WO2020258947A1 - 纤维素基多孔聚合物及其制备方法 - Google Patents

纤维素基多孔聚合物及其制备方法 Download PDF

Info

Publication number
WO2020258947A1
WO2020258947A1 PCT/CN2020/080892 CN2020080892W WO2020258947A1 WO 2020258947 A1 WO2020258947 A1 WO 2020258947A1 CN 2020080892 W CN2020080892 W CN 2020080892W WO 2020258947 A1 WO2020258947 A1 WO 2020258947A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
preparation
based porous
porous polymer
emulsion
Prior art date
Application number
PCT/CN2020/080892
Other languages
English (en)
French (fr)
Inventor
张涛
赵燕
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2020258947A1 publication Critical patent/WO2020258947A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to the technical field of porous polymer preparation, in particular to a cellulose-based porous polymer and a preparation method thereof.
  • Cellulose is one of the most abundant biomass resources in the world, with renewability, biocompatibility and biodegradability. People pay more and more attention to the research and application of cellulose-based porous materials, especially in the fields of oil-water separation. Due to the multiple hydrogen bonds and microcrystalline structure within and between cellulose molecules, cellulose cannot be melt-processed, nor can it be dissolved in conventional solvents. The poor solubility of cellulose limits its direct use in preparing porous materials.
  • cellulose-based porous materials can only be prepared by soluble cellulose derivatives (such as cellulose esters and cellulose ethers) and dispersible surface-modified cellulose (such as surface-modified nanocellulose, etc.).
  • the preparation method mainly adopts freeze-drying method.
  • the preparation conditions of cellulose derivatives and modified nanocellulose are harsh, and often require long-term heating in a strong acid or alkali environment; and, due to the lack of chemical cross-linking, the mechanical properties of porous materials based on modified cellulose are usually better. Poor, causing the porous structure to be easily destroyed during drying.
  • the cellulose-based porous material disclosed in the document "Surfactant-Free High Internal Phase Emulsions Stabilized by Cellulose Nanocrystals, Biomacromolecules 2013, 14, 291-296" uses modified cellulose as a raw material, and the prepared material has poor mechanical properties.
  • the emulsion template method is an important method for preparing porous polymers. By selecting the type of emulsion and adjusting the composition of the emulsion, porous materials with different morphologies can be prepared.
  • the emulsion template method has been used in the preparation of cellulose-based porous materials.
  • the modified cellulose is used as the stabilizer of the emulsion, and the cellulose-based porous material can be obtained by freeze-drying.
  • the modified cellulose preparation conditions are harsh, and the cellulose lacks chemical cross-linking, making it difficult to obtain a porous material with a stable structure.
  • the high internal phase emulsion foam disclosed in CN 109312091 A the porous polymer is formed by the polymerization of monomers, and the cellulose is only wrapped and compounded on the porous material.
  • the purpose of the present invention is to provide a cellulose-based porous polymer and a preparation method thereof.
  • the present invention directly uses unmodified cellulose to achieve cross-linking of cellulose molecules in the continuous phase, thereby The porous polymer is obtained, and the prepared porous polymer has good mechanical properties and can absorb a variety of organic solvents.
  • the first object of the present invention is to provide a method for preparing a cellulose-based porous polymer, which includes the following steps:
  • cellulose-based non-aqueous emulsion mix cellulose, water-soluble stabilizer, dispersed phase and crosslinking agent in an organic solvent to obtain a high internal phase emulsion; wherein, the dispersed phase is an alkane compound ,
  • the crosslinking agent is isocyanate;
  • Curing emulsion heating the high internal phase emulsion to 60-80° C. to cause polymerization reaction, and the cellulose-based porous polymer is obtained after the reaction is completed.
  • step (1) the mass ratio of the cellulose, water-soluble stabilizer, dispersed phase, crosslinking agent and organic solvent is 0.5-1.5: 0.2-1.3: 75-90: 0.5-3.5: 9 ⁇ 18.
  • the molecular weight of the cellulose is 50,000-2,500,000, and its length is 10-100 ⁇ m.
  • the molecular weight of cellulose is 200,000 to 1,000,000, and its length is 20 to 50 ⁇ m.
  • the water-soluble stabilizer is poloxamer and/or alkylphenol polyoxyethylene ether.
  • the water-soluble stabilizer is F-127.
  • the dispersed phase is an alkane compound containing 6-18 carbon atoms.
  • the dispersed phase is n-tetradecane and/or liquid paraffin.
  • the isocyanate contains aliphatic isocyanate and/or aromatic isocyanate.
  • the isocyanate is an aliphatic isocyanate.
  • the isocyanate is hexamethylene diisocyanate biuret (N75BA), hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, toluene diisocyanate Wait.
  • the isocyanate is N75BA.
  • the organic solvent is dimethyl sulfoxide (DMSO) and/or N,N-dimethylformamide.
