WO2020258061A1 - 压力感应***及压力感应设定方法 - Google Patents

压力感应***及压力感应设定方法 Download PDF

Info

Publication number
WO2020258061A1
WO2020258061A1 PCT/CN2019/092885 CN2019092885W WO2020258061A1 WO 2020258061 A1 WO2020258061 A1 WO 2020258061A1 CN 2019092885 W CN2019092885 W CN 2019092885W WO 2020258061 A1 WO2020258061 A1 WO 2020258061A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensing
conductive
totem
pressure
sheet
Prior art date
Application number
PCT/CN2019/092885
Other languages
English (en)
French (fr)
Inventor
张敏蕙
梁圣泉
林永峻
谢维廷
Original Assignee
百医医材科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百医医材科技股份有限公司 filed Critical 百医医材科技股份有限公司
Priority to PCT/CN2019/092885 priority Critical patent/WO2020258061A1/zh
Priority to US17/621,187 priority patent/US20220268646A1/en
Priority to CN201980096117.5A priority patent/CN113795740A/zh
Publication of WO2020258061A1 publication Critical patent/WO2020258061A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2231Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction
    • G01L1/2237Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction the direction being perpendicular to the central axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Definitions

  • the invention relates to a pressure sensing related field, in particular to a soft electronic pressure sensing system and a pressure sensing setting method.
  • the flexible electronic pressure device is set on a flexible or bendable substrate with a pressure sensing structure, and pressure measurement is performed through the pressure sensing structure.
  • the flexible electronic pressure device is suitable for large area and curved measurement environments, such as: flat panel Computer use ultra-thin sensitivity adjustable keyboard, active pressure pen assembly, wearable pressure sensing assembly or medical testing pressure sensing assembly, etc.
  • US Patent No. US7980144B2 discloses a flexible electronic pressure sensing device and the same
  • the manufacturing method includes a multilayer flexible film, a plurality of electrodes, a plurality of sensing blocks, and a plurality of bumps.
  • Each soft film is arranged at intervals to define two spaces.
  • Each electrode and each sensing block are arranged in the The flexible film is located in one of the spaces, and each bump is arranged on the flexible film and located in the other space.
  • the air in the two spaces can hold the two flexible films of each electrode and each sensing block The relative distance between the two; when the flexible electronic pressure sensing device is deformed, it can avoid the false sensing signal caused by the contact between the sensing block and the electrode or two sensing blocks respectively arranged on different soft films .
  • the sensing blocks and bumps protruding on the soft film are easy to bring to users The foreign body sensation during wearing or medical testing causes discomfort to the user.
  • the present invention provides a pressure sensing system and a pressure sensing setting method. Through the setting and judgment of the critical value, it is possible to avoid the problem of two electrodes contacting each other without using additional complicated structures, and to effectively simplify the process Improve reliability, increase its application range and measurement comfort.
  • An embodiment of the present invention provides a pressure sensing system, which includes: a first pressure sensing sheet having a first flexible substrate and a first conductive totem, the first conductive totem is arranged on the first flexible On the surface of the substrate; a second pressure sensing sheet, which has a second flexible substrate and a second conductive totem, the second conductive totem is provided on the surface of the second flexible substrate, wherein the second pressure sensing The sheet is superimposed with the side provided with the second conductive totem on the side of the first pressure sensing sheet provided with the first conductive totem; and a processing device is electrically connected to the first pressure sensing sheet and the second pressure sensing sheet , The processing device outputs an electric power to the first pressure sensing sheet, and obtains a pressure sensing signal from the second pressure sensing sheet, and compares the pressure sensing signal with a threshold value to determine whether the first pressure sensing sheet and Whether the second pressure sensing piece is pressed by an external force.
  • the first conductive totem has a first high conductive circuit and a first low conductive circuit electrically connected to the first high conductive circuit, and the first low conductive circuit extends from the first high conductive circuit and is located at the A first pressure sensing area is formed on a flexible substrate, and the area of the first pressure sensing area is larger than the area occupied by the first highly conductive circuit on the first flexible substrate;
  • the second conductive totem has a second highly conductive circuit And a second low conductive circuit electrically connected to the second high conductive circuit, the second low conductive circuit extends from the second high conductive circuit and forms a second pressure sensing area on the second flexible substrate, the second pressure sensing The area of the region is larger than the area occupied by the second highly conductive circuit on the second flexible substrate.
  • the first low-conductivity circuit is divided into a first coverage area and a first layout area.
  • the first coverage area is provided on the side of the first high-conductivity circuit away from the first flexible substrate.
  • the layout area is provided on the first flexible substrate;
  • the second low-conductivity circuit is divided into a second coverage area and a second layout area, and the second coverage area is provided on the side of the second highly conductive circuit away from the second flexible substrate.
  • the second layout area is provided on the second flexible substrate.
  • the first pressure sensing sheet further has a first insulating layer, and the first insulating layer covers the side of the first highly conductive circuit away from the first flexible substrate; the second pressure sensing sheet further There is a second insulating layer, and the second insulating layer covers the side of the second highly conductive circuit away from the second flexible substrate.
  • the first insulating layer covers the first covering area; the second insulating layer covers the second covering area.
  • each first conductive totem has a first transmission part, and each first transmission part is independently electrically connected to the processing device, and each first transmission part The two ends of the are respectively connected to the processing device and each first conductive totem; there are multiple second conductive totems, each second conductive totem has a second transmission part, and each second transmission part is independent of the processing device Electrically connected, both ends of each second transmission part are respectively connected to the processing device and each second conductive totem.
  • the number of the first conductive totems is multiple, and each first conductive totem has a first transmission part, and each first conductive totem is arranged in a two-dimensional array.
  • the transmission parts are connected to each other along a first direction; the number of second conductive totems is multiple, and each second conductive totem has a second transmission part, and each second conductive totem is arranged in a two-dimensional array.
  • the second transmission parts are connected to each other along a second direction, and the first direction and the second direction cross each other.
  • the pressure sensing signal is a current value; when the pressure sensing signal is greater than the critical value, the processing device determines that the first pressure sensing sheet and the second pressure sensing sheet are pressed by an external force.
  • the steps of the pressure sensing setting method include:
  • the processing device receives an initial signal generated by the second pressure sensing sheet when the first pressure sensing sheet and the second pressure sensing sheet are not resisted by an external force;
  • the processing device receives that the first pressure sensing sheet and the second pressure sensing sheet are pressed by an external force, and a pressure signal is generated by the second pressure sensing sheet;
  • the processing device processes the initial signal and the pressure signal to generate the critical value.
  • the processing device divides the sum of the initial signal and the pressure signal by a reference value to obtain the critical value.
  • the present invention superimposes the first pressure sensing sheet and the second pressure sensing sheet to further obtain the pressure sensing signal, and the pressure sensing signal and the critical value are judged to produce effective measurement results; Therefore, a simple structure with a critical value setting can effectively avoid the generation of measurement error signals and improve the existing disadvantages of measurement errors that require complicated structures to avoid.
  • the present invention transmits power to the first low-conductivity circuit through the first high-conductivity circuit.
  • a pressure sensing signal is generated, and the pressure is sensed through the second high-conductivity circuit.
  • the measured signal is returned to the processing device, and the sensitivity and accuracy of the measurement are improved through the design of high and low conductive lines.
  • the present invention avoids the problem of excessive current consumption due to contact between the first highly conductive circuit and the second highly conductive circuit.
  • the present invention can increase the number of conductive totems according to the requirement of measuring area, and when each conductive totem is under pressure, the pressure sensing signal is sent back from the transmission part to the processing device, thereby determining the pressure-receiving part and area. To achieve the effect of detecting pressure changes in different ranges.
  • An embodiment of the present invention provides a pressure sensing setting method, which is executed by using a pressure sensing system.
