2_2消息的时刻与终端2发送Msg1消息的时刻之间的时间长度大致为最大RTT时间长度与基站处理时延之和。
如果参考RTT基本与最小RTT相等,则如图所示,终端1和终端2的RAR窗口均从Msg1消息的发送时刻开始向后偏移一个参考RTT的时间长度,窗口长度均等于基站处理时延+(最大RTT-参考RTT)。可以看出,Msg2_1消息到达的时刻在终端1的RAR窗口内,Msg2_2消息到达的时刻在终端2的RAR窗口内,因此采用本公开实施例提供的方法配置RAR窗口,可以保证终端能够接收基站发送的RAR消息。
可选地,终端对随机接入过程中的竞争解决定时器进行配置,包括对该定时器的启动时刻以及定时长度进行配置。其中,竞争解决定时器的启动时刻是以该终端发送Msg3消息的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,竞争解决定时器的定时时长等于最大RTT和参考RTT之间的差值与基站处理时延之和。
可选地,终端还可配置第二偏移量,用于在上述确定的竞争解决定时器启动时刻的基础上进行偏移。具体地,竞争解决定时器的起始时刻为:以终端发送Msg3消息的发送时刻为起点,向后推迟参考RTT与第二偏移量之和的时间长度。
其中,不同终端可以根据自身的情况配置该第二偏移量的大小,不同终端所配置的第二偏移量的大小可能不同。可选地,一个终端所配置的第二偏移量等于该终端的实际RTT减去参考RTT得到的差值。
图10示例性示出了本公开实施例中竞争解决定时器配置示意图。
如图所示,在初始小区接入时,终端在发送完Msg3消息后,需要在一个指定的位置接收网络侧发送的竞争解决消息(Msg4消息),此时终端需要确定竞争解决定时器(ra-ContentionResolutionTimer)的启动时刻和定时时长。
为了便于比较,本例子中,与基站距离最近的终端(终端1)以及与基站距离最远的终端(终端2),两者在同一时刻发送Msg3消息。基站发送给终端1的Msg4消息(图中示为Msg4_1),与发送给终端2的Msg4消息(图中示为Msg4_2),两者的到达时间不一 致。其中,基站向终端1发送的Msg4_1消息的时刻与终端1发送Msg3消息的时刻之间的时间长度大致为最小RTT时间长度与基站处理时延之和,基站向终端2发送的Msg4_2消息的时刻与终端2发送Msg3消息的时刻之间的时间长度大致为最大RTT时间长度与基站处理时延之和。
如果参考RTT基本与最小RTT相等,则如图所示,终端1和终端2的竞争解决定时器均从Msg3消息的发送时刻开始向后偏移一个参考RTT的时间长度的时刻开始启动,定时长度均等于基站处理时延+(最大RTT-参考RTT)。可以看出,Msg4_1消息到达的时刻在终端1的竞争解决定时器的定时时间内,Msg4_2消息到达的时刻在终端2的竞争解决定时器的定时时间内,因此采用本公开实施例提供的方法配置竞争解决定时器,可以保证终端能够接收基站发送的Mag4消息。
上述实施例中,用于对随机接入过程中的检测窗口(RAR窗口或竞争解决定时器)进行配置所依据的参考RTT、最大RTT、以及最大RTT与参考RTT的差值,这三者中的至少两个,包含在网络设备发送的公共传输时延中,即作为所述公共传输时延参数包括在该公共传输时延参数集合中。或者,用于对随机接入过程中的检测窗口(RAR窗口或竞争解决定时器)进行配置所依据的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延确定得到的,即,是终端根据所述公共传输时延的参数集合中的参数推导得到的。
举例来说,可包括以下情况:
情况1:网络设备发送的公共传输时延中包括数据传输的参考RTT、最大RTT,则终端可直接根据网络设备发送的公共传输时延获得参考RTT、最大RTT、以及最大RTT与参考RTT的差值,从而对随机接入过程中的检测窗口(RAR窗口或竞争解决定时器)进行配置。
其中,在终端与网络侧采用弯管通信模式通信的情况下,网络设备发送的参考RTT、最大RTT为弯管通信模式下的参考RTT、最大RTT。在终端与网络侧采用再生通信模式通信的情况下,网络设备发送的参考RTT、最大RTT为再生通信模式下的参考RTT、最大RTT。
情况2:网络设备发送的公共传输时延中包括数据传输的参考RTT、最大RTT与该参考RTT的差值,则终端可直接根据网络设备发送的公共传输时延获得参考RTT、最大RTT、以及最大RTT与参考RTT的差值,从而对随机接入过程中的检测窗口(RAR窗口或竞争解决定时器)进行配置。
其中,在终端与网络侧采用弯管通信模式通信的情况下,网络设备发送的参考RTT、RTT的差值为弯管通信模式下的参考RTT、RTT的差值。在终端与网络侧采用再生通信模式通信的情况下,网络设备发送的参考RTT、RTT的差值为再生通信模式下的参考RTT、 RTT的差值。
情况3:网络设备发送的公共传输时延中包括数据传输的最大RTT、最大RTT与参考RTT的差值,则终端可直接根据网络设备发送的公共传输时延获得参考RTT、最大RTT、以及最大RTT与参考RTT的差值,从而对随机接入过程中的检测窗口(RAR窗口或竞争解决定时器)进行配置。
其中,在终端与网络侧采用弯管通信模式通信的情况下,网络设备发送的最大RTT、RTT的差值为弯管通信模式下的最大RTT、RTT的差值。在终端与网络侧采用再生通信模式通信的情况下,网络设备发送的最大RTT、RTT的差值为再生通信模式下的最大RTT、RTT的差值。
情况4:采用弯管通信模式的情况下,网络设备发送的公共传输时延中包括馈电链路的传输时延、用户链路的参考传输时延、用户链路的最大传输时延,则终端根据上述参数计算得到参考RTT和最大RTT,以及最大RTT与参考RTT的差值:
参考RTT=2×(馈电链路的传输时延+用户链路的参考传输时延);
最大RTT=2×(馈电链路的传输时延+用户链路的最大传输时延);
RTT差值=最大RTT-参考RTT。
情况5:采用再生通信模式的情况下,网络设备发送的公共传输时延中包括用户链路的参考传输时延、用户链路的最大传输时延,则终端根据上述参数计算得到参考RTT和最大RTT,以及最大RTT与参考RTT的差值:
参考RTT=2×用户链路的参考传输时延;
最大RTT=2×用户链路的最大传输时延;
RTT差值=最大RTT—参考RTT。
需要说明的是,以上仅列举了几种可能的情况,在具体实施时,并不受限于上述几种情况的限制。
可选地,在本公开的一些实施例中,网络设备和终端对HARQ的时序进行配置。
与地面移动通信不同的是,卫星通信的TA的数值比较大,在HARQ传输中,为了保证时序的可靠性,基站在调度PDSCH和PUSCH时需要考虑用户的上行定时提前量TA和终端的处理时间。
可选地,在本公开的一些实施例中,在终端采用相对TA进行补偿的情况下,终端的上行定时和参考RTT进行上行对齐,即终端不论在哪个地理位置,在进行发送的定时提前后与参考RTT的时间点对齐。因为不同的终端的传输时延不同,造成TA的数值也不同,在初始接入时网络侧以最大RTT和参考RTT的差值作为最大可能的TA进行调度时间间隔配置。