  • step (1) the cellulose, the water-soluble stabilizer and the cross-linking agent are first mixed in an organic solvent, and then under stirring conditions, the dispersed phase is added dropwise thereto to obtain a high internal phase emulsion .
  • step (2) the polymerization time is 8-24h.
  • the second object of the present invention is to provide a cellulose-based porous polymer prepared by the above preparation method, comprising cellulose molecules interconnected by polyurethane bonds, and a plurality of small pores are distributed in the cellulose-based porous polymer
  • the pore diameter is 15-30 ⁇ m.
  • the invention swells the cellulose in the continuous phase of the non-aqueous emulsion, realizes the cross-linking of the cellulose in the continuous phase, and prepares the cellulose-based porous material.
  • stabilizers, cellulose, crosslinking agents, and solvents are used to form the continuous phase of the emulsion.
  • the crosslinking agent reacts with the functional groups in the cellulose to achieve crosslinking and curing of cellulose molecules in the continuous phase.
  • the emulsion has a porous structure and forms a cellulose-based porous material after removing the solvent.
  • the present invention has at least the following advantages:
  • the present invention finds a solution for the disadvantages of using cellulose derivatives and modified cellulose to prepare cellulose-based porous materials.
  • a suitable non-aqueous emulsion using a cellulose dispersion as the continuous phase of the emulsion, and cross-linking the cellulose, the purpose of directly using cellulose to prepare porous materials is realized, and the chemical cross-linking between cellulose molecules is realized. United.
  • the cellulose-based porous material prepared by the present invention has good mechanical properties and can be compressed to 70% of its original height without breaking; its compression Young's modulus is about 200kPa, and the porous material can Absorb a variety of organic solvents.
  • Figure 1 is the SEM test result of the cellulose-based porous polymer of the present invention.
  • Figure 2 is an infrared spectrum of a cellulose-based cellulose-based porous polymer
  • Figure 3 is a test result of the compressibility of the cellulose-based porous polymer of the present invention.
  • Figure 4 is a test result of the absorption performance of the cellulose-based porous polymer of the present invention for various liquids.
  • This embodiment provides a method for preparing a cellulose-based porous polymer, and the steps are as follows:
  • This embodiment provides a method for preparing a cellulose-based porous polymer porous polymer.
  • the reaction steps are the same as those in Example 1, except that the continuous phase consists of 8.33g cellulose paste, 8.33g F-127 solution, 2.50g hexamethylene diisocyanate biuret (N75BA) and 3.34g DMSO are mixed uniformly.
  • the dispersed phase is still 77.4 g tetradecane.
  • the resulting cellulose-based porous polymer is named CH-42, where 42 means that the molar ratio of isocyanate groups in N75BA to hydroxyl groups in cellulose is 42%.
  • This embodiment provides a method for preparing a cellulose-based porous polymer porous polymer.
  • the reaction steps are the same as those in Example 1, except that the continuous phase consists of 8.33g cellulose paste, 8.33g F-127 solution, 1.25g hexamethylene diisocyanate biuret (N75BA) and 4.59g DMSO are mixed uniformly.
  • the dispersed phase is still 77.4 g tetradecane.
  • the resulting cellulose-based porous polymer is named CH-21, where 88 means that the molar ratio of isocyanate groups in N75BA to hydroxyl groups in cellulose is 21%.
  • Figures 1a, b, and c are the SEM test results of the cellulose-based porous polymers of CH-88, CH-42, and CH-21, respectively. It can be seen from the figure that the three polymers all contain connected porous structures. The average pore size is 20.5, 22.7 and 25.6 microns, respectively.
  • Figure 2a-b are the infrared spectra of cellulose and cellulose-based porous materials at 3900-2700cm -1 and 2000-700cm -1 .
  • the top-down curves are the infrared spectra of cellulose, CH-21, and CH-42. curve.
  • the new peaks at 3500 and 3348 cm -1 correspond to the free NH and bonded NH stretching vibration peaks.
  • the new peaks at 2930 and 2861 cm -1 are typical absorption peaks of asymmetric and symmetric -CH 2 -, and this absorption comes from N75BA.
  • the results show that polyurethane bonds are formed between the cellulose molecules, indicating that chemical cross-linking occurs between the cellulose molecules
  • Figure 3 is a graph of the compression performance of the cellulose-based porous material. The results show that the cellulose-based porous material of the present invention can be compressed to 30% of the original height without cracking, indicating that it has good compression performance.
  • Figure 4 is a graph showing the absorption of various liquids by different cellulose-based porous materials. The results show that cellulose-based porous materials have good absorption properties for a variety of liquids. They can absorb not only non-polar organic solvents, but also polar organics. Solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

