WO2020258193A1 - 共存干扰上报方法及装置、移动终端及存储介质 - Google Patents

共存干扰上报方法及装置、移动终端及存储介质 Download PDF

Info

Publication number
WO2020258193A1
WO2020258193A1 PCT/CN2019/093401 CN2019093401W WO2020258193A1 WO 2020258193 A1 WO2020258193 A1 WO 2020258193A1 CN 2019093401 W CN2019093401 W CN 2019093401W WO 2020258193 A1 WO2020258193 A1 WO 2020258193A1
Authority
WO
WIPO (PCT)
Prior art keywords
indicate
tdm pattern
ofdm symbol
time slot
time domain
Prior art date
Application number
PCT/CN2019/093401
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/621,204 priority Critical patent/US20220353875A1/en
Priority to PCT/CN2019/093401 priority patent/WO2020258193A1/zh
Priority to CN201980001237.2A priority patent/CN110495203B/zh
Priority to EP19934888.9A priority patent/EP3993544A4/en
Publication of WO2020258193A1 publication Critical patent/WO2020258193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of wireless communication but is not limited to the field of wireless communication, and in particular to a method and device for reporting coexistence interference, a mobile terminal and a storage medium.
  • LTE Long Term Evolution
  • WiFi module WiFi module
  • Bluetooth module Bluetooth module
  • GNSS module GNSS module
  • coexistence interference This kind of interference between different communication modules in the device , Called device coexistence interference, or simply called coexistence interference.
  • coexistence interference will cause poor communication quality of one or more communication modules, fail to receive signals correctly, and affect normal operation.
  • the embodiment of the application provides a method and device for reporting coexistence interference, a mobile terminal, and a storage medium.
  • a method for reporting coexistence interference including:
  • the terminal reports a time-division multiplexed TDM pattern based on the coexistence interference, where the TDM pattern is used to indicate the time domain resources that can be used by the interfering or interfered communication module in the terminal; or, the TDM pattern is used to indicate the terminal Internal time domain resources that cannot be used by the interfering or interfered communication module; or, the TDM pattern is used to indicate the transmission direction of the OFDM symbol, where the transmission direction includes: uplink transmission and/or downlink reception.
  • a device for reporting coexistence interference which includes:
  • the reporting module is configured to report the time-division multiplexed TDM pattern based on the coexistence interference, where the TDM pattern is used to indicate the time domain resources that can be used by the interfering or interfered communication module in the terminal; or, the TDM pattern , Used to indicate time domain resources that cannot be used by the interfering or interfered communication module in the terminal; or, the TDM pattern is used to indicate the transmission direction of the OFDM symbol, where the transmission direction includes: uplink transmission and/ Or downlink reception; the time domain resources are orthogonal frequency division multiplexing OFDM symbols or time slots.
  • a communication device including:
  • the processor is respectively connected with the antenna and the memory, and is configured to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the steps of the aforementioned coexistence interference reporting method.
  • a non-transitory computer-readable storage medium that stores an executable program, wherein when the executable program is executed by a processor, the aforementioned The steps of the coexistence interference reporting method.
  • the method for reporting coexistence interference reports a TDM pattern when coexistence interference is detected or predicted.
  • the TDM pattern is based on the time slot resource granularity and/or the OFDM symbol resource granularity. This is equivalent to a hybrid automatic request re-request.
  • Transmission (HARQ) form of TDM patterns can reduce the inaccurate reporting of coexistence interference caused by the fixation of HARQ patterns, improve the accuracy of coexistence interference reporting, and improve the coexistence of the base station based on the accurate TDM pattern in the terminal The processing effect of interference; thereby improving the communication quality of the terminal.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a method for reporting coexistence interference provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of a TDM pattern provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a TDM pattern provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for reporting coexistence interference provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a coexistence interference reporting apparatus provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a coexistence interference reporting apparatus provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the terminal 110 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present application does not limit the specific implementation manner of the base station 120.
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • an E2E (End to End) connection may also be established between the terminals 110.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), policy and charging rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • this embodiment provides a method for reporting coexistence interference, including:
  • the time division multiplexing TDM pattern is reported, where the TDM pattern is used to indicate the time domain resources that can be used by the interfering or interfered communication module in the terminal; or, the TDM pattern is used to indicate the terminal Time domain resources that cannot be used by the interfering or interfered communication module; or, the TDM pattern is used to indicate the transmission direction of the OFDM symbol, where the transmission direction includes: uplink transmission and/or downlink reception.
  • being able to use means that data transmission on the frequency domain resource will not cause coexistence interference to other communication modules; conversely, unusable means that data transmission on the frequency domain resource will cause coexistence interference to other communication modules.
  • the aforementioned coexistence interference may be currently detected or predicted
  • the time domain resources are orthogonal frequency division multiplexing OFDM symbols or time slots; of course, the time domain resources are not limited to OFDM symbols or time slots.
  • the method for reporting coexistence interference can be applied to a terminal.
  • the terminal includes a plurality of communication modules, and these communication modules may be modules that use different communication standards to communicate, for example, an LTE module, a Bluetooth module, a WiFi module, a navigation system communication module, etc.
  • the terminal can determine whether coexistence interference currently exists according to its own communication status. Alternatively, the terminal can predict whether coexistence interference is about to occur based on its own communication requirements or the communication service that is about to start and the communication frequency band currently used by each communication module.
  • the terminal When detecting or predicting coexistence interference, the terminal will report its own TDM pattern.
  • the TDM pattern is: the terminal has a pattern of frequency interference in the time domain.
  • the TDM pattern can be used to indicate whether each of the multiple time domain resources corresponding to the TDM pattern can be used, or it can be used to indicate the time domain resources corresponding to the TDM pattern.
  • Each time domain resource can be used to transmit the data transmission direction.
  • the TDM pattern may include three types, namely:
  • the first type indicates the TDM pattern that contains the time domain resources that can be used, for example, the TDM pattern that can be used by the interfered communication module that is interfered by other communication modules, and/or interferes with the application of other communication modules TDM pattern of time domain resources that can be used by the interfering communication module.
  • the TDM pattern corresponds to M time domain resources.
  • the TDM pattern can be used to indicate that each of the M time domain resources can be used by the interfered communication module or the communication module that imposes interference. If one time domain resource can be used, it indicates that the interfered module or the interference There will be no coexistence interference when the interfering communication module performs data transmission on the time domain resource.
  • the TDM pattern will indicate the N time domain resources.
  • Time domain resources can be used. If the interfered communication module uses these N time-domain resources for data transmission, it will not be interfered by other communication modules in the terminal, thereby improving the communication quality.
  • the interfering communication module transmits data on S of the M time domain resources corresponding to the TDM pattern without coexistence interference
  • the TDM pattern will indicate that the S time domain resources can be used. If the interfering communication module uses the S time domain resources for data transmission, it will not interfere with and/or be interfered by other communication modules, thereby reducing the coexistence interference of different communication modules in a terminal.
  • the second type TDM pattern, used to indicate that the time domain resources corresponding to the TDM pattern cannot be used by the interfered communication module or the interfered communication module.
  • the TDM pattern corresponds to M time domain resources.
  • the TDM pattern can be used to indicate that each of the M time domain resources can not be used by the interfered communication module or the communication module that exerts interference. If a time domain resource cannot be used, it means the interfered module Or, there will be coexistence interference when the interfering communication module performs data transmission on the time domain resource.
  • a communication module that is interfered transmits data on N of the M time-domain resources corresponding to the TDM pattern, it will be interfered by other communication modules in the terminal, and the TDM pattern will indicate these N time-domain resources. Time domain resources cannot be used. If the interfered communication module does not use these N time-domain resources for data transmission to avoid interference from other communication modules, the communication quality can be improved.
  • the interfering communication module transmits data on S time domain resources among the M time domain resources corresponding to the TDM pattern, coexistence interference will occur, and the TDM pattern will indicate that the S time domain resources cannot used. If the interfering communication module does not use these S time-domain resources for data transmission, to avoid interfering with other communication modules and/or being interfered by other communication modules, thereby reducing the coexistence interference of different communication modules in a terminal.
  • the TDM pattern can indicate which time domain resources can be used for the data transmission of the interfered communication module or the communication module that exerts interference; the time domain resources that are instructed not to be used are equivalent to coexistence interference. Time domain resources.
  • time-domain resources in the TDM pattern that are not explicitly considered to be unable to be transmitted can be considered as time-domain resources that can be used to transmit data.
  • Figure 3 can be considered as showing a TDM pattern including 8 time domain resources, where one square represents one time domain resource.
  • one bit may be used to indicate whether one time domain resource can be used by the interfered communication module or the interfered communication module. For example, when the value of a bit is "0", it indicates that it can be used; when the value is "0", it indicates that it cannot be used.