因此,本公开实施例中,在终端进行相对TA补偿的情况下,在终端侧,终端更新用 于进行HARQ传输调度的K1(PDSCH和PUCCH之间的传输时间间隔)和K2(PDCCH和PUSCH之间的传输时间间隔)中的至少一个。更新后的K1等于配置给该终端的K1与一偏移量之和,更新后的K2等于配置给该终端的K2与一偏移量之和。可选地,该偏移量等于数据传输的最大RTT减去参考RTT得到的差值,即偏移量需要等于最大的相对TA值。
可选地,在上述情况下,在网络侧,基站进行HARQ传输调度时,也可以采用相同方法在配置给该终端的K1和K2的基础上,增加上述偏移量(最大RTT减去参考RTT得到的差值),并基于调整后的K1和K2对该终端进行HARQ传输调度。
在终端进行绝对TA补偿的情况下,终端的上行定时需要补偿所有的传输时延。因为是绝对补偿,基站的下行和上行时序是对齐的,但是终端的发送时刻则需要提前2×最大RTT,但是因为终端接收到基站的调度信号比基站有个绝对的时序差,此时只能调整调度的时间间隔,即向后延时2×最大RTT作为基站预定的终端发送时刻,但终端的实际提前发送,以保证终端和基站的时序对齐。
因此,本公开实施例中,在终端进行绝对TA补偿的情况下,在终端侧,终端更新用于进行HARQ传输调度的K1(PDSCH和PUCCH之间的传输时间间隔)和K2(PDCCH和PUSCH之间的传输时间间隔)中的至少一个。更新后的K1等于配置给该终端的K1与一偏移量之和,更新后的K2等于配置给该终端的K2与一偏移量之和。可选地,该偏移量等于数据传输的最大RTT。
可选地,在上述情况下,在网络侧,基站进行HARQ传输调度时,也可以采用相同方法在配置给该终端的K1和K2的基础上,增加上述偏移量(最大RTT),并基于调整后的K1和K2对该终端进行HARQ传输调度。
根据上述描述,在一些实施例中,当终端接入网络后,由于终端的实际TA一直在变化,网络侧不知道终端的TA数值,则以最大TA进行HARQ时序管理,其网络侧默认终端的TA等于最大RTT减去参考RTT所得到的差值(在终端采用相对TA补偿的情况下),或者默认终端的TA等于最大RTT(在终端采用绝对TA补偿的情况下)。此时K1和K2的时序偏移量等于该默认的TA值。此后,如果终端进行了TA上报,则网络侧接收到该终端上报的TA后,可根据终端上报的TA确定一偏移量,用于对该终端进行HARQ调度的K1和K2进行调整,该偏移量可以等于终端上报的TA。
图11和图12示例性示出了下行调度时序示意图。
如图11所示,以终端进行绝对TA补偿为例,基站在T0时刻发送PDCCH,终端在T0+TD+K0时刻接收PDSCH,其中K0是基站配置的PDCCH和PDSCH之间的时间间隔,TD是基站到终端的传输时延,同时基站指定PUCCH反馈HARQ-ACK的时刻是在接收PDSCH后的K1时刻。终端的PUCCH的调度传输时刻是T0+TD+K0+K1+max_TA-real_TA。其中,max_TA表示最大TA,这里等于最大RTT,real_TA表示终端的实际TA。这里的 调度偏移值等于max_TA,偏移值的选取可以等于或大于最大TA,以保证信号的反馈发送时间不能早于信号的接收时间。
如图12所示,以终端进行绝对TA补偿为例,基站在T0时刻发送PDCCH,终端在T0+TD时刻接收PDCCH,其中TD是基站到终端的传输时延。终端发送PDSCH的时刻为T0+TD+K2+max_TA-real_TA。其中,max_TA表示最大TA,这里等于最大RTT,real_TA表示终端的实际TA。
可选地,在本公开的一些实施例中,当终端完成RRC连接后,如果终端上报了自己的TA(以下表示为TA_UE),在网络侧,此时的调度时序需要在网络配置的K1或K2的基础上加上一个偏移量,该偏移量可根据终端报告的TA_UE确定,可选地,该偏移量可以等于终端上报的TA_UE。具体地,当网络设备接收到终端上报的TA_UE后,更新该终端的K1、K2中的至少一个,作为对该终端进行调度的偏移值,网络设备在对该终端进行调度时根据该更新后的K1、K2进行调度。其中,更新后的K1等于更新前的K1(即配置给该终端的K1)与该偏移量之和,更新后的K2等于更新前的K2(即配置给终端的K2)与该偏移量之和。
可选地,在本公开的上述实施例中,若RTT参数(比如参考RTT、最大RTT、终端的实际RTT等)、传输时延参数(比如馈电链路的传输时延、用户链路的参考传输时延、用户链路的最大传输时延等),或者时间偏移量(比如第一偏移量、第二偏移量、第三偏移量)取值不是时隙长度的整数倍时,可以按实际时间数值对时隙长度进行取整,比如可采用上取整或者下取整,或者按实际时间数值对时隙长度进行量化,使其等于数据传输时隙长度的整数倍。
可选地,在一些实施例中,终端获取传输时延差值,以当前服务小区的时间为基准,增加所述传输时延差值,得到新的时间点,在所述新的时间点测量相邻小区或者目标小区的同步信号块SSB,并在相邻小区或在目标小区,与网络建立下行同步或者获取广播信息。其中,所述传输时延差值是终端接收到的当前服务小区与相邻小区之间的传输时延差值,或者是当前服务小区与切换小区后的目标小区之间的传输时延差值,或者是终端在获得多个小区的定时提前量TA或传输时延后进行相减运算,推导获得的传输时延差值。
本公开的一些实施例中,对于传输时延的指示,可以用于相邻小区的测量和切换后和目标小区的快速同步。
具体地,在卫星运动过程中,终端可能需要连接到新的卫星或者同一颗卫星可能连接到新的信关站,在与新的卫星连接后或者与新的信关站连接后,如果切换后目标小区和当前服务小区不一致,则终端需要知道切换后的小区和服务小区的传输时延差异,以便快速获得邻小区的同步信号块(SSB)的位置进行下行同步。
同样的,在无线资源管理(Radio Resource Managemen,RRM)测量时,如果获得相 邻小区的传输时延差,也有利于快速的进行相邻小区RRM测量。
图13和图15示出了两种情况,其中,图13示出了相邻卫星的切换情况,图15示出了相邻信关站的切换,这两种情况下都存在传输时延的差异。
如图13所示,终端处于两个卫星的交叠覆盖区域,此时假设卫星具备基站功能,传输距离d1和传输距离d2的差别可以转化为传输时间的差异,但是由于卫星下有很多用户,网络仅仅指示小区1和小区2的公共传输距离d01和d02,或者传输时延值T1和T2,也可以指示两个小区的定时提前量TA的绝对值或差异值,TA的计算是以公共TA为基准的,即卫星和参考点的公共时延的2倍,这个TA值用来帮助终端进行上行同步,也可以指示两个小区TA的差值。终端基于网络的指示可以获得传输时延的差值信息,在这个差值信息的基础上终端对邻小区或目标小区进行同步信号块(SSB)进行检测估计,获取同步信息或小区广播信息。
图14给出了两个相邻小区或者当前小区和切换后目标小区的同步信号时间差,加上两个小区的同步信号周期和时间位置完全相同,但是由于卫星或信关站到两个小区的时间有差异,这个时间差异会体现在终端接收到同步信号的时间差上,终端根据指示点时间差推导出SSB信号的时间差,进而可以快速的进行同步信号和广播信号的检测。
图15给出了馈电切换的场景,同一颗卫星在不同的信关站进行切换,卫星可以通过根据信关站的覆盖区域进行馈电链路的切换,此时卫星和终端的距离不变,即传输时延未变,但馈电距离发生变化,传输时延也发生变化,网络可以指示馈电传输时延的绝对值,也可以指示两个信关站和卫星的馈电链路传输时延的相对值,基于这个差值,终端在馈电链路切换后到新的目标小区快速获得目标小区的同步信号块的SSB信号,从而获取同步信息或小区广播信息。