  • the steps of the pressure sensing setting method include: the processing device receives the first pressure sensing sheet and the second pressure sensing sheet unaffected An initial signal generated by the second pressure sensing sheet when an external force is pressed; the processing device receives the first pressure sensing sheet and the second pressure sensing sheet when the second pressure sensing sheet is pressed by an external force, and is generated by the second pressure sensing sheet A pressure signal; and the processing device processes the initial signal and the pressure signal to generate a critical value.
  • the processing device divides the sum of the initial signal and the pressure signal by a reference value to obtain the critical value.
  • the present invention processes the initial signal that has not been pressed by the external force and the pressure signal that has been pressed by the external force to generate a critical value as the best judgment criterion; thereby, it can provide specific settings for different purposes Threshold to improve the accuracy of measurement.
  • Figure 1 is a schematic diagram of the system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the first form of the pressure sensing sheet of the first embodiment of the present invention, showing that the first highly conductive circuit is directly connected to the first insulating layer;
  • FIG. 3 is a schematic diagram of the first pressure sensing sheet and the second pressure sensing sheet of the first form of the first embodiment of the present invention without pressure;
  • FIG. 4 is a schematic diagram of the first pressure sensing sheet and the second pressure sensing sheet being pressed in the first form of the first embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view of the first pressure sensing sheet of the second form of the first embodiment of the present invention, showing that a first low-conductivity circuit is provided between the first high-conductivity circuit and the first insulating layer;
  • FIG. 6 is a schematic diagram of the first pressure-sensing piece and the second pressure-sensing piece of the second form of the first embodiment of the present invention without pressure;
  • FIG. 7 is a schematic diagram of the first pressure sensing sheet and the second pressure sensing sheet under pressure in the second form of the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the system of the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the system of the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the interconnection of the first pressure sensing sheet and the second pressure sensing sheet according to the third embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the first pressure-sensing sheet and the second pressure-sensing sheet being superimposed and under pressure according to the third embodiment of the present invention.
  • a first embodiment of the present invention provides a pressure sensing system 100, which includes:
  • the first conductive totem 12 is formed on the surface 111 of the first flexible substrate 11 in the manner of a printed circuit; the first pressure sensing sheet 10 is made into a thin sheet with a flat surface.
  • the first conductive totem 12 has a first high conductive circuit 121, a first low conductive circuit 122, a first insulating layer 123, and a first transmission portion 124.
  • the first high conductive circuit 121 and the first low conductive circuit 122 are connected to each other
  • the first transmission portion 124 is electrically connected, and the first insulating layer 123 covers the side of the first high conductive line 121 away from the first flexible substrate 11, wherein the first low conductive line 122 extends from the first high conductive line 121 and is
  • a first pressure sensing area 13 is formed on the first flexible substrate 11, and the area of the first pressure sensing area 13 is larger than the area occupied by the first highly conductive circuit 121 on the first flexible substrate 11.
  • the first high-conductivity circuit 121 is made of silver, and the first low-conductivity circuit 122 is made of conductive carbon; the first conductive totem 12 has a rectangular shape, and the first high-conductivity circuit 121 is arranged on at least one side of the periphery of the rectangle and has branches and crosses. Set in a rectangular shape, the first low-conductivity lines 122 are extended and staggered from the first high-conductivity lines 121 to form a mesh structure.
  • the first insulating layer 123 can directly cover the first highly conductive circuit 121 or indirectly cover the first highly conductive circuit 121; please refer to FIGS. 2 to 4, which are the first form of the first conductive totem 12.
  • the layer 123 directly covers the first highly conductive circuit 121; please refer to FIGS. 5 to 7, which is the second form of the first conductive totem 12, and the first insulating layer 123 indirectly covers the first highly conductive circuit 121, where,
  • the first low-conductivity circuit 122 is divided into a first coverage area 122a and a first layout area 122b.
  • the first coverage area 122a is provided on the side of the first high-conductivity circuit 121 away from the first flexible substrate 11, and the first insulation
  • the layer 123 covers the first covering area 122 a, and the first layout area 122 b is provided on the surface 111 of the first flexible substrate 11.
  • a second pressure sensing sheet 20 has a second flexible substrate 21 and a second conductive totem 22, the second conductive totem 22 is provided on the surface 211 of the second flexible substrate 21, in the embodiment of the present invention
  • the second conductive totem 22 is formed on the surface 211 of the second flexible substrate 21 in a printed circuit manner; the second pressure sensing sheet 20 is in the shape of a sheet with a flat surface.
  • the second conductive totem 22 has a second high conductive line 221, a second low conductive line 222, a second insulating layer 223, and a second transmission portion 224.
  • the second high conductive line 221 and the second low conductive line 222 are connected to each other
  • the second transmission portion 224 is electrically connected, and the second insulating layer 223 covers the side of the second high conductive line 221 away from the second flexible substrate 21, wherein the second low conductive line 222 extends from the second high conductive line 221 and is
  • a second pressure sensing area 23 is formed on the second flexible substrate 21, and the area of the second pressure sensing area 23 is larger than the area occupied by the second highly conductive circuit 221 on the second flexible substrate 21, in the embodiment of the present invention
  • the second high conductive line 221 is made of silver
  • the second low conductive line 222 is made of conductive carbon
  • the second conductive totem 22 has a rectangular shape
  • the second high conductive line 221 is provided on at least one side of the pe
  • the second insulating layer 223 can directly cover the second high conductive circuit 221 or indirectly cover the second high conductive circuit 221; when the second insulating layer 223 indirectly covers the second high conductive circuit 221, the second low conductive circuit 222 is distinguished Is a second covering area 222a and a second layout area 222b.
  • the second covering area 222a is provided on the side of the second highly conductive circuit 221 away from the second flexible substrate 21, and the second insulating layer 223 covers the second covering
  • the area 222a and the second layout area 222b are provided on the surface 211 of the second flexible substrate 21.
  • first pressure sensing sheet 10 and the second pressure sensing sheet 20 have the same structure, that is, the configuration of the first conductive totem 12 is the same as the configuration of the second conductive totem 22 .
  • first flexible substrate 11 and the second flexible substrate 21 are made of transparent plastic material in this embodiment, but in fact, different flexible materials can be used according to requirements.
  • a processing device 30 is electrically connected to the first pressure sensing sheet 10 and the second pressure sensing sheet 20, wherein the second pressure sensing sheet 20 is superimposed on the first pressure sensing sheet 20 with a surface 211 provided with a second conductive totem 22
  • the pressure sensing sheet 10 is provided with the surface 111 of the first conductive totem 12; when the processing device 30 outputs a power, the power is input from the first transmission part 124 of the first pressure sensing sheet 10 to the first highly conductive circuit 121, and the A high conductive circuit 121 transmits power to the first pressure sensing area 13 of the first low conductive circuit 122; then, the second pressure sensing area 23 of the second pressure sensing sheet 20 and the first pressure sensing sheet 10 When the first pressure sensing area 13 of the first low-conductivity circuit 122 is in contact with each other, the first pressure-sensing area 13 of the first low-conductivity circuit 122 and the second pressure-sensing area 23 of the second low-conductivity circuit 222 will generate a pressure sens
  • the two highly conductive lines 221 return the pressure sensing signal from the second transmission part 224 to the processing device 30.
  • the processing device 30 compares the pressure sensing signal with a threshold value to determine the first pressure sensing sheet 10 and the second Whether the pressure sensing sheet 20 is pressed by an external force and the magnitude of the external force.
  • the pressure sensing signal is a current value; when the pressure sensing signal is greater than the critical value, the processing device 30 determines that the first pressure sensing sheet 10 and the second pressure sensing sheet 20 are pressed by an external force.
  • the present invention provides a pressure sensing setting method, which is executed by the pressure sensing system 100, and the steps of the pressure sensing setting method include:
  • the first signal receiving step the first pressure sensing sheet 10 and the second pressure sensing sheet 20 are overlapped with each other, and the processing device 30 receives that the first pressure sensing sheet 10 and the second pressure sensing sheet 20 are not resisted by external force
