WO2020255597A1 - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
WO2020255597A1
WO2020255597A1 PCT/JP2020/019287 JP2020019287W WO2020255597A1 WO 2020255597 A1 WO2020255597 A1 WO 2020255597A1 JP 2020019287 W JP2020019287 W JP 2020019287W WO 2020255597 A1 WO2020255597 A1 WO 2020255597A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bus bar
solar cell
interface
electrode portion
Prior art date
Application number
PCT/JP2020/019287
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 南
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021527464A priority Critical patent/JPWO2020255597A1/ja
Publication of WO2020255597A1 publication Critical patent/WO2020255597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • a plurality of solar cell cells are electrically connected via a wiring member.
  • bus bar electrode portions and finger electrode portions are provided as collecting electrodes on both sides of each solar cell, and the end portions of wiring members are soldered to the bus bar electrode portions to each solar cell. The cells are connected.
  • a solar cell is sandwiched between EVA sheets, and the outside of the EVA sheet is sandwiched between a base material such as a glass substrate or a back sheet to seal the solar cells.
  • a base material such as a glass substrate or a back sheet to seal the solar cells.
  • the base material and the EVA sheet are peeled off and disassembled to identify the cause of the defect.
  • the adhesive strength between the bus bar electrode portion which is a part of the collecting electrode and the base layer which is the base of the bus bar electrode portion is the bus bar electrode. It is small compared to the adhesive strength between the part and the EVA sheet.
  • the bus bar electrode portion may be pulled by the EVA sheet and peeled off from the base layer. If the bus bar electrode portion is peeled off from the base layer, it is not possible to inspect the energization or the like, and there is a problem that the cause of the defect such as the initial defect cannot be identified.
  • an object of the present invention is to provide a solar cell module in which the bus bar electrode portion is less likely to be peeled off when the base material or the sealing material is peeled off.
  • a solar cell module the solar cell has a front electrode layer, a back electrode layer, a photoelectric conversion portion sandwiched between the front electrode layer and the back electrode layer, and the front electrode layer and the front electrode layer.
  • a bus bar electrode portion is provided on at least one electrode layer of the back side electrode layer, the wiring member is adhered to the bus bar electrode portion via a solder layer, and the solar cell is interfacially peeled.
  • the interface peeling layer has a layer, and when the solar cell is viewed in cross section, it covers at least a part of the side surface of the bus bar electrode portion, and further extends to the one electrode layer, and the bus bar electrode portion.
  • the adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer, and the adhesive strength at the interface between the sealing material and the interface peeling layer is the one electrode.
  • a solar cell module having a strength greater than the adhesive strength at the interface between the layer and the interface peeling layer.
  • the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer. Therefore, when the base material and the sealing material are peeled off, the interface The release layer is hung by the sealing material and self-destructs and partially peels off, or the interface between the sealing material and the interface release layer is peeled off preferentially as compared with the interface between the bus bar electrode portion and the interface release layer. Further, according to this aspect, the adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between one electrode layer and the interface peeling layer, so that when the base material and the sealing material are peeled off.
  • the interface between one electrode layer and the interface peeling layer is preferentially peeled off as compared with the interface between the sealing material and the interface peeling layer. That is, according to this aspect, when the base material and the sealing material are peeled off, the interface between the interface peeling layer and one electrode layer is formed in the portion extending from the side surface of the bus bar electrode portion of the interface peeling layer to one electrode layer. On the bus bar electrode portion, it is peeled off at the interface between the bus bar electrode portion and the interface peeling layer. Therefore, the base material and the sealing material can be peeled off without the bus bar electrode portion being peeled off from one electrode portion. As a result, the bus bar electrode portion is less likely to be broken due to being pulled by the encapsulant, and initial defects and the like can be evaluated with the base material and the encapsulant peeled off.
  • interfacial peeling layer extends from the side surface of the bus bar electrode portion to a range of 0.5 times or more the width of the bus bar electrode portion on the one electrode layer.
  • a more preferable aspect is that the interface peeling layer extends from the side surface of the bus bar electrode portion to a range of 1.5 times or more the width of the bus bar electrode portion on the one electrode layer.
  • one of the electrode layers is made of a transparent conductive oxide.