  • the third type TDM pattern indicating the transmission direction in which the time domain resource can transmit data; the TDM pattern indicates the transmission direction in which each time domain resource can transmit data, which is equivalent to the unindicated transmission direction, which means that the time domain resources have coexistence.
  • the direction of interference In this way, if the base station schedules time-domain resources according to the transmission direction in which data can be transmitted as indicated in the TDM pattern when performing resource scheduling, conflicts can be reduced and communication quality can be improved.
  • the TDM pattern not only indicates the time-domain resources that are interfered or interfered with, but also indicates the direction that can not be interfered through the transmission direction. Some may be only the uplink transmission is interfered, and some may only be the downlink reception. Both the uplink transmission and downlink reception of the device are interfered.
  • the transmission direction of the time domain resource that is not interfered with both uplink transmission and downlink reception is: uplink transmission and downlink reception
  • the transmission direction of the time domain resource indicating that the uplink transmission is interfered is: Downlink reception
  • the transmission direction of the time domain resource that indicates that the downlink reception is interfered with is: uplink transmission
  • the time domain resource that is interfered with both uplink transmission and downlink reception does not indicate the transmission direction.
  • Fig. 4 can be a TDM pattern including 8 time domain resources.
  • a square represents a time domain resource, and each time domain resource can use two bits to indicate its transmission direction. For example, "11" indicates that the transmission direction includes: uplink transmission and downlink reception; “10” indicates that the transmission direction is: downlink reception; "01” indicates that the transmission direction is: uplink transmission; "00” indicates no transmission direction, that is, the corresponding time Both the uplink and downlink of the domain resources store coexistence interference and cannot be used for transmission.
  • Figures 3 and 4 show two indication modes of TDM patterns. There are many specific indication modes, which are not limited to the examples shown in Figs. 3 and 4.
  • the terminal when the terminal detects or predicts coexistence interference, it reports any one of the above-mentioned TDM patterns.
  • the base station can know the coexistence interference in the terminal through the TDM pattern, and can perform resource scheduling for terminal communication according to the TDM pattern. For example, TDM resource scheduling and/or FDM resource scheduling are performed for terminal communication to reduce coexistence interference in the terminal and ensure communication quality.
  • the coexistence interference is: when the frequency band of Long Term Evolution LTE and/or New Wireless NR is interfered, the transmission direction of the corresponding OFDM symbol is uplink transmission, that is, the OFDM symbol cannot be used for downlink reception;
  • the coexistence interference is: when the frequency band of WiFi, Bluetooth, or global navigation satellite system is interfered, the transmission direction of the corresponding OFDM symbol is downlink reception, that is, the OFDM symbol cannot be used for uplink transmission.
  • the transmission direction of the corresponding time slot is uplink transmission
  • the transmission direction of the corresponding time slot is downlink reception.
  • the LTE module and NR module are communication modules that are interfered.
  • the frequency band of WiFi, Bluetooth or global navigation satellite system is interfered, it means that the communication module using WiFi, Bluetooth or global navigation satellite system frequency band is interfered.
  • the TDM pattern includes at least one of the following:
  • the time slot configuration information is used to indicate the TDM pattern, wherein the time slot configuration information is used to indicate the OFDM symbol for uplink transmission, and/or the OFDM symbol for downlink reception, and/or, to indicate the uplink transmission Time slot; and/or, used to indicate the time slot for downlink reception;
  • the TDM pattern is indicated by using Time Division Duplex (TDD) uplink and downlink configuration (TDD-UL-DL-Pattern) information.
  • TDD Time Division Duplex
  • TDD-UL-DL-Pattern downlink configuration
  • the TDM pattern is described by time slot configuration information. In this way, the TDM pattern is reported by reporting the time slot configuration information.
  • a slot can include multiple OFDM symbols. For example, a slot can include 7 OFDM symbols or 14 OFDM symbols. Of course, this is only an example. The number of OFDM symbols corresponding to a specific slot can be determined according to service requirements. Configuration.
  • the time slot configuration information can indicate the OFDM symbols that the disturbed communication module or the interfering communication module can transmit in the uplink, and/or the OFDM symbol that can be used by the disturbed communication module or the interfering communication module for downlink reception symbol.
  • the TDM pattern indicates the transmission direction of the OFDM symbol.
  • the base station performs resource scheduling, it only performs resource scheduling for data transmission in the transmission direction that allows transmission of data. This reduces the transmission direction that cannot be transmitted when there is interference.
  • Resource scheduling for data transmission on the Internet due to the phenomenon of poor reception quality caused by coexistence interference.
  • the time slot configuration information uses a time slot as a description unit, and transmission information of one or more time slots is configured at a time.
  • the TDM pattern indicated by the slot configuration information includes the transmission configuration of OFDM symbols in one or more slots.
  • the transmission configuration indicates whether the corresponding OFDM symbol can perform data transmission, or the transmission direction of data transmission.
  • TDD uplink and downlink configuration information is used to indicate the TDM pattern. Since the indication signaling of TDD uplink and downlink configuration information has the function of indicating uplink and downlink, in this embodiment, the TDD uplink and downlink configuration information is multiplexed to indicate the TDM pattern, and no additional transmission signaling is required.
  • the existing technology is highly compatible.
  • the TDD uplink and downlink configuration information implements the indication of the TDM pattern through at least one of the following contents:
  • a bitmap is used to indicate the TDM pattern.
  • the starting position and length of the continuously distributed time domain resources are used to indicate the TDM pattern.
  • the starting position and length of the discretely distributed time domain resources and the continuously distributed time domain sub-resources are used to indicate the TDM pattern.
  • one time slot or one OFDM symbol in the TDM pattern corresponds to one bit, and the TDM pattern is indicated through a bitmap.
  • the TDM pattern corresponds to M time slots or M transmission symbols, and M bits are used to indicate the TDM pattern.
  • the corresponding bit is the first value, which is used to indicate that the time slot or OFDM symbol corresponding to the bit can be used for transmission, and the corresponding bit is the second value, which is used to indicate that the time slot or OFDM symbol corresponding to the bit is not available. Can be used for transmission.
  • the first value here is different from the second value. For example, if the first value is "0", the second value is "1"; if the first value is "1", the second value is Is "0".
  • the value of the corresponding bit can be used to indicate uplink transmission and downlink reception.
  • the corresponding bit is the first value, which indicates that the time slot or OFDM symbol corresponding to the bit can be used
  • the corresponding bit is the second value, which is used to indicate that the time slot or OFDM symbol corresponding to the bit can be used for downlink reception.
  • the first value here is different from the second value. For example, if the first value is "0", the second value is "1"; if the first value is "1", the second value is Is "0".
  • a bitmap can be used to simply complete the indication of the TDM pattern.
  • the start of the continuously distributed time domain resources may be indicated. The starting position and length are sufficient.
  • the time domain resources in the TDM pattern that can be used to communicate with the interfered communication module or the interfering communication module are not continuously distributed, then the time domain resources corresponding to this TDM pattern are used for resource block allocation. Subdivide to get the starting position and length of the time domain sub-resource. For example, the time domain resources that can be used for transmission corresponding to a TDM pattern are divided into N continuous parts. In this embodiment, the starting positions and lengths of the N continuous parts are respectively indicated, and the entire TDM pattern is also realized. Indications are also indicated relative to each time domain resource, which can reduce signaling overhead.
  • the method further includes:
  • the reference subcarrier spacing is related to the period of the OFDM symbol.
  • the indication of the subcarrier spacing it is equivalent to reporting the period of the OFDM symbol.
  • the larger the reference subcarrier interval the smaller the period of the OFDM symbol.
  • the smaller the reference subcarrier interval the larger the period of the OFDM symbol.
  • the TDM pattern may include multiple time slots or OFDM symbols.
  • the periods of these OFDM symbols may be the same or different. If the periods of at least two OFDM symbols are the same, the reporting through one reference subcarrier will be reported as the period of the OFDM symbol, which can further reduce the signaling overhead.
  • the indicating the reference subcarrier interval of the OFDM symbol or time slot includes:
  • the bit length occupied by the TDM pattern is used to indicate the reference subcarrier interval of the OFDM symbol or time slot, wherein different bit lengths correspond to different reference subcarrier intervals.
  • the bit length occupied by a TDM pattern has a mapping relationship with the reference subcarrier interval. In this way, the bit length occupied by the TDM pattern can easily realize the reference subcarrier of the OFDM symbol or time slot. Interval indication. This way of indicating the reference subcarrier spacing can be an indirect indication. In addition, this indirect detection method uses a TDM pattern to be reported, and at the same time completes the indication of the TDM pattern and the reference subcarrier interval, which reduces the number of information interactions between the terminal and the base station.
  • bit value of one or more bits is used to directly indicate the reference subcarrier.
  • the indicating the reference subcarrier interval of the OFDM symbol or time slot includes:
  • frequency division multiplexing FDD When frequency division multiplexing FDD is used, it indicates the uplink reference subcarrier interval and the downlink reference subcarrier interval.
  • the reference subcarrier interval indication needs to indicate the uplink reference subcarrier interval and the downlink reference subcarrier interval respectively to distinguish the cycle length of the uplink and downlink OFDM symbols.
  • the indicating the reference subcarrier interval of the OFDM symbol or time slot includes:
  • When there is a supplementary uplink carrier indicate the reference subcarrier interval of the supplementary uplink carrier and the reference subcarrier interval of the non-supplementary uplink carrier.
  • Supplementary carrier is the introduction of a carrier on a new frequency band in the original frequency band.
  • 5G subsequently introduced a supplementary uplink (SUL) carrier, and the supplementary uplink carrier has no corresponding downlink carrier.
