WO2020255868A1 - Polarimetry device and polarimetry chip - Google Patents

Polarimetry device and polarimetry chip Download PDF

Info

Publication number
WO2020255868A1
WO2020255868A1 PCT/JP2020/023128 JP2020023128W WO2020255868A1 WO 2020255868 A1 WO2020255868 A1 WO 2020255868A1 JP 2020023128 W JP2020023128 W JP 2020023128W WO 2020255868 A1 WO2020255868 A1 WO 2020255868A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light source
nanocarbon
sample
polarization
Prior art date
Application number
PCT/JP2020/023128
Other languages
French (fr)
Japanese (ja)
Inventor
英之 牧
鉄馬 中川
Original Assignee
学校法人慶應義塾
地方独立行政法人神奈川県立産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, 地方独立行政法人神奈川県立産業技術総合研究所 filed Critical 学校法人慶應義塾
Priority to JP2021528168A priority Critical patent/JPWO2020255868A1/ja
Publication of WO2020255868A1 publication Critical patent/WO2020255868A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention relates to an ellipsometry apparatus and an ellipsometry chip.
  • polarized light is output directly from the light source.
  • nanocarbon polarized light source which emits linearly polarized light. It is a schematic diagram of the nanocarbon polarized light source which emits circularly polarized light or elliptical polarized light. It is a schematic diagram of the nanocarbon polarized light source of another structure which emits circularly polarized light or elliptically polarized light. It is a schematic diagram of the nanocarbon polarized light source of another arrangement which emits circularly polarized light or elliptically polarized light. It is a figure which shows the control example of the vibration direction of polarized light by a rotating stage. It is a schematic diagram of a polarized light source probe.
  • the nanocarbon material 15A can be easily processed by etching with oxygen, and the size of the light emitting surface can be miniaturized to the nanometer order. Very high spatial resolution can be obtained as compared with the diffraction limit of 10 ⁇ m in conventional infrared spectroscopy. Further, by applying a pulse voltage having a short pulse width to the nanocarbon material, a time resolution on the order of picoseconds can be obtained, and polarization analysis with high spatial resolution and high time resolution becomes possible.
  • FIG. 2A is a schematic diagram of a nano-carbon polarized light source 10B for emitting a circularly polarized light (or elliptically polarized light) L CP.
  • the nanocarbon polarized light source 10B has a pair of electrodes 12 and 13, and a nanocarbon material 15B connected to the electrodes 12 and 13.
  • the nanocarbon material 15B is formed of a large number of CNTs oriented in the direction perpendicular to the substrate 11 (Z direction), but even one CNT extending in the direction perpendicular to the substrate 11 is formed in the direction of the spiral. Directly emits the corresponding circularly polarized light or elliptically polarized light.
  • the height of CNT is 100 nm to 1000 nm.
  • the spiral winding method (right-handed or left-handed) is the same.
  • CNTs of a predetermined winding method are, for example, an enantiomer separation method using an optically active surfactant, or a separation method using molecular tweezers that easily binds to either right-handed or left-handed. It can be separated by such as. When using one CNT, it is always right-handed or left-handed, so separation is not necessary.
  • FIG. 2B is a schematic view of a nanocarbon polarized light source 10C having another configuration that emits circularly polarized light or the like.
  • the nanocarbon polarized light source 10C uses a nanocarbon material 15C in which a plurality of CNTs having the same winding method (right-handed or left-handed) are arranged in parallel with the substrate 11.
  • Circularly polarized light or the like directly emits light at an angle ⁇ with respect to the array surface of the nanocarbon material 15C.
  • has an acute angle, and the smaller the ⁇ , the easier it is to extract circularly polarized light and the like.
  • the nanocarbon material 15C is easier to manufacture than the nanocarbon material 15B of FIG. 2A, and the manufacturing efficiency of the device is improved.
  • FIG. 3 shows an example of controlling the vibration direction of polarized light when a linearly polarized nanocarbon polarized light source 10A is used.
  • the nanocarbon polarized light source 10A is mounted on the stage 21.
  • the stage 21 can be rotated in the in-plane direction by, for example, a rotation mechanism.
  • the azimuth angle at the first position of the stage 21 is 0 °.
  • Nanocarbon polarized light source 10A is, the electric field in the direction determined by the orientation direction of the CNT to emit linearly polarized light L LP to vibrate.
  • the vibration direction of the polarized light incident on the sample can be controlled.
  • the sample stage holding the sample may be rotated relative to the nanocarbon polarized light source 10A.
  • FIG. 4 is a schematic view of the polarizing light source probe 20.
  • the polarized light source probe 20 has a nanocarbon polarized light source 10 and a probe substrate 25 that supports the nanocarbon polarized light source 10.
  • the nanocarbon polarized light source 10 emits linearly polarized light, but may emit circularly polarized light or the like as shown in FIGS. 2A to 2C.
  • the nanocarbon polarized light source 10 may be formed on a substrate having any shape, and as shown in FIG. 4, the nanocarbon polarized light source 10 may be formed at the tip of a probe substrate 25 processed into a protrusion or a probe shape. Good.
  • the nanocarbon polarized light source 10 may be a light source that emits linearly polarized light of FIG. 1, or may be a light source that emits circularly polarized light of FIGS. 2A to 2C. Polarized light is emitted directly depending on the arrangement or growth of the nanocarbon material 15.
  • a fine point light source can be realized by sharpening the tip of the probe substrate 25.
  • the electrodes 12 and 13 may be arranged on the side surface of the probe substrate 25.
  • the nanocarbon polarized light source 10C shown in FIG. 2C may be arranged by utilizing the inclined side surface of the probe substrate 25. By flattening the tip of the probe substrate 25, the light emitting surface of the nanocarbon polarized light source 10 may have a two-dimensional spread. Even if the two-dimensional spread is provided, the spatial resolution is maintained high because the light emitting surface itself of the nanocarbon polarized light source 10 is very fine.
  • the measurement target is irradiated with polarized light with the nanocarbon polarized light source 10 close to the measurement target.
  • polarized light can be extracted by a near field generated in the vicinity of the light emitting surface. Near-field polarized light decays exponentially depending on the distance from the light emitting surface, but by arranging the nanocarbon polarized light source 10 on the tip surface of the probe substrate 25, the light emitting surface can be brought closer to the surface of the sample. it can.
  • Near-field light is different from remote-field light, which has a diffraction limit, and its spatial resolution depends on the size of the light emitting surface.
  • the polarization light source probe 20 of FIG. 4 is applied to scanning spectroscopic analysis or imaging, the size of the light emitting surface can be reduced to the nanometer order when one CNT is used, so that it is generally red. High spatial resolution can be realized as compared with the diffraction limit of 10 ⁇ m in external spectroscopy.
  • the nanocarbon material 15 is connected to each electrode pair to form a cell of one nanocarbon polarized light source 10 ij .
  • the CNTs have a major axis in a direction parallel to the horizontal electrode 121.
  • FIG. 6A is a top view of the nanocarbon polarized light source array 40 arranged in parallel
  • FIG. 6B is a schematic cross-sectional view.
  • a plurality of polarized light source elements 45 1 to 45 n are arranged on the substrate 41 via an insulating film 44 such as SiO 2 in the Y direction, for example.
  • Each polarizing light source element 45 has a long axis in the X direction, and the nanocarbon material 15 is arranged between the source electrode 43S and the drain electrode 43D.
  • the nanocarbon material 15 is formed of CNTs oriented in the X direction, and each polarized light source element 45 can sweep a hot spot 49 that emits linearly polarized light.
  • the polarized light source elements 45 are arranged only in the Y direction, but for example, the polarized light source elements 45 may be arranged in the X direction via an insulating layer to form a two-dimensional matrix-shaped light source array.
  • the nanocarbon polarized light source array 40 of FIGS. 6A and 6B it is also possible to arrange the sample on the surface of the array and measure the transmitted light of the sample.
  • the gate electrode 42 may be used as a transparent electrode to measure the reflected light from the sample.
  • the polarized light source probe 20 When the polarized light source probe 20 is used, scanning is easy, a polarized near field can be used, and high spatial resolution depending on the size of the light emitting surface can be obtained.
  • the light source is not limited to the polarized light source probe 20, and the light source 10A of FIG. 1 or the light source 10B of FIG. 2 may be fixed and the stage 21 may be scanned relative to the light source.
  • the nanocarbon polarized light source array 30 shown in FIG. 5 or the nanocarbon polarized light source array 40 shown in FIG. 6A may be used as the light source to sequentially emit light. In these cases as well, each light source element is fine, and the light source is brought close to the sample to realize measurement with high spatial resolution.
  • FIG. 8 is a schematic view of the polarization analyzer 2 of the second embodiment.
  • the ellipsometry apparatus 2 realizes linear dichroic high spatial resolution imaging.
  • Linear dichroism is an optical characteristic caused by the difference in absorption of a substance with respect to two linearly polarized light having different vibration directions of the electric field vector (or magnetic field vector) of polarized light by 90 degrees.
  • the ellipsometry apparatus 2 includes a nanocarbon polarized light source 10A that directly emits linearly polarized light, a stage 21 that holds the sample S2, a measuring instrument 61 that measures the light from the sample S2 (transmitted light in the example of FIG. 8), and the like. It has an information processing device 62 connected to the measuring instrument 61.
  • the information processing device 62 may be a personal computer (PC) or a mobile terminal such as a smartphone or tablet terminal.
  • a polarized light source probe 20 having a nanocarbon polarized light source 10A that directly emits linearly polarized light is used as a light source, scanning is easy and high spatial resolution measurement using a polarized light proximity field becomes possible.
  • a polarized light source probe 20 having a nanocarbon polarized light source 10B at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
  • Circular dichroism is represented by the difference in absorption coefficient for left-handed and right-handed circularly polarized light.
  • a polarization light source probe 20 on which a nanocarbon polarized light source 10B that directly emits left circular polarization and a polarization light source probe 20 on which a nanocarbon polarization light source 10B that directly emits right circular polarization is formed, the right side of sample S3. Irradiate circularly polarized light and left circularly polarized light. For example, first, right circular polarization scans sample S3 in one, two, or three dimensions with a predetermined scanning step size, and then left circular polarization scans sample S3 with the same locus, same timing (or step size). ).
  • the information processing device (denoted as "PC") 62 may calculate the difference in absorption coefficient.
  • the chirality of the molecule can be determined by the positive or negative of the difference (m L- m R ).
  • Circular dichroism high spatial resolution imaging is realized by performing polarization spectroscopic measurement with a fine nanocarbon polarized light source 10B (or 10C) and performing image processing on the measurement result with the information processing device 62.
  • FIG. 10 is a schematic view of the polarization analyzer 4 of the fourth embodiment.
  • the ellipsometry apparatus 4 realizes birefringence high spatial resolution imaging.
  • the linearly polarized light is scanned in one dimension, two dimensions, or three dimensions relative to the sample S4.
  • the direction of vibration is rotated by the magnitude of birefringence, and a light component transmitted through the analyzer 53 is generated.
  • the presence or absence of birefringence and its magnitude can be known.
  • the light emitting surface of the polarized light source probe 20 and the analyzer 53 may be simultaneously rotated in the same direction and at the same angle. It rotates in the same direction while maintaining the orthogonality between the vibration direction of the linearly polarized light and the transmission axis of the analyzer 53.
  • the stage 21 holding the sample S4 may be rotated with respect to the nanocarbon polarized light source 10A and the analyzer 53.
  • the vibration direction of the linearly polarized light incident on the sample S4 in the sample S4 By changing the vibration direction of the linearly polarized light incident on the sample S4 in the sample S4, the polarization characteristic or birefringence characteristic of the sample S4 is observed as a change in the color (interference color) or brightness of the light transmitted through the analyzer 53. can do.
  • High spatial resolution imaging of birefringence is realized by performing polarization measurement using a fine nanocarbon polarized light source 10A and performing image processing on the measurement result by the measuring instrument 61 in the information processing device 62.
  • a polarized light source probe 20 having a nanocarbon polarized light source 10A at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
  • FIG. 12 is a schematic view of the polarization analyzer 6 of the sixth embodiment.
  • the ellipsometry apparatus 6 realizes high spatial resolution imaging of Faraddy rotation.
  • the polarization analyzer 5 spectroscopically measures the nanocarbon polarization light source 10A that directly emits linearly polarized light, the stage 21 that holds the sample S5, the analyzer 53 that is arranged after the sample S5, and the transmitted light of the analyzer 53. It has a spectroscopic measuring device 51 and an information processing device 62 connected to the spectroscopic measuring device 51.
  • a polarized light source probe 20 having a nanocarbon polarized light source 10A at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
  • the rotation angle ⁇ R of the detector 53 that minimizes the intensity of the transmitted light may be determined.
  • the rotation angle ⁇ R of the analyzer 53 with respect to the vibration direction of the incident linear polarization is the rotation angle of the faradi rotation (magnetic rotation).
  • the positive or negative of the Faradi rotation angle depends on the direction of magnetization or the direction of application of the magnetic field, and the magnitude of the Faradi rotation angle depends on the magnitude of magnetization or the magnitude of the applied magnetic field.
  • FIG. 13 is a schematic view of the polarization analyzer 7 of the seventh embodiment.
  • the ellipsometry apparatus 7 realizes high-speed time-resolved measurement by the nanocarbon polarized light source 10.
  • the ellipsometry apparatus 7 includes a nanocarbon polarized light source 10 that directly emits polarized light, an excitation source 65, and a camera and / or a spectroscope 63 that detects light from the sample S (“camera / spectroscope 63” in the figure). It has a notation) and an information processing device 62 connected to the output of the camera / spectroscope 63.
  • the camera has a photodetection array such as a CCD sensor and a CMOS sensor.
  • a spectroscope may be used in combination depending on what is measured in the sample S.
  • the polarized light directly emitted from the nanocarbon polarized light source 10 is used as the probe light L probe, and the change of the sample S stimulated by the stimulation pulse Pstim from the excitation source 65 is measured at high speed.
  • a chemical reaction pulse stimulus for initiating a chemical reaction is applied to the measurement region of the sample S. With a delay time of ⁇ t seconds from the application of the stimulus, the same measurement area of the sample is irradiated with polarized light from the nanocarbon polarized light source 10 as the probe light L probe.
  • the stimulation pulse Pstim is not limited to irradiation with light, and an electrical stimulus or substance such as application of a voltage that causes an electrochemical reaction or supply of a reactant pulse is obtained. It may be a supply.
  • the response speed of modulation is as low as about 100 ms, so high-speed chemical reactions cannot be tracked.
  • the nanocarbon polarized light source can be modulated at a response speed on the order of 100 ps, high-speed time-resolved measurement is possible.
  • the internal change of the sample S caused by the stimulus is detected by the camera / spectroscope 63 as a result of absorption of polarized light or rotation of polarized light due to excited molecular vibration, for example.
  • the detection result may be input to the information processing apparatus 62 for signal processing, analysis, and the like.
  • the polarization analyzer 7 of the 7th embodiment may be combined with any of the 2nd to 6th embodiments.
  • linear dichroism, circular dichroism, birefringence, optical activity (optical rotation angle), and faradi rotation can be imaged with high-speed time resolution and high spatial resolution.
  • FIG. 14 is a schematic view of the polarization analyzer 8 of the eighth embodiment.
  • the polarization measurement using the micro analysis chip 70 having the micro flow path 71 is realized.
  • the microanalysis chip 70 is an example of an ellipsometry chip that efficiently performs ellipsometry.
  • the ellipsometry apparatus 8 includes a nanocarbon polarization light source 10, a camera / spectroscope 63, and a microanalysis chip 70.
  • a microchannel 71 is formed in the microanalysis chip 70, and a sample is supplied into the microchannel 71.
  • the polarization analyzer 7 of the eighth embodiment may be combined with any of the second to seventh embodiments.
  • linear dichroism, circular dichroism, birefringence, optical activity (optical rotation angle), and faradi rotation can be imaged with high-speed time resolution and high spatial resolution.
  • a substance 82 that can selectively bind to the probe molecule 81 binds to the probe molecule 81. Utilizing this, identification, detection, analysis (identification of molecular structure, etc.) of a substance for analysis becomes possible.
  • the probe molecule 81 and the target substance may be non-luminescent substances that could not be used by the conventional method.
  • the nanocarbon polarized light source 10 can be easily miniaturized by microfabrication, it can be highly integrated on a silicon chip as shown in FIGS. 5 and 6A. These characteristics are expected to lead to improvements in the accuracy of gene expression and antibody detection, and to speeding up diagnosis.
  • linearly polarized light may be incident on a diamagnetic sample using a nanocarbon polarized light source 10A, and the ellipticity of the polarized light of transmitted light may be measured to analyze magnetic circular dichroism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a small-sized polarimetry device capable of high spatial resolution and temporal resolution. This polarimetry device has a nanocarbon light source for radiating polarized light to a sample, and a measurement instrument for measuring light transmitted, scattered, or reflected by the sample, the nanocarbon polarized light source having one or more carbon nanotubes, the major axis of which is oriented in a predetermined direction, and polarized light due to black-body radiation being directly outputted from the carbon nanotubes.