  • the first pressure sensing area 13 of the first pressure sensing sheet 10 is in contact with the second pressure sensing area 23 of the second pressure sensing sheet 20, an initial signal generated by the second pressure sensing sheet 20, As shown in Figure 3 and Figure 6.
  • the second signal receiving step the processing device 30 receives the first pressure sensing area 13 of the first pressure sensing sheet 10 and the second pressure sensing area 23 of the second pressure sensing sheet 20, which are pressed by the second pressure
  • the sensing piece 20 generates a pressure signal, as shown in FIGS. 4 and 7.
  • Signal processing step the processing device 30 processes the initial signal and the pressure signal to generate a critical value.
  • the processing device 30 divides the sum of the initial signal and the pressure signal by a reference value to obtain the critical value.
  • the reference value is 4, and the critical value is between the initial signal and the compressed signal and is more biased toward one end of the initial signal.
  • Both a flexible substrate 11 and a second flexible substrate 21 are made of flexible materials, so when they are placed flat, they may be slightly deflected, so that there is a gap between the first conductive totem 12 and the second conductive totem 22
  • the naturally occurring gaps will not be completely in close contact with each other to conduct electrical signals, and the parts that are in contact with the electrical signals should be judged as noise at this time, so the threshold setting is required to eliminate the interference problem of noise;
  • these gaps will disappear after being squeezed, so that the first conductive totem 12 and the second conductive totem 22 are in close contact with each other, thereby obtaining the first pressure sensing sheet 10 and the second pressure sensing sheet 20.
  • the pressure signal is compressed by the external force, and the processing device 30 processes the initial signal that has not been compressed by the external force and the pressure signal that has been compressed by the external force to generate a dedicated threshold, and set the dedicated threshold It is the best judgment standard; then, follow-up corresponding use is carried out through the exclusive threshold value to produce accurate measurement results. It should be noted that if this system is used on a mattress, it should be set according to users of different body types, through exclusive threshold settings, which can achieve a lower threshold for users with small body sizes, which can increase Sensitivity avoids the problem of missing detection; for larger users, a higher threshold can be achieved to avoid the problem of noise interference affecting the actual measurement accuracy.
  • the magnitude of the pressure signal can then be used to determine the magnitude of the pressure against the external force.
  • the first pressure sensing sheet 10 and the second pressure sensing sheet 20 can be placed on a mattress, and the patient is not lying Before the mattress, the initial signal is obtained; when the patient lies on the mattress, the pressure signal is obtained; then, the processing device 30 processes the critical value exclusively for the patient.
  • FIG. 8 is a second embodiment of the present invention.
  • the pressure sensing system 100 further includes:
  • the first pressure sensing sheet 10 is provided with a plurality of first conductive totems 12, each of the first conductive totems 12 has a first transmission part 124, and each first transmission part 124 is independently electrically connected to the processing device 30, each Both ends of the first transmission portion 124 are respectively connected to the processing device 30 and each first conductive totem 12.
  • each first conductive totem 12 is spaced along the longitudinal and lateral directions of the first pressure sensing sheet 10 Array arrangement.
  • the second pressure sensing sheet 20 is provided with a plurality of second conductive totems 22, each of the second conductive totems 22 has a second transmission part 224, and each second transmission part 224 is independently electrically connected to the processing device 30, each Two ends of the second transmission portion 224 are respectively connected to the processing device 30 and each second conductive totem 22.
  • each second conductive totem 22 is spaced along the longitudinal and lateral directions of the second pressure sensing sheet 20 Array arrangement; in this embodiment, the structure of the second pressure-sensing sheet 20 is the same as the structure of the first pressure-sensing sheet 10, FIG. 8 only marks the relevant number of the first pressure-sensing sheet 10.
  • the first pressure sensing sheet 10 and the second pressure sensing sheet 20 can increase the number of the first conductive totem 12 and the second conductive totem 22 according to the measurement area requirements, and each of the first conductive totem 12 and the second conductive totem When pressure is applied, the pressure sensing signal is transmitted back to the processing device 30 through each second transmission part 224, so as to determine different pressure parts and areas, so as to achieve the effect of detecting pressure changes in different ranges.
  • the first pressure sensing sheet 10 and the second pressure sensing sheet 20 can be placed on a mattress, while the patient is lying on the bed After padding, it can be known from the pressure sensing signals returned by each second transmission part 224 that the pressure sensing signals returned by the first conductive totem 12 and the second conductive totem 22 close to the upper body are greater than those of other parts of the first.
  • the conductive totem 12 and the second conductive totem 22 are pressure-returned pressure sensing signals, so it can be known that the patient's main weight is concentrated on the upper body, so as to achieve the purpose of judging different pressured parts and areas.
  • FIG. 9 to FIG. 11 are the third embodiment of the present invention.
  • the difference from the foregoing embodiment is:
  • the first pressure sensing sheet 10 has a plurality of first conductive totems 12, each first conductive totem 12 is arranged in a two-dimensional array, and the first transmission portions 124 of each first conductive totem 12 are connected to each other along a first direction;
  • the first conductive totems 12 are respectively connected into the first row, second row, and third row, and the processing device 30 will sequentially send signals to each row
  • the first conductive totem 12, and the first conductive totem 12 in each column is electrically conductive due to the electrical connection of the first transmission portion 124.
  • the second pressure sensing sheet 20 has a plurality of second conductive totems 22, each of the second conductive totems 22 is arranged in a two-dimensional array, and the second transmission portions 224 of each of the second conductive totems 22 are connected to each other in the second direction.
  • the direction and the second direction cross each other.
  • the second conductive totems 22 are respectively connected into the first row, the second row, and the third row.
  • the second conductive totems 22 in each row are electrically connected to the processing device 30 through the second transmission portion 224 to transmit electrical signals back to the processing device 30.
  • the first pressure-sensing sheet 10 and the second pressure-sensing sheet 20 are superimposed on each other, and when the first pressure-sensing sheet 10 and the second pressure-sensing sheet 20 are pressed and contact each other, the pressed first conductive The totem 12 and the second conductive totem 22 are electrically connected, and the signal from the processing device 30 flows through the first conductive totem 12 and the second conductive totem 22, and then returns to the processing device 30 to determine the pressure position.
  • the processing device 30 can also make a judgment that multiple locations are under pressure based on the feedback source and signal strength received at the same time.
  • the pressure sensing system 100 of the present invention uses a simple structure to match the critical value setting and judgment of the processing device 30, which can effectively avoid the generation of measurement error signals, and improve the existing disadvantages of measurement errors that require complicated structures to avoid. This effectively reduces the manufacturing process and cost of the first pressure sensing sheet 10 and the second pressure sensing sheet 20 of the present invention.
  • the present invention avoids the problem of excessive current consumption of the first highly conductive circuit 121 and the second highly conductive circuit 221 due to contact with each other. On the one hand, it avoids power consumption significantly, on the other hand, it is also avoided that the pressure sensing signal is directly transmitted by the first highly conductive circuit 121 and the second highly conductive circuit 221 and the measurement is not accurate.
  • the first conductive totem 12 and the second conductive totem 22 of the present invention are formed on the first pressure sensing sheet 10 and the second pressure sensing sheet 20 by a printed circuit, so that the first pressure sensing sheet 10 and the second pressure
  • the sensing sheet 20 is in the shape of a flat sheet.
  • the present invention processes the initial signal that has not been resisted by an external force and the pressure signal that has been resisted by an external force to generate a critical value as the best criterion; thereby, it is possible to set exclusive thresholds according to different purposes Value to improve the accuracy of measurement.
  • the present invention can increase the number of conductive totems on the pressure sensing chip according to the measurement area requirements, and when each conductive totem is under pressure, the pressure sensing signal is sent back to the processing device 30 by the transmission part to determine the pressure. Pressure part and area to achieve the effect of detecting pressure changes in different ranges.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种压力感应***及压力感应设定方法,压力感应***(100)包括:第一压力感测片(10)、第二压力感测片(20)及处理装置(30),第一压力感测片的第一可挠基板(11)设有第一导电图腾(12);第二压力感测片的第二可挠基板(21)设有第二导电图腾(22),第二压力感测片以第二导电图腾叠合于第一压力感测片的第一导电图腾;处理装置输出一个电力至第一压力感测片,并由第二压力感测片取得一个压力感测信号,并将压力感测信号与一临界值比较,以判断第一压力感测片及第二压力感测片是否受外力抵压;压力感应设定方法使用压力感应***执行。通过临界值的判断,能避免误差信号的产生,进而增加测量精确度。