将纤维素溶胀在非水型乳液的连续相中,并实现了纤维素的连续相中的交联,制备了纤维素基多孔材料。具体说来,即以稳定剂、纤维素、交联剂和溶剂等构成乳液的连续相,交联剂与纤维素中的官能团反应,从而在连续相中实现纤维素分子的交联,固化乳液多孔结构,去除溶剂后形成纤维素基多孔材料。直接采用未经改性的纤维素,在连续相中实现纤维素的交联,从而得到多孔聚合物,所制备的多孔聚合物具有良好的力学性能,并可吸收多种有机溶剂。

Description

纤维素基多孔聚合物及其制备方法 技术领域
本发明涉及多孔聚合物制备技术领域,尤其涉及一种纤维素基多孔聚合物及其制备方法。
背景技术
纤维素是世界上储量最丰富的生物质资源之一,具有可再生性、生物相容性与生物降解性。纤维素基多孔材料的研究与应用,特别是在油水分离等领域的应用日益受到人们重视。由于纤维素分子内与分子间存在多重氢键和微晶结构,纤维素无法熔融加工,也不能溶解于常规溶剂。纤维素的难溶性限制了其直接用于制备多孔材料。
目前,纤维素基多孔材料仅可通过可溶性纤维素衍生物(如纤维素酯和纤维素醚等)与可分散性表面改性纤维素(如表面改性纳米纤维素等)制备。制备方法主要采用冷冻干燥法。可是纤维素衍生物与改性纳米纤维素的制备条件苛刻,往往需要在强酸或强碱环境下长时间加热等;并且,由于缺少化学交联,基于改性纤维素的多孔材料力学性能通常较差,致使多孔结构在干燥时易于被破坏。如文献“Surfactant-Free High Internal Phase Emulsions Stabilized byCellulose Nanocrystals,Biomacromolecules 2013,14,291-296”中所公开的纤维素基多孔材料,其采用改性纤维素为原料,所制备的材料力学性能较差。
乳液模板法是制备多孔聚合物的一种重要方法。通过选择乳液的种类和调控乳液的构成,可以制备具有不同形貌的多孔材料。乳液模板法已用于纤维素基多孔材料的制备。如以改性纤维素作为乳液的稳定剂,通过冷冻干燥,即可获得纤维素基多孔材料。但改性纤维素制备条件苛刻,纤维素间缺少化学交联,难以获得稳定结构的多孔材料。如CN 109312091 A所公开的高内相乳液泡沫,该多孔聚合物是通过单体的聚合形成的,纤维素仅仅被包裹复合在了多孔材料上。
总之,目前,纤维素基多孔材料难以实现直接使用纤维素进行制备,因此发明一种简单的方法实现直接利用纤维素制备具有良好力学性能的多孔材料十分关键。
发明内容
为解决上述技术问题,本发明的目的是提供一种纤维素基多孔聚合物及其制备方法,本发明直接采用未经改性的纤维素,在连续相中实现纤维素分子的交联,从而得到多孔聚合物,所制备的多孔聚合物具有良好的力学性能,并可吸收多种有机溶剂。
本发明的第一个目的是提供一种纤维素基多孔聚合物的制备方法,包括以下步骤:
(1)纤维素基非水乳液的制备:将纤维素、水溶性稳定剂、分散相和交联剂在有机溶剂中混匀,得到高内相乳液;其中,所述分散相为烷烃类化合物,所述交联剂为异氰酸酯;
(2)固化乳液:将所述高内相乳液加热至60-80℃发生聚合反应,反应完全后得到所述纤维素基多孔聚合物。
进一步地,在步骤(1)中,所述纤维素、水溶性稳定剂、分散相、交联剂和有机溶剂的质量比为0.5~1.5:0.2~1.3:75~90:0.5~3.5:9~18。
进一步地,在步骤(1)中,所述纤维素的分子量为50000~2500000,其长度为10~100μm。
进一步地,纤维素的分子量为200000~1000000,其长度为20~50μm。
进一步地,在步骤(1)中,所述水溶性稳定剂为泊洛沙姆和/或烷基酚聚氧乙烯醚。优选地,水溶性稳定剂为
Figure PCTCN2020080892-appb-000001
F-127。
进一步地,在步骤(1)中,所述分散相为含有6-18个碳原子的烷烃化合物。优选地,分散相为正十四烷和/或液体石蜡。
进一步地,在步骤(1)中,所述异氰酸酯为含有脂肪族异氰酸酯和/或芳香族异氰酸酯。优选地,异氰酸酯为脂肪族异氰酸酯。