Description

偏光分析装置、及び偏光分析チップEllipsometry device and ellipsometry chip
 本発明は、偏光分析装置、及び偏光分析チップに関する。 The present invention relates to an ellipsometry apparatus and an ellipsometry chip.
 一対の電極間に金属カーボンナノチューブを含むカーボンナノチューブを配置し、黒体放射によって発光を行わせる発光素子が知られている(たとえば、特許文献1参照)。電極へ通電することで、金属カーボンナノチューブが発熱して発光する。黒体放射による赤外光のスペクトルはプランク則によって規定され、1μmから10μmにわたる広い波長域での発光が得られる。また、黒体の温度を高くすることで、可視光域の発光が得られる。 There is known a light emitting element in which carbon nanotubes containing metal carbon nanotubes are arranged between a pair of electrodes to emit light by blackbody radiation (see, for example, Patent Document 1). When the electrodes are energized, the metal carbon nanotubes generate heat and emit light. The spectrum of infrared light from blackbody radiation is defined by Planck's law, and emission in a wide wavelength range from 1 μm to 10 μm can be obtained. Further, by raising the temperature of the blackbody, light emission in the visible light region can be obtained.
特許第5747334号Patent No. 5747334
 現在、赤外領域における分光分析で用いられている光源は、サイズが大きく応答速度が遅い。そのため、サブミクロンオーダーの空間分解能が得られない、高速な時間分解測定ができない、光源の集積化ができない、といった問題がある。 Currently, the light source used for spectroscopic analysis in the infrared region is large in size and has a slow response speed. Therefore, there are problems that spatial resolution on the order of submicrons cannot be obtained, high-speed time-resolved measurement cannot be performed, and light sources cannot be integrated.
 特に、ハロゲンランプ、セラミック光源などの既存の黒体放射光源を用いた偏光分析では、偏光を作るために偏光子または波長板、もしくはその両方を光学系に挿入する必要がある。 In particular, in ellipsometry using existing blackbody radiation sources such as halogen lamps and ceramic light sources, it is necessary to insert a polarizer, a wave plate, or both into the optical system in order to create polarized light.
 本発明は、高い空間分解能と時間分解能を有する小型の偏光分析装置を提供することを目的とする。 An object of the present invention is to provide a compact polarization analyzer having high spatial resolution and temporal resolution.
 偏光分析装置の光源にナノカーボン光源を用いることで、光源から直接、偏光を出力する。 By using a nanocarbon light source as the light source of the polarization analyzer, polarized light is output directly from the light source.
 本発明の第1の側面において、偏光測定装置は、
 試料に偏光を照射するナノカーボン光源と、
 前記試料を透過、散乱または反射した光を測定する測定器と
を有し、
 前記ナノカーボン偏光光源は長軸が所定の方向に向いた1本以上のカーボンナノチューブを有し、前記カーボンナノチューブから黒体放射による偏光を直接出力する。
In the first aspect of the present invention, the polarization measuring device is
A nanocarbon light source that irradiates the sample with polarized light,
It has a measuring instrument that measures the light transmitted, scattered, or reflected from the sample.
The nanocarbon polarized light source has one or more carbon nanotubes whose major axes are oriented in a predetermined direction, and directly outputs polarized light due to blackbody radiation from the carbon nanotubes.
 本発明の第2の側面において、偏光分析チップは、
 一定方向に配列するカーボンナノチューブから黒体放射による偏光を直接発光する偏光光源と、
 前記偏光光源の発光面に固定されるプローブ分子と、
を有する。
In the second aspect of the present invention, the ellipsometry chip is
A polarized light source that directly emits polarized light from blackbody radiation from carbon nanotubes arranged in a certain direction,
The probe molecule fixed to the light emitting surface of the polarized light source and
Have.
 高い空間分解能と時間分解能を有する小型の偏光分析装置が実現される。 A compact ellipsometry device with high spatial resolution and temporal resolution will be realized.
直線偏光を発光するナノカーボン偏光光源の模式図である。It is a schematic diagram of the nanocarbon polarized light source which emits linearly polarized light. 円偏光または楕円偏光を発光するナノカーボン偏光光源の模式図である。It is a schematic diagram of the nanocarbon polarized light source which emits circularly polarized light or elliptical polarized light. 円偏光または楕円偏光を発光する別構成のナノカーボン偏光光源の模式図である。It is a schematic diagram of the nanocarbon polarized light source of another structure which emits circularly polarized light or elliptically polarized light. 円偏光または楕円偏光を発光する別配置のナノカーボン偏光光源の模式図である。It is a schematic diagram of the nanocarbon polarized light source of another arrangement which emits circularly polarized light or elliptically polarized light. 回転ステージによる偏光の振動方向の制御例を示す図である。It is a figure which shows the control example of the vibration direction of polarized light by a rotating stage. 偏光光源プローブの模式図である。It is a schematic diagram of a polarized light source probe. アレイ化されたナノカーボン偏光光源の模式図である。It is a schematic diagram of the arrayed nanocarbon polarized light source. 並列配置したナノカーボン偏光光源におけるホットスポットの掃引を示す上面図である。It is a top view which shows the sweep of a hot spot in the nanocarbon polarized light source arranged in parallel. 図6Aのホットスポットからの偏光の出力を示す断面図である。6 is a cross-sectional view showing the output of polarized light from the hotspot of FIG. 6A. ナノカーボン偏光光源を用いた第1実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 1st Embodiment using a nanocarbon polarization light source. 第2実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 2nd Embodiment. 第3実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 3rd Embodiment. 第4実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 4th Embodiment. 第5実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 5th Embodiment. 第6実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 6th Embodiment. 第7実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 7th Embodiment. 第8実施形態の偏光分析装置の模式図である。It is a schematic diagram of the polarization analyzer of 8th Embodiment. ナノカーボン偏光光源を用いたバイオチップの模式図である。It is a schematic diagram of a biochip using a nanocarbon polarized light source.
 実施形態では、一定の方向にカーボンナノチューブが配列されたナノカーボン偏光光源を用いて、直接、偏光を出射して偏光分析を行う。 In the embodiment, a nanocarbon polarized light source in which carbon nanotubes are arranged in a certain direction is used to directly emit polarized light to perform ellipsometry.
 <ナノカーボン偏光光源>
 図1は、直線偏光LLPを発光するナノカーボン偏光光源10Aの模式図である。ナノカーボン偏光光源10Aは、一対の電極12及び電極13と、電極12及び電極13に接続されるナノカーボン材料15Aを有する。この例では、ナノカーボン材料15Aは、基板11と平行な面内(X-Y面内)で一定の方向に延びるカーボンナノチューブ(以下、「CNT」とする)である。ここで、「一定の方向」とは、マクロ的または平均的にみたときに、CNTの長軸がほぼ同じ方向に向いていることを意味する。
<Nanocarbon polarized light source>
Figure 1 is a schematic diagram of a nano-carbon polarized light source 10A for emitting a linearly polarized light L LP. The nanocarbon polarized light source 10A has a pair of electrodes 12 and 13, and a nanocarbon material 15A connected to the electrodes 12 and 13. In this example, the nanocarbon material 15A is a carbon nanotube (hereinafter referred to as “CNT”) extending in a certain direction in a plane parallel to the substrate 11 (in the XY plane). Here, the "constant direction" means that the long axes of the CNTs are oriented in substantially the same direction when viewed macroscopically or on average.
 電極12と電極13は、CNTの長軸方向の両側に配置されている。電極12と電極13の間に電圧、電流、または電気信号を印加することで、ナノカーボン材料15Aに電流が流れ、ジュール熱による熱放射が黒体放射となる。CNTの長軸と平行な方向に電圧を印加することで、ナノカーボン材料15がもつ電気的異方性により、電極12と電極13に挟まれた領域から直線偏光LLPが発光する。 The electrodes 12 and 13 are arranged on both sides of the CNT in the long axis direction. By applying a voltage, current, or electric signal between the electrodes 12 and 13, a current flows through the nanocarbon material 15A, and thermal radiation due to Joule heat becomes blackbody radiation. By applying a voltage to the long axis parallel to the direction of the CNT, the electrically anisotropic with the nano-carbon material 15, the linearly polarized light L LP is emitted from the sandwiched electrode 12 and the electrode 13 region.
 複数のCNTが基板11と平行かつ一定の方向に配列されたナノカーボン材料15Aは発光源と偏光板の役割を果たし、基板11の面に垂直、かつCNTの長軸と平行なに沿った面内(Y-Z面内)で電場が振動する直線偏光LLPを直接、発光する。この直線偏光LLPは、可視光から赤外領域にまたがる広い波長帯域のスペクトルを有する。 The nanocarbon material 15A in which a plurality of CNTs are arranged parallel to the substrate 11 and in a certain direction acts as a light emitting source and a polarizing plate, and is a surface perpendicular to the surface of the substrate 11 and parallel to the long axis of the CNTs. inner (Y-Z plane) linearly polarized light L LP electric field oscillates directly emits light. This linearly polarized L LP has a wide wavelength band spectrum extending from visible light to the infrared region.
 ナノカーボン偏光光源10Aを偏光分析に用いる場合、ハロゲンランプ、セラミック光源等の一般的な黒体放射光源を用いた偏光分析と異なり、偏光を作り出すための光学素子を挿入する必要はなく、システム全体を小型化することができる。 When the nanocarbon polarized light source 10A is used for polarization analysis, unlike the polarization analysis using a general blackbody radiation light source such as a halogen lamp or a ceramic light source, it is not necessary to insert an optical element for producing polarized light, and the entire system is used. Can be miniaturized.
 ナノカーボン材料15Aは酸素によるエッチングで容易に加工することができ、発光面のサイズをナノメートルオーダーまで微細化することができる。従来の赤外分光での回折限界である10μmと比較して、非常に高い空間分解能が得られる。また、ナノカーボン材料に短パルス幅のパルス電圧を印加することでピコ秒オーダーの時間分解能が得られ、高空間分解能かつ高時間分解能の偏光分析が可能になる。 The nanocarbon material 15A can be easily processed by etching with oxygen, and the size of the light emitting surface can be miniaturized to the nanometer order. Very high spatial resolution can be obtained as compared with the diffraction limit of 10 μm in conventional infrared spectroscopy. Further, by applying a pulse voltage having a short pulse width to the nanocarbon material, a time resolution on the order of picoseconds can be obtained, and polarization analysis with high spatial resolution and high time resolution becomes possible.
 基板11上へのナノカーボン材料15Aの形成方法に限定はなく、同じ向きのCNTを基板11の表面と平行に配置または形成できれば、どのような方法を用いてもよい。 The method for forming the nanocarbon material 15A on the substrate 11 is not limited, and any method may be used as long as CNTs having the same orientation can be arranged or formed parallel to the surface of the substrate 11.
 図2Aは、円偏光(または楕円偏光)LCPを発光するナノカーボン偏光光源10Bの模式図である。ナノカーボン偏光光源10Bは、一対の電極12及び電極13と、電極12と電極13に接続されるナノカーボン材料15Bを有する。この例で、ナノカーボン材料15Bは、基板11と垂直な方向(Z方向)に配向する多数のCNTで形成されるが、基板11と垂直方向に延びる1本のCNTでも、その螺旋の方向に応じた円偏光または楕円偏光を直接発光する。円偏光は、楕円偏光のうち直交する2つの電場Ex、Eyの位相差が±π/2、かつ振幅が同じ場合に相当するので、以下の説明では、「円偏光または楕円偏光」を、「円偏光等」と称する。 Figure 2A is a schematic diagram of a nano-carbon polarized light source 10B for emitting a circularly polarized light (or elliptically polarized light) L CP. The nanocarbon polarized light source 10B has a pair of electrodes 12 and 13, and a nanocarbon material 15B connected to the electrodes 12 and 13. In this example, the nanocarbon material 15B is formed of a large number of CNTs oriented in the direction perpendicular to the substrate 11 (Z direction), but even one CNT extending in the direction perpendicular to the substrate 11 is formed in the direction of the spiral. Directly emits the corresponding circularly polarized light or elliptically polarized light. Circularly polarized light corresponds to the case where the two orthogonal electric fields Ex and Ey of the elliptically polarized light have the same phase difference of ± π / 2 and the same amplitude. It is called "circular polarization, etc."
 CNTの高さは100nm~1000nmである。複数のCNTを用いる場合は、螺旋の巻き方(右巻きまたは左巻き)は同じことが望ましい。所定の巻き方(右巻きまたは左巻き)のCNTは、たとえば、光学的に活性な界面活性剤を用いた鏡像異性体分離法、右巻きと左巻きのいずれか一方に結合しやすい分子ピンセットによる分離法などで、分離することができる。一本のCNTを用いる場合は、必ず右巻きまたは左巻きになるので、分離は不要である。 The height of CNT is 100 nm to 1000 nm. When using multiple CNTs, it is desirable that the spiral winding method (right-handed or left-handed) is the same. CNTs of a predetermined winding method (right-handed or left-handed) are, for example, an enantiomer separation method using an optically active surfactant, or a separation method using molecular tweezers that easily binds to either right-handed or left-handed. It can be separated by such as. When using one CNT, it is always right-handed or left-handed, so separation is not necessary.
 厳密には、電場(または磁場)の振動方向が一方向に回転する円偏光等のみがナノカーボン材料15Bから発光するわけではないが、所定の一方向に回転する円偏光等が支配的に放射される。 Strictly speaking, not only circular polarization or the like whose electric field (or magnetic field) vibrates in one direction emits light from the nanocarbon material 15B, but circular polarization or the like which rotates in a predetermined direction predominates. Will be done.