Description

压力感应***及压力感应设定方法 技术领域
本发明是关于一种压力感测相关领域,尤指一种软性电子的压力感应***及压力感应设定方法。
背景技术
软性电子压力装置是在柔性或可弯曲基板上,设置具有传感压力结构,通过传感压力结构进行压力测量,其中,软性电子压力装置适用于大面积及弯曲的测量环境,例如:平板计算机用超薄型灵敏度可调式键盘、主动式压力笔组件、穿戴式压力感测组件或医疗检测压力感测组件等等。
然而,软性电子压力装置受到弯折时,容易输出不稳定的电信号,容易造成测量的误差;为改善前述问题,如美国专利第US7980144B2号,公开一种软性电子压力感测装置及其制造方法,其包括多层软性薄膜、多个电极、多个感测块及多个凸块,各软性薄膜间隔设置而定义出两个空间,各电极及各感测块配置在所述软性薄膜上而位于其中一个空间内,且各凸块配置在所述软性薄膜上而位于另一空间内,两空间内的空气能保持各电极及各感测块的两个软性薄膜之间的相对距离;当软性电子压力感测装置产生形变时,可避免因分别配置于不同软性薄膜上的感测块与电极或两个感测块相互接触,而产生错误感测信号。
发明概述
技术问题
然而,前述专利需要通过复杂的结构设计,花费大量的制造流程与成本,才能避免软性薄膜于未受压的情况下,相互接触而产生误差信号。
再者,若将前述专利软性电子压力感测装置应用于穿戴式压力感测组件或医疗检测压力感测组件时,软性薄膜上凸设的感测块及凸块,容易带给使用者于穿戴或医疗检测时的异物感,造成使用者的不适。
问题的解决方案
技术解决方案
为解决上述问题,本发明提供一种压力感应***及压力感应设定方法,通过临界值的设定与判断,可以不需要使用额外的复杂结构来避免两电极相互接触的问题,通过有效简化工艺提升可靠度、增加其应用范围及测量的舒适性。
本发明的一项实施例提供一种压力感应***,其包括:一个第一压力感测片,其具有一个第一可挠基板及一个第一导电图腾,第一导电图腾设于第一可挠基板的表面上;一个第二压力感测片,其具有一个第二可挠基板及一个第二导电图腾,第二导电图腾设于第二可挠基板的表面上,其中,第二压力感测片以设有第二导电图腾的一面叠合于第一压力感测片设有第一导电图腾的一面;以及一个处理装置,其与第一压力感测片及第二压力感测片电连接,处理装置输出一个电力至第一压力感测片,并由第二压力感测片取得一个压力感测信号,并将压力感测信号与一个临界值比较,以判断第一压力感测片及第二压力感测片是否受外力抵压。
于其中一项实施例中,第一导电图腾具有一个第一高导电线路及电连接第一高导电线路的一个第一低导电线路,第一低导电线路由第一高导电线路延伸并于第一可挠基板上形成一个第一压力感测区,第一压力感测区的面积大于第一高导电线路于第一可挠基板所占据的面积;第二导电图腾具有一个第二高导电线路及电连接第二高导电线路的一个第二低导电线路,第二低导电线路由第二高导电线路延伸并于第二可挠基板上形成一个第二压力感测区,第二压力感测区的面积大于第二高导电线路于第二可挠基板所占据的面积。
于其中一项实施例中,第一低导电线路区分为一个第一覆盖区及一个第一布设区,第一覆盖区设于第一高导电线路远离第一可挠基板的一侧,第一布设区设于第一可挠基板;第二低导电线路区分为一个第二覆盖区及一个第二布设区,第二覆盖区设于第二高导电线路远离第二可挠基板的一侧,第二布设区设于第二可挠基板。
于其中一项实施例中,第一压力感测片还具有一个第一绝缘层,第一绝缘层覆盖于第一高导电线路远离第一可挠基板的一侧;第二压力感测片还具有一个第二绝缘层,第二绝缘层覆盖于第二高导电线路远离第二可挠基板的一侧。
于其中一项实施例中,第一绝缘层覆盖于第一覆盖区;第二绝缘层覆盖于第二 覆盖区。
于其中一项实施例中,第一导电图腾的数量为多个,每一个第一导电图腾具有一个第一传输部,每一个第一传输部独立与处理装置电连接,每一个第一传输部的两端分别连接于处理装置及每一个第一导电图腾;第二导电图腾的之数量为多个,每一个第二导电图腾具有一个第二传输部,每一个第二传输部独立与处理装置电连接,每一个第二传输部的两端分别连接于处理装置及每一个第二导电图腾。
于其中一项实施例中,第一导电图腾的数量为多个,每一个第一导电图腾具有一个第一传输部,各第一导电图腾以二维数组排列,各第一导电图腾的第一传输部沿一个第一方向相互连接;第二导电图腾的数量为多个,每一个第二导电图腾具有一个第二传输部,各第二导电图腾以二维数组排列,各第二导电图腾的第二传输部沿一个第二方向相互连接,第一方向与第二方向互相交叉。
于其中一项实施例中,压力感测信号为电流值;压力感测信号大于临界值时,处理装置判断第一压力感测片与第二压力感测片受外力抵压。
该压力感应设定方法的步骤包括:
所述处理装置接收该第一压力感测片与该第二压力感测片未受外力抵压,由该第二压力感测片产生的一个初始信号;
所述处理装置接收该第一压力感测片与该第二压力感测片受外力抵压,由该第二压力感测片产生一个受压信号;以及
所述处理装置将该初始信号及该受压信号经过处理,以产生该临界值。
所述处理装置将该初始信号与该受压信号的和除以一个参考值,以取得该临界值。
通过上述,本发明将第一压力感测片与第二压力感测片相互叠合,进一步取得压力感测信号,并将压力感测信号与临界值进行判断,以产生有效的测量结果;借此,以简单的结构搭配临界值设定,便能有效避免测量误差信号的产生,改善现有需要通过复杂结构,才能够避免测量误差的缺点。
本发明通过第一高导电线路将电力传至第一低导电线路,于第一低导电线路及第二低导电线路相互接触时,产生压力感测信号,并通过第二高导电线路将压 力感测信号回传至处理装置,通过高低导电线路的设计,提升测量的灵敏度及精确度。
另外,本发明通过第一绝缘层与第二绝缘层的设置,避免第一高导电线路及第二高导电线路因互相接触而有电流消耗过大的问题。
此外,本发明能够根据测量面积的需求增加导电图腾的数量,且通过各导电图腾于受压时,分别由传输部回传压力感测信号至处理装置,借此判断出受压部分与面积,以达到检测不同范围压力变化的效果。
本发明的一项实施例提供一种压力感应设定方法,使用压力感应***来执行,压力感应设定方法的步骤包括:处理装置接收第一压力感测片与第二压力感测片未受外力抵压时,由第二压力感测片产生的一个初始信号;所述处理装置接收第一压力感测片与第二压力感测片受外力抵压时,由第二压力感测片产生一个受压信号;以及所述处理装置将初始信号及受压信号经过处理,以产生临界值。
于其中一项实施例中,所述处理装置将初始信号与受压信号的和除以一个参考值,以取得临界值。
通过上述,本发明通过将未受外力抵压的初始信号与已受外力抵压的受压信号进行处理,以产生作为最佳判断基准的临界值;借此,能够提供不同用途设定专属的临界值,借此提升测量的精准度。
发明的有益效果
对附图的简要说明
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明第一实施例***示意图;
图2为本发明第一实施例的第一形态的压力感测片剖面示意图,表示第一高导电线路直接与第一绝缘层连接;
图3为本发明第一实施例的第一形态的第一压力感测片与第二压力感测片未受压示意图;
图4为本发明第一实施例的第一形态的第一压力感测片与第二压力感测片受压 示意图;
图5为本发明第一实施例的第二形态的第一压力感测片剖面示意图,表示第一高导电线路与第一绝缘层间设有第一低导电线路;
图6为本发明第一实施例的第二形态的第一压力感测片与第二压力感测片未受压示意图;
图7为本发明第一实施例的第二形态的第一压力感测片与第二压力感测片受压示意图;
图8为本发明第二实施例的***示意图;
图9为本发明第三实施例的***示意图;
图10为本发明第三实施例的第一压力感测片与第二压力感测片相互连接示意图;
图11为本发明第三实施例第一压力感测片与第二压力感测片相互叠合且受压示意图。
附图标记说明
100、压力感应***
10、第一压力感测片
11、第一可挠基板
111、表面
12、第一导电图腾
121、第一高导电线路
122、第一低导电线路
122a、第一覆盖区
122b、第一布设区
123、第一绝缘层
124、第一传输部
13、第一压力感测区
20、第二压力感测片
21、第二可挠基板
211、表面
22、第二导电图腾
221、第二高导电线路
222、第二低导电线路
222a、第二覆盖区
222b、第二布设区
223、第二绝缘层
224、第二传输部
23、第二压力感测区
30、处理装置
S、外力
实施该发明的最佳实施例
本发明的最佳实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
请参阅图1至图7所示,本发明第一实施例提供一种压力感应***100,其包括:
一个第一压力感测片10,其具有一个第一可挠基板11及一个第一导电图腾12,第一导电图腾12设于第一可挠基板11的表面111上,于本发明实施例中,第一导电图腾12以印刷电路方式形成于第一可挠基板11的表面111上;使第一压力感测片10为表面平整的薄片状。
第一导电图腾12具有一个第一高导电线路121、一个第一低导电线路122、一个第一绝缘层123及一个第一传输部124,第一高导电线路121及第一低导电线路122与第一传输部124电连接,第一绝缘层123覆盖于第一高导电线路121远离第一可挠基板11的一侧,其中,第一低导电线路122由第一高导电线路121延伸并于 第一可挠基板11上形成一个第一压力感测区13,第一压力感测区13的面积大于第一高导电线路121于第一可挠基板11所占据的面积,于本发明实施例中,第一高导电线路121为银材质,第一低导电线路122为导电碳材质;第一导电图腾12呈矩形状,第一高导电线路121设于矩形状的周缘的至少一边且分支交叉设于矩形状内,第一低导电线路122由第一高导电线路121延伸交错设置形成网状结构。
第一绝缘层123能够直接覆盖于第一高导电线路121或间接覆盖于第一高导电线路121;请参阅图2至图4所示,为第一导电图腾12的第一形态,第一绝缘层123直接覆盖于第一高导电线路121;请参阅图5至图7所示,为第一导电图腾12的第二形态,第一绝缘层123间接覆盖于第一高导电线路121,其中,第一低导电线路122区分为一个第一覆盖区122a及一个第一布设区122b,第一覆盖区122a设于第一高导电线路121远离第一可挠基板11的一侧,而第一绝缘层123覆盖于第一覆盖区122a,第一布设区122b设于第一可挠基板11的表面111。
一个第二压力感测片20,其具有一个第二可挠基板21及一个第二导电图腾22,第二导电图腾22设于第二可挠基板21的表面211上,于本发明实施例中,第二导电图腾22以印刷电路方式形成于第二可挠基板21的表面211上;第二压力感测片20为表面平整的薄片状。