  • the delamination layer is a flux layer containing a rosin compound, and the halide content of the flux component is 0.5 wt% or less.
  • the grade equivalent to JIS Z 3283: 2006 is A or AA
  • the interfacial exfoliation layer is composed of a flux with medium or low activity, so that corrosion of one of the underlying electrode layers is suppressed. Or it can be prevented.
  • the preferred aspect is that the bus bar electrode portion is wider than the solder layer, and the interface peeling layer is exposed from the solder layer of the bus bar electrode portion when the solar cell is viewed in cross section. It covers the part.
  • the width of the bus bar electrode portion is wider than the width of the solder layer, the solder stays at the bus bar electrode portion when forming the solder layer and does not come into contact with one of the electrode layers. Therefore, one of the electrode layers is unlikely to become hot due to the formation of the solder layer.
  • the interface peeling layer covers the exposed portion of the bus bar electrode portion, the bus bar electrode portion is difficult to peel off from one electrode layer, and when the base material or the sealing material is peeled off, the bus bar electrode portion Easy to peel off leaving.
  • a preferred aspect is a battery module that receives light from the front side electrode layer side to generate power with reference to the photoelectric conversion part, and the front side electrode layer and the back side electrode layer are provided with a bus bar electrode part.
  • the bus bar electrode portion of the back side electrode layer is wider than the bus bar electrode portion of the front side electrode layer.
  • the width of the back side electrode layer is wider than the width of the front side electrode layer on the light receiving side, a sufficient area of the back side electrode layer can be secured, and the resistance loss in the back side electrode layer can be suppressed.
  • the sealing material contains a sealing sheet and the bus bar electrode portion is formed of a thin film.
  • the conventional solar cell module is sealed by sandwiching the solar cell between a sealing sheet such as an EVA sheet, even if it seems to be in close contact with each other, it can be sealed accurately. It may not be.
  • air, water, or the like enters between the sealing sheet and its adhesive surface to generate voids, and the sealing sheet floats.
  • the bus bar electrode portion is formed of a thin film as in this aspect, the rigidity of the bus bar electrode portion itself is smaller than that of the case where the bus bar electrode portion is formed of a bulk material.
  • the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer, so that the sealing material floats.
  • the interface peeling layer is coagulated and broken inside before the interface between the bus bar electrode portion and the interface peeling layer, or is peeled off at the interface with the sealing material. Therefore, the force generated by the floating of the sealing material is released, and it is possible to prevent the bus bar electrode portion from peeling off from the underlying electrode layer.
  • the preferred aspect is that the bus bar electrode portion stays on the one electrode layer when the sealing material is peeled off.
  • the bus bar electrode part does not peel off from one electrode layer, and the reliability is high.
  • a preferred aspect is that a second interface peeling layer is interposed between the wiring member and the sealing material, and the adhesive strength between the wiring member and the bus bar electrode portion is such that the second interface peeling layer and the sealing material are sealed. It is greater than the adhesive strength with the material.
  • One aspect of the present invention is a solar cell module in which a solar cell and a wiring member are arranged between two base materials, and the space between the two base materials is filled with a sealing material.
  • the solar cell has a photoelectric conversion unit, a bus bar electrode portion is provided on the photoelectric conversion portion, and the wiring member is adhered to the bus bar electrode portion via a solder layer.
  • the solar cell has an interfacial exfoliation layer containing a rosin compound, and the interfacial exfoliation layer covers at least a part of the side surface of the bus bar electrode portion when the solar cell is viewed in cross section, and further, the photoelectric conversion
  • the adhesive strength between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength between the sealing material and the interface peeling layer, and the sealing material and the interface peeling layer
  • the adhesive strength of the interface is larger than the adhesive strength of the interface between the photoelectric conversion unit and the interface peeling layer, which is a solar cell module.
  • the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer. Therefore, when the base material and the sealing material are peeled off, the bus bar The interface between the encapsulant and the interface release layer is preferentially peeled off as compared with the interface between the electrode portion and the interface release layer. According to this aspect, the adhesive strength at the interface between the encapsulant and the interfacial release layer is larger than the adhesive strength at the interface between the photoelectric conversion part and the interfacial release layer. Therefore, when the base material and the encapsulant are peeled off, the seal is sealed.