 図2Bは円偏光等を発光する別の構成のナノカーボン偏光光源10Cの模式図である。ナノカーボン偏光光源10Cは、巻き方(右巻きまたは左巻き)がそろった複数のCNTが、基板11と平行に配置されたナノカーボン材料15Cを用いている。 FIG. 2B is a schematic view of a nanocarbon polarized light source 10C having another configuration that emits circularly polarized light or the like. The nanocarbon polarized light source 10C uses a nanocarbon material 15C in which a plurality of CNTs having the same winding method (right-handed or left-handed) are arranged in parallel with the substrate 11.
 ナノカーボン材料15Cの配列面に対して角度θで円偏光等が直接、発光する。θは鋭角であり、θが小さいほど円偏光等が取り出しやすい。ナノカーボン材料15Cは、図2Aのナノカーボン材料15Bと比較して作製しやすく、素子の作製効率が向上する。 Circularly polarized light or the like directly emits light at an angle θ with respect to the array surface of the nanocarbon material 15C. θ has an acute angle, and the smaller the θ, the easier it is to extract circularly polarized light and the like. The nanocarbon material 15C is easier to manufacture than the nanocarbon material 15B of FIG. 2A, and the manufacturing efficiency of the device is improved.
 図2Cは、ナノカーボン偏光光源10Cの別の配置例を示す。図2Bの素子を傾けることで、所望の方向に円偏光等を取り出すことができる。図2Cの例では、ナノカーボン材料15Cの配置面がX-Y平面に対して(90-θ)度傾けられ、Z方向に円偏光等が取り出されている。この場合も、θは小さい方が効率良く円偏光等を取り出すことができる。 FIG. 2C shows another arrangement example of the nanocarbon polarized light source 10C. By tilting the element of FIG. 2B, circularly polarized light or the like can be extracted in a desired direction. In the example of FIG. 2C, the arrangement surface of the nanocarbon material 15C is tilted by (90-θ) degrees with respect to the XY plane, and circularly polarized light or the like is extracted in the Z direction. Also in this case, the smaller θ is, the more efficiently circularly polarized light can be extracted.
 図3は、直線偏光のナノカーボン偏光光源10Aを用いたときの、偏光の振動方向の制御例を示す。図3の(A)で、ナノカーボン偏光光源10Aをステージ21に搭載する。ステージ21はたとえば回転機構により面内方向に回転可能である。たとえば、ステージ21の最初の位置での方位角を0°とする。ナノカーボン偏光光源10Aは、CNTの配向方向で決まる向きに電場が振動する直線偏光LLPを発光する。 FIG. 3 shows an example of controlling the vibration direction of polarized light when a linearly polarized nanocarbon polarized light source 10A is used. In FIG. 3A, the nanocarbon polarized light source 10A is mounted on the stage 21. The stage 21 can be rotated in the in-plane direction by, for example, a rotation mechanism. For example, the azimuth angle at the first position of the stage 21 is 0 °. Nanocarbon polarized light source 10A is, the electric field in the direction determined by the orientation direction of the CNT to emit linearly polarized light L LP to vibrate.
 図3の(B)で、ステージ21を90°回転させると、方位角は90°になる。ナノカーボン偏光光源10AのCNTの配向方向も90°回転し、直線偏光LLPの振動方向が90°変化する。 In FIG. 3B, when the stage 21 is rotated by 90 °, the azimuth becomes 90 °. The alignment direction of the CNT nanocarbon polarized light source 10A is also rotated 90 °, the vibration direction of the linearly polarized light L LP is changed 90 °.
 ステージ21を任意の角度で回転することで、試料に入射する偏光の振動方向を制御することができる。あるいは、試料を保持する試料ステージをナノカーボン偏光光源10Aに対して相対的に回転してもよい。 By rotating the stage 21 at an arbitrary angle, the vibration direction of the polarized light incident on the sample can be controlled. Alternatively, the sample stage holding the sample may be rotated relative to the nanocarbon polarized light source 10A.
 図4は、偏光光源プローブ20の模式図である。偏光光源プローブ20は、ナノカーボン偏光光源10と、ナノカーボン偏光光源10を支持するプローブ基板25を有する。図4の例では、ナノカーボン偏光光源10は、直線偏光を発光するが、図2A~図2Cのように円偏光等を発光してもよい。 FIG. 4 is a schematic view of the polarizing light source probe 20. The polarized light source probe 20 has a nanocarbon polarized light source 10 and a probe substrate 25 that supports the nanocarbon polarized light source 10. In the example of FIG. 4, the nanocarbon polarized light source 10 emits linearly polarized light, but may emit circularly polarized light or the like as shown in FIGS. 2A to 2C.
 ナノカーボン偏光光源10は、どのような形状の基板に形成されてもよく、図4のように、突起またはプローブの形状に加工されたプローブ基板25の先端にナノカーボン偏光光源10を作り込んでもよい。ナノカーボン偏光光源10は、図1の直線偏光を発光する光源であってもよいし、図2A~図2Cの円偏光等を発光する光源であってもよい。ナノカーボン材料15の配置または成長の仕方に応じて偏光を直接発光する。プローブ基板25の先端をとがらせて、微細な点光源を実現することができる。この場合、電極12、13はプローブ基板25の側面に配置してもよい。また、プローブ基板25の傾斜した側面を利用して、図2Cのナノカーボン偏光光源10Cを配置してもよい。プローブ基板25の先端を平坦面にすることで、ナノカーボン偏光光源10の発光面に2次元的な広がりを持たせてもよい。2次元的な広がりを持たせても、ナノカーボン偏光光源10の発光面自体が非常に微細であるため、空間解像度は高く維持される。 The nanocarbon polarized light source 10 may be formed on a substrate having any shape, and as shown in FIG. 4, the nanocarbon polarized light source 10 may be formed at the tip of a probe substrate 25 processed into a protrusion or a probe shape. Good. The nanocarbon polarized light source 10 may be a light source that emits linearly polarized light of FIG. 1, or may be a light source that emits circularly polarized light of FIGS. 2A to 2C. Polarized light is emitted directly depending on the arrangement or growth of the nanocarbon material 15. A fine point light source can be realized by sharpening the tip of the probe substrate 25. In this case, the electrodes 12 and 13 may be arranged on the side surface of the probe substrate 25. Further, the nanocarbon polarized light source 10C shown in FIG. 2C may be arranged by utilizing the inclined side surface of the probe substrate 25. By flattening the tip of the probe substrate 25, the light emitting surface of the nanocarbon polarized light source 10 may have a two-dimensional spread. Even if the two-dimensional spread is provided, the spatial resolution is maintained high because the light emitting surface itself of the nanocarbon polarized light source 10 is very fine.
 プローブ基板25の先端に形成されるナノカーボン偏光光源10も、偏光光源プローブ20自体も微小であることから、ナノカーボン偏光光源10を測定対象に接近させた状態で、測定対象に偏光を照射し、測定することができる。この場合、発光面の近傍に発生する近接場によって偏光を取り出すことができる。近接場偏光は、発光面からの距離に依存して指数関数的に減衰するが、プローブ基板25の先端面にナノカーボン偏光光源10を配置することで、発光面を試料の表面に近づけることができる。 Since both the nanocarbon polarized light source 10 formed at the tip of the probe substrate 25 and the polarized light source probe 20 itself are minute, the measurement target is irradiated with polarized light with the nanocarbon polarized light source 10 close to the measurement target. , Can be measured. In this case, polarized light can be extracted by a near field generated in the vicinity of the light emitting surface. Near-field polarized light decays exponentially depending on the distance from the light emitting surface, but by arranging the nanocarbon polarized light source 10 on the tip surface of the probe substrate 25, the light emitting surface can be brought closer to the surface of the sample. it can.
 近接場光は、回折限界のある遠隔場光と異なり、その空間分解能は発光面のサイズに依存する。図4の偏光光源プローブ20を、走査型の分光分析またはイメージングに適用する場合、1本のCNTを用いたときは発光面のサイズをナノメートルオーダーまで小さくすることができるので、一般的な赤外分光における回折限界である10μmと比べて、高い空間分解能を実現することができる。 Near-field light is different from remote-field light, which has a diffraction limit, and its spatial resolution depends on the size of the light emitting surface. When the polarization light source probe 20 of FIG. 4 is applied to scanning spectroscopic analysis or imaging, the size of the light emitting surface can be reduced to the nanometer order when one CNT is used, so that it is generally red. High spatial resolution can be realized as compared with the diffraction limit of 10 μm in external spectroscopy.
 図5は、複数のナノカーボン光源素子がマトリクス状に配置されたナノカーボン偏光光源アレイ30の模式図である。水平方向に延びる複数の電極121~121(適宜、「電極121」と総称する)と、垂直方向に延びる複数の電極131~131(適宜、「電極131」と総称する。)が、互いに電気的に絶縁され、かつ交差して配置される。水平方向の各電極121は、櫛歯状の電極突起122を有する。各電極突起122は、垂直方向の電極131と対向して電極ペアを形成する。各電極ペアにナノカーボン材料15が接続されて、1つのナノカーボン偏光光源10ijのセルが構成される。この例では、ナノカーボン材料15で、CNTは水平方向の電極121と平行な方向に長軸を有する。 FIG. 5 is a schematic view of a nanocarbon polarized light source array 30 in which a plurality of nanocarbon light source elements are arranged in a matrix. A plurality of electrodes 121 1 to 121 m extending in the horizontal direction (appropriately collectively referred to as “electrode 121”) and a plurality of electrodes 131 1 to 131 n extending in the vertical direction (hereinafter collectively referred to as “electrode 131”). , Electrically insulated from each other and arranged intersecting. Each horizontal electrode 121 has a comb-shaped electrode protrusion 122. Each electrode protrusion 122 forms an electrode pair facing the electrode 131 in the vertical direction. The nanocarbon material 15 is connected to each electrode pair to form a cell of one nanocarbon polarized light source 10 ij . In this example, in the nanocarbon material 15, the CNTs have a major axis in a direction parallel to the horizontal electrode 121.
 選択された水平方向の電極121に高電位を印加し、それ以外の電極121をOFFにする。選択された垂直方向の電極131に低電位を印加し、それ以外の電極131をOFFにする。選択された電極121と電極131で決定される位置のナノカーボン偏光光源10ijが直線偏光を発光する。偏光の電場の振動方向は、CNTの長軸と平行な方向である。この方式で、各ナノカーボン偏光光源10の発光をそれぞれ独立に制御することができる。 A high potential is applied to the selected horizontal electrode 121 i , and the other electrodes 121 are turned off. A low potential is applied to the selected vertical electrode 131 j , and the other electrodes 131 are turned off. The nanocarbon polarized light source 10 ij at the position determined by the selected electrode 121 and the electrode 131 emits linearly polarized light. The vibration direction of the polarized electric field is parallel to the long axis of the CNT. In this method, the light emission of each nanocarbon polarized light source 10 can be controlled independently.
 ナノカーボン偏光光源アレイ30の各発光セルに整流効果を与えてもよい。たとえば、各セルでナノカーボン材料15と直列にダイオード等の整流性の素子を接続することで、電流の逆流を抑制して、所望の位置のナノカーボン光源10だけを発光させる。選択された水平方向の電極121に、たとえば高電位を印加し、それ以外の電極121をOFFにする。選択された垂直方向の電極131に、たとえば低電位を印加し、それ以外の電極131をOFFにする。整流素子を接続することで、選択された電極121と電極131で決定される位置以外のナノカーボン光源へ電流が迂回することが抑制され、意図しないCNTの発光を防止することができる。 A rectifying effect may be given to each light emitting cell of the nanocarbon polarized light source array 30. For example, by connecting a rectifying element such as a diode in series with the nanocarbon material 15 in each cell, the backflow of current is suppressed and only the nanocarbon light source 10 at a desired position emits light. For example, a high potential is applied to the selected horizontal electrode 121, and the other electrodes 121 are turned off. For example, a low potential is applied to the selected vertical electrode 131, and the other electrodes 131 are turned off. By connecting the rectifying element, it is possible to suppress the current from diverting to the nanocarbon light source other than the selected electrode 121 and the position determined by the electrode 131, and it is possible to prevent unintended CNT light emission.
 ナノカーボン偏光光源アレイ30を赤外分光イメージングに適用する場合、各ナノカーボン偏光光源10の発光タイミングに、分光器と検出器の動作タイミングを同期させることで、2次元のイメージング画像を得ることができる。 When the nanocarbon polarized light source array 30 is applied to infrared spectroscopic imaging, a two-dimensional imaging image can be obtained by synchronizing the operation timings of the spectroscope and the detector with the emission timing of each nanocarbon polarized light source 10. it can.
 図6Aは、並列配置したナノカーボン偏光光源アレイ40の上面図、図6Bは、断面模式図である。ナノカーボン偏光光源40アレイでは、基板41上にSiO2等の絶縁膜44を介して、複数の偏光光源エレメント45~45がたとえばY方向に配置されている。各偏光光源エレメント45はX方向に長軸を有し、ソース電極43Sとドレイン電極43Dの間にナノカーボン材料15が配置されている。ナノカーボン材料15はX方向に配向するCNTで形成されており、各偏光光源エレメント45で、直線偏光を発光するホットスポット49を掃引することができる。 FIG. 6A is a top view of the nanocarbon polarized light source array 40 arranged in parallel, and FIG. 6B is a schematic cross-sectional view. In the nanocarbon polarized light source 40 array, a plurality of polarized light source elements 45 1 to 45 n are arranged on the substrate 41 via an insulating film 44 such as SiO 2 in the Y direction, for example. Each polarizing light source element 45 has a long axis in the X direction, and the nanocarbon material 15 is arranged between the source electrode 43S and the drain electrode 43D. The nanocarbon material 15 is formed of CNTs oriented in the X direction, and each polarized light source element 45 can sweep a hot spot 49 that emits linearly polarized light.
 基板41の裏面に形成されたゲート電極42に印加する電圧を変えることで、ホットスポット49の位置がY方向に(一次元的)に掃引される。基板41の裏面に共通のゲート電極42が一つ形成されていてもよいし、偏光光源エレメント45ごとに、個別のゲート電極42が設けられていてもよい。 By changing the voltage applied to the gate electrode 42 formed on the back surface of the substrate 41, the position of the hot spot 49 is swept in the Y direction (one-dimensionally). One common gate electrode 42 may be formed on the back surface of the substrate 41, or an individual gate electrode 42 may be provided for each polarizing light source element 45.