进一步地,在步骤(1)中,所述异氰酸酯为六亚甲基二异氰酸酯缩二脲(N75BA)、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯甲烷二异氰酸酯、甲苯二异氰酸酯等。
优选地,异氰酸酯为N75BA。
进一步地,在步骤(1)中,所述有机溶剂为二甲亚砜(DMSO)和/或N,N-二甲基甲酰胺。
进一步地,在步骤(1)中,先将所述纤维素、水溶性稳定剂和交联剂在有机溶剂中混匀,然后在搅拌条件下,向其中滴加分散相,得到高内相乳液。
进一步地,在步骤(2)中,聚合时间为8~24h。
本发明的第二个目的是提供一种采用上述制备方法所制备的纤维素基多孔聚合物,包括以聚氨酯键相互连接的纤维素分子,所述纤维素基多孔聚合物中分布有若干小孔,其孔径为15~30μm。
本发明将纤维素溶胀在非水型乳液的连续相中,并实现了纤维素在连续相中的交联,制备了纤维素基多孔材料。具体说来,即以稳定剂、纤维素、交联剂和溶剂等够成乳液的连续相,交联剂与纤维素中的官能团反应,从而在连续相中实现纤维素分子的交联,固化乳液多孔结构,去除溶剂后形成纤维素基多孔材料。
借由上述方案,本发明至少具有以下优点:
本发明针对现有制备纤维素基多孔材料需使用纤维素衍生物和改性纤维素的不足,找到了一个解决方案。通过选用合适的非水型乳液,以纤维素的分散液作为乳液的连续相,并经交联纤维素,实现了直接利用纤维素制备多孔材料的目的,且实现了纤维素分子间的化学交联。
本发明所制备的纤维素基多孔材料,其具有良好的力学性能,其可被压缩至原高度的70%,而不发生断裂;其压缩杨氏模量约为200kPa,并且该种多孔材料可以吸收多种有机溶剂。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明纤维素基多孔聚合物的SEM测试结果;
图2是纤维素基纤维素基多孔聚合物的红外光谱;
图3是本发明纤维素基多孔聚合物的压缩性能测试结果;
图4是本发明纤维素基多孔聚合物对多种液体的吸收性能测试结果。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供了一种纤维素基多孔聚合物的制备方法,步骤如下:
(1)将纤维素和乳化剂F-127分别置于二甲基亚砜(DMSO)中搅拌,分别获得纤维素糊(质量分数15%)和F-127溶液(质量分数15%)。将8.33g纤维素糊、8.33g F-127溶液、4.17g六亚甲基二异氰酸酯缩二脲(N75BA)和1.67g DMSO混合均匀,然后在机械搅拌下,将77.4g十四烷滴入上述DMSO溶液中,加完后,形成乳液。
(2)将形成的乳液置于65度下,聚合12小时,形成块状多孔材料。将该种多孔材料使用二氯甲烷抽提,并干燥,获得纤维素基多孔材料,将其命名为CH-88,其中88含义为N75BA中的异氰酸酯基与纤维素中的羟基的摩尔比为88%。
实施例2
本实施例提供了一种纤维素基多孔聚合物多孔聚合物的制备方法,其反应步骤与实施例 1相同,不同之处在于:连续相由8.33g纤维素糊、8.33g F-127溶液、2.50g六亚甲基二异氰酸酯缩二脲(N75BA)和3.34g DMSO混合均匀。分散相仍旧为77.4g十四烷。将所得的纤维素基多孔聚合物命名为CH-42,其中42含义为N75BA中的异氰酸酯基与纤维素中的羟基的摩尔比为42%。
实施例3
本实施例提供了一种纤维素基多孔聚合物多孔聚合物的制备方法,其反应步骤与实施例1相同,不同之处在于:连续相由8.33g纤维素糊、8.33g F-127溶液、1.25g六亚甲基二异氰酸酯缩二脲(N75BA)和4.59g DMSO混合均匀。分散相仍旧为77.4g十四烷。将所得的纤维素基多孔聚合物命名为CH-21,其中88含义为N75BA中的异氰酸酯基与纤维素中的羟基的摩尔比为21%。
图1a、b、c分别为CH-88、CH-42、CH-21的纤维素基多孔聚合物的SEM测试结果,从图中可看出,三种聚合物均含有连通的多孔结构,其平均孔径分别为20.5,22.7和25.6微米。