基于相同的技术构思,本公开实施例还提供了一种终端和一种网络设备,该终端和网络设备可分别应用于上述实施例。
图16示例性示出了本公开实施例提供的网络设备的结构示意图。如图所示,该网络设备可包括:处理模块1301、发送模块1302,其中:
处理模块1301,用于确定至少一个小区的公共传输时延,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序;发送模块1302,用于将所述公共传输时延发送给所述至少一个小区内的终端。
上述网络设备中各模块的功能可参见前述实施例中网络设备实现的功能的描述,在此不再重复。
图17示例性示出了本公开实施例中的终端的结构示意图。如图所示,该网络设备可包括:接收模块1401、处理模块1402,其中:
接收模块1401,用于接收网络设备发送的公共传输时延,所述公共传输时延用于至少 一个小区内的终端确定与网络侧的传输时序;处理模块1402,用于根据所述公共传输时延,确定所述终端与网络侧的传输时序。
上述终端中各模块的功能可参见前述实施例中终端实现的功能的描述,在此不再重复。
基于相同的技术构思,本公开实施例还提供了一种网络设备和终端,该网络设备和终端可以分别实现前述实施例中终端侧的功能以及网络侧的功能。
图18示例性示出了本公开实施例中的网络设备的结构示意图。如图所示,该网络设备可包括:处理器1501、存储器1502、收发机1503以及总线接口1504。
处理器1501负责管理总线架构和通常的处理,存储器1502可以存储处理器1501在执行操作时所使用的数据。收发机1503用于在处理器1501的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1502代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1501负责管理总线架构和通常的处理,存储器1502可以存储处理器1501在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1501中,或者由处理器1501实现。在实现过程中,信号处理流程的各步骤可以通过处理器1501中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1501可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1502,处理器1501读取存储器1502中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1501,用于读取存储器1502中的计算机指令并执行图7所示的流程中网络侧实现的功能。
基于相同的技术构思,本公开实施例还提供了一种终端,该终端可以实现前述实施例中终端侧的功能。
图19示例性示出了本公开实施例中的终端的结构示意图。如图所示,该终端可包括:处理器1601、存储器1602、收发机1603以及总线接口1604。
处理器1601负责管理总线架构和通常的处理,存储器1602可以存储处理器1601在执行操作时所使用的数据。收发机1603用于在处理器1601的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1601代表的一个或多 个处理器和存储器1602代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1601负责管理总线架构和通常的处理,存储器1602可以存储处理器1601在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1601中,或者由处理器1601实现。在实现过程中,信号处理流程的各步骤可以通过处理器1601中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1601可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1602,处理器1601读取存储器1602中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1601,用于读取存储器1602中的计算机指令并执行图8所示的流程中终端侧实现的功能。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述实施例中终端所执行的方法。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述实施例中网络设备所执行的方法。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (60)

  1. 一种传输时延指示方法,其特征在于,包括:
    网络设备确定至少一个小区的公共传输时延,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序;
    所述网络设备将所述公共传输时延发送给所述至少一个小区内的终端。
  2. 如权利要求1所述的方法,其特征在于,所述公共传输时延,包括以下信息中的至少一个:
    所述至少一个小区内的终端与网络侧之间数据传输的参考环回时间RTT;
    所述至少一个小区内的终端与网络侧之间数据传输的最大RTT;
    所述至少一个小区内的终端与网络侧之间数据传输的最大RTT和参考RTT之间的差值;
    卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
    卫星通信***中的用户链路的最大传输时延;
    卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
  3. 如权利要求2所述的方法,其特征在于,所述卫星通信***中的馈电链路的传输时延,还包括;
    进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
  4. 如权利要求1所述的方法,其特征在于,所述网络设备将所述公共传输时延发送给终端,包括:
    所述网络设备通过广播信息或专用信令,将所述公共传输时延发送给终端。
  5. 如权利要求1所述的方法,其特征在于,还包括:
    所述网络设备接收终端发送的所述终端的提前量TA;
    所述网络设备根据所述TA确定一个偏移量,更新用于对所述终端进行混合自动重传请求HARQ传输调度的第一时间间隔和第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与所述偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述偏移量之和;其中,所述第一时间间隔为物理下行共享信道PDSCH和物理上行控制信道PUCCH之间的传输时间间隔,所述第二时间间隔为物理下行控制信道PDCCH和物理上行共享信道PUSCH之间的传输时间间隔。