 共通のゲート電極42を用いる場合は、ソース電極43Sとドレイン電極Dの組を順次選択し、選択された偏光光源エレメント45ごとにゲート電圧を変化させることで、ナノカーボン材料15の長さ方向にホットスポット49をスイープすることができる。個別のゲート電極42を用いる場合は、複数の偏光光源エレメント45でホットスポット49を同時にスイープすることができる。この場合は高速のイメージングが可能になる。 When the common gate electrode 42 is used, the pair of the source electrode 43S and the drain electrode D is sequentially selected, and the gate voltage is changed for each selected polarizing light source element 45 in the length direction of the nanocarbon material 15. You can sweep the hotspot 49. When the individual gate electrodes 42 are used, the hot spots 49 can be swept simultaneously by the plurality of polarized light source elements 45. In this case, high-speed imaging becomes possible.
 図6Aでは、Y方向にだけ偏光光源エレメント45を並べているが、たとえば絶縁層を介して、偏光光源エレメント45をX方向にも並べて、2次元マトリクス状の光源アレイとしてもよい。 In FIG. 6A, the polarized light source elements 45 are arranged only in the Y direction, but for example, the polarized light source elements 45 may be arranged in the X direction via an insulating layer to form a two-dimensional matrix-shaped light source array.
 図6A及び図6Bのナノカーボン偏光光源アレイ40を用いる場合、アレイの表面に試料を配置して、試料の透過光を測定することも可能である。ゲート電極42を透明電極にして試料からの反射光を測定してもよい。 When the nanocarbon polarized light source array 40 of FIGS. 6A and 6B is used, it is also possible to arrange the sample on the surface of the array and measure the transmitted light of the sample. The gate electrode 42 may be used as a transparent electrode to measure the reflected light from the sample.
 <第1実施形態>
 図7は、第1実施形態の偏光分析装置1の模式図である。偏光分析装置1は、偏光光源プローブ20を用いて、ステージ21上の試料S1に偏光を照射する。偏光光源プローブ20を試料S1に対して相対的に1次元、2次元、または3次元的に走査し、試料S1を透過した光Lと、試料S1で散乱または反射された光Lの少なくとも一方を、検出器35及び/または検出器36で検出する。検出器35及び/または検出器36の出力を後述する情報処理装置で解析して、検出された光の強度変化、スペクトル変化をイメージング画像として取得することができる。
<First Embodiment>
FIG. 7 is a schematic view of the polarization analyzer 1 of the first embodiment. The polarization analyzer 1 irradiates the sample S1 on the stage 21 with polarized light using the polarization light source probe 20. Relatively one-dimensional polarization light source probe 20 to the sample S1, 2-dimensional, or three-dimensionally scanned, a light L 1 that has passed through the sample S1, at least of the scattered or reflected light L 2 at the sample S1 One is detected by the detector 35 and / or the detector 36. The output of the detector 35 and / or the detector 36 can be analyzed by an information processing device described later, and the detected light intensity change and spectral change can be acquired as an imaging image.
 ナノカーボン偏光光源10が、直線偏光を発光する場合、偏光光源プローブ20を光軸周りに回転、あるいは試料S1を搭載したステージ21を面内方向に回転することで、直線偏光の振動の方向を変えることができる。試料S1が光学的に異方性を有する場合は、異方性の分布を取得することができる。 When the nanocarbon polarized light source 10 emits linearly polarized light, the direction of the vibration of linearly polarized light is determined by rotating the polarized light source probe 20 around the optical axis or rotating the stage 21 on which the sample S1 is mounted in the in-plane direction. Can be changed. When the sample S1 has anisotropy optically, the distribution of anisotropy can be obtained.
 偏光光源プローブ20を用いる場合、走査が容易、かつ偏光近接場を利用することができ、発光面のサイズに依存した高い空間分解能が得られる。光源は、偏光光源プローブ20に限定されず、図1の光源10Aまたは図2の光源10Bを固定にして、ステージ21を光源に対して相対的に走査する構成にしてもよい。また、光源として図5のナノカーボン偏光光源アレイ30、または図6Aのナノカーボン偏光光源アレイ40を用いて順次発光させてもよい。これらの場合も、各光源エレメントは微細であり、光源を試料に近接させて高い空間分解能での測定が実現する。 When the polarized light source probe 20 is used, scanning is easy, a polarized near field can be used, and high spatial resolution depending on the size of the light emitting surface can be obtained. The light source is not limited to the polarized light source probe 20, and the light source 10A of FIG. 1 or the light source 10B of FIG. 2 may be fixed and the stage 21 may be scanned relative to the light source. Further, the nanocarbon polarized light source array 30 shown in FIG. 5 or the nanocarbon polarized light source array 40 shown in FIG. 6A may be used as the light source to sequentially emit light. In these cases as well, each light source element is fine, and the light source is brought close to the sample to realize measurement with high spatial resolution.
 <第2実施形態>
 図8は、第2実施形態の偏光分析装置2の模式図である。偏光分析装置2は、直線二色性の高空間分解イメージングを実現する。直線二色性とは、偏光の電場ベクトル(または磁場ベクトル)の振動方向が90度異なる2つの直線偏光に対する物質の吸収度の差によって生じる光学特性である。
<Second Embodiment>
FIG. 8 is a schematic view of the polarization analyzer 2 of the second embodiment. The ellipsometry apparatus 2 realizes linear dichroic high spatial resolution imaging. Linear dichroism is an optical characteristic caused by the difference in absorption of a substance with respect to two linearly polarized light having different vibration directions of the electric field vector (or magnetic field vector) of polarized light by 90 degrees.
 偏光分析装置2は、直線偏光を直接発光するナノカーボン偏光光源10Aと、試料S2を保持するステージ21と、試料S2からの光(図8の例では透過光)を計測する計測器61と、計測器61に接続される情報処理装置62を有する。情報処理装置62はパーソナルコンピュータ(PC)でもよいし、スマートフォン、タブレット端末等の携帯端末であってもよい。 The ellipsometry apparatus 2 includes a nanocarbon polarized light source 10A that directly emits linearly polarized light, a stage 21 that holds the sample S2, a measuring instrument 61 that measures the light from the sample S2 (transmitted light in the example of FIG. 8), and the like. It has an information processing device 62 connected to the measuring instrument 61. The information processing device 62 may be a personal computer (PC) or a mobile terminal such as a smartphone or tablet terminal.
 光源として、直線偏光を直接発光するナノカーボン偏光光源10Aを先端に有する偏光光源プローブ20を用いる場合は、走査が容易、かつ偏光近接場を利用した高い空間分解能の測定が可能になる。 When a polarized light source probe 20 having a nanocarbon polarized light source 10A that directly emits linearly polarized light is used as a light source, scanning is easy and high spatial resolution measurement using a polarized light proximity field becomes possible.
 ナノカーボン偏光光源10Aとステージ21の少なくとも一方を回転可能とし、試料S2に入射する直線偏光の振動方向を変えてもよい。試料S2が光学的異方性を持つ場合、入射する直線偏光の振動方向によって吸収率が異なる。 At least one of the nanocarbon polarized light source 10A and the stage 21 may be rotatable, and the vibration direction of the linearly polarized light incident on the sample S2 may be changed. When the sample S2 has optical anisotropy, the absorptivity differs depending on the vibration direction of the incident linearly polarized light.
 計測器61で、直交する2つの直線偏光に対する吸収率(m//,m⊥)をそれぞれ測定する。たとえば、試料S2を保持するステージ21を、直線偏光の振動方向に対する方位角0°の向きにセットして、所定のステップサイズで試料S2上に直線偏光を一次元、二次元、または三次元に走査して、吸収率m//を測定する。直線偏光に対する方位角0°の向きは、あらかじめカリブレーションで決めておいてもよい。 The measuring instrument 61 measures the absorption rate (m //, m⊥) for two orthogonal linearly polarized light, respectively. For example, the stage 21 holding the sample S2 is set at an azimuth angle of 0 ° with respect to the vibration direction of the linear polarization, and the linear polarization is made one-dimensional, two-dimensional, or three-dimensional on the sample S2 at a predetermined step size. Scan to measure absorption rate m //. The direction of the azimuth angle of 0 ° with respect to the linearly polarized light may be determined in advance by calibration.
 方位角0°での測定後に、偏光光源プローブ20の発光面を90度回転し、同じ走査軌跡、同じタイミングで、直線偏光を試料S2上に走査して吸収率m⊥を測定する。試料S2に入射する直線偏光の振動方向は、方位角0°での振動方向と90°異なっている。 After the measurement at an azimuth angle of 0 °, the light emitting surface of the polarized light source probe 20 is rotated 90 degrees, linearly polarized light is scanned onto the sample S2 at the same scanning locus and the same timing, and the absorption rate m⊥ is measured. The vibration direction of the linearly polarized light incident on the sample S2 is 90 ° different from the vibration direction at the azimuth angle of 0 °.
 情報処理装置62で、各走査点での2つの吸収率の差(m//-m⊥)を計算してもよい。差分の大きさと正負により、試料S2の配向性とその分布を評価することができる。情報処理装置62は、スペクトラムアナライザ、画像信号への変換器、などのデジタル信号処理機能を有していてもよい。微細なナノカーボン偏光光源10Aを用いて偏光測定を行い、測定値の分布を画像化することで、定量的で高解像の直線二色性イメージングが実現する。 The information processing device 62 may calculate the difference (m // −m⊥) between the two absorption rates at each scanning point. The orientation of sample S2 and its distribution can be evaluated based on the magnitude of the difference and the positive and negative values. The information processing device 62 may have a digital signal processing function such as a spectrum analyzer and a converter for an image signal. Quantitative and high-resolution linear dichroism imaging is realized by performing polarization measurement using a fine nanocarbon polarized light source 10A and imaging the distribution of the measured values.
 この測定は、延伸などにより配向を持たせたポリマーフィルムや繊維の評価、配向性を持つ生体組織の機能評価などに応用することができる。 This measurement can be applied to the evaluation of polymer films and fibers oriented by stretching, and the functional evaluation of oriented biological tissues.
 <第3実施形態>
 図9は、第3実施形態の偏光分析装置3の模式図である。偏光分析装置3は、円二色性の高空間分解イメージングを実現する。
<Third Embodiment>
FIG. 9 is a schematic view of the polarization analyzer 3 of the third embodiment. The ellipsometry apparatus 3 realizes circular dichroism high spatial resolution imaging.
 偏光分析装置3は、円偏光を直接発光するナノカーボン偏光光源10Bと、試料S3を保持するステージ21と、試料S3からの光(図9の例では透過光)を測定する分光測定器51と、分光測定器51に接続される情報処理装置62を有する。ナノカーボン偏光光源10Bに替えて、図2Bまたは図2Cのナノカーボン偏光光源10Cを用いてもよい。 The polarization analyzer 3 includes a nanocarbon polarization light source 10B that directly emits circular polarization, a stage 21 that holds the sample S3, and a spectrophotometer 51 that measures the light from the sample S3 (transmitted light in the example of FIG. 9). The information processing device 62 is connected to the spectroscopic measuring device 51. Instead of the nanocarbon polarized light source 10B, the nanocarbon polarized light source 10C of FIG. 2B or FIG. 2C may be used.
 光源として、先端にナノカーボン偏光光源10Bを有する偏光光源プローブ20を用いる場合は、走査が容易、かつ偏光近接場を利用した高い空間分解能の測定が可能になる。 When a polarized light source probe 20 having a nanocarbon polarized light source 10B at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
 キラリティを持つ試料S3は、円偏光を吸収する際に、左円偏光と右円偏光に対して吸収度に差が生じる。この例では、試料S3は、キラル中心に結合している原子の原子量に着目したときに、最も原子量が低い置換基を奥に配置し、残りの置換基の原子量の高い順序が時計回り(R体)か、半時計回り(S体)かによって、円偏光に対する吸収度が異なる。なお、高分子のように、R体、S体ではキラリティを定義できないものに対しては、ヘリシティー(螺旋構造)、すなわち右巻き螺旋(P体)か、左巻き螺旋(M体)かによって、そのキラリティが区別されるが、この場合も円偏光に対する吸収度が異なる。 When the sample S3 having chirality absorbs circularly polarized light, there is a difference in absorption degree between left and right circularly polarized light. In this example, in sample S3, when focusing on the atomic weight of the atom bonded to the chiral center, the substituent having the lowest atomic weight is arranged in the back, and the order of the highest atomic weight of the remaining substituents is clockwise (R). The degree of absorption for circular polarization differs depending on whether it is counterclockwise (body) or counterclockwise (S body). For macromolecules whose chirality cannot be defined by R-form and S-form, helicity (spiral structure), that is, right-handed spiral (P-body) or left-handed spiral (M-body), is used. The chirality is distinguished, but in this case as well, the degree of absorption for circular polarization is different.
 円二色性は、左円偏光と右円偏光に対する吸収係数の差で表される。左円偏光を直接発光するナノカーボン偏光光源10Bが形成された偏光光源プローブ20と、右円偏光を直接発光するナノカーボン偏光光源10Bが形成された偏光光源プローブ20を用いて、試料S3に右円偏光と左円偏光を照射する。たとえば、まず右円偏光で試料S3上を所定の走査ステップサイズで一次元、二次元、または三次元に走査し、次に、左円偏光で試料S3を、同じ軌跡、同じタイミング(またはステップサイズ)で走査する。 Circular dichroism is represented by the difference in absorption coefficient for left-handed and right-handed circularly polarized light. Using a polarization light source probe 20 on which a nanocarbon polarized light source 10B that directly emits left circular polarization and a polarization light source probe 20 on which a nanocarbon polarization light source 10B that directly emits right circular polarization is formed, the right side of sample S3. Irradiate circularly polarized light and left circularly polarized light. For example, first, right circular polarization scans sample S3 in one, two, or three dimensions with a predetermined scanning step size, and then left circular polarization scans sample S3 with the same locus, same timing (or step size). ).