  • the SUL carrier will be a low-band carrier
  • the new air interface (NR) carrier will be a high-band carrier.
  • the uplink carrier is supplemented to enhance the uplink coverage, and the discussion determines that the SUL carrier will not become a cell alone, but a downlink carrier. Pairing, belonging to the cell corresponding to the downlink carrier.
  • the cell When a cell is configured with SUL, the cell will correspond to two uplink carriers, one is a SUL carrier and the other is a non-SUL carrier.
  • the reference subcarrier interval of SUL and the reference subcarrier interval of non-supplementary uplink carriers other than SUL will be indicated respectively, so that the base station can understand the supplementary uplink.
  • the period length of the OFDM symbol of the subcarrier and non-supplementary uplink carrier is indicated.
  • the TDM patterns of different cells are indicated separately; or, the TDM patterns of different frequency points are indicated separately.
  • Some terminals are dual-connect terminals or multi-connect terminals, which can connect to different cells at the same time.
  • the TDM patterns of different cells are indicated separately. In this way, each cell will receive its own TDM pattern, so that the base station is aware of the coexistence and interference situation of the terminal in each cell, thereby re-scheduling or communicating resources
  • the adjustment of the standard reduces the coexistence interference of the terminal in each connected cell.
  • the terminal is connected to a primary cell and a secondary cell, and the TDM patterns of the primary cell and the secondary cell are different.
  • the frequency point may be the absolute frequency value of the carrier wave that transmits the wireless signal.
  • Different cells or carriers have different frequency points.
  • different frequency points may have different TDM patterns, so as to ensure that the terminal can reduce coexistence interference based on the assistance of the base station at any frequency point, and further reduce the phenomenon of poor communication quality caused by coexistence interference. Improve communication quality.
  • this embodiment provides a device for reporting coexistence interference, which includes:
  • the reporting module is configured to report a time-division multiplexed TDM pattern based on the detected or predicted coexistence interference, where the TDM pattern is used to indicate the time domain resources that can be used by the communication module that is interfering or being interfered in the terminal; the TDM The pattern is used to indicate time domain resources that cannot be used by the interfering or interfered communication module in the terminal; or, the TDM pattern is used to indicate the transmission direction of the OFDM symbol, where the transmission direction includes: uplink transmission and / Or downlink reception; the time domain resources are orthogonal frequency division multiplexing OFDM symbols or time slots.
  • the reporting module may be a program module, and after the program module is executed by the processor, the above-mentioned TDM pattern reporting can be realized.
  • the reporting module may be a combination of software and hardware, and the combination of software and hardware may include various programmable arrays; the programmable array includes but is not limited to: field programmable array or complex programmable Array.
  • the reporting module may be a pure hardware module; the pure hardware module includes, but is not limited to, an application specific integrated circuit.
  • the device for reporting coexistence interference may further include a storage module, which can store or cache the TDM pattern.
  • the transmission direction of the corresponding time slot is uplink transmission
  • the coexistence interference is: when the frequency band of WiFi, Bluetooth or global navigation satellite system is interfered, the transmission direction of the corresponding time slot is downlink reception;
  • the coexistence interference is: when the long-term evolution LTE and/or new wireless NR frequency band is interfered, the transmission direction of the corresponding OFDM symbol is uplink transmission;
  • the transmission direction of the corresponding OFDM symbol is downlink reception.
  • the TDM pattern includes at least one of the following:
  • the time slot configuration information is used to indicate the TDM pattern, where the time slot configuration information is used to indicate the OFDM symbol for uplink transmission, and/or the OFDM symbol for downlink reception; and/or, to indicate the uplink transmission Time slot; and/or, used to indicate the time slot for downlink reception;
  • the TDM pattern is indicated by using time division duplex (TDD) uplink and downlink configuration information.
  • TDD time division duplex
  • a bitmap is used to indicate the TDM pattern
  • time domain resources that can be used are continuously distributed, use the starting position and length of the continuously distributed time domain resources to indicate the TDM pattern;
  • the starting position and length of the continuously distributed time domain sub-resources of the discretely distributed time domain resources are used to indicate the TDM pattern.
  • the device further includes:
  • the indicating module is configured to indicate the reference subcarrier interval of the OFDM symbol or time slot.
  • the indicating module is configured to use the bit length occupied by the TDM pattern to indicate the reference subcarrier interval of the OFDM symbol or time slot, wherein different bit lengths correspond to different The reference subcarrier spacing.
  • the indicating module is configured to indicate the uplink reference subcarrier interval and the downlink reference subcarrier interval when frequency division multiplexing FDD is adopted.
  • the indicating module is configured to indicate the reference subcarrier interval of the supplementary uplink carrier and the reference subcarrier interval of the non-supplementary uplink carrier when there is a supplementary uplink carrier.
  • the TDM patterns of different cells are indicated separately;
  • the TDM patterns of different frequency points are indicated separately.
  • the terminal reports the TDM pattern.
  • the TDM pattern is used to prohibit sending and receiving data on certain HARQ channels; it is implemented by indicating which subframes are not used, and the unused subframes need to conform to the HARQ pattern.
  • the uplink-downlink ratio is based on OFDM symbols instead of subframes, and the uplink-downlink ratio mode and HARQ pattern are no longer fixed, but can be changed according to scheduling.
  • the previous TDM pattern method is no longer applicable.
  • the coexistence interference reporting methods provided in this example include:
  • the terminal detects or predicts the in-device coexistence interference and triggers the report of the in-device coexistence interference.
  • the content of the report includes the TDM pattern, and the TDM pattern is used to indicate which OFDM symbols or time slots are within a predetermined time length OFDM symbols or time slots can be used, or indicate which OFDM symbols are used for uplink transmission and which are used for downlink reception.
  • the terminal indicates the reference subcarrier interval while indicating the TDM pattern based on the OFDM symbol or time slot.
  • the terminal indicates that an OFDM symbol cannot be used
  • the interference direction is LTE or NR, it means that the OFDM symbol cannot be used for downlink reception, but can be used for uplink transmission; if the interference direction is other RATs (WiFi/ Bluetooth/GNSS) means that the OFDM symbol cannot be used for uplink transmission, but can be used for downlink reception; if the interference direction is bidirectional, it means that the OFDM symbol cannot be used for uplink transmission or downlink reception.
  • the indicating the reference subcarrier interval includes judging by the bit length corresponding to the TDM pattern, and different bit lengths correspond to different subcarrier intervals.
  • the indication of the reference subcarrier interval includes indicating the uplink reference subcarrier interval and the downlink reference subcarrier interval at the same time for FDD; or for SUL, indicating the reference subcarrier interval of SUL and non-SUL carriers at the same time .
  • the indicating which OFDM symbols are used for uplink transmission and which are used for downlink reception includes
  • Method 1 Provide a time slot configuration information, which includes but is not limited to a time slot configuration list; the time slot configuration list can be used to indicate which OFDM symbols in a time slot are used for downlink reception and which OFDM symbols are used for downlink reception Uplink transmission.
  • TDD-UL-DL-pattern configuration information Provide one or more TDD-UL-DL-pattern configuration information.
  • the TDD-UL-DL-pattern configuration information can be used to indicate at least one of the following:
  • the indication of which OFDM symbols can be used includes using a bitmap to indicate, or is indicated by the starting position and length of the available OFDM symbols. If the positions of the available OFDM symbols are not continuous, each start position and length are provided separately.
  • the indicated TDM pattern may be indicated separately by serving cell or frequency.
  • This embodiment also provides a communication device, including:
  • the processor is respectively connected to the antenna and the memory, and is configured to control the antenna to send and receive wireless signals by executing executable programs stored on the memory, and can execute the steps of the coexistence interference reporting method provided by any of the foregoing embodiments.
  • the communication device provided in this embodiment may be the aforementioned terminal or base station.
  • the terminal can be various human-borne terminals or vehicle-mounted terminals.
  • the base station may be various types of base stations, for example, a 4G base station or a 5G base station.
  • the antenna may be various types of antennas, for example, a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna; the antenna may also include a WiFi antenna or a wireless charging antenna.
  • a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna
  • the antenna may also include a WiFi antenna or a wireless charging antenna.
  • the memory may include various types of storage media, and the storage media is a non-transitory computer storage medium that can continue to store the information stored thereon after the communication device is powered off.
  • the processor may be connected to the antenna and the memory through a bus or the like, and used to read executable programs stored on the memory, for example, through the coexistence interference reporting method shown in FIG. 2 and/or FIG. 5.
  • the implementation of this application also provides a non-transitory computer-readable storage medium that stores an executable program, where the executable program is executed by a processor to implement the coexistence interference report provided by any of the foregoing embodiments
  • the steps of the method for example, at least one of the methods shown in FIG. 2 and/or FIG. 5.
  • Fig. 8 shows a terminal according to an exemplary embodiment.
  • the terminal may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the terminal 800. Examples of these data include instructions for any application or method operated on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the terminal 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the terminal 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone When the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal 800 with various status assessments.
  • the sensor component 814 can detect the open/close state of the terminal 800 and the relative positioning of components, such as the display and keypad of the terminal 800.
  • the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800. The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Figure 9 is a schematic diagram of a base station.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种共存干扰上报方法,包括:终端根据共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收。