第二导电图腾22具有一个第二高导电线路221、一个第二低导电线路222、一个第二绝缘层223及一个第二传输部224,第二高导电线路221及第二低导电线路222与第二传输部224电连接,第二绝缘层223覆盖于第二高导电线路221远离第二可挠基板21的一侧,其中,第二低导电线路222由第二高导电线路221延伸并于第二可挠基板21上形成一个第二压力感测区23,第二压力感测区23的面积大于第二高导电线路221于第二可挠基板21所占据的面积,于本发明实施例中,第二高导电线路221为银材质,第二低导电线路222为导电碳材质;第二导电图腾22呈矩形状,第二高导电线路221设于矩形状的周缘的至少一边且分支交叉设于矩形状内,第二低导电线路222由第二高导电线路221延伸交错设置形成网状结构。
第二绝缘层223能够直接覆盖于第二高导电线路221或间接覆盖于第二高导电线 路221;当第二绝缘层223间接覆盖于第二高导电线路221时,第二低导电线路222区分为一个第二覆盖区222a及一个第二布设区222b,第二覆盖区222a设于第二高导电线路221远离第二可挠基板21的一侧,而第二绝缘层223覆盖于第二覆盖区222a,第二布设区222b设于第二可挠基板21的表面211。
此外,于本发明实施例中,第一压力感测片10与第二压力感测片20为相同结构,也就是说,第一导电图腾12的设置形态与第二导电图腾22的设置形态相同。而依据实际使用状况的不同,也可以使用不同的结构。除此之外,第一可挠基板11以及第二可挠基板21于本实施例中为透明的塑料材质,然而实际上可依据需求使用不同的可挠材质。
一个处理装置30,其与第一压力感测片10及第二压力感测片20电连接,其中,第二压力感测片20以设有第二导电图腾22的表面211叠合于第一压力感测片10设有第一导电图腾12的表面111;当处理装置30输出一个电力,电力由第一压力感测片10的第一传输部124输入至第一高导电线路121,由第一高导电线路121将电力输传至第一低导电线路122的第一压力感测区13;接着,第二压力感测片20的第二压力感测区23与第一压力感测片10的第一压力感测区13接触时,第一低导电线路122的第一压力感测区13与第二低导电线路222的第二压力感测区23会产生一个压力感测信号,由第二高导电线路221将压力感测信号由第二传输部224回传至处理装置30,处理装置30将压力感测信号与一个临界值进行比较,以判断第一压力感测片10及第二压力感测片20是否受外力抵压及其外力大小。
于本发明实施例中,压力感测信号为电流值;当压力感测信号大于临界值时,处理装置30判断第一压力感测片10与第二压力感测片20受外力抵压。
进一步说明,本发明提供一种压力感应设定方法,使用压力感应***100来执行,压力感应设定方法的步骤包括:
第一接收信号步骤:将第一压力感测片10与第二压力感测片20相互叠合,由处理装置30接收第一压力感测片10与第二压力感测片20未受外力抵压时,第一压力感测片10的第一压力感测区13与第二压力感测片20的第二压力感测区23接触,由第二压力感测片20产生的一个初始信号,如图3及图6所示。
第二接收信号步骤:处理装置30接收第一压力感测片10的第一压力感测区13与 第二压力感测片20的第二压力感测区23受外力抵压,由第二压力感测片20产生一个受压信号,如图4及图7所示。
信号处理步骤:处理装置30将初始信号及受压信号经过处理,以产生临界值,其中,处理装置30将初始信号与受压信号的和除以一个参考值,以取得临界值,于本发明实施例中,参考值为4,而临界值为初始信号及受压信号之间并较偏向初始信号一端。
因此,当本发明压力感应***100运用于不同用途时,先取得第一压力感测片10与第二压力感测片20未受外力抵压的初始信号,其中需特别说明的是,由于第一可挠基板11与第二可挠基板21都为可挠材质,因此平放静置时,可能都会有些许挠曲,进而使该第一导电图腾12与该第二导电图腾22之间具有自然产生的空隙,因而不会完全相互紧密接触而导通电信号,而有接触导通电信号的部分此时应判断为噪声,因而需要临界值的设定来排除噪声的干扰问题;再由对应用途施加压力,这些空隙受到挤压后便会消失,而使第一导电图腾12与第二导电图腾22相互贴合接触,借此取得第一压力感测片10与第二压力感测片20受外力抵压的受压信号,而处理装置30将未受外力抵压的初始信号与已受外力抵压的受压信号进行处理,以产生专属的临界值,将专属的临界值设定为最佳判断基准;接着,通过专属的临界值进行后续对应用途使用,以产生精确的测量结果。需特别说明的是,若将此***放置在床垫使用,应根据不同体型的使用者,通过专属的临界值设定,可在体型小的使用者时,取得较低的临界值,可提高灵敏度避免漏侦测的问题;而在体型较大的使用者时,取得较高临界值,可避免噪声干扰影响实际测量准确度的问题。而受压信号的大小便可以用来判断外力抵压的压力大小。
举例:当本发明压力感应***100运用于医疗检测患者是否长时间同姿势卧躺时,能够将第一压力感测片10与第二压力感测片20放置于床垫,在患者未躺于床垫前,先取得初始信号;当患者躺于床垫后,再取得受压信号;然后,通过处理装置30处理出专属此患者的临界值。
请参阅图8所示,为本发明第二实施例,与前述实施例差异在于,压力感应***100还包括:
第一压力感测片10设有多个第一导电图腾12,每一个第一导电图腾12都具有一个第一传输部124,每一个第一传输部124独立与处理装置30电连接,每一个第一传输部124的两端分别连接于处理装置30及每一个第一导电图腾12,于本发明实施例中,各第一导电图腾12沿着第一压力感测片10的纵向与横向间隔数组排列。
第二压力感测片20设有多个第二导电图腾22,每一个第二导电图腾22都具有一个第二传输部224,每一个第二传输部224独立与处理装置30电连接,每一个第二传输部224的两端分别连接于处理装置30及每一个第二导电图腾22,于本发明实施例中,各第二导电图腾22沿着第二压力感测片20的纵向与横向间隔数组排列;于本实施例中,第二压力感测片20的结构与第一压力感测片10的结构相同,图8仅标注第一压力感测片10的相关标号。
因此,第一压力感测片10与第二压力感测片20能够根据测量面积的需求增加第一导电图腾12与第二导电图腾22的数量,并且各第一导电图腾12与第二导电图腾22于受压时,通过各第二传输部224回传压力感测信号至处理装置30,借此判断出不同受压部分与面积,以达到检测不同范围压力变化的效果。
举例:当本发明压力感应***100运用于医疗检测患者是否长时间同姿势卧躺时,能够将第一压力感测片10与第二压力感测片20放置于床垫,而患者躺于床垫后,能够通过各个第二传输部224回传的压力感测信号得知,贴近上半身的第一导电图腾12及第二导电图腾22受压所回传的压力感测信号大于其它部分第一导电图腾12及第二导电图腾22受压回传的压力感测信号,所以能够得知患者的主要重量集中于上半身,以达到判断出不同受压部分与面积的目的。
请参阅图9至图11所示,为本发明第三实施例,与前述实施例差异在于:
第一压力感测片10具有多个第一导电图腾12,各第一导电图腾12以二维数组排列,各第一导电图腾12的第一传输部124沿一个第一方向相互连接;于本发明实施例中,以图9的画面方向,由上到下,各第一导电图腾12分别连接为第一列、第二列及第三列,处理装置30会依序发出信号给各列的第一导电图腾12,而各列的第一导电图腾12因第一传输部124的电性连接而电性导通。
第二压力感测片20具有多个第二导电图腾22,各第二导电图腾22以二维数组排 列,各第二导电图腾22的第二传输部224沿依第二方向相互连接,第一方向与第二方向互相交叉,于本发明实施例中,以图9的画面方向,由左到右,各第二导电图腾22分别连接为第一行、第二行及第三行。于本实施例中,各行的第二导电图腾22与通过该第二传输部224与处理装置30电性连接,用以将电信号回传至处理装置30。
将第一压力感测片10与第二压力感测片20相互叠合,而当第一压力感测片10与第二压力感测片20受压而相互接触时,受压的第一导电图腾12及第二导电图腾22电性导通而将处理装置30发出的信号流经第一导电图腾12与第二导电图腾22后,回到处理装置30,进而判断出受压位置。
举例说明:请参阅图9及图11所示,当第一压力感测片10与第二压力感测片20受外力S抵压时,受外力S抵压到的第二列中央的第一导电图腾12与第二行中央的第二导电图腾22电性连接,处理装置30仅在发出的信号通过上述受到外力S抵压的第一导电图腾12时,可以收到第二导电图腾22回传至处理装置30的回馈,其他未受外力S抵压的第一导电图腾12与第二导电图腾22则收到初始信号。因此,根据有反应的第一导电图腾12与第二导电图腾22得知受压位置,且受外力S抵压的面积为受压的一个第一导电图腾12与第二导电图腾22叠合部分的面积,以此类推。而若有多个导电图腾同时受到外力抵压时,处理装置30也可通过同时收到的回馈来源以及信号强度做出多个位置受压的判断。
通过上述,本发明能够达成的功能效果如下:
一、本发明压力感应***100以简单的结构搭配处理装置30的临界值设定与判断,便能有效避免测量误差信号的产生,改善现有需要通过复杂结构,才能够避免测量误差的缺点,借此有效降低本发明第一压力感测片10与第二压力感测片20的制造流程与成本。
二、本发明通过第一高导电线路121将电力传至第一低导电线路122,于第一低导电线路122的第一压力感测区13及第二低导电线路222的第二压力感测区23相互接触时,产生压力感测信号,并通过第二高导电线路221将压力感测信号回传至处理装置30进行后续处理及判断,通过高低导电线路的设计,提升测量的灵敏度及精确度。
三、本发明通过第一绝缘层123与第二绝缘层223的设置,避免第一高导电线路121及第二高导电线路221因互相接触而有电流消耗过大的问题,一方面避免电力耗损严重,另一方面也避免压力感测信号直接由第一高导电线路121及第二高导电线路221传输而有测量不准确的状况。
四、本发明的第一导电图腾12与第二导电图腾22以印刷电路方式形成于第一压力感测片10与第二压力感测片20,令第一压力感测片10与第二压力感测片20为平整的薄片状,当第一压力感测片10与第二压力感测片20应用于穿戴或医疗检测的压力检测时,能够让使用者无异物感,提高使用时的舒适性。
五、本发明通过将未受外力抵压的初始信号与已受外力抵压的受压信号进行处理,以产生作为最佳判断基准的临界值;借此,能够根据不同用途设定专属的临界值,以提升测量的精准度。
六、本发明能够根据测量面积的需求增加压力感测片上导电图腾的数量,且通过各导电图腾于受压时,由传输部分别回传压力感测信号至处理装置30,借此判断出受压部分与面积,以达到检测不同范围压力变化的效果。
以上说明内容仅为本发明较佳实施例,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (10)