 各走査点で、所定の波長における左円偏光に対する吸収率mと右円偏光に対する吸収率mを分光測定器51で測定する。所定の波長は、試料S3が吸光感度を持つ波長である。分光測定器51の出力に基づいて、情報処理装置(「PC」と標記)62で吸収係数の差を計算してもよい。差分(m-m)の正負によって、分子のキラリティがわかる。微細なナノカーボン偏光光源10B(または10C)で偏光分光測定を行い、情報処理装置62にて測定結果に画像処理を施すことで、円二色性の高空間分解イメージングが実現する。 In each scanning point, measuring the absorption rate m R relative absorption index m L and right circularly polarized light to left-handed circularly polarized light at a predetermined wavelength in the spectrometer 51. The predetermined wavelength is a wavelength at which the sample S3 has absorption sensitivity. Based on the output of the spectrophotometer 51, the information processing device (denoted as "PC") 62 may calculate the difference in absorption coefficient. The chirality of the molecule can be determined by the positive or negative of the difference (m L- m R ). Circular dichroism high spatial resolution imaging is realized by performing polarization spectroscopic measurement with a fine nanocarbon polarized light source 10B (or 10C) and performing image processing on the measurement result with the information processing device 62.
 赤外光領域の円二色性の測定には分子中への発色団の導入は不要であり、第3実施形態の偏光測定は、ほとんどすべての光学異性体に応用可能である。 The measurement of circular dichroism in the infrared light region does not require the introduction of a chromophore into the molecule, and the polarization measurement of the third embodiment can be applied to almost all optical isomers.
 <第4実施形態>
 図10は、第4実施形態の偏光分析装置4の模式図である。偏光分析装置4は、複屈折の高空間分解イメージングを実現する。
<Fourth Embodiment>
FIG. 10 is a schematic view of the polarization analyzer 4 of the fourth embodiment. The ellipsometry apparatus 4 realizes birefringence high spatial resolution imaging.
 偏光分析装置4は、直線偏光を直接発光するナノカーボン偏光光源10Aと、試料S2を保持するステージ21と、試料S4の後段に配置される検光子53と、検光子53の透過光を検出・測定する計測器61と、計測器61に接続される情報処理装置62とを有する。 The ellipsometry apparatus 4 detects the nanocarbon polarized light source 10A that directly emits linearly polarized light, the stage 21 that holds the sample S2, the analyzer 53 that is arranged after the sample S4, and the transmitted light of the analyzer 53. It has a measuring instrument 61 for measuring and an information processing device 62 connected to the measuring instrument 61.
 検光子53は、ナノカーボン偏光光源10Aから出力される直線偏光の振動方向と垂直な方向に透過軸を有する。試料S4の後段に直線偏光の振動方向と直交する向きに透過軸を持つ検光子53を挿入することで、クロスニコルの偏光顕微鏡と等価な光学系となる。特徴的なのは、ナノカーボン偏光光源10Aが直線偏光を直接発光するので、光源と試料S4の間に偏光子またはアナライザが不要になる点である。 The detector 53 has a transmission axis in a direction perpendicular to the vibration direction of linearly polarized light output from the nanocarbon polarized light source 10A. By inserting an analyzer 53 having a transmission axis in a direction orthogonal to the vibration direction of linearly polarized light in the subsequent stage of the sample S4, an optical system equivalent to a cross Nicol polarizing microscope can be obtained. The characteristic is that the nanocarbon polarized light source 10A directly emits linearly polarized light, so that a polarizer or an analyzer is not required between the light source and the sample S4.
 直線偏光を試料S4に対して相対的に、一次元、二次元、または三次元に走査する。直線偏光が複屈折性を持つ試料S4を透過すると、複屈折性の大きさによって振動の方向が回転し、検光子53を透過する光成分が生じる。検光子53の透過光を計測器61で測定することで、複屈折の有無とその大きさがわかる。 The linearly polarized light is scanned in one dimension, two dimensions, or three dimensions relative to the sample S4. When linearly polarized light passes through the sample S4 having birefringence, the direction of vibration is rotated by the magnitude of birefringence, and a light component transmitted through the analyzer 53 is generated. By measuring the transmitted light of the analyzer 53 with the measuring instrument 61, the presence or absence of birefringence and its magnitude can be known.
 偏光光源プローブ20の発光面と検光子53を、同時に、同じ方向に同じ角度で回転してもよい。直線偏光の振動方向と、検光子53の透過軸との直交性を保ったまま、同じ方向に回転する。あるいは、試料S4を保持するステージ21を、ナノカーボン偏光光源10Aと検光子53に対して回転してもよい。試料S4へ入射した直線偏光の振動方向が試料S4内で変化することで、試料S4の偏光特性または複屈折特性を、検光子53を透過した光の色(干渉色)または輝度の変化として観測することができる。微細なナノカーボン偏光光源10Aを用いて偏光測定を行い、情報処理装置62で、計測器61による測定結果に画像処理を施すことで、複屈折の高空間分解イメージングが実現する。 The light emitting surface of the polarized light source probe 20 and the analyzer 53 may be simultaneously rotated in the same direction and at the same angle. It rotates in the same direction while maintaining the orthogonality between the vibration direction of the linearly polarized light and the transmission axis of the analyzer 53. Alternatively, the stage 21 holding the sample S4 may be rotated with respect to the nanocarbon polarized light source 10A and the analyzer 53. By changing the vibration direction of the linearly polarized light incident on the sample S4 in the sample S4, the polarization characteristic or birefringence characteristic of the sample S4 is observed as a change in the color (interference color) or brightness of the light transmitted through the analyzer 53. can do. High spatial resolution imaging of birefringence is realized by performing polarization measurement using a fine nanocarbon polarized light source 10A and performing image processing on the measurement result by the measuring instrument 61 in the information processing device 62.
 <第5実施形態>
 図11は、第5実施形態の偏光分析装置5の模式図である。偏光分析装置5は、キラル分子と直線偏光との相互作用による光学活性(旋光性)の高空間分解イメージングを実現する。
<Fifth Embodiment>
FIG. 11 is a schematic view of the polarization analyzer 5 of the fifth embodiment. The ellipsometry apparatus 5 realizes high spatial decomposition imaging of optical activity (optical rotation) by the interaction between chiral molecules and linearly polarized light.
 偏光分析装置5は、直線偏光を直接発光するナノカーボン偏光光源10Aと、試料S3を保持するステージ21と、試料S3の後段に配置される検光子53と、検光子53の透過光を分光測定する分光測定器51と、分光測定器51に接続される情報処理装置62を有する。 The polarization analyzer 5 spectroscopically measures the nanocarbon polarization light source 10A that directly emits linearly polarized light, the stage 21 that holds the sample S3, the analyzer 53 that is arranged after the sample S3, and the transmitted light of the analyzer 53. It has a spectroscopic measuring device 51 and an information processing device 62 connected to the spectroscopic measuring device 51.
 光源として、先端にナノカーボン偏光光源10Aを有する偏光光源プローブ20を用いる場合は、走査が容易、かつ偏光近接場を利用した高い空間分解能の測定が可能になる。 When a polarized light source probe 20 having a nanocarbon polarized light source 10A at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
 キラリティを持つ試料S3に直線偏光を入射すると、キラル分子との相互作用により、試料S3を透過(または反射)した光の振動方向が回転する。試料S3の後段に配置した検光子53を回転して、試料S3を透過した特定波長の光の強度が最小となる検光子53の回転角度θを特定する。 When linearly polarized light is incident on the sample S3 having chirality, the vibration direction of the light transmitted (or reflected) through the sample S3 is rotated by the interaction with the chiral molecules. The analyzer 53 arranged after the sample S3 is rotated to specify the rotation angle θ R of the analyzer 53 that minimizes the intensity of the light of the specific wavelength transmitted through the sample S3.
 回転角度θは、分光測定器51と検光子53の回転機構を連動させて特定することができる。試料S3に入射した直線偏光の振動方向に対する検光子53の回転角度θが、試料S3の光学活性を示す旋光角となる。旋光角は分子のキラリティに依存するので、第3実施形態の円二色性と同様に、旋光角(すなわち回転角度θ)から光学異性体のキラリティを高精度に識別することができる。 The rotation angle θ R can be specified by interlocking the rotation mechanism of the spectrophotometer 51 and the analyzer 53. The rotation angle θ R of the analyzer 53 with respect to the vibration direction of the linearly polarized light incident on the sample S3 is the optical rotation angle indicating the optical activity of the sample S3. Since the optical rotation angle depends on the chirality of the molecule, the chirality of the optical isomer can be identified with high accuracy from the optical rotation angle (that is, the rotation angle θ R ) as in the circular dichroism of the third embodiment.
 <第6実施形態>
 図12は、第6実施形態の偏光分析装置6の模式図である。偏光分析装置6は、ファラディディー回転の高空間分解イメージングを実現する。
<Sixth Embodiment>
FIG. 12 is a schematic view of the polarization analyzer 6 of the sixth embodiment. The ellipsometry apparatus 6 realizes high spatial resolution imaging of Faraddy rotation.
 偏光分析装置5は、直線偏光を直接発光するナノカーボン偏光光源10Aと、試料S5を保持するステージ21と、試料S5の後段に配置される検光子53と、検光子53の透過光を分光測定する分光測定器51と、分光測定器51に接続される情報処理装置62を有する。 The polarization analyzer 5 spectroscopically measures the nanocarbon polarization light source 10A that directly emits linearly polarized light, the stage 21 that holds the sample S5, the analyzer 53 that is arranged after the sample S5, and the transmitted light of the analyzer 53. It has a spectroscopic measuring device 51 and an information processing device 62 connected to the spectroscopic measuring device 51.
 光源として、先端にナノカーボン偏光光源10Aを有する偏光光源プローブ20を用いる場合は、走査が容易、かつ偏光近接場を利用した高い空間分解能の測定が可能になる。 When a polarized light source probe 20 having a nanocarbon polarized light source 10A at the tip is used as the light source, scanning is easy and high spatial resolution measurement using a polarized near field becomes possible.
 試料S5は、自発磁化を持つ強磁性体、または、常磁性体もしくは反磁性体である。図12のように、強磁性体もしくは、光の進行方向と平行な方向に磁場が印加された常磁性体もしくは反磁性体の試料S5に直線偏光が入射すると、光学活性と同様に、試料S5から出射する直線偏光の振動方向が回転する。 Sample S5 is a ferromagnetic material having spontaneous magnetization, or a paramagnetic material or a diamagnetic material. As shown in FIG. 12, when linearly polarized light is incident on the sample S5 of a ferromagnet or a paramagnetic or antimagnetic material to which a magnetic field is applied in a direction parallel to the traveling direction of light, the sample S5 is similar to the optical activity. The vibration direction of the linearly polarized light emitted from is rotated.
 試料S5の後段に挿入した検光子53を回転させることで、透過光の強度が最小となる検光子53の回転角度θを決定してもよい。入射直線偏光の振動方向に対する検光子53の回転角度θがファラディ回転(磁気旋光性)の回転角となる。ファラディ回転角の正負は、磁化の方向もしくは磁場の印加方向に依存し、ファラディ回転角の大きさは、磁化の大きさもしくは印加磁場の大きさに依存する。微細なナノカーボン偏光光源10Aを用いて偏光測定することで、磁性体の磁区構造の評価や光通信用アイソレータの性能評価などを高分解能で行うことができる。 By rotating the detector 53 inserted in the subsequent stage of the sample S5, the rotation angle θ R of the detector 53 that minimizes the intensity of the transmitted light may be determined. The rotation angle θ R of the analyzer 53 with respect to the vibration direction of the incident linear polarization is the rotation angle of the faradi rotation (magnetic rotation). The positive or negative of the Faradi rotation angle depends on the direction of magnetization or the direction of application of the magnetic field, and the magnitude of the Faradi rotation angle depends on the magnitude of magnetization or the magnitude of the applied magnetic field. By measuring the polarization using a fine nanocarbon polarized light source 10A, it is possible to evaluate the magnetic domain structure of the magnetic material and the performance of the optical communication isolator with high resolution.
 <第7実施形態>
 図13は、第7実施形態の偏光分析装置7の模式図である。偏光分析装置7は、ナノカーボン偏光光源10による高速時間分解測定を実現する。
<7th Embodiment>
FIG. 13 is a schematic view of the polarization analyzer 7 of the seventh embodiment. The ellipsometry apparatus 7 realizes high-speed time-resolved measurement by the nanocarbon polarized light source 10.
 偏光分析装置7は、偏光を直接発光するナノカーボン偏光光源10と、励起源65と、試料Sからの光を検出するカメラ及び/または分光器63(図中、「カメラ・分光器63」と標記)と、カメラ・分光器63の出力に接続される情報処理装置62を有する。カメラは、CCDセンサ、CMOSセンサ等の光検出アレイを有する。試料Sの何を測定するかに応じて分光器を併用してもよい。 The ellipsometry apparatus 7 includes a nanocarbon polarized light source 10 that directly emits polarized light, an excitation source 65, and a camera and / or a spectroscope 63 that detects light from the sample S (“camera / spectroscope 63” in the figure). It has a notation) and an information processing device 62 connected to the output of the camera / spectroscope 63. The camera has a photodetection array such as a CCD sensor and a CMOS sensor. A spectroscope may be used in combination depending on what is measured in the sample S.