图2a-b是纤维素及纤维素基多孔材料在3900-2700cm -1及2000-700cm -1的红外光谱图,自上而下曲线依次为纤维素、CH-21、CH-42的红外光谱曲线。其中在3500和3348cm -1处的新峰,对应于自由N-H和键合N-H伸缩振动峰。处于2930和2861cm -1的新峰是不对称和对称-CH 2-的典型吸收峰,该种吸收来源于N75BA。处于1767和1527cm -1的新峰可归因于-C=O-和N-H弯曲吸收峰。结果表明纤维素分子间产生了聚氨酯键,表明纤维素分子间发生了化学交联
图3是纤维素基多孔材料的压缩性能图,结果表明本发明的纤维素基多孔材料可被压缩至原高度的30%,而不会发生破裂,表明其具有良好的压缩性能。
图4是不同纤维素基多孔材料对多种液体的吸收图,结果表明纤维素基多孔材料对多种液体具有良好的吸收性能,其不但可以吸收非极性有机溶剂,而且可以吸收极性有机溶剂。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种纤维素基多孔聚合物的制备方法,其特征在于,包括以下步骤:
    (1)将纤维素、水溶性稳定剂、分散相和交联剂在有机溶剂中混匀,得到高内相乳液;其中,所述分散相为烷烃类化合物,所述交联剂为异氰酸酯;
    (2)将所述高内相乳液加热至60-80℃发生聚合反应,反应完全后得到所述纤维素基多孔聚合物。
  2. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述纤维素、水溶性稳定剂、分散相、交联剂和有机溶剂的质量比为0.5~1.5:0.2~1.3:75~90:0.5~3.5:9~18。
  3. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述纤维素的分子量为5000~2500000,其长度为10~100μm。
  4. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述水溶性稳定剂为泊洛沙姆和/或烷基酚聚氧乙烯醚。
  5. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述分散相为含有5-18个碳原子的烷烃化合物。
  6. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述异氰酸酯为脂肪族聚异氰酸酯和/或芳香族异氰酸酯。
  7. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述异氰酸酯为六亚甲基二异氰酸酯缩二脲、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯甲烷二异氰酸酯和甲苯二异氰酸酯中的一种或几种。
  8. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述有机溶剂为二甲亚砜和/或N,N-二甲基甲酰胺。
  9. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,先将所述纤维素、水溶性稳定剂和交联剂在有机溶剂中混匀,然后向其中滴加分散相,得到高内相乳液。
  10. 一种权利要求1-9中任一项所述的制备方法所制备的纤维素基多孔聚合物,其特征在于:包括以聚氨酯键相互连接的纤维素分子,所述纤维素基多孔聚合物中分布有若干小孔,其孔径为15~30μm。
PCT/CN2020/080892 2019-06-25 2020-03-24 纤维素基多孔聚合物及其制备方法 WO2020258947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910553503.4A CN110229306B (zh) 2019-06-25 2019-06-25 纤维素基多孔聚合物及其制备方法
CN201910553503.4 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258947A1 true WO2020258947A1 (zh) 2020-12-30