  • the interface between the photoelectric conversion part and the interface peeling layer is preferentially peeled off as compared with the interface between the stop material and the interface peeling layer. That is, according to this aspect, when the base material is peeled off, the portion extending from the side surface of the bus bar electrode portion of the interface peeling layer to the photoelectric conversion portion is peeled off at the interface between the interface peeling layer and the photoelectric conversion portion, and the bus bar electrode portion.
  • the bus bar electrode portion is peeled off at the interface between the interface peeling layer, the base material can be peeled off without the bus bar electrode portion being peeled off from the photoelectric conversion portion. As a result, the bus bar electrode portion is less likely to be broken due to being pulled by the encapsulant, and initial defects and the like can be evaluated with the base material and the encapsulant peeled off.
  • the bus bar electrode portion is less likely to be peeled off as compared with the conventional case.
  • FIG. 5 is a cross-sectional perspective view of the solar cell string of FIG. 2 as viewed from the front side.
  • FIG. 5 is a cross-sectional perspective view of the solar cell string of FIG. 2 as viewed from the back side. It is an exploded perspective view of the solar cell string of FIG. It is explanatory drawing of the solar cell of FIG. 7, (a) is a front view, and (b) is a rear view. It is sectional drawing which shows the solar cell module immediately after the coating process in the manufacturing process of the solar cell module of FIG. It is sectional drawing which shows the state of the main part of the front side when the base material and the sealing material are peeled off from the solar cell module of FIG. 1, and (a) is orthogonal to the extension direction of the 1st bus bar electrode part of a solar cell module.
  • (B) is a cross section orthogonal to the extension direction of the first bus bar electrode portion of the solar cell module, and represents the situation of the position where it does not pass through the first finger electrode portion. Represents the situation of the position passing through the part. It is sectional drawing which shows the state of the main part of the back side at the time of peeling the base material and the sealing material from the solar cell module of FIG. 1, and (a) is orthogonal to the extension direction of the 1st bus bar electrode part of a solar cell module. (B) is a cross section orthogonal to the extension direction of the first bus bar electrode portion of the solar cell module, and represents the situation of the position where it does not pass through the first finger electrode portion. Represents the situation of the position passing through the part.
  • FIG. 12 is a cross-sectional view orthogonal to the extending direction of the first bus bar electrode portion of the solar cell module of FIG. 12, and is a cross-sectional view at a position passing through the first finger electrode portion. It is sectional drawing which looked at the solar cell string of FIG. 12 from the front side. It is sectional drawing which shows the solar cell module immediately after the coating process in the manufacturing process of the solar cell module of FIG.
  • FIG. 16 is a cross-sectional view orthogonal to the extending direction of the first bus bar electrode portion of the solar cell module when the base material and the sealing material are peeled off from the solar cell module of FIG. 16, at a position not passing through the first finger electrode portion.
  • the situation is represented, (a) represents the front side, and (b) represents the back side.
  • It is sectional drawing which is orthogonal to the extension direction of the 1st bus bar electrode portion of the solar cell module of 4th Embodiment of this invention, and is the sectional view at the position which does not pass through a 1st finger electrode portion.
  • the solar cell module 1 of the first embodiment of the present invention is a heterojunction type solar cell module. As shown in FIGS. 1 and 2, the solar cell module 1 includes a first base material 2, a second base material 3, a solar cell string 5, and sealing materials 6a and 6b. In the solar cell module 1, the outer main surface of the first base material 2 forms a light receiving surface with reference to the photoelectric conversion unit 21 (see FIG. 3) of the solar cell string 5, and the solar cell module 1 receives light from the first base material 2 side and receives the sun. This is a single-sided light receiving type solar cell module that generates electricity with the battery string 5.
  • the first base material 2 is a plate-like or film-like member having a planar spread, and in the present embodiment, is a transparent insulating substrate having translucency and insulation.
  • the first base material 2 is not particularly limited as long as it has translucency and insulating properties, and for example, a glass substrate, a transparent resin substrate, or the like can be used.