 ナノカーボン偏光光源10から直接出射される偏光をプローブ光Lprobeとして用い、励起源65からの刺激パルスPstimにより刺激された試料Sの変化を高速に測定する。試料Sの測定領域に、たとえば化学反応を開始する化学反応パルス刺激を印加する。刺激の印加からΔt秒の遅延時間で、ナノカーボン偏光光源10から偏光をプローブ光Lprobeとして、試料の同じ測定領域に照射する。試料Sに化学反応を開始する刺激を与えることができればよいので、刺激パルスPstimは光の照射に限定されず、電気化学反応を生じさせる電圧の印加、反応物質パルスの供給など、電気刺激や物質供給であってもよい。 The polarized light directly emitted from the nanocarbon polarized light source 10 is used as the probe light L probe, and the change of the sample S stimulated by the stimulation pulse Pstim from the excitation source 65 is measured at high speed. For example, a chemical reaction pulse stimulus for initiating a chemical reaction is applied to the measurement region of the sample S. With a delay time of Δt seconds from the application of the stimulus, the same measurement area of the sample is irradiated with polarized light from the nanocarbon polarized light source 10 as the probe light L probe. Since it is sufficient that the sample S can be stimulated to start a chemical reaction, the stimulation pulse Pstim is not limited to irradiation with light, and an electrical stimulus or substance such as application of a voltage that causes an electrochemical reaction or supply of a reactant pulse is obtained. It may be a supply.
 ハロゲンランプやセラミック光源などといった既存の黒体放射光源では、変調の応答速度が約100msと低速なため、高速な化学反応などの追跡ができない。一方、ナノカーボン偏光光源は100psオーダーの応答速度で変調が可能なため、高速時間分解測定が可能である。 With existing blackbody radiation light sources such as halogen lamps and ceramic light sources, the response speed of modulation is as low as about 100 ms, so high-speed chemical reactions cannot be tracked. On the other hand, since the nanocarbon polarized light source can be modulated at a response speed on the order of 100 ps, high-speed time-resolved measurement is possible.
 刺激により生じた試料Sの内部の変化は、たとえば、励起された分子振動による偏光の吸収または偏光の回転結果として、カメラ・分光器63によって検出される。検出結果は情報処理装置62に入力されて、信号処理、分析等が行われてもよい。 The internal change of the sample S caused by the stimulus is detected by the camera / spectroscope 63 as a result of absorption of polarized light or rotation of polarized light due to excited molecular vibration, for example. The detection result may be input to the information processing apparatus 62 for signal processing, analysis, and the like.
 第7実施形態の偏光分析装置7は、第2実施形態~第6実施形態のいずれと組み合わせてもよい。この場合、直線二色性、円二色性、複屈折、光学活性(旋光角)、ファラディ回転を、高速時間分解、かつ高い空間分解能でイメージングが実現する。 The polarization analyzer 7 of the 7th embodiment may be combined with any of the 2nd to 6th embodiments. In this case, linear dichroism, circular dichroism, birefringence, optical activity (optical rotation angle), and faradi rotation can be imaged with high-speed time resolution and high spatial resolution.
 <第8実施形態>
 図14は、第8実施形態の偏光分析装置8の模式図である。第8実施形態では、マイクロ流路71を有するマイクロ分析チップ70を用いた偏光測定を実現する。マイクロ分析チップ70は、偏光分析を効率的に行う偏光分析チップの一例である。
<8th Embodiment>
FIG. 14 is a schematic view of the polarization analyzer 8 of the eighth embodiment. In the eighth embodiment, the polarization measurement using the micro analysis chip 70 having the micro flow path 71 is realized. The microanalysis chip 70 is an example of an ellipsometry chip that efficiently performs ellipsometry.
 偏光分析装置8は、ナノカーボン偏光光源10と、カメラ・分光器63と、マイクロ分析チップ70を有する。マイクロ分析チップ70には、マイクロ流路71が形成されており、試料はマイクロ流路71内に供給される。 The ellipsometry apparatus 8 includes a nanocarbon polarization light source 10, a camera / spectroscope 63, and a microanalysis chip 70. A microchannel 71 is formed in the microanalysis chip 70, and a sample is supplied into the microchannel 71.
 反応物質を含む試料をマイクロ流路71に流しつつ、ナノカーボン偏光光源10から偏光を照射する。試料からの透過、散乱、または反応光を測定することで、マイクロ流路71中に存在する物質の偏光分析(直線二色性、円二色性、複屈折、光学活性(旋光角)、ファラディ回転など)を行うことができる。 While flowing a sample containing a reactant in the microchannel 71, irradiate polarized light from the nanocarbon polarized light source 10. Polarization analysis (linear dichroism, circular dichroism, birefringence, optical activity (optical rotation), faradi) of substances present in the microchannel 71 by measuring transmission, scattering, or reaction light from the sample. Rotation etc.) can be performed.
 ナノカーボン偏光光源10は、マイクロ流路71の中に配置されてもよいし、マイクロ流路71と対向する位置、たとえば、マイクロ分析チップ70の内部または底面にナノカーボン偏光光源10が形成されてもよい。 The nanocarbon polarized light source 10 may be arranged in the microchannel 71, or the nanocarbon polarized light source 10 is formed at a position facing the microchannel 71, for example, inside or the bottom surface of the microanalytical chip 70. May be good.
 図14の構成を、図13のように励起源65による刺激と組み合わせて時間分解での化学反応分析に適用してもよい。この場合は、刺激により試料に生じた時々刻々と進む反応過程を追跡することができる。 The configuration of FIG. 14 may be applied to the chemical reaction analysis by time decomposition in combination with the stimulation by the excitation source 65 as shown in FIG. In this case, it is possible to track the ever-increasing reaction process that occurs in the sample due to the stimulus.
 マイクロ流路71を有するマイクロ分析チップ70は、微量の化学分析、バイオ分析、医療診断などで有効に用いられる。 The micro analysis chip 70 having the micro flow path 71 is effectively used in a small amount of chemical analysis, bioanalysis, medical diagnosis, and the like.
 第8実施形態の偏光分析装置7は、第2実施形態~第7実施形態のいずれと組み合わせてもよい。この場合、直線二色性、円二色性、複屈折、光学活性(旋光角)、ファラディ回転を、高速時間分解、かつ高い空間分解能でイメージングが実現する。 The polarization analyzer 7 of the eighth embodiment may be combined with any of the second to seventh embodiments. In this case, linear dichroism, circular dichroism, birefringence, optical activity (optical rotation angle), and faradi rotation can be imaged with high-speed time resolution and high spatial resolution.
 <第9実施形態>
 図15は、第9実施形態の偏光分析を説明する図である。第9実施形態では、ナノカーボン偏光光源10のような微小な偏光光源の発光面にプローブ物質を固定したバイオチップ80を用いた偏光分析を実現する。ここで用いられるバイオチップ80も偏光分析チップの一例である。バイオチップ上に分析用のサンプルを供給し、微細なナノカーボン偏光光源10に固定されたプローブ分子81に試料の相互反応する物質82を結合させて、簡便かつ高速に偏光分析を行う。
<9th embodiment>
FIG. 15 is a diagram illustrating the ellipsometry of the ninth embodiment. In the ninth embodiment, polarization analysis using a biochip 80 in which a probe substance is fixed on a light emitting surface of a minute polarized light source such as a nanocarbon polarized light source 10 is realized. The biochip 80 used here is also an example of an ellipsometry chip. A sample for analysis is supplied on a biochip, and a substance 82 that interacts with the sample is bound to a probe molecule 81 fixed to a fine nanocarbon polarized light source 10, and polarization analysis is performed easily and at high speed.
 基板11上に形成したナノカーボン偏光光源10などの微小な光源の上に、分析用のプローブ分子81を固定して、光源一体型のバイオチップ80を作製する。プローブ分子81としては、DAN、タンパク質、糖鎖、細胞、分子などを用いることができる。プローブ分子81は特定の物質(DNA、タンパク質、糖鎖、細胞、分子等)と選択的に結合する。プローブ分子81は、ナノカーボン偏光光源10に直接結合して形成することも可能であるし、ナノカーボン偏光光源10上にキャップ層を設けて、キャップ層にプローブ分子81を結合させてもよい。 The probe molecule 81 for analysis is fixed on a minute light source such as the nanocarbon polarized light source 10 formed on the substrate 11, and the biochip 80 integrated with the light source is produced. As the probe molecule 81, DAN, protein, sugar chain, cell, molecule and the like can be used. The probe molecule 81 selectively binds to a specific substance (DNA, protein, sugar chain, cell, molecule, etc.). The probe molecule 81 can be formed by directly bonding to the nanocarbon polarized light source 10, or a cap layer may be provided on the nanocarbon polarized light source 10 and the probe molecule 81 may be bonded to the cap layer.
 プローブ分子81付きのナノカーボン偏光光源に分析用の試料を導入すると、プローブ分子81と選択的に結合可能な物質82がプローブ分子81に結合する。これを利用して、分析用の物質の同定、検出、分析(分子構造の特定など)等が可能になる。 When a sample for analysis is introduced into a nanocarbon polarized light source with a probe molecule 81, a substance 82 that can selectively bind to the probe molecule 81 binds to the probe molecule 81. Utilizing this, identification, detection, analysis (identification of molecular structure, etc.) of a substance for analysis becomes possible.
 ナノカーボン偏光光源10を用いたバイオチップ80では、目的に応じて、第2実施形態~第6実施形態のいずれの構成と組み合わせてもよい。例えば、第5実施形態の光学活性の測定をバイオチップ80に応用すると、高価な蛍光物質などのマーカーを用いずに、キラリティを示すアミノ酸・糖・タンパク質・DNAといった生体物質の構造とその変化を高感度で検出することができる。 The biochip 80 using the nanocarbon polarized light source 10 may be combined with any of the configurations of the second embodiment to the sixth embodiment depending on the purpose. For example, when the measurement of the optical activity of the fifth embodiment is applied to the biochip 80, the structure of biological substances such as amino acids, sugars, proteins, and DNA showing chirality and their changes can be obtained without using markers such as expensive fluorescent substances. It can be detected with high sensitivity.
 また、プローブ分子81とターゲットの物質は、従来法では用いることができなかった非発光の物質であってもよい。ナノカーボン偏光光源10は、微細加工による小型化が簡単なため、図5及び図6Aに示したように、シリコンチップ上に高集積化が可能である。これらの特徴により、遺伝子発現や抗体検出の精度の向上や診断の迅速化などにつなげられると期待される。 Further, the probe molecule 81 and the target substance may be non-luminescent substances that could not be used by the conventional method. Since the nanocarbon polarized light source 10 can be easily miniaturized by microfabrication, it can be highly integrated on a silicon chip as shown in FIGS. 5 and 6A. These characteristics are expected to lead to improvements in the accuracy of gene expression and antibody detection, and to speeding up diagnosis.
 以上、特定の実施例に基づいてナノカーボン偏光光源を用いた偏光分析装置について述べてきたが、本発明はこれらの構成例に限定されない。たとえば、ナノカーボン偏光光源10Aを用いて反磁性体の試料に直線偏光を入射し、透過光の偏光の楕円率を測定して磁気円二色性を分析してもよい。 The polarization analyzer using the nanocarbon polarized light source has been described above based on a specific embodiment, but the present invention is not limited to these configuration examples. For example, linearly polarized light may be incident on a diamagnetic sample using a nanocarbon polarized light source 10A, and the ellipticity of the polarized light of transmitted light may be measured to analyze magnetic circular dichroism.
 図5及び図6Aの構成で、ナノカーボン偏光光源アレイの表面に、試料Sを直接搭載して、透過光を検出し分析してもよい。円偏光等を発光するナノカーボン偏光光源10Bまたは10Cを用いて、図6A及び図6Bのようにホットスポットを掃引してもよい。図15のバイオチップは、複数のナノカーボン偏光光源が一定方向またはマトリクス状に配置された偏光光源アレイにプローブ分子が固定されたものであってもよい。 With the configurations of FIGS. 5 and 6A, the sample S may be directly mounted on the surface of the nanocarbon polarized light source array to detect and analyze the transmitted light. Hot spots may be swept as shown in FIGS. 6A and 6B by using a nanocarbon polarized light source 10B or 10C that emits circularly polarized light or the like. The biochip of FIG. 15 may have probe molecules immobilized on a polarized light source array in which a plurality of nanocarbon polarized light sources are arranged in a certain direction or in a matrix.
 基板上に配置されるナノカーボン材料の密度と膜厚は、所望の偏光強度を得るように適宜設計されてもよい。ナノカーボン偏光光源10、及び10A~10Cの表面全体を透明な保護膜で覆って大気中での使用を可能にしてもよい。 The density and film thickness of the nanocarbon material arranged on the substrate may be appropriately designed to obtain the desired polarization intensity. The entire surface of the nanocarbon polarized light source 10 and 10A to 10C may be covered with a transparent protective film so that it can be used in the atmosphere.
 いずれの場合も、追加の光学素子を用いずに、直線偏光または円偏光(もしくは楕円偏光)を直接発光する微細なナノカーボン偏光光源で偏光分析が行われるので、高速時間分解、かつ高い空間分解能で偏光分析を行う小型の偏光分析装置が実現する。 In either case, polarization analysis is performed with a fine nanocarbon polarized light source that directly emits linearly polarized light or circularly polarized light (or elliptically polarized light) without using additional optical elements, resulting in high-speed time resolution and high spatial resolution. A compact polarization analyzer that performs polarization analysis will be realized.
 本出願は、2019年6月20日に出願された日本国特許出願第2019-114912号に基づいて、その優先権を主張するものであり、これらの日本国特許出願の全内容を含む。 This application claims its priority based on Japanese Patent Application No. 2019-114912 filed on June 20, 2019, and includes the entire contents of these Japanese patent applications.
1~8 偏光分析装置
10、10A、10B、10C ナノカーボン偏光光源
11、31、41 基板
12、13、121、131 電極
15、15A、15B ナノカーボン材料
21 ステージ
30、40 ナノカーボン偏光光源アレイ
42 ゲート電極
43S ソース電極
43D ドレイン電極
45、451~45n 偏光光源エレメント
49 ホットスポット
51 分光測定器(測定器)
53 検光子
61 計測器(測定器)
62 情報処理装置
63 カメラ・分光器(測定器)
65 励起源
70 マイクロ分析チップ(偏光分析チップ)
71 マイクロ流路
81 プローブ分子
80 バイオチップ(偏光分析チップ)
81 プローブ分子
S、S1~S5 試料
1-8 Ellipsometric devices 10, 10A, 10B, 10C Nanocarbon polarized light sources 11, 31, 41 Substrates 12, 13, 121, 131 Electrodes 15, 15A, 15B Nanocarbon materials 21 Stages 30, 40 Nanocarbon polarized light source arrays 42 Gate electrode 43S Source electrode 43D Drain electrode 45, 451-45n Polarized light source element 49 Hotspot 51 Spectrometer (measuring instrument)
53 Detector 61 Measuring instrument (measuring instrument)
62 Information processing device 63 Camera / spectroscope (measuring instrument)
65 Excitation source 70 Micro analysis chip (ellipsometry chip)
71 Microchannel 81 Probe molecule 80 Biochip (ellipsometry chip)
81 Probe molecules S, S1 to S5 samples