  6. 如权利要求5所述的方法,其特征在于,所述偏移量的取值等于数据传输时隙长度的整数倍。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述网络设备为信关站或基 站。
  8. 如权利要求7所述的方法,其特征在于,所述网络设备为信关站时,所述信关站确定的公共传输时延为所述信关站关联的卫星下的所有小区的公共传输时延或者是一个小区内所有终端的公共传输时延;
    所述网络设备将所述公共时延发送给终端,包括:
    所述信关站将所述公共输时延发送给所述所有小区中至少一个小区内的至少一个终端。
  9. 如权利要求7所述的方法,其特征在于,所述网络设备为基站时,所述基站确定的公共传输时延为所述基站的一个波束小区的公共传输时延;
    所述网络设备将所述公共时延发送给终端,包括:
    所述基站将所述公共传输时延发送给所述波束小区内的至少一个终端。
  10. 如权利要求1-6中任一项所述的方法,其特征在于,所述公共传输时延的取值等于数据传输时隙长度的整数倍。
  11. 如权利要求1所述的方法,其特征在于,所述公共传输时延信息,包括:
    卫星或信关站与至少一个小区的公共参考点的传输时延信息,或者,卫星或信关站与多个不同小区的公共参考点的传输时延之间的差值。
  12. 如权利要求1所述的方法,其特征在于,所述公共传输时延信息,包括:
    基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
  13. 一种传输时延指示方法,其特征在于,包括:
    终端接收网络设备发送的公共传输时延,所述公共传输时延用于至少一个小区内的终端确定与网络侧的传输时序;
    所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序。
  14. 如权利要求13所述的方法,其特征在于,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:
    所述终端根据公共传输时延确定所述终端的随机接入响应RAR窗口的起始位置和长度,所述RAR窗口的起始位置是以所述终端发送随机接入前导序列的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述RAR窗口的长度等于最大RTT和参考RTT之间的差值与基站处理时延之和;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、 最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  15. 如权利要求14所述的方法,其特征在于,以所述终端发送随机接入前导序列的发送时刻为起点,向后推迟的时间长度等于所述参考RTT与第一偏移量之和。
  16. 如权利要求15所述的方法,其特征在于,所述第一偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
  17. 如权利要求13所述的方法,其特征在于,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:
    所述终端根据所述公共传输时延,确定所述终端的竞争解决定时器的启动时刻和定时长度,所述竞争解决定时器的启动时刻是以所述终端发送Msg3消息的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述竞争解决定时器的定时时长等于最大RTT和参考RTT之间的差值与基站处理时延之和;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  18. 如权利要求17所述的方法,其特征在于,以所述终端发送Msg3消息的发送时刻为起点,向后推迟的时间长度等于所述参考RTT与第二偏移量之和。
  19. 如权利要求18所述的方法,其特征在于,所述第二偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
  20. 如权利要求13所述的方法,其特征在于,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:
    所述终端根据所述公共传输时延,更新用于进行混合自动重传请求HARQ传输调度的第一时间间隔、第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与第三偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述第三偏移量之和,所述第三偏移量等于数据传输的最大RTT减去参考RTT得到的差值或者等于最大RTT;其中,所述第一时间间隔为物理下行共享信道PDSCH和物理上行控制信道PUCCH之间的传输时间间隔,所述第二时间间隔为物理下行控制信道PDCCH和物理上行共享信道PUSCH之间的传输时间间隔;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于更新所述第一时间间隔和所述第二时间间隔的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于更新所述第一时间间隔和所述第二时间 间隔的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  21. 如权利要求14、17或20所述的方法,其特征在于,还包括:
    所述终端根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的参考传输时延,确定所述参考RTT;
    所述终端根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的最大传输时延,确定所述最大RTT;
    其中,所述馈电链路的传输时延、用户链路的参考传输时延以及用户链路的最大传输时延包括在所述公共传输时延信息中。
  22. 如权利要求21所述的方法,其特征在于,所述卫星通信***馈电链路的传输时延,包括;
    进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
  23. 如权利要求14、17或20所述的方法,其特征在于,还包括:
    所述终端根据卫星通信***用户链路的参考传输时延,确定所述参考RTT;
    所述终端根据卫星通信***用户链路的最大传输时延,确定所述最大RTT;
    其中,所述用户链路的参考传输时延以及所述用户链路的最大传输时延包括在所述公共传输时延信息中。
  24. 如权利要求13所述的方法,其特征在于,所述公共传输时延,包括以下信息中的至少一个:
    所述网络设备与所述至少一个小区内的终端之间数据传输的参考环回时间RTT;
    所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT;
    所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT和参考RTT之间的差值;
    卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
    卫星通信***中的用户链路的最大传输时延;
    卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
  25. 如权利要求13-20、24中任一项所述的方法,其特征在于,所述公共传输时延的取值等于数据传输时隙长度的整数倍。
  26. 如权利要求13所述的方法,其特征在于,所述终端接收的公共传输时延,包括:
    卫星或信关站与至少一个小区的公共参考点的传输时延,或者不同小区的传输时延之间的差值。
  27. 如权利要求13所述的方法,其特征在于,所述终端接收的公共传输时延,包括:
    基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
  28. 如权利要求26或27所述的方法,其特征在于,还包括:
    终端获取传输时延差值;其中,所述传输时延差值是终端接收到的当前服务小区与相邻小区之间的传输时延差值,或者是当前服务小区与切换小区后的目标小区之间的传输时延差值,或者是终端在获得多个小区的定时提前量TA或传输时延后进行相减运算,推导获得的传输时延差值;
    所述终端以当前服务小区的时间为基准,增加所述传输时延差值,得到新的时间点,在所述新的时间点测量相邻小区或者目标小区的同步信号块SSB,并在相邻小区或在目标小区,与网络建立下行同步或者获取广播信息。
  29. 一种网络设备,其特征在于,包括:
    处理模块,用于确定至少一个小区的公共传输时延,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序;
    发送模块,用于将所述公共传输时延发送给所述至少一个小区内的终端。
  30. 一种终端,其特征在于,包括:
    接收模块,用于接收网络设备发送的公共传输时延,所述公共传输时延用于至少一个小区内的终端确定与网络侧的传输时序;
    处理模块,用于根据所述公共传输时延,确定所述终端与网络侧的传输时序。
  31. 一种网络设备,其特征在于,包括:处理器、存储器、收发机;所述处理器,用于读取所述存储器中的计算机指令,执行:
    确定至少一个小区的公共传输时延,所述公共传输时延用于所述至少一个小区内的终端确定与网络侧的传输时序;
    通过所述收发机将所述公共传输时延发送给所述至少一个小区内的终端。
  32. 如权利要求31所述的网络设备,其特征在于,所述公共传输时延,包括以下信息中的至少一个:
    所述至少一个小区内的终端与网络侧之间数据传输的参考环回时间RTT;
    所述至少一个小区内的终端与网络侧之间数据传输的最大RTT;
    所述至少一个小区内的终端与网络侧之间数据传输的最大RTT和参考RTT之间的差值;
    卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
    卫星通信***中的用户链路的最大传输时延;
    卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
  33. 如权利要求32所述的网络设备,其特征在于,所述卫星通信***中的馈电链路的传输时延,还包括;
    进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
  34. 如权利要求31所述的网络设备,其特征在于,所述处理器,具体用于:
    通过所述收发机,通过广播信息或专用信令,将所述公共传输时延发送给终端。
  35. 如权利要求31所述的网络设备,其特征在于,所述处理器,还用于:
    通过所述收发机接收终端发送的所述终端的提前量TA;
    根据所述TA确定一个偏移量,更新用于对所述终端进行混合自动重传请求HARQ传输调度的第一时间间隔和第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与所述偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述偏移量之和;其中,所述第一时间间隔为物理下行共享信道PDSCH和物理上行控制信道PUCCH之间的传输时间间隔,所述第二时间间隔为物理下行控制信道PDCCH和物理上行共享信道PUSCH之间的传输时间间隔。
  36. 如权利要求35所述的网络设备,其特征在于,所述偏移量的取值等于数据传输时隙长度的整数倍。
  37. 如权利要求31-36中任一项所述的网络设备,其特征在于,所述网络设备为信关站或基站。
  38. 如权利要求37所述的网络设备,其特征在于,所述网络设备为信关站时,所述处理器确定的公共传输时延为所述信关站关联的卫星下的所有小区的公共传输时延或者是一个小区内所有终端的公共传输时延;
    通过所述收发机将所述公共时延发送给终端时,所述处理器用于:
    将所述公共输时延发送给所述所有小区中至少一个小区内的至少一个终端。
  39. 如权利要求37所述的网络设备,其特征在于,所述网络设备为基站时,所述基站确定的公共传输时延为所述基站的一个波束小区的公共传输时延;
    通过所述收发机将所述公共时延发送给终端时,所述处理器用于:
    将所述公共传输时延发送给所述波束小区内的至少一个终端。
  40. 如权利要求31-36中任一项所述的网络设备,其特征在于,所述公共传输时延的取值等于数据传输时隙长度的整数倍。
  41. 如权利要求31所述的网络设备,其特征在于,所述公共传输时延信息,包括:
    卫星或信关站与至少一个小区的公共参考点的传输时延信息,或者,卫星或信关站与多个不同小区的公共参考点的传输时延之间的差值。
  42. 如权利要求31所述的网络设备,其特征在于,所述公共传输时延信息,包括:
    基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
  43. 一种终端,其特征在于,包括:处理器、存储器、收发机;所述处理器,用于读取所述存储器中的计算机指令,执行:
    终端接收网络设备发送的公共传输时延,所述公共传输时延用于至少一个小区内的终端确定与网络侧的传输时序;
    所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序。
  44. 如权利要求43所述的终端,其特征在于,所述处理器,具体用于:
    根据公共传输时延确定所述终端的随机接入响应RAR窗口的起始位置和长度,所述RAR窗口的起始位置是以所述收发机发送随机接入前导序列的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述RAR窗口的长度等于最大RTT和参考RTT之间的差值与基站处理时延之和;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  45. 如权利要求44所述的终端,其特征在于,以所述收发机发送随机接入前导序列的发送时刻为起点,向后推迟的时间长度等于所述参考RTT与第一偏移量之和。