  • the second base material 3 is a plate-like or film-like member having a planar spread, and in the present embodiment, is an insulating sheet having an insulating property.
  • the second base material 3 is not particularly limited as long as it has an insulating property, and for example, a glass substrate, a resin sheet, or the like can be used.
  • the solar cell string 5 includes a plurality of solar cells 10, a wiring member 11 connecting the solar cells 10, and a solder layer 12 connecting the solar cells 10 and the wiring member 11. , 13 is provided.
  • the solar cell 10 is a crystalline solar cell, and includes a front electrode layer 20, a photoelectric conversion unit 21, and a back electrode layer 22 as shown in FIGS. 3 and 4. Further, in the solar cell 10, the first collecting electrode 25 and the first interfacial peeling layer 26 are provided on the front electrode layer 20, and the second collecting electrode 35 and the second interfacial peeling layer 36 are provided on the back electrode layer 22. Is provided.
  • the front electrode layer 20 is a transparent conductive layer having translucency and conductivity.
  • the front electrode layer 20 of this embodiment is made of a transparent conductive oxide such as indium tin oxide (ITO) or zinc oxide.
  • the photoelectric conversion unit 21 has a PN junction, and a semiconductor layer is formed on a semiconductor substrate.
  • the solar cell 10 is a crystalline silicon solar cell, in which a monoconductive silicon substrate is used as a support substrate, and a reverse conductive silicon layer or the like is formed on the monoconductive silicon substrate.
  • the "uniconductive type” means that it is either an n-type or a p-type conductive type
  • the "reverse conductive type” means that it is a conductive type opposite to the "uniconductive type”. That is, when the "single conductive type” is n type, the "reverse conductive type” is p type, and when the "uniconductive type” is p type, the "reverse conductive type” is n type.
  • the back side electrode layer 22 is a transparent conductive layer having translucency and conductivity like the front side electrode layer 20.
  • the back electrode layer 22 of the present embodiment is made of a transparent conductive oxide such as indium tin oxide (ITO) or zinc oxide.
  • the first collecting electrode 25 is a comb-shaped electrode that extracts electricity from the front electrode layer 20, and is a thin film-shaped electrode.
  • the first collecting electrode 25 is not particularly limited as long as it has higher conductivity than the front electrode layer 20, and for example, a metal such as gold, silver, copper, or palladium, or a metal alloy can be used.
  • the method for forming the first collecting electrode 25 is not particularly limited, and for example, it can be formed by a printing method, a plating method, or a vapor phase film forming method.
  • the first collecting electrode 25 is preferably formed by a printing method or a vapor phase film forming method from the viewpoint of cost reduction, and is formed by a printing method from the viewpoint of more effectively exerting it. Is more preferable.
  • Examples of the vapor phase film forming method include a CVD method and a sputtering method.
  • the first collecting electrode 25 is composed of a first bus bar electrode portion 40 and a first finger electrode portion 41.
  • the first bus bar electrode portion 40 is a conductive portion extending on the front electrode layer 20 in a predetermined direction (hereinafter, also referred to as a vertical direction Y).
  • the width W1 of the first bus bar electrode portion 40 shown in FIG. 8A is thicker than the width W2 of the first finger electrode portion 41, and is more than twice the width W2 of the first finger electrode portion 41.
  • the width W1 of the first bus bar electrode portion 40 is preferably 0.5 mm or more and 3 mm or less.
  • the first finger electrode portion 41 is a conductive portion extending orthogonally from the first bus bar electrode portion 40 to the first bus bar electrode portion 40 on the front electrode layer 20. That is, the first finger electrode portion 41 extends in the lateral direction X.
  • the first interfacial exfoliation layer 26 is an organic compound layer having translucency and containing a rosin compound as a main component, and is a flux layer in which the flux 70 is cured.
  • the "main component" as used herein means that the proportion of all the components is 50% or more.
  • the first interfacial delamination layer 26 is composed of a flux having a grade of AA or A according to JIS Z 3283: 2006, and the halide content of the flux component is preferably 0.5 wt% or less.
  • the flux 70 preferably contains a rosin compound and an activator.
  • the second collecting electrode 35 is a comb-shaped electrode that extracts electricity from the back side electrode layer 22, and is a thin film-shaped electrode.