Description

共存干扰上报方法及装置、移动终端及存储介质 技术领域
本申请涉及无线通信领域但不限于无线通信领域,尤其涉及一种共存干扰上报方法及装置、移动终端及存储介质。
背景技术
由于一个设备内同时存在长期演进(Long Term Evolution,LTE)、WiFi模块、蓝牙模块、GNSS模组,在通信的过程中使用的频段可能会相互干扰,这种设备内不同通信模块之间的干扰,称之为设备共存干扰,或简称为共存干扰。这种共存干扰会导致一个或多个通信模块的通信质量差,无法正确接收信号而影响正常工作。
发明内容
本申请实施例提供一种共存干扰上报方法及装置、移动终端及存储介质。
根据本申请实施例第一方面,提供一种共存干扰上报方法,包括:
终端根据共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收。
根据本申请实施例第二方面,提供一种共存干扰上报装置,其中,包括:
上报模块,配置为终端根据共存干扰,上报时分复用TDM图样,其 中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收;所述时域资源为正交频分复用OFDM符号或时隙。
根据本申请实施第三方面,提供一种通信设备,包括:
天线;
存储器;
处理器,分别与所述天线及存储器连接,用于通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行如前述的共存干扰上报方法的步骤。
根据本申请实施第三方面,提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时,前述的共存干扰上报方法的步骤。
本申请实施例提供的共存干扰上报方法,会在检测或预测到共存干扰时,上报TDM图样,该TDM图样是时隙资源粒度和/或OFDM符号资源粒度的,如此相当于基于混合自动请求重传(HARQ)形式的TDM图样,能够减少因为HARQ图样的固定导致的共存干扰的情况上报不精确的现象,提升了共存干扰上报的精确度,提升了基站基于精确的TDM图样进行终端内的共存干扰的处理效果;进而提升了终端的通信质量。
附图说明
图1为本申请实施例提供的一种无线通信***的结构示意图;
图2为本申请实施例提供的一种共存干扰上报方法的流程示意图;
图3为本申请实施例提供的一种TDM图样的示意图;
图4为本申请实施例提供的一种TDM图样的示意图;
图5为本申请实施例提供的一种共存干扰上报方法的流程示意图;
图6为本申请实施例提供的一种共存干扰上报装置的结构示意图;
图7为本申请实施例提供的一种共存干扰上报装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的一种基站的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请实施例提供的一种无线通信***的结构示意图。如图1所示,无线通信***是基于蜂窝移动通信技术的通信***,该无线通信***可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端110也可以是无人飞行器的设备。或者,终端110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端110也可以是路边设备,比如,可以 是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信***中的网络侧设备。其中,该无线通信***可以是***移动通信技术(the 4th generation mobile communication,4G)***,又称长期演进(Long Term Evolution,LTE)***;或者,该无线通信***也可以是5G***,又称新空口(new radio,NR)***或5G NR***。或者,该无线通信***也可以是5G***的再下一代***。其中,5G***中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G***中采用的演进型基站(eNB)。或者,基站120也可以是5G***中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本申请实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于***移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信***还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信***中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本申请实施例不做限定。
如图2所示,本实施例提供一种共存干扰上报方法,包括:
根据共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收。
本申请中,能够使用指在该频域资源上传输数据不会对其他通信模块产生共存干扰;反之,不能使用指在该频域资源上传输数据会对其他通信模块产生共存干扰。
在一些实施例中,上述共存干扰可以是当前检测的或是预测的;
所述时域资源为正交频分复用OFDM符号或时隙;当然所述时域资源不限于OFDM符号或时隙。
该共存干扰上报方法可应用于终端中。终端包括多个通信模块,这些通信模块可为采用不同通信制式进行通信的模块,例如,LTE模块、蓝牙模块、WiFi模块、导航***的通信模块等。
这些通信模块使用的通信频段由于频率相同或相近似,同时通信时可能存在相互干扰。
故在一些实施例中,终端可以根据自身的通信状况,确定出当前是否存在共存干扰。或者,终端可以根据自身的通信需求或者即将开始的通信业务及当前各个通信模块所使用的通信频段,能够预测出是否即将发生共存干扰。
在检测到或预测出有共存干扰时,终端会上报自己的TDM图样,该TDM图样为:终端在时域内存在频率干扰的图样。
所述TDM图样,能够分别用于指示所述TDM图样所对应的多个时域资源中每一个时域资源是否能够被使用,或者,分别用于指示所述TDM图样所对应的时域资源中每一个时域资源能够用于传输数据的传输方向。
在本实施例中,所述TDM图样可包括三种,分别是:
第一种:指示所包含时域资源能够被使用的TDM图样,例如,受到其他通信模块干扰的受干扰的通信模块能够使用的时域资源的TDM图样,和/或,干扰其他通信模块的施加干扰的通信模块能够使用的时域资源的TDM图样。
例如,TDM图样对应了M个时域资源。所述TDM图样可以用于指示这M个时域资源中每一个时域资源能够被受干扰的通信模块或者施加干扰的通信模块使用,若一个时域资源能够使用,则表示受干扰模块或施加干扰的通信模块在该时域资源上进行数据传输不会有共存干扰。
例如,受到干扰的通信模块在TDM图样所对应的M个时域资源中的其中N个时域资源上传输数据不会受到该终端内其他通信模块的干扰,则该TDM图样会分别指示这N个时域资源能够被使用。若该受干扰的通信模块使用这N个时域资源进行数据传输,则不会受到终端内其 他通信模块的干扰,从而能够提升通信质量。
再例如,施加干扰的通信模块在TDM图样所对应的M个时域资源中的其中S个时域资源上传输数据不会产生共存干扰,则该TDM图样会分别指示这S个时域资源能够被使用。若该施加干扰的通信模块使用这S个时域资源进行数据传输,不会干扰其他通信模块和/或受到其他通信模块的干扰,从而减少一个终端内不同通信模块的共存干扰。
第二种:TDM图样,用于指示TDM图样所对应的时域资源不能够被受干扰的通信模块或施加干扰的通信模块使用。
例如,TDM图样对应了M个时域资源。所述TDM图样可以用于指示这M个时域资源中每一个时域资源能不够被受干扰的通信模块或者施加干扰的通信模块使用,若一个时域资源不能够使用,则表示受干扰模块或施加干扰的通信模块在该时域资源上进行数据传输会有共存干扰。
例如,受到干扰的通信模块在TDM图样所对应的M个时域资源中的其中N个时域资源上传输数据会受到该终端内其他通信模块的干扰,则该TDM图样会分别指示这N个时域资源不能够被使用。若该受干扰的通信模块不会使用这N个时域资源进行数据传输,以避开其他通信模块的干扰,从而能够提升通信质量。
再例如,施加干扰的通信模块在TDM图样所对应的M个时域资源中的其中S个时域资源上传输数据会产生共存干扰,则该TDM图样会分别指示这S个时域资源不能够被使用。若该施加干扰的通信模块不使用这S个时域资源进行数据传输,以避开干扰其他通信模块和/或受到其他通信模块的干扰,从而减少一个终端内不同通信模块的共存干扰。
在一些实施例中,TDM图样可以指示哪些时域资源被可以用于受干扰的通信模块或者施加干扰的通信模块的数据传输;被指示了不能使用 的时域资源相当于就是会存在共存干扰的时域资源。
在这种方式下,TDM图样中未被明确认为不能被传输的时域资源,可认为是能够用于传输数据的时域资源。
图3可认为示意一种包括8个时域资源的TDM图样,其中,一个方格表示一个时域资源。在一些实施例中,可以利用1个比特指示1个时域资源是否能供受干扰的通信模块或者施加干扰的通信模块使用。例如,一个比特的取值为“0”时,指示能够使用;则取值为“0”时表示不能使用。