Claims (15)

  1.  試料に偏光を照射するナノカーボン偏光光源と、
     前記試料からの光を測定する測定器と
    を有し、
     前記ナノカーボン偏光光源は長軸が所定の方向に向いた1本以上のカーボンナノチューブを有し、前記カーボンナノチューブから黒体放射による偏光を直接出力する
    ことを特徴とする偏光分析装置。
    A nanocarbon polarized light source that irradiates a sample with polarized light,
    It has a measuring instrument that measures the light from the sample.
    The nanocarbon polarized light source is a polarization analyzer characterized in that it has one or more carbon nanotubes whose long axes are oriented in a predetermined direction, and directly outputs polarized light due to blackbody radiation from the carbon nanotubes.
  2.  前記ナノカーボン偏光光源は、前記カーボンナノチューブの前記長軸と平行な方向に振動する直線偏光を直接発光し、
     前記測定器の出力から、前記試料の直線二色性、光学異方性、光学活性、または磁性特性が分析されることを特徴とする請求項1に記載の偏光分析装置。
    The nanocarbon polarized light source directly emits linearly polarized light oscillating in a direction parallel to the long axis of the carbon nanotubes.
    The ellipsometry apparatus according to claim 1, wherein the linear dichroism, optical anisotropy, optical activity, or magnetic property of the sample is analyzed from the output of the measuring instrument.
  3.  前記ナノカーボン偏光光源を前記試料に対して相対的に回転する回転機構、
    をさらに有し、
     前記直線偏光の振動方向を変えて測定が行われることを特徴とする請求項2に記載の偏光分析装置。
    A rotation mechanism that rotates the nanocarbon polarized light source relative to the sample.
    Have more
    The polarization analyzer according to claim 2, wherein the measurement is performed by changing the vibration direction of the linearly polarized light.
  4.  前記ナノカーボン偏光光源は、前記カーボンナノチューブの螺旋の巻き方向に応じた円偏光または楕円偏光を直接発光することを特徴とする請求項1に記載の偏光分析装置。 The ellipsometric device according to claim 1, wherein the nanocarbon polarized light source directly emits circularly polarized light or elliptically polarized light according to the winding direction of the spiral of the carbon nanotube.
  5.  前記ナノカーボン光源は、同じ巻き方向の複数の前記カーボンナノチューブを有し、前記カーボンナノチューブの前記長軸は基板面と垂直に配置され、前記円偏光または前記楕円偏光を前記基板面と垂直な方向に発光する、
    ことを特徴とする請求項4に記載の偏光分析装置。
    The nanocarbon light source has a plurality of the carbon nanotubes in the same winding direction, the long axis of the carbon nanotubes is arranged perpendicular to the substrate surface, and the circularly polarized light or the elliptically polarized light is oriented perpendicular to the substrate surface. Luminous,
    The polarization analyzer according to claim 4.
  6.  前記ナノカーボン光源は、同じ巻方向の複数の前記カーボンナノチューブを有し、前記カーボンナノチューブの前記長軸は基板面と平行に配置され、前記円偏光または前記楕円偏光を前記基板面に対して鋭角で発光する、
    ことを特徴とする請求項4に記載の偏光分析装置。
    The nanocarbon light source has a plurality of the carbon nanotubes in the same winding direction, the long axis of the carbon nanotubes is arranged parallel to the substrate surface, and the circular polarization or the elliptical polarization is sharply angled with respect to the substrate surface. Lights up with
    The polarization analyzer according to claim 4.
  7.  前記ナノカーボン光源は、前記円偏光を直接発光し、
     前記測定器の出力から、前記試料の円二色性が分析されることを特徴とする請求項4~6のいずれか1項に記載の偏光分析装置。
    The nanocarbon light source directly emits the circularly polarized light,
    The polarization analyzer according to any one of claims 4 to 6, wherein the circular dichroism of the sample is analyzed from the output of the measuring instrument.
  8.  前記ナノカーボン偏光光源はプローブの先端に配置されて、前記試料を保持するステージに対して相対的に走査可能であることを特徴とする請求項1~7のいずれか1項に記載の偏光分析装置。 The ellipsometry according to any one of claims 1 to 7, wherein the nanocarbon polarized light source is arranged at the tip of a probe and can be scanned relative to the stage holding the sample. apparatus.
  9.  前記ナノカーボン偏光光源の偏光発光面は、赤外光の波長以下の距離で前記試料に近接して配置され、近接場偏光で前記試料を照射することを特徴とする請求項8に記載の偏光分析装置。 The polarized light according to claim 8, wherein the polarized light emitting surface of the nanocarbon polarized light source is arranged close to the sample at a distance equal to or less than the wavelength of infrared light, and irradiates the sample with near-field polarization. Analysis equipment.
  10.  前記ナノカーボン偏光光源は、複数の光源エレメントが一定方向に配置された偏光光源アレイであることを特徴とする請求項1~7のいずれか1項に記載の偏光分析装置。 The polarization analyzer according to any one of claims 1 to 7, wherein the nanocarbon polarized light source is a polarized light source array in which a plurality of light source elements are arranged in a fixed direction.
  11.  前記試料をパルス刺激する励起源、
    をさらに有し、
     前記ナノカーボン偏光光源は、前記パルス刺激から所定時間遅延して、前記偏光を出力することを特徴とする請求項1~9のいずれか1項に記載の偏光分析装置。
    An excitation source that pulse-stimulates the sample,
    Have more
    The polarization analyzer according to any one of claims 1 to 9, wherein the nanocarbon polarized light source outputs the polarized light with a delay of a predetermined time from the pulse stimulation.
  12.  前記試料を前記ナノカーボン偏光光源の近傍に供給するマイクロ流路を有する偏光分析チップ、
    をさらに有することを特徴とする請求項1~11のいずれか1項に記載の偏光分析装置。
    An ellipsometry chip having a microchannel that supplies the sample in the vicinity of the nanocarbon polarization light source,
    The polarization analyzer according to any one of claims 1 to 11, further comprising.
  13.  前記ナノカーボン偏光光源は、前記マイクロ流路内に配置されるか、または前記マイクロ流路と対向する位置で前記偏光分析チップに形成されていることを特徴とする請求項12に記載の偏光分析装置。 12. The ellipsometry according to claim 12, wherein the nanocarbon polarized light source is arranged in the microchannel or formed on the polarization analysis chip at a position facing the microchannel. apparatus.
  14.  前記カーボンナノチューブの前記長軸の両端に配置される一対の電極と、絶縁膜を介して前記カーボンナノチューブにゲート電圧を印加するゲート電極と、
    を有し、前記ゲート電圧の変化に応じて前記カーボンナノチューブの前記長軸に沿ってホットスポットが掃引される、ことを特徴とする請求項1または2に記載の偏光分析装置。
    A pair of electrodes arranged at both ends of the long axis of the carbon nanotube, and a gate electrode for applying a gate voltage to the carbon nanotube via an insulating film.
    The polarization analyzer according to claim 1 or 2, wherein hot spots are swept along the long axis of the carbon nanotube in response to a change in the gate voltage.
  15.  一定方向に配列するカーボンナノチューブから黒体放射による偏光を直接発光する偏光光源と、
     前記偏光光源の発光面に固定されるプローブ分子と、
    を有する偏光分析チップ。
    A polarized light source that directly emits polarized light from blackbody radiation from carbon nanotubes arranged in a certain direction,
    The probe molecule fixed to the light emitting surface of the polarized light source and
    Ellipsometry chip with.
PCT/JP2020/023128 2019-06-20 2020-06-12 Polarimetry device and polarimetry chip WO2020255868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528168A JPWO2020255868A1 (en) 2019-06-20 2020-06-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114912 2019-06-20
JP2019114912 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255868A1 true WO2020255868A1 (en) 2020-12-24