  1. 一种压力感应***,其特征在于,包括:
    一个第一压力感测片,其具有一个第一可挠基板及一个第一导电图腾,该第一导电图腾设于该第一可挠基板的表面上;
    一个第二压力感测片,其具有一个第二可挠基板及一个第二导电图腾,该第二导电图腾设于该第二可挠基板的表面上,其中,该第二压力感测片以设有该第二导电图腾的一面叠合于该第一压力感测片设有该第一导电图腾的一面;以及
    一个处理装置,其与该第一压力感测片及该第二压力感测片电连接,该处理装置输出一个电力至该第一压力感测片,并由该第二压力感测片取得一个压力感测信号,并将该压力感测信号与一个临界值比较,以判断该第一压力感测片及该第二压力感测片受外力抵压的情况。
  2. 如权利要求1所述的压力感应***,其特征在于,该第一导电图腾具有一个第一高导电线路及电连接该第一高导电线路的一个第一低导电线路,该第一低导电线路由该第一高导电线路延伸并于该第一可挠基板上形成一个第一压力感测区,该第一压力感测区的面积大于该第一高导电线路于该第一可挠基板所占据的面积;该第二导电图腾具有一个第二高导电线路及电连接该第二高导电线路的一个第二低导电线路,该第二低导电线路由该第二高导电线路延伸并于该第二可挠基板上形成一个第二压力感测区,该第二压力感测区的面积大于该第二高导电线路于该第二可挠基板所占据的面积。
  3. 如权利要求2所述的压力感应***,其特征在于,该第一低导电线路区分为一个第一覆盖区及一个第一布设区,该第一覆盖区设于该第一高导电线路远离该第一可挠基板的一侧,该第一布设区设于该第一可挠基板;该第二低导电线路区分为一个第二覆盖区及一个第二布设区,该第二覆盖区设于该第二高导电线路远离该第 二可挠基板的一侧,该第二布设区设于该第二可挠基板。
  4. 如权利要求3所述的压力感应***,其特征在于,该第一压力感测片还具有一个第一绝缘层,该第一绝缘层覆盖于该第一高导电线路远离该第一可挠基板的一侧;该第二压力感测片还具有一个第二绝缘层,该第二绝缘层覆盖于该第二高导电线路远离该第二可挠基板的一侧。
  5. 如权利要求4所述的压力感应***,其特征在于,该第一绝缘层覆盖于该第一覆盖区;该第二绝缘层覆盖于该第二覆盖区。
  6. 如权利要求1所述的压力感应***,其特征在于,该第一导电图腾的数量为多个,每一个第一导电图腾具有一个第一传输部,每一个第一传输部独立与该处理装置电连接,每一个第一传输部的两端分别连接于该处理装置及每一个第一导电图腾;该第二导电图腾的数量为多个,每一个第二导电图腾具有一个第二传输部,每一个第二传输部独立与该处理装置电连接,每一个第二传输部的两端分别连接于该处理装置及每一个第二导电图腾。
  7. 如权利要求1所述的压力感应***,其特征在于,该第一导电图腾的数量为多个,每一个第一导电图腾具有一个第一传输部,各第一导电图腾以二维数组排列,各第一导电图腾的第一传输部沿一个第一方向相互连接;该第二导电图腾的数量为多个,每一个第二导电图腾具有一个第二传输部,各第二导电图腾以二维数组排列,各第二导电图腾的第二传输部沿一个第二方向相互连接,该第一方向与该第二方向互相交叉。
  8. 如权利要求1所述的压力感应***,其特征在于,该压力感测信号为电流值;该压力感测信号大于该临界值时,该处理装置判断该第一压力感测片与该第二压力感测片受外力抵压。
  9. 一种压力感应设定方法,其特征在于,使用如权利要求1至8中任一项所述压力感应***来执行,该压力感应设定方法的步骤包括: 所述处理装置接收该第一压力感测片与该第二压力感测片未受外力抵压时,由该第二压力感测片产生的一个初始信号;
    所述处理装置接收该第一压力感测片与该第二压力感测片受外力抵压时,由该第二压力感测片产生一个受压信号;以及
    所述处理装置将该初始信号及该受压信号经过处理,以产生该临界值。
  10. 如权利要求9所述的压力感应设定方法,其特征在于,所述处理装置将该初始信号与该受压信号的和除以一个参考值,以取得该临界值。
PCT/CN2019/092885 2019-06-26 2019-06-26 压力感应***及压力感应设定方法 WO2020258061A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/092885 WO2020258061A1 (zh) 2019-06-26 2019-06-26 压力感应***及压力感应设定方法
US17/621,187 US20220268646A1 (en) 2019-06-26 2019-06-26 Pressure sensing system and pressure sensing setting method
CN201980096117.5A CN113795740A (zh) 2019-06-26 2019-06-26 压力感应***及压力感应设定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092885 WO2020258061A1 (zh) 2019-06-26 2019-06-26 压力感应***及压力感应设定方法