第三种:指示时域资源能够传输数据的传输方向的TDM图样;TDM图样中指示了各时域资源能够传输数据的传输方向,相当于未指示的传输方向即为所述时域资源有共存干扰的方向。如此,若基站在进行资源调度时,按照TDM图样中指示能够传输数据的传输方向来调度时域资源,就可以减少冲突,从而提升通信质量。例如,TDM图样不仅指示受干扰或施加干扰的时域资源,而且还通过传输方向指示能够不受干扰的方向,有的可能仅是上行发送受到干扰,有的可能仅是下行接收受到干扰,有的上行发送和下行接收都受到干扰。
例如,在TDM图样中指示以下至少之一:上行发送和下行接收都不受干扰的时域资源的传输方向为:上行发送和下行接收;指示上行发送受到干扰的时域资源的传输方向为:下行接收;指示下行接收受到干扰的时域资源的传输方向为:上行发送;上行发送和下行接收都受到干扰的时域资源不指示传输方向。
图4可为一个包括8个时域资源的TDM图样,在图4中一个方格表示一个时域资源,每一个时域资源可以用两个比特指示其传输方向。例如,“11”表示传输方向包括:上行发送和下行接收;“10”表示传输方 向为:下行接收;“01”表示传输方向为:上行发送;“00”表示无传输方向,即对应的时域资源上行和下行都存储共存干扰,不能够用于传输。
图3和图4为两种TDM图样的指示方式,具体的指示方式有很多种,不局限于图3和图4的举例。
总之,终端在检测或预测到共存干扰时,就上报上述TDM图样中的任意一种,如此,基站能够通过TDM图样得知终端内的共存干扰,并且能够根据TDM图样进行终端通信的资源调度,例如,对终端通信进行TDM的资源调度和/或FDM的资源调度,以减少终端内的共存干扰,确保通信质量。
在一些实施例中,当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的OFDM符号的传输方向为上行发送,即该OFDM符号不能用于下行接收;
或者,
当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的OFDM符号的传输方向为下行接收,即该OFDM符号不能用于上行发送。
在另一些实施例中,当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的时隙的传输方向为上行发送;
或者,
当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的时隙的传输方向为下行接收。
LTE和/或NR的频段受到干扰,则说明LTE模块和NR模块是受到干扰的通信模块。
WiFi、蓝牙或全球导航卫星***的频段受到干扰,则说明使用WiFi、蓝牙或全球导航卫星***频段的通信模块受到干扰。
在一些实施例中,所述TDM图样,包括以下至少之一:
利用时隙配置信息指示所述TDM图样,其中,所述时隙配置信息,用于指示上行发送的OFDM符号,和/或,用于下行接收的OFDM符号,和/或,用于指示上行发送的时隙;和/或,用于指示下行接收的时隙;
或者,
利用时分双工(TDD)上行下行配置(TDD-UL-DL-Pattern)信息指示所述TDM图样。
在一些实施例中,所述TDM图样通过时隙配置信息来描述,如此,通过上报时隙配置信息就实现了TDM图样的上报。一个时隙可包括多个OFDM符号,例如,一个时隙可包括7个OFDM符号或者14个OFDM符号等,当然此处仅是举例,具体一个时隙所对应的OFDM符号数可以根据业务需求进行配置。
通过时隙配置信息可以指示出受扰的通信模块或者施加干扰的通信模块能够进行上行发送的OFDM符号,和/或,能够用于受扰的通信模块或施加干扰的通信模块进行下行接收的OFDM符号。
通过TDM图样指示了OFDM符号的传输方向,基站在进行资源调度时,仅在允许传输数据的传输方向上进行数据传输的资源调度,如此,减少了以为在存在干扰的不能够传输数据的传输方向上进行数据传输的资源调度,因为共存干扰导致的接收质量差的现象。
在本实施例中,所述时隙配置信息是以时隙为描述单位的,一次性配置了一个或多个时隙的传输信息。例如,通过时隙配置信息指示的TDM图样包括一个或多个时隙中OFDM符号的传输配置。该传输配置指示了对应的OFDM符号是否能够进行数据传输,或者能够进行数据传输的传输方向。在还有一些实施例中,利用TDD上行下行配置信息来指示所述TDM图样。由于TDD上行下行配置信息的指示信令自身具有能够指示 上下行的功能,在本实施例中复用该TDD上行下行配置信息来指示所述TDM图样,不用额外设置新的传输信令,具有与现有技术兼容性强的特点。
例如,所述TDD上行下行配置信息通过以下内容的至少其中之一来实现所述TDM图样的指示:
上行下行传输周期(dl-UL-TransmissionPeriodicity)
下行时隙数目(nrofDownlinkSlots)
下行OFDM符号数(nrofDownlinkSymbols)
上行时隙数目(nrofUplinkSlots)
上行OFDM符号数(nrofUplinkSymbol)。
指示上述TDM图样的消息或信令有多种,以上提供了两种可实现方式,前述两种可实现方式均具有实现简单且与现有技术的兼容性强的特点。
在一些实施例中,利用比特位图指示所述TDM图样。
在另一些实施例中,在能够使用的时域资源连续分布时,利用连续分布的所述时域资源的起始位置和长度指示所述TDM图样。
在还有一些实施例中,在能够使用的时域资源分布不连续时,利用离散分布的所述时域资源的连续分布的时域子资源的起始位置和长度,指示所述TDM图样。
例如,TDM图样中一个时隙或者一个OFDM符号对应了一个比特,通过比特位图(bit map)指示所述TDM图样。例如TDM图样对应了M个时隙或者M个传输符号,利用M个比特指示所述TDM图样。例如,对应比特为第一取值,用于指示与该比特对应的时隙或OFDM符号可以用于传输,对应比特为第二取值,用于指示与该比特对应的时隙或OFDM符号不可以用于传输。此处的第一取值和第二取值不同,例如,第一取 值为“0”,则第二取值为“1”;若第一取值为“1”,则第二取值为“0”。
在还有一些实施例中,对应的比特的取值,可以用于指示上行发送和下行接收,例如,对应比特为第一取值,用于指示与该比特对应的时隙或OFDM符号可以用于上行发送,对应比特为第二取值,用于指示与该比特对应的时隙或OFDM符号可以用于下行接收。此处的第一取值和第二取值不同,例如,第一取值为“0”,则第二取值为“1”;若第一取值为“1”,则第二取值为“0”。
总之,在本实施例中可以利用比特位图简便完成所述TDM图样的指示。
在一些实施例中,若TDM图样中能够用于受扰的通信模块或施加干扰的通信模块进行传输的时隙资源连续分布,为了进一步减少信令开销,可以指示连续分布的时域资源的起始位置和长度即可。
在还有一些实施例中,若TDM图样中能够用于受到干扰的通信模块或者施加干扰的通信模块进行通信的时域资源不连续分布,则将这个TDM图样对应的时域资源进行资源块的细分,得到时域子资源的起始位置和长度。例如,一个TDM图样对应的可以用于传输的时域资源分为了N个连续的部分,在本实施例中分别指示N个连续的部分的起始位置和长度,也就实现了整个TDM图样的指示,同样相对于每一个时域资源都进行指示,能够减少信令开销。
本实施例中,从TDM图样的具体指示的数据层面,从减少信令开小的方面出发提供了几个可选方案,但具体实现时不局限于上述方案。
在一些实施例中,如图5所示,所述方法还包括:
指示所述OFDM符号或时隙的参考子载波间隔。
在一些实施例中,所述参考子载波间隔与所述OFDM符号的周期相关。通过参考子载波间隔的指示,相当于上报了OFDM符号的周期。例 如,所述参考子载波间隔越大,则所述OFDM符号的周期越小。所述参考子载波间隔越小,则所述OFDM符号的周期越大。
本实施例中所述TDM图样中可包括多个时隙或OFDM符号。这些OFDM符号的周期可能相同或不同。若至少两个OFDM符号的周期相同时,通过一个参考子载波的上报,就按成了OFDM符号的周期上报,可以进一步减少信令开销。
在一些实施例中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
利用所述TDM图样所占用的比特长度,指示所述OFDM符号或时隙的参考子载波间隔,其中,不同的所述比特长度对应于不同的所述参考子载波间隔。
在一些实施例中,一个TDM图样所占的比特长度与所述参考子载波间隔具有映射关系,如此,通过TDM图样所占用的比特长度就能够简便的实现OFDM符号或时隙的参考子载波的间隔指示。这种指示参考子载波间隔的方式可为间接指示。且这种检测间接指示方式,通过一个TDM图样的上报,同时完成了TDM图样及参考子载波间隔的指示,减少了终端与基站之间的信息交互次数。
在还有一些实施例中,利用一个或多个比特的比特值直接指示所述参考子载波。
总之,指示所述时隙或OFDM符号的参考子载波的方式有多种,不局限于上述任意一种。
在一些实施例中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
在采用频分复用FDD时,指示上行的参考子载波间隔及下行的参考子载波间隔。