  46. 如权利要求45所述的终端,其特征在于,所述第一偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
  47. 如权利要求43所述的终端,其特征在于,所述处理器,具体用于:
    根据所述公共传输时延,确定所述终端的竞争解决定时器的启动时刻和定时长度,所述竞争解决定时器的启动时刻是以所述收发机发送Msg3消息的发送时刻为起点向后推迟至少参考RTT时间长度后的时刻,所述竞争解决定时器的定时时长等于最大RTT和参考RTT之间的差值与基站处理时延之和;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于确定RAR窗口的起始位置和长度的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  48. 如权利要求47所述的终端,其特征在于,以所述收发机发送Msg3消息的发送 时刻为起点,向后推迟的时间长度等于所述参考RTT与第二偏移量之和。
  49. 如权利要求48所述的终端,其特征在于,所述第二偏移量等于所述终端的实际RTT减去所述参考RTT得到的差值。
  50. 如权利要求43所述的终端,其特征在于,所述终端根据所述公共传输时延,确定所述终端与网络侧的传输时序,包括:
    所述终端根据所述公共传输时延,更新用于进行混合自动重传请求HARQ传输调度的第一时间间隔、第二时间间隔中的至少一个,更新后的第一时间间隔为配置给所述终端的第一时间间隔与第三偏移量之和,更新后的第二时间间隔为配置给所述终端的第二时间间隔与所述第三偏移量之和,所述第三偏移量等于数据传输的最大RTT减去参考RTT得到的差值或者等于最大RTT;其中,所述第一时间间隔为物理下行共享信道PDSCH和物理上行控制信道PUCCH之间的传输时间间隔,所述第二时间间隔为物理下行控制信道PDCCH和物理上行共享信道PUSCH之间的传输时间间隔;
    其中,所述公共传输时延包括数据传输的参考RTT、最大RTT、最大RTT和参考RTT的差值三者中的至少两个,所述终端用于更新所述第一时间间隔和所述第二时间间隔的参考RTT、最大RTT、以及最大RTT和参考RTT的差值,是所述终端从所述公共传输时延包含的时延信息确定得到的;或者,所述终端用于更新所述第一时间间隔和所述第二时间间隔的参考RTT、最大RTT中的至少一个,是所述终端根据所述公共传输时延中包含的时延信息确定得到的。
  51. 如权利要求44、47或50所述的终端,其特征在于,所述处理器,还用于:
    根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的参考传输时延,确定所述参考RTT;
    根据卫星通信***馈电链路的传输时延以及卫星通信***用户链路的最大传输时延,确定所述最大RTT;
    其中,所述馈电链路的传输时延、用户链路的参考传输时延以及用户链路的最大传输时延包括在所述公共传输时延信息中。
  52. 如权利要求51所述的终端,其特征在于,所述卫星通信***馈电链路的传输时延,包括;
    进行馈电切换时当前服务小区和切换后的目标小区的馈电链路的传输时延的差值。
  53. 如权利要求44、47或50所述的终端,其特征在于,所述处理器,还用于:
    根据卫星通信***用户链路的参考传输时延,确定所述参考RTT;
    根据卫星通信***用户链路的最大传输时延,确定所述最大RTT;
    其中,所述用户链路的参考传输时延以及所述用户链路的最大传输时延包括在所述公共传输时延信息中。
  54. 如权利要求43所述的终端,其特征在于,所述公共传输时延信息,包括以下信息中的至少一个:
    所述网络设备与所述至少一个小区内的终端之间数据传输的参考环回时间RTT;
    所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT;
    所述网络设备与所述至少一个小区内的终端之间数据传输的最大RTT和参考RTT之间的差值;
    卫星通信***中的馈电链路的传输时延,所述馈电链路为信关站与卫星之间的链路;卫星通信***中的用户链路的参考传输时延,所述用户链路为卫星和终端之间的链路;
    卫星通信***中的用户链路的最大传输时延;
    卫星通信***中的用户链路的最大传输时延与参考传输时延之间的差值。
  55. 如权利要求43-50、54中任一项所述的终端,其特征在于,所述公共传输时延的取值等于数据传输时隙长度的整数倍。
  56. 如权利要求43所述的终端,其特征在于,所述终端接收的公共传输时延,包括:
    卫星或信关站与至少一个小区的公共参考点的传输时延,或者不同小区的传输时延之间的差值。
  57. 如权利要求43所述的终端,其特征在于,所述终端接收的公共传输时延,包括:
    基于卫星或信关站与至少一个小区的公共参考点的传输时延确定得到的定时提前量TA,或者不同小区的定时提前量TA之间差值。
  58. 如权利要求56或57所述的终端,其特征在于,所述处理器,还用于:
    获取传输时延差值;其中,所述传输时延差值是终端接收到的当前服务小区与相邻小区之间的传输时延差值,或者是当前服务小区与切换小区后的目标小区之间的传输时延差值,或者是终端在获得多个小区的定时提前量TA或传输时延后进行相减运算,推导获得的传输时延差值;
    以当前服务小区的时间为基准,增加所述传输时延差值,得到新的时间点,在所述新的时间点测量相邻小区或者目标小区的同步信号块SSB,并在相邻小区或在目标小区,与网络建立下行同步或者获取广播信息。
  59. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要1-12中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要13-28中任一项所述的方法。
PCT/CN2020/082189 2019-06-28 2020-03-30 一种传输时延指示方法及装置 WO2020258962A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20831483.1A EP3993519A4 (en) 2019-06-28 2020-03-30 METHOD AND DEVICE FOR INDICATION OF TRANSMISSION DELAY
US17/621,465 US11917572B2 (en) 2019-06-28 2020-03-30 Transmission delay indication method and device
KR1020217042605A KR20220011736A (ko) 2019-06-28 2020-03-30 전송 지연 표시 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910580567.3 2019-06-28
CN201910580567 2019-06-28