Publications (1)

Publication Number Publication Date
WO2020258061A1 true WO2020258061A1 (zh) 2020-12-30

Family

ID=74059873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092885 WO2020258061A1 (zh) 2019-06-26 2019-06-26 压力感应***及压力感应设定方法

Country Status (3)

Country Link
US (1) US20220268646A1 (zh)
CN (1) CN113795740A (zh)
WO (1) WO2020258061A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210181049A1 (en) * 2018-08-27 2021-06-17 Morethings Co., Ltd. Hybrid large-area pressure sensor with capacitive sensor and resistive sensor integrated thereinto

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586011B (en) * 2019-07-23 2023-09-13 Hp1 Tech Limited Pressure-sensitive sheet and modular system including the same
TWI781403B (zh) * 2020-05-14 2022-10-21 美宸科技股份有限公司 織物型應變計、織物型壓力計與智慧型衣物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032542A (en) * 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
US20100090299A1 (en) * 2008-10-15 2010-04-15 Industrial Technology Research Institute Flexible electronics for pressure device and fabrication method thereof
CN102539035A (zh) * 2012-01-17 2012-07-04 江苏物联网研究发展中心 一种点阵型柔性压力分布传感器及其制备方法
CN106325583A (zh) * 2015-07-10 2017-01-11 宸鸿科技(厦门)有限公司 压力感测输入装置
CN208818383U (zh) * 2018-09-20 2019-05-03 百医医材科技股份有限公司 压力感测结构