若某一个时隙或OFDM符号采用的FDD时,参考子载波间隔的指示,需要分别指示上行的参考子载波间隔和下行的参考子载波间隔,以区分上下行的OFDM符号的周期长度。
在一些实施例中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
当存在增补上行载波时,指示所述增补上行载波的参考子载波间隔和非增补上行载波的参考子载波间隔。
增补载波是在原定的频段上引入了新的频段上的载波,例如,5G随后引入了增补上行(supplement UpLink,简称为SUL)载波,增补上行载波没有对应的下行载波。例如,SUL载波会是一个低频段载波,新空口(NR)载波是一个高频段载波,增补上行载波为了上行覆盖增强,并且讨论确定SUL载波将不会单独成为一个小区,而是和一个下行载波配对,属于该下行载波对应的小区。当一个小区配置了SUL后,该小区将会对应有两个上行载波,一个为SUL载波,一个为非SUL载波。
当终端和基站之间通信引入了增补上行载波时,在指示参考子载波间隔,会分别指示SUL的参考子载波间隔和SUL以外的非增补上行载波的参考子载波间隔,以方便基站了解增补上行子载波和非增补上行载波的OFDM符号的周期长度。
在一些实施例中,不同的小区的TDM图样分别指示;或者,不同的频点的TDM图样分别指示。
有一些终端是双连接终端或者多连接终端,这些终端可以同时跟不同的小区进行连接。在本实施例中,不同的小区的TDM图样分别指示,如此,每一个小区都会接收到自己的TDM图样,从而使得基站知道终端在各个小区的共存干扰的情况,从而通过资源的重新调度或通信制式的调整,减少终端在各个连接的小区的共存干扰。
例如,终端连接有主小区和辅小区,主小区和辅小区的TDM图样不同。
再例如,频点可为传输无线信号的载波的绝对频率值。不同的小区或载波具有不同的频点。在一些实施例中,可以不同的频点分别具有不同的TDM图样,如此,确保终端在任意一个频点都能够基于基站的协助减少共存干扰,并进一步减少共存干扰导致的通信质量差的现象,提升通信质量。
如图6所示,本实施例提供一种共存干扰上报装置,其中,包括:
上报模块,配置为根据检测或预测的共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收;所述时域资源为正交频分复用OFDM符号或时隙。
在一些实施例中,所述上报模块可为程序模块,所述程序模块被处理器执行后,能够实现上述TDM图样的上报。
在另一些实施例中,所述上报模块可为软硬结合模块,所述软硬结合模块可包括各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列或复杂可编程阵列。
在还有一些实施例中,所述上报模块可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述共存干扰上报装置还可包括:存储模块,该存储模块可存储或缓存所述TDM图样。
在一些实施例中,当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的时隙的传输方向为上行发送;
或者,
当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干 扰时,对应的时隙的传输方向为下行接收;
当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的OFDM符号的传输方向为上行发送;
或者,
当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的OFDM符号的传输方向为下行接收。
在一些实施例中,所述TDM图样,包括以下至少之一:
利用时隙配置信息指示所述TDM图样,其中,所述时隙配置信息,用于指示上行发送的OFDM符号,和/或,用于下行接收的OFDM符号;和/或,用于指示上行发送的时隙;和/或,用于指示下行接收的时隙;
或者,
利用时分双工(TDD)上行下行配置信息指示所述TDM图样。
在一些实施例中,利用比特位图指示所述TDM图样;
或者,
在能够使用的时域资源连续分布时,利用连续分布的所述时域资源的起始位置和长度指示所述TDM图样;
或者,
在能够使用的时域资源分布不连续时,利用离散分布的所述时域资源的连续分布的时域子资源的起始位置和长度,指示所述TDM图样。
在一些实施例中,如图7所示,所述装置还包括:
指示模块,配置为指示所述OFDM符号或时隙的参考子载波间隔。
在一些实施例中,所述指示模块,配置为利用所述TDM图样所占用的比特长度,指示所述OFDM符号或时隙的参考子载波间隔,其中,不同的所述比特长度对应于不同的所述参考子载波间隔。
在一些实施例中,所述指示模块,配置为在采用频分复用FDD时, 指示上行的参考子载波间隔及下行的参考子载波间隔。
在一些实施例中,所述指示模块,配置为当存在增补上行载波时,指示所述增补上行载波的参考子载波间隔和非增补上行载波的参考子载波间隔。
在一些实施例中,不同的小区的TDM图样分别指示;
或者,
不同的频点的TDM图样分别指示。
以下结合上述任意实施例提供一个具体示例:
示例1:
在LTE通信***中,对于TDM解决方案,终端上报TDM图样。
TDM图样用于禁止在某些HARQ通道上收发数据;通过指示哪些子帧不被使用,不被使用的子帧需要符合HARQ图样来实现。
然而,在NR通信***里,上下行配比是以OFDM符号为单位,不再以子帧为单位,且上下行配比模式和HARQ图样也都不再固定,而是根据调度可变,所以之前的TDM图样方式不再适用。
有鉴于此,本示例中提供的共存干扰上报方法,包括:
终端检测到或预测到设备内共存干扰,触发设备内共存干扰上报,终端在上报的内容中包括TDM图样,所述TDM图样用于指示一个预定时长的时间长度内的OFDM符号或时隙中哪些OFDM符号或时隙可以使用,或者指示哪些OFDM符号用于上行发送、哪些用于下行接收。
在一些情况下,终端在指示基于OFDM符号或时隙的TDM图样的同时,指示参考子载波间隔。
在一些情况下,如果终端指示某个OFDM符号不可以使用,如果干扰方向是LTE或NR,表示该OFDM符号不能用于下行接收,但可以用于上行发送;如果干扰方向是其它RAT(WiFi/蓝牙/GNSS),表示该 OFDM符号不能用于上行发送,但可以用于下行接收;如果干扰方向是双向,则表示该OFDM符号既不能用于上行发送,也不能用于下行接收。
在一些情况下,所述指示参考子载波间隔包括,通过TDM图样对应的比特长度来判断,不同的比特长度对应不同的子载波间隔。
在一些情况下,所述指示参考子载波间隔,包括对FDD,同时指示上行的参考子载波间隔和下行的参考子载波间隔;或对于SUL,同时指示SUL和non-SUL载波的参考子载波间隔。
在一些情况下,所述指示OFDM符号哪些用于上行发送、哪些用于下行接收,包括
方式一:提供一个时隙配置信息,该时隙配置信息包括但不限于时隙配置列表;该时隙配置列表,可用于指示一个时隙里哪些OFDM符号用于下行接收,哪些OFDM符号用于上行发送。
方式二:提供一个或多个TDD-UL-DL-图样配置信息。该TDD-UL-DL-图样配置信息可用于指示以下内容的至少之一:
dl-UL-TransmissionPeriodicity、nrofDownlinkSlots、nrofUplinkSlots及nrofUplinkSymbols。
在一些情况下,所述指示哪些OFDM符号可以使用,包括使用bitmap来指示,或者通过可以使用的OFDM符号的起始位置和长度来指示。如果可以使用的OFDM符号位置不连续,则分别提供各个起始位置和长度。
在一些情况下,所述指示TDM图样可以分服务小区或频点单独指示。
本实施例还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与天线及存储器连接,用于通过执行存储在存储器上 的可执行程序,控制天线收发无线信号,并能够执行前述任意实施例提供的共存干扰上报方法的步骤。
本实施例提供的通信设备可为前述的终端或基站。该终端可为各种人载终端或车载终端。基站可为各种类型的基站,例如,4G基站或5G基站等。
天线可为各种类型的天线、例如,3G天线、4G天线或5G天线等移动天线;天线还可包括:WiFi天线或无线充电天线等。
存储器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与天线和存储器连接,用于读取存储器上存储的可执行程序,通过例如图2和/或图5所示的共存干扰上报方法等。
本申请实施还提供一种非临时性计算机可读存储介质,非临时性计算机可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实现前述任意实施例提供的共存干扰上报方法的步骤,例如,如图2和/或图5所示方法的至少其中之一。