  • the second collecting electrode 35 is not particularly limited as long as it has higher conductivity than the back side electrode layer 22, and for example, a metal such as gold, silver, copper, palladium, or a metal alloy can be used.
  • the method for forming the second collection electrode 35 is not particularly limited, and can be formed by, for example, a printing method, a plating method, or a vapor phase method.
  • the second collection electrode 35 is preferably formed by a printing method or a vapor phase method from the viewpoint of cost reduction, and is more preferably formed by a printing method from the viewpoint of more effectively exerting it. preferable.
  • Examples of the vapor phase film forming method include a CVD method and a sputtering method.
  • the second collecting electrode 35 is composed of a second bus bar electrode portion 50 and a second finger electrode portion 51.
  • the second bus bar electrode portion 50 is a conductive portion extending in the vertical direction Y on the back side electrode layer 22.
  • the width W3 of the second bus bar electrode portion 50 shown in FIG. 8B is thicker than the width W4 of the second finger electrode portion 51, and is four times or more the width W4 of the second finger electrode portion 51.
  • the width W3 of the second bus bar electrode portion 50 is preferably 1 mm or more and 3 mm or less.
  • the second finger electrode portion 51 is a conductive portion extending perpendicularly from the second bus bar electrode portion 50 to the second bus bar electrode portion 50 on the back side electrode layer 22. That is, the second finger electrode portion 51 extends in the lateral direction X.
  • the second interfacial exfoliation layer 36 is an organic compound layer having translucency and containing a rosin compound as a main component, and is a flux layer in which the flux 70 is cured.
  • the second interfacial exfoliation layer 36 of the present embodiment is composed of a flux having a grade of AA or A according to JIS Z 3283: 2006, and the halide content of the flux component is 0. It is preferably 5.5 wt% or less.
  • the wiring member 11 is a so-called interconnector, and as shown in FIG. 7, is a long member having a certain thickness and extending in a predetermined direction. As shown in the enlarged view of FIG. 7, the wiring member 11 is a conductor having the solder 71 formed on the surface thereof, and the solder 71 is formed on the outer surface of the conductive core material 72. The thickness of the wiring member 11 is thicker than that of the thin film collector electrodes 25 and 35, and it is difficult to bend. As shown in FIG. 7, the wiring member 11 includes connector portions 60 and 61 and a connection portion 62. The connector portions 60 and 61 are portions that can be connected to the bus bar electrode portions 40 and 50 of the solar cell 10. The connection portion 62 is a portion that connects the first connector portion 60 and the second connector portion 61.
  • the solder layers 12 and 13 are adhesive layers that physically and electrically connect the bus bar electrode portions 40 and 50 and the connector portions 60 and 61 of the wiring member 11.
  • the solder layers 12 and 13 are layers in which the solder 71 (see FIG. 7) is cured, and are conductive layers having conductivity.
  • the solder layers 12 and 13 contain a rosin compound component like the interfacial release layers 26 and 36.
  • the sealing materials 6a and 6b are adhesive members that seal the solar cell string 5 arranged between the two base materials 2 and 3 and adhere the two base materials 2 and 3. Is.
  • the sealing materials 6a and 6b are sheet-shaped sealing sheets, and for example, sealing sheets such as EVA, polyolefin, and ionomer can be used.
  • the solar cell string 5 is sandwiched between the sheet-shaped sealing materials 6a and 6b, and the two base materials 2 and 3 are further outside the sealing materials 6a and 6b. Is sandwiched between. That is, in the solar cell module 1, the solar cell string 5 is arranged between the base materials 2 and 3, and the sealing materials 6a and 6b are filled between the base materials 2 and 3.
  • the wiring member 11 has a first bus bar electrode portion of one of the two adjacent solar cells 10a and 10b to which the first connector portion 60 is connected. It is connected to the 40 via the first solder layer 12, and as shown in FIGS.
  • the second connector portion 61 connects the second bus bar electrode portion 50 and the second solder layer 13 of the other solar cell 10b. Connected via.
  • the width W1 of the first bus bar electrode portion 40 is the width of the second bus bar electrode portion 50 when viewed in cross section in a cross section orthogonal to the extending direction of the first bus bar electrode portion 40 as shown in FIGS. 3 and 8. It is narrower than W3.