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441097A (en) * 1979-01-29 1984-04-03 Antroy Enterprises, Inc. Device for controlling a circuit
US6661239B1 (en) * 2001-01-02 2003-12-09 Irobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
US7176390B2 (en) * 2005-03-02 2007-02-13 Delphi Technologies, Inc. Capacitive load cell with multi-layer dielectric for extended range
JP2007010338A (ja) * 2005-06-28 2007-01-18 Alps Electric Co Ltd 面圧分布センサ
US7958789B2 (en) * 2008-08-08 2011-06-14 Tokai Rubber Industries, Ltd. Capacitive sensor
US8544336B2 (en) * 2009-11-26 2013-10-01 Xsensor Technology Corporation Sealed conductive grid capacitive pressure sensor
CN102892354A (zh) * 2010-03-12 2013-01-23 茵汉斯瑟菲斯动力公司 用于从压力感测***中的压力传感器快速收集数据的***和方法
FR2970566B1 (fr) * 2011-01-13 2013-11-15 Francis Cannard Dispositif de mesure de la pression a partir d'un objet souple, pliable et/ou extensible realise a partir de matiere textile comportant un dispositif de mesure
GB2488600B (en) * 2011-03-04 2013-05-29 Hm Technology Internat Ltd A force sensor
US9671304B2 (en) * 2011-07-13 2017-06-06 Enhanced Surface Dynamics, Inc. Methods and systems for the manufacture and initiation of a pressure detection mat
US8966997B2 (en) * 2011-10-12 2015-03-03 Stryker Corporation Pressure sensing mat
EP2803057A4 (en) * 2012-01-13 2015-07-08 Enhanced Surface Dynamics Inc SYSTEM AND METHODS FOR RISK MANAGEMENT ANALYSIS OF A PRESSURE DETECTION SYSTEM
JP5497222B2 (ja) * 2012-09-28 2014-05-21 バンドー化学株式会社 静電容量型センサシート及び静電容量型センサシートの製造方法
WO2014157627A1 (ja) * 2013-03-29 2014-10-02 バンドー化学株式会社 静電容量型センサシート及び静電容量型センサ
US9778131B2 (en) * 2013-05-21 2017-10-03 Orpyx Medical Technologies Inc. Pressure data acquisition assembly
US9766171B2 (en) * 2014-03-17 2017-09-19 Columbia Insurance Company Devices, systems and method for flooring performance testing
US10337849B2 (en) * 2014-10-22 2019-07-02 Bando Chemical Industries, Ltd. Capacitive sensor
CN106293290B (zh) * 2015-06-10 2023-08-29 宸鸿科技(厦门)有限公司 触控装置
DE112016000510B4 (de) * 2015-07-31 2024-05-08 Sumitomo Riko Company Limited Kapazitiver Sensor, Sensorlage und Verfahren zur Herstellung eines kapazitiven Sensors
US10201406B2 (en) * 2015-08-18 2019-02-12 International Business Machines Corporation Device and method for facilitating tooth contact adjustment using a pressure device
CA2996886A1 (en) * 2015-09-15 2017-03-23 Sencorables Llc Floor contact sensor system and methods for using same
US10416031B2 (en) * 2015-09-25 2019-09-17 MedicusTek, Inc. Pressure sensing device
GB2549451A (en) * 2016-02-17 2017-10-25 The Helping Hand Company (Ledbury) Ltd Support evaluation device
CN108463702A (zh) * 2016-02-24 2018-08-28 住友理工株式会社 传感器板和静电电容型传感器
JP6863385B2 (ja) * 2016-09-13 2021-04-21 ソニーグループ株式会社 センサ、バンド、電子機器および腕時計型電子機器
CN109791082B (zh) * 2016-09-27 2021-05-04 索尼公司 传感器、电子设备、可穿戴终端及控制方法
KR101987363B1 (ko) * 2016-09-30 2019-06-11 한국과학기술연구원 비연속적 전도성 패턴을 포함하는 압력 센서, 이를 포함하는 디바이스, 및 압력을 감지하는 장치 및 방법
CN108243620B (zh) * 2016-10-25 2021-03-19 一号工作实验室有限公司 用于检测压力的柔性导电装置及***
US10492734B2 (en) * 2016-11-04 2019-12-03 Wellsense, Inc. Patient visualization system
JP7100982B2 (ja) * 2017-01-27 2022-07-14 サンコ テキスタイル イスレットメレリ サン ベ ティク エーエス 静電容量型の伸縮可能なタッチパッド
TW201833526A (zh) * 2017-03-10 2018-09-16 原相科技股份有限公司 壓力感測裝置的校正方法及其校正電路
US11269440B1 (en) * 2020-08-12 2022-03-08 Universal Cement Corporation Foldable force sensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032542A (en) * 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
US20100090299A1 (en) * 2008-10-15 2010-04-15 Industrial Technology Research Institute Flexible electronics for pressure device and fabrication method thereof
CN102539035A (zh) * 2012-01-17 2012-07-04 江苏物联网研究发展中心 一种点阵型柔性压力分布传感器及其制备方法
CN106325583A (zh) * 2015-07-10 2017-01-11 宸鸿科技(厦门)有限公司 压力感测输入装置
CN208818383U (zh) * 2018-09-20 2019-05-03 百医医材科技股份有限公司 压力感测结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210181049A1 (en) * 2018-08-27 2021-06-17 Morethings Co., Ltd. Hybrid large-area pressure sensor with capacitive sensor and resistive sensor integrated thereinto

Also Published As

Publication number Publication date
CN113795740A (zh) 2021-12-14
US20220268646A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
TWI607356B (zh) 一種三維觸控裝置
WO2020258061A1 (zh) 压力感应***及压力感应设定方法
TW201418683A (zh) 壓力量測結構
EP3835746B1 (en) Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other
JP5907337B2 (ja) タッチパネル及びタッチパネル付表示装置
CN107290082A (zh) 一种电容式触觉传感器
US20130042702A1 (en) Force sensor and measuring method of resistance variation thereof
US10615794B1 (en) Capacitive sensor
CN108760105A (zh) 一种角度可调型仿生毛发传感结构
TWM518407U (zh) 感測晶片以及配置該感測晶片的電子裝置
TWM587744U (zh) 壓力感應系統
CN111930274B (zh) 虚拟按键、电子设备及触控操作的检测方法
TWI695304B (zh) 壓力感應系統及壓力感應設定方法
WO2017201661A1 (zh) 一种运动传感装置、方法及穿戴模块
US20230064769A1 (en) Pressure sensor
JP2022533344A (ja) 静電容量タッチおよび圧力センサ
EP3781909B1 (en) High-resistance sensor and method for using same
KR20170131988A (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 인솔
CN217276597U (zh) 压力传感器
US20230304874A1 (en) High-resistance sensor and method for using same
US20210285835A1 (en) Apparatus for Determining Shear Forces in Regard to a Pressure Imaging Array, Single Point Sensor for Shear Forces, and Method
US11320327B2 (en) Pressure sensing device and manufacturing method thereof
KR101589615B1 (ko) 압력을 감지하는 입력 장치 및 압력 입력 좌표 결정 방법
WO2020124439A1 (zh) 触摸面板、触摸装置及触摸检测方法
JP2022183557A (ja) 検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935085

Country of ref document: EP

Kind code of ref document: A1