Family

ID=67857211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080892 WO2020258947A1 (zh) 2019-06-25 2020-03-24 纤维素基多孔聚合物及其制备方法

Country Status (2)

Country Link
CN (1) CN110229306B (zh)
WO (1) WO2020258947A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229306B (zh) * 2019-06-25 2021-04-13 苏州大学 纤维素基多孔聚合物及其制备方法
CN114196064B (zh) * 2021-12-15 2022-12-16 苏州大学 纤维素基多孔绝热材料及其制备方法
CN115490826A (zh) * 2022-11-01 2022-12-20 华东理工大学 一种聚氨酯多孔材料及其制备方法
CN116535908B (zh) * 2023-04-17 2023-12-01 浙江金嘉科技有限公司 一种含有纤维素纳米微纤的聚丙烯酸酯涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177547A (zh) * 2014-07-29 2014-12-03 江苏大学 一种纤维素复合多孔印迹吸附剂的制备方法
CN107501460A (zh) * 2017-08-04 2017-12-22 西北工业大学 一种温敏型多孔聚合物整体柱的制备方法
WO2018033913A1 (en) * 2016-08-16 2018-02-22 Technion Research & Development Foundation Limited Polyhipe-base substance-releasing systems
WO2018161155A1 (en) * 2017-03-06 2018-09-13 Moasis Inc. Porous crosslinked hydrophilic polymeric materials prepared from high internal phase emulsions containing hydrophilic polymers
CN109312091A (zh) * 2016-03-21 2019-02-05 宝洁公司 具有纤维素纳米颗粒的高内相乳液泡沫
CN110229306A (zh) * 2019-06-25 2019-09-13 苏州大学 纤维素基多孔聚合物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0818419D0 (en) * 2008-10-08 2008-11-12 Imp Innovations Ltd Nanocomposites
CN105289557A (zh) * 2015-10-15 2016-02-03 中国科学院兰州化学物理研究所 利用Pickering-高内相乳液模板法制备磁性气凝胶吸附材料的方法
CN106117592B (zh) * 2016-07-21 2019-02-05 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法
CN107570090A (zh) * 2017-09-19 2018-01-12 东华大学 一种基于纤维素纳米晶稳定的Pickering乳液制备微胶囊的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177547A (zh) * 2014-07-29 2014-12-03 江苏大学 一种纤维素复合多孔印迹吸附剂的制备方法
CN109312091A (zh) * 2016-03-21 2019-02-05 宝洁公司 具有纤维素纳米颗粒的高内相乳液泡沫
WO2018033913A1 (en) * 2016-08-16 2018-02-22 Technion Research & Development Foundation Limited Polyhipe-base substance-releasing systems
WO2018161155A1 (en) * 2017-03-06 2018-09-13 Moasis Inc. Porous crosslinked hydrophilic polymeric materials prepared from high internal phase emulsions containing hydrophilic polymers
CN107501460A (zh) * 2017-08-04 2017-12-22 西北工业大学 一种温敏型多孔聚合物整体柱的制备方法
CN110229306A (zh) * 2019-06-25 2019-09-13 苏州大学 纤维素基多孔聚合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG TAO, GUI HAOGUAN, XU ZHIGUANG, ZHAO YAN: "Hydrophobic polyurethane polyHIPEs templated from mannitol within nonaqueous high internal phase emulsions for oil spill recovery", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 57, no. 12, 15 June 2019 (2019-06-15), US, pages 1315 - 1321, XP055772781, ISSN: 0887-624X, DOI: 10.1002/pola.29392 *