CN201911122241.2 2019-11-15
CN201911122241.2A CN112153733A (zh) 2019-06-28 2019-11-15 一种传输时延指示方法及装置

Publications (1)

Publication Number Publication Date
WO2020258962A1 true WO2020258962A1 (zh) 2020-12-30

Family

ID=73891742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082189 WO2020258962A1 (zh) 2019-06-28 2020-03-30 一种传输时延指示方法及装置

Country Status (5)

Country Link
US (1) US11917572B2 (zh)
EP (1) EP3993519A4 (zh)
KR (1) KR20220011736A (zh)
CN (2) CN112153733A (zh)
WO (1) WO2020258962A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038158A (zh) * 2021-02-23 2022-09-09 中国电信股份有限公司 定时关系增强方法、基站和通信***
WO2023020352A1 (zh) * 2021-08-17 2023-02-23 展讯半导体(南京)有限公司 一种数据传输方法及相关装置
KR102503666B1 (ko) * 2021-12-14 2023-02-24 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치
EP4247071A4 (en) * 2021-01-22 2024-01-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, FIRST APPARATUS AND SECOND APPARATUS

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220070811A1 (en) * 2020-08-31 2022-03-03 Samsung Electronics Co., Ltd. Management of ephemeris, time, delays, and ta for an ntn
DE112021007012T5 (de) * 2021-04-02 2023-12-14 Apple Inc. Verbesserte maschinenartige kommunikation (mtc) für nicht-terrestrische netzwerke (ntn)
EP4290974A4 (en) * 2021-05-10 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TIME DOMAIN PARAMETER DETERMINATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
WO2022257024A1 (zh) * 2021-06-08 2022-12-15 北京小米移动软件有限公司 一种通信方法、装置及设备
CN115643588A (zh) * 2021-07-19 2023-01-24 华为技术有限公司 一种通信方法及装置
WO2023015459A1 (zh) * 2021-08-10 2023-02-16 北京小米移动软件有限公司 一种服务小区选择方法及其装置
CN116889018A (zh) * 2021-09-01 2023-10-13 北京小米移动软件有限公司 信息上报方法及装置、存储介质
WO2023050336A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN114040474B (zh) * 2021-11-30 2023-09-26 新华三技术有限公司成都分公司 一种终端接入方法、装置及设备
WO2023205938A1 (zh) * 2022-04-24 2023-11-02 Oppo广东移动通信有限公司 通信方法、终端以及网络设备
CN117545058A (zh) * 2022-08-01 2024-02-09 大唐移动通信设备有限公司 一种卫星网络中的同步方法及装置
US20240056170A1 (en) * 2022-08-09 2024-02-15 Qualcomm Incorporated Timing synchronization for non-terrestrial network communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd***中的上行资源调度方法、***及设备
CN105099541A (zh) * 2014-05-08 2015-11-25 上海贝尔股份有限公司 一种实施上下行子帧切换的方法及其装置
US20180083694A1 (en) * 2016-09-21 2018-03-22 Qualcomm Incorporated Dynamic reverse link retransmission timelines in satellite communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备
WO2019014642A1 (en) * 2017-07-14 2019-01-17 Intel IP Corporation ADVANCE OF TRANSMISSION TIMING IN UPLINK WITHOUT ALLOCATION
CN109788546B (zh) * 2017-11-15 2021-07-06 维沃移动通信有限公司 一种定时提前信息的传输方法、网络设备及终端
US11075846B2 (en) * 2018-06-18 2021-07-27 Qualcomm Incorporated Round-trip time signaling
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、***及介质
US20200351957A1 (en) * 2019-05-03 2020-11-05 Electronics And Telecommunications Research Institute Timing synchronization method and apparatus therefor
WO2021063395A1 (en) * 2019-10-04 2021-04-08 FG Innovation Company Limited Method and apparatus for transmission timing enhancement for different numerologies in ntn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd***中的上行资源调度方法、***及设备