  • the first interface peeling layer 26 has end faces (end faces in the width direction) on both sides of the first solder layer 12 when viewed in cross section in a cross section orthogonal to the extension direction of the first bus bar electrode portion 40. Is in contact with. Further, as shown in FIG. 3, the first interface peeling layer 26 extends from both sides of the first solder layer 12 in a cross section that does not pass through the first finger electrode portion 41, and extends in the width direction (horizontal direction X) of the first bus bar electrode portion 40. ), And extends onto the front electrode layer 20. That is, as shown in FIG. 5, the first interface peeling layer 26 is formed so as to spread on the front electrode layer 20 and sandwich the first bus bar electrode portion 40 in the lateral direction X, and the first bus bar electrode portion 40. Covers the exposed portion from the first solder layer 12 of the above.
  • the first bus bar electrode portion 40 has a cross section passing through the first finger electrode portion 41, both ends of the lateral direction X being covered with the first interface peeling layer 26, and the first finger electrode portion 40.
  • the 41 has a portion covered with the first interfacial peeling layer 26 and a portion not covered with the first interface peeling layer 26.
  • the first interface peeling layer 26 extends in parallel with the first bus bar electrode portion 40, and extends across the plurality of first finger electrode portions 41 in the vertical direction Y.
  • the stretch length D1 of the first interface peeling layer 26 shown in FIG. 3 from the first solder layer 12 is preferably 0.25 mm or more and 10 mm or less.
  • the stretch length D1 is preferably 0.5 times or more, more preferably 1 time or more, and 1.5 times or more the width W1 of the first bus bar electrode portion 40 shown in FIG. 8 (a). Is particularly preferable.
  • the stretch length D1 is preferably 10 times or less, more preferably 5 times or more, the width W1 of the first bus bar electrode portion 40.
  • the second bus bar electrode portion 50 is wider than the width of the second solder layer 13, and the overhanging portions 52 projecting from both sides of the second solder layer 13 in the width direction (horizontal direction X). , 53 are provided.
  • the second interfacial release layer 36 is the second solder in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extension direction of the second bus bar electrode portion 50. It is in contact with the end faces on both sides of the layer 13.
  • the second interface peeling layer 36 spreads from both sides of the second solder layer 13 in a cross section that does not pass through the second finger electrode portion 51 as shown in FIG.
  • the second interface peeling layer 36 is formed so as to sandwich the second bus bar electrode portion 50 as shown in FIG. 6, and covers the exposed portion of the second bus bar electrode portion 50 from the second solder layer 13. ..
  • the second interface peeling layer 36 extends from above the second bus bar electrode portion 50 to a part of the second finger electrode portion 51 in a cross section passing through the second finger electrode portion 51 as shown in FIG. That is, in the cross section of the second bus bar electrode portion 50 passing through the second finger electrode portion 51, both ends in the lateral direction X are covered with the second interface peeling layer 36, and the second finger electrode portion 51 is covered with the second finger electrode portion 51. There is a portion covered with the second interfacial release layer 36 and a portion not covered. As shown in FIG. 6, the second interfacial peeling layer 36 extends in parallel with the second bus bar electrode portion 50, and extends across the plurality of second finger electrode portions 51 in the vertical direction Y.
  • the stretch length D2 of the second interface peeling layer 36 from the second solder layer 13 shown in FIG. 3 is about the same as the stretch length D1 of the first interface peeling layer 26 from the first solder layer 12, and is 0. It is preferably .25 mm or more and 10 mm or less.
  • the stretch length D2 is preferably 0.5 times or more, more preferably 1 time or more, and 1.5 times or more the width W3 of the second bus bar electrode portion 50 shown in FIG. 8 (b). Is particularly preferable.
  • the stretch length D2 is preferably 10 times or less, more preferably 5 times or more, the width W3 of the second bus bar electrode portion 50.
  • the stretch length D3 from the overhanging portions 52 and 53 of the second interface peeling layer 36 is not particularly limited, but is preferably not more than the stretch length D2 from the second solder layer 13.
  • the draw length from the solder layer 13 is preferably less than D2.