Also Published As

Publication number Publication date
CN110229306A (zh) 2019-09-13
CN110229306B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2020258947A1 (zh) 纤维素基多孔聚合物及其制备方法
DE60132883T2 (de) Organische dielektrika mit niedriger dielektrizitätskonstante basierend auf käfig-ähnlichen strukturen
He et al. A protein‐like nanogel for spinning hierarchically structured artificial spider silk
JP6268649B2 (ja) リグニン含有前駆体繊維及び炭素繊維の製造方法
US20190309144A1 (en) Nanocellulose aerogels and foams
CN104624132B (zh) 环氧树脂自修复微胶囊及其制备方法
JPH0286606A (ja) ポリビニルアルコールヒドロゲルの製造方法
Yang et al. Calix [4] arene‐Based Dynamic Covalent Gels: Marriage of Robustness, Responsiveness, and Self‐Healing
CN111636239B (zh) 一种聚酰亚胺沉析纤维电磁屏蔽纸的制备方法
Wang et al. Synthesis and characterization of chitosan/urea‐formaldehyde shell microcapsules containing dicyclopentadiene
GhavamiNejad et al. Effect of H 2 O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels
Xiao et al. Preparation, structure, and properties of chitosan/cellulose/multiwalled carbon nanotube composite membranes and fibers
Li et al. Thermally stable and tough coatings and films using vinyl silylated lignin
CN112250890B (zh) 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法
EP1032951A1 (de) Gasdiffusionselektrode und deren herstellung
Jia et al. Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy
CN114854083B (zh) 一种超轻、疏水聚酰亚胺气凝胶及其制备方法和应用
Wang et al. Preparation and colloidal properties of an aqueous acetic acid lignin containing polyurethane surfactant
RU2696383C2 (ru) Способ производства микрофибриллированной целлюлозы и микрофибриллированная целлюлоза
Pittala Effect of epoxy resin healing agent viscosity on the self-healing performance of capsules reinforced polymer composite
CN112479185B (zh) 一种聚单宁酸氨酯稳定的碳纳米管水分散体及其制备方法
Yang et al. A Dual Physical Cross‐Linking Strategy to Construct Tough Hydrogels with High Strength, Excellent Fatigue Resistance, and Stretching‐Induced Strengthening Effect
CN112852003B (zh) 采用竹笋下脚料制备纤维素/海藻酸钠复合气凝胶的方法、产品及应用
CN110294832B (zh) 一种氨基poss修饰的聚氨酯热塑性弹性体及其制备方法
CN115636975B (zh) 一种聚六氢三嗪/苯并噁嗪互穿网络气凝胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830587

Country of ref document: EP

Kind code of ref document: A1