图8是根据一示例性实施例示出的一种终端,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他 组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在终端800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理***,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当终端800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频 信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到终端800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处 理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是一基站的示意图。参照图9,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种共存干扰上报方法,其中,包括:
    终端根据共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块不能够使用的时域资源;或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收。
  2. 根据权利要求1所述的方法,其中,
    当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的时隙的传输方向为上行发送;
    或者,
    当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的时隙的传输方向为下行接收;
    或者,
    当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的OFDM符号的传输方向为上行发送;
    或者,
    当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的OFDM符号的传输方向为下行接收。
  3. 根据权利要求1所述的方法,其中,所述TDM图样,包括以下至少之一:
    利用时隙配置信息指示所述TDM图样,其中,所述时隙配置信息,用于指示上行发送的OFDM符号,和/或,用于下行接收的OFDM符号;和/或,用于指示上行发送的时隙;和/或,用于指示下行接收的时隙;
    或者,
    利用时分双工TDD上行下行配置信息指示所述TDM图样。
  4. 根据权利要求1所述的方法,其中,
    利用比特位图指示所述TDM图样;
    或者,
    在能够使用的时域资源连续分布时,利用连续分布的所述时域资源的起始位置和长度指示所述TDM图样;
    或者,
    在能够使用的时域资源分布不连续时,利用离散分布的所述时域资源的连续分布的时域子资源的起始位置和长度,指示所述TDM图样。
  5. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    指示所述OFDM符号或时隙的参考子载波间隔。
  6. 根据权利要求5所述的方法,其中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
    利用所述TDM图样所占用的比特长度,指示所述OFDM符号或时隙的参考子载波间隔,其中,不同的所述比特长度对应于不同的所述参考子载波间隔。
  7. 根据权利要求5所述的方法,其中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
    在采用频分复用FDD时,指示上行的参考子载波间隔及下行的参考子载波间隔。
  8. 根据权利要求5所述的方法,其中,所述指示所述OFDM符号或时隙的参考子载波间隔,包括:
    当存在增补上行载波时,指示所述增补上行载波的参考子载波间隔和非增补上行载波的参考子载波间隔。
  9. 根据权利要求1至4任一项所述的方法,其中,
    不同的小区的TDM图样分别指示;
    或者,
    不同的频点的TDM图样分别指示。
  10. 一种共存干扰上报装置,其中,包括:
    上报模块,配置为终端根据共存干扰,上报时分复用TDM图样,其中,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源;或者,所述TDM图样,用于指示终端内施加干扰或受干扰的通信模块能够使用的时域资源,或者,所述TDM图样,用于指示OFDM符号的传输方向,其中,所述传输方向包括:上行发送和/或下行接收。
  11. 根据权利要求10所述的装置,其中,
    当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的时隙的传输方向为上行发送;
    或者,
    当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的时隙的传输方向为下行接收;
    或者,
    当所述共存干扰为:长期演进LTE和/或新无线NR的频段受到干扰时,对应的OFDM符号的传输方向为上行发送;
    或者,
    当所述共存干扰为:WiFi、蓝牙或全球导航卫星***的频段受到干扰时,对应的OFDM符号的传输方向为下行接收。
  12. 根据权利要求10所述的装置,其中,所述TDM图样,包括以下至少之一:
    利用时隙配置信息指示所述TDM图样,其中,所述时隙配置信息, 用于指示上行发送的OFDM符号,和/或,用于下行接收的OFDM符号;和/或,用于指示上行发送的时隙;和/或,用于指示下行接收的时隙;
    或者,
    利用时分双工TDD上行下行配置信息指示所述TDM图样。
  13. 根据权利要求10所述的装置,其中,
    利用比特位图指示所述TDM图样;
    或者,
    在能够使用的时域资源连续分布时,利用连续分布的所述时域资源的起始位置和长度指示所述TDM图样;
    或者,
    在能够使用的时域资源分布不连续时,利用离散分布的所述时域资源的连续分布的时域子资源的起始位置和长度,指示所述TDM图样。
  14. 根据权利要求10至13任一项所述的装置,其中,所述装置还包括:
    指示模块,配置为指示所述OFDM符号或时隙的参考子载波间隔。
  15. 根据权利要求14所述的装置,其中,所述指示模块,配置为利用所述TDM图样所占用的比特长度,指示所述OFDM符号或时隙的参考子载波间隔,其中,不同的所述比特长度对应于不同的所述参考子载波间隔。
  16. 根据权利要求14所述的装置,其中,所述指示模块,配置为在采用频分复用FDD时,指示上行的参考子载波间隔及下行的参考子载波间隔。
  17. 根据权利要求14所述的装置,其中,所述指示模块,配置为当存在增补上行载波时,指示所述增补上行载波的参考子载波间隔和非增补上行载波的参考子载波间隔。
  18. 根据权利要求10至13任一项所述的装置,其中,
    不同的小区的TDM图样分别指示;
    或者,
    不同的频点的TDM图样分别指示。
  19. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,用于通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行如权利要求1至9任一项所述共存干扰上报方法的步骤。
  20. 一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至9任一项所述共存干扰上报方法的步骤。
PCT/CN2019/093401 2019-06-27 2019-06-27 共存干扰上报方法及装置、移动终端及存储介质 WO2020258193A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/621,204 US20220353875A1 (en) 2019-06-27 2019-06-27 Coexistence interference reporting method and apparatus, mobile terminal, and storage medium
PCT/CN2019/093401 WO2020258193A1 (zh) 2019-06-27 2019-06-27 共存干扰上报方法及装置、移动终端及存储介质
CN201980001237.2A CN110495203B (zh) 2019-06-27 2019-06-27 共存干扰上报方法及装置、移动终端及存储介质
EP19934888.9A EP3993544A4 (en) 2019-06-27 2019-06-27 COEXISTENCE INTERFERENCE REPORTING METHOD AND DEVICE, MOBILE TERMINAL AND STORAGE MEDIA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093401 WO2020258193A1 (zh) 2019-06-27 2019-06-27 共存干扰上报方法及装置、移动终端及存储介质