Family

ID=74040787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023128 WO2020255868A1 (en) 2019-06-20 2020-06-12 Polarimetry device and polarimetry chip

Country Status (2)

Country Link
JP (1) JPWO2020255868A1 (en)
WO (1) WO2020255868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270127A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Instrument for measuring light amplitude phase time response
CN1530670A (en) * 2003-03-11 2004-09-22 �廪��ѧ Optical polarization light source device and producing method thereof
JP2006300708A (en) * 2005-04-20 2006-11-02 Jasco Corp Near field polarization measuring instrument
JP2012255731A (en) * 2011-06-09 2012-12-27 Hamamatsu Photonics Kk Circular dichroic imaging device
JP2017009338A (en) * 2015-06-18 2017-01-12 国立大学法人山梨大学 Measurement method of optical characteristic and measurement instrument of optical characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270127A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Instrument for measuring light amplitude phase time response
CN1530670A (en) * 2003-03-11 2004-09-22 �廪��ѧ Optical polarization light source device and producing method thereof
JP2006300708A (en) * 2005-04-20 2006-11-02 Jasco Corp Near field polarization measuring instrument
JP2012255731A (en) * 2011-06-09 2012-12-27 Hamamatsu Photonics Kk Circular dichroic imaging device
JP2017009338A (en) * 2015-06-18 2017-01-12 国立大学法人山梨大学 Measurement method of optical characteristic and measurement instrument of optical characteristic

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANG YAO-WEN, JIN BIH-YAW: "Polarized excitons and optical activity in single- wall carbon nanotubes", PHYSICAL REVIEW B, vol. 97, no. 205413, 9 May 2018 (2018-05-09), pages 205413-1 - 205413-14, XP055773681, DOI: 10.1103/PhysRevB.97.20541 3 *
MA, Z ET AL.: "On-chip polarized light emitters based on (6,5) chirality- sorted carbon nanotube aligned arrays", APPLIED PHYSICS LETTERS, vol. 108, 12 February 2016 (2016-02-12), pages 063114 - 1 - 063114-5, XP012204919, Retrieved from the Internet <URL:http://dx.doi.org/10.1063/1.4941813> DOI: 10.1063/1.4941813 *
MAKI HIDEYUKI ET AL.: "Development and applications of nanocarbon based light sources", SOLID STATE PHYSICS, vol. 54, no. 6, 15 June 2019 (2019-06-15), pages 315 - 324 *
MIR, M ET AL.: "Integrated electrochemical DNA biosensors for lab-on-a- chip devices", ELECTROPHORESIS, vol. 30, no. 19, 2 October 2009 (2009-10-02), pages 3386 - 3397, XP055773683, DOI: 10.1002/ els.200900319 *

Also Published As

Publication number Publication date
JPWO2020255868A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
Schmitt et al. Raman spectroscopy at the beginning of the twenty‐first century
Blum et al. Tip‐enhanced Raman spectroscopy–an interlaboratory reproducibility and comparison study
US10914800B2 (en) Magnetic resonance spectrometer
US20050186565A1 (en) Method and spectral/imaging device for optochemical sensing with plasmon-modified polarization
Nam et al. Plasmonic electronic raman scattering as internal standard for spatial and temporal calibration in quantitative surface-enhanced raman spectroscopy
US11656173B2 (en) Infrared analysis system, infrared analysis chip, and infrared imaging device
JP2006507504A (en) High-throughput screening by parallel vibrational spectroscopy
JP5214806B2 (en) Sample authentication system and sample authentication element
US20070030481A1 (en) Molecular detector arrangement
TWI537550B (en) Label-free detection system and applications thereof
JP2010038624A (en) Detection method and detector
US20140017810A1 (en) Bio-molecule detecting device and bio-molecule detecting method
Zhang et al. Coherent enhancement of dual-path-excited remote SERS
JP2006508338A (en) Detection of carbon-halogen bond
Russell et al. Optimizing optical tweezers experiments for magnetic resonance sensing with nanodiamonds
Hinrichs et al. Brilliant mid-infrared ellipsometry and polarimetry of thin films: Toward laboratory applications with laser based techniques
JPWO2010119495A1 (en) Biological component concentration measuring method and measuring apparatus
WO2020255868A1 (en) Polarimetry device and polarimetry chip
Choi et al. Proposal of compact LSPR sensor system by filter-free wavelength sensor
Rainsford et al. T-ray sensing applications: review of global developments
Fückel et al. Flexibility of phenylene oligomers revealed by single molecule spectroscopy
Thomas et al. The use of Raman spectroscopy in cancer diagnostics
Obst et al. Terahertz Twistoptics–engineering canalized phonon polaritons
Asgari et al. Semiconductor Nanowire Field-Effect Transistors as Sensitive Detectors in the Far-Infrared
He et al. Label-free and real-time detection of antigen-antibody interactions by Oblique-incidence Reflectivity Difference (OIRD) method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825769

Country of ref document: EP

Kind code of ref document: A1