CN105099541A (zh) * 2014-05-08 2015-11-25 上海贝尔股份有限公司 一种实施上下行子帧切换的方法及其装置
US20180083694A1 (en) * 2016-09-21 2018-03-22 Qualcomm Incorporated Dynamic reverse link retransmission timelines in satellite communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Delay-tolerant Re-transmission Mechanisms in NR-NTN", 3GPP TSG RAN WG1 MEETING #97 R1-1906466, 17 May 2019 (2019-05-17), XP051727916, DOI: 20200619171222A *
PANASONIC: "Issues on Timing Advance and RACH for NTN", 3GPP TSG RAN WG1 #96BIS R1-1904591, 12 April 2019 (2019-04-12), XP051699811, DOI: 20200619171044X *
See also references of EP3993519A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4247071A4 (en) * 2021-01-22 2024-01-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, FIRST APPARATUS AND SECOND APPARATUS
CN115038158A (zh) * 2021-02-23 2022-09-09 中国电信股份有限公司 定时关系增强方法、基站和通信***
WO2023020352A1 (zh) * 2021-08-17 2023-02-23 展讯半导体(南京)有限公司 一种数据传输方法及相关装置
KR102503666B1 (ko) * 2021-12-14 2023-02-24 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치
KR102503657B1 (ko) * 2021-12-14 2023-02-24 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치
WO2023113339A1 (ko) * 2021-12-14 2023-06-22 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치

Also Published As

Publication number Publication date
US11917572B2 (en) 2024-02-27
EP3993519A4 (en) 2022-08-17
US20220386263A1 (en) 2022-12-01
CN114828201B (zh) 2023-12-29
EP3993519A1 (en) 2022-05-04
CN114828201A (zh) 2022-07-29
CN112153733A (zh) 2020-12-29
KR20220011736A (ko) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2020258962A1 (zh) 一种传输时延指示方法及装置
US9055527B2 (en) Method and system for determining a time synchronization offset between radio base stations
CN110022607B (zh) 一种波束失败恢复方法、装置及设备
JP2020528711A (ja) ランダムアクセス手続きを実行する方法及びその装置
WO2018171376A1 (zh) 一种随机接入回退后的随机接入及指示方法、装置
WO2020052550A1 (zh) 信息上报方法、信息获取方法、终端及网络设备
CN111385836B (zh) 一种信息配置和数据传输的方法及设备
JP6371406B2 (ja) 基地局、ユーザ機器、及び基地局間キャリアアグリゲーションのための測定方法
EP2957060B1 (en) A radio base station and method therein for transmitting time alignment configuration to a user equipment
CN105357726B (zh) 基于下行定时偏差及目标基站预授权的lte快速切换方法
CN110913497B (zh) 一种信息上报方法、信息获取方法、终端及网络设备
CN102917468A (zh) 非冲突随机接入的方法及***、网络侧网元、用户设备
CN112351498A (zh) 一种上行资源的配置方法、网络侧设备及用户设备
CN113141648B (zh) 一种定时信息上报方法、终端和网络侧设备
CN106341896B (zh) 一种数据传输方法和设备、***
US20230318784A1 (en) Wireless communication method and device
WO2008104097A1 (en) System and method for providing communication in a radio communication system
US11284430B2 (en) Method of determining ambiguous period, terminal and network-side device
WO2023051891A1 (en) Uplink synchronization
CN113169834B (zh) 一种上行信号发送方法及终端
JP6576524B2 (ja) 基地局、ユーザ機器、及び基地局間キャリアアグリゲーションのための測定方法
WO2023246765A1 (zh) 由用户设备执行的方法及用户设备
WO2024002239A1 (zh) 由用户设备执行的方法及用户设备
CN117793855A (zh) 通信方法及通信装置
WO2020074636A1 (en) Self-optimization of beam selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217042605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020831483

Country of ref document: EP