Publications (1)

Publication Number Publication Date
WO2020258193A1 true WO2020258193A1 (zh) 2020-12-30

Family

ID=68544752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093401 WO2020258193A1 (zh) 2019-06-27 2019-06-27 共存干扰上报方法及装置、移动终端及存储介质

Country Status (4)

Country Link
US (1) US20220353875A1 (zh)
EP (1) EP3993544A4 (zh)
CN (1) CN110495203B (zh)
WO (1) WO2020258193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023287195A1 (ko) * 2021-07-13 2023-01-19 엘지전자 주식회사 무선통신 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800878B (zh) * 2019-07-04 2023-04-18 维沃移动通信有限公司 发送方法、干扰处理方法、终端及网络侧设备
CN111357320B (zh) * 2020-02-21 2023-10-03 北京小米移动软件有限公司 通信处理方法、装置及计算机存储介质
CN117527090A (zh) * 2022-07-29 2024-02-06 展讯半导体(南京)有限公司 一种通信方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143521A (zh) * 2011-03-24 2011-08-03 电信科学技术研究院 一种进行设备内共存干扰协调的方法、***和设备
US20120195291A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus for advoiding in-device coexistence interference in a wireless communication system
CN103391551A (zh) * 2012-05-09 2013-11-13 ***通信集团公司 一种终端内共存干扰的干扰频段上报、接收方法及其装置
CN104662986A (zh) * 2012-09-28 2015-05-27 瑞典爱立信有限公司 用于设备内共存(idc)指示的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE057722T2 (hu) * 2011-01-07 2022-06-28 Beijing Xiaomi Mobile Software Co Ltd Csatorna minõségi mutatójának jelentése
US8547867B2 (en) * 2011-02-18 2013-10-01 Research In Motion Limited Method and apparatus for interference identification on configuration of LTE and BT
CN107078813B (zh) * 2014-10-17 2021-07-06 Lg 电子株式会社 在支持fdr传输的无线通信***中测量设备间干扰的方法及其装置
EP3679752A4 (en) * 2017-09-04 2021-03-24 ZTE Corporation SYSTEMS AND PROCEDURES FOR ROBUST TIME MULTIPLEX PATTERNS
CN108513698A (zh) * 2017-09-28 2018-09-07 北京小米移动软件有限公司 干扰协调方法及装置、用户设备和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120195291A1 (en) * 2011-02-01 2012-08-02 Innovative Sonic Corporation Method and apparatus for advoiding in-device coexistence interference in a wireless communication system
CN102143521A (zh) * 2011-03-24 2011-08-03 电信科学技术研究院 一种进行设备内共存干扰协调的方法、***和设备
CN103391551A (zh) * 2012-05-09 2013-11-13 ***通信集团公司 一种终端内共存干扰的干扰频段上报、接收方法及其装置
CN104662986A (zh) * 2012-09-28 2015-05-27 瑞典爱立信有限公司 用于设备内共存(idc)指示的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "3GPP TSG-RAN WG2 Meeting #78, R2-122329", STAGE-2 CR ON SIGNALLING AND PROCEDURE FOR INTERFERENCE AVOIDANCE FOR IDC, 14 May 2012 (2012-05-14), XP050606846, DOI: 20200308183326X *
See also references of EP3993544A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023287195A1 (ko) * 2021-07-13 2023-01-19 엘지전자 주식회사 무선통신 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 장치

Also Published As

Publication number Publication date
CN110495203A (zh) 2019-11-22
CN110495203B (zh) 2023-04-11
EP3993544A4 (en) 2023-01-18
EP3993544A1 (en) 2022-05-04
US20220353875A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US11191085B2 (en) Method and apparatus for coordinating in-device coexistence interference, user equipment and communication device
US20230354010A1 (en) Method for information transmission, communication device and storage medium
WO2020258193A1 (zh) 共存干扰上报方法及装置、移动终端及存储介质
US20240080825A1 (en) Method and device for determining bandwidth part
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
WO2021114274A1 (zh) 无线通信方法、装置及存储介质
US20230292364A1 (en) Bandwidth resource multiplexing method and apparatus, communication device and storage medium
JP7453422B2 (ja) 無線通信方法及び装置、端末及び記憶媒体
US20220407637A1 (en) Harq-ack processing method and apparatus, communication device and storage medium
US20230224956A1 (en) Method for detecting unlicensed channel, and communication device
WO2021030979A1 (zh) 数据处理方法及装置、通信设备及存储介质
US20220294568A1 (en) Harq feedback enhancement method and apparatus, communication device and storage medium
CN114846886A (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2021164011A1 (zh) 通信处理方法、装置及计算机存储介质
CN111466127B (zh) 增强上行覆盖的处理方法、装置及存储介质
WO2021092732A1 (zh) Harq-ack传输方法及装置、通信设备
US20240064787A1 (en) Method for information processing, communication device, and non-transitory computer storage medium
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
US20230422291A1 (en) Method for wireless transmission, communication device and non-transitory computer storage medium
WO2021146872A1 (zh) 数据传输方法、装置、通信设备及存储介质
JP7465359B2 (ja) アップリンク伝送の処理方法、装置、通信機器及び記憶媒体
WO2021163969A1 (zh) 数据传输方法、装置和通信设备
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2021159247A1 (zh) 信道测量方法、装置及通信设备
WO2023039857A1 (zh) 临时参考信号簇的处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019934888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019934888

Country of ref document: EP

Effective date: 20220127