  • the adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 shown in FIG. 3 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26.
  • the adhesive strength at the interface of the first interface peeling layer 26 is larger than the adhesive strength at the interface between the front electrode layer 20 and the first interface peeling layer 26. That is, the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is less likely to peel off than the interface between the sealing material 6a and the first interface peeling layer 26, and the interface between the sealing material 6a and the first interface peeling layer 26. Is less likely to peel off than the interface between the front side electrode layer 20 and the first interface peeling layer 26.
  • the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36, and the sealing material 6b and the second The adhesive strength at the interface of the interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 22 and the second interface peeling layer 36. That is, the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is less likely to peel off than the interface between the sealing material 6b and the second interface peeling layer 36, and the interface between the sealing material 6b and the second interface peeling layer 36. Is less likely to peel off than the interface between the back side electrode layer 22 and the second interface peeling layer 36.
  • the photoelectric conversion unit 21 is formed, the electrode layers 20 and 22 are formed on the respective main surfaces of the photoelectric conversion unit 21, and the collector electrodes 25 and 35 are further formed on the electrode layers 20 and 22.
  • the solar cell 10 collecting electrode forming step.
  • the flux 70 which is the raw material of the interfacial release layers 26 and 36 having fluidity, is applied to the bus bar electrode portions 40 and 50 of the solar cell 10 (coating step). Specifically, on the front side of the solar cell 10, it intentionally protrudes from the first bus bar electrode portion 40 so as to straddle the front electrode layer 20 and the first finger electrode portion 41 from above the first bus bar electrode portion 40. And apply. Similarly, on the back side of the solar cell 10, the coating is intentionally projected from the bus bar electrode portion 50 so as to straddle the back side electrode layer 22 and the second finger electrode portion 51 from the top of the second bus bar electrode portion 50. ..
  • the flux 70 is applied from the side surfaces of the bus bar electrode portions 40 and 50 to a range of 0.5 times or more the widths W1 and W3 (see FIG. 8) of the bus bar electrode portions 40 and 50 on the electrode layers 20 and 22. It is preferable to apply the flux 70 from the side surface of the bus bar electrode portions 40, 50 to a range equal to or more than 1 times the widths W1 and W3 of the bus bar electrode portions 40, 50 on the electrode layers 20 and 22, and the bus bar electrode portions 40 and 50. It is more preferable to apply the flux 70 to a range of 1.5 times or more the widths W1 and W3.
  • the connector portions 60 and 61 of the wiring member 11 having the solder 71 formed on the surface are placed on the bus bar electrode portions 40 and 50 covered with the flux 70 and heated to melt the solder 71, and the solder 71 melts the bus bar electrode portion 40. , 50 are bonded to the connector portions 60 and 61 of the wiring member 11 (adhesion step). At this time, the components of the flux 70 are vaporized to form the interfacial release layers 26 and 36 which are resin layers.
  • the solar cell module 1 is completed by providing a box or the like.
  • the adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26.
  • the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the front electrode layer 20 and the first interface peeling layer 26. Therefore, when the first base material 2 is pulled to peel off the sealing material 6a from the solar cell string 5, the first interface peeling layer 26 passes through the first finger electrode portion 41 as shown in FIG. 10A. In the cross section not provided, the portion in contact with the first bus bar electrode portion 40 remains, and the portion in contact with the front electrode layer 20 is preferentially peeled off.
  • the first interface peeling layer 26 is a portion in contact with a part of the first finger electrode portion 41 and the first bus bar electrode portion 40 in a cross section passing through the first finger electrode portion 41. Remains. As a result, the first bus bar electrode portion 40 is not substantially peeled off from the front electrode layer 20.
  • the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36.
  • the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 22 and the second interface peeling layer 36.
  • the second interface peeling layer 36 passes through the second finger electrode portion 51 as shown in FIG. 11A.
  • the portion in contact with the second bus bar electrode portion 50 remains, and the portion in contact with the back side electrode layer 22 is preferentially peeled off.
  • the second interface peeling layer 36 is a portion in contact with a part of the second finger electrode portion 51 and the second bus bar electrode portion 50 in a cross section passing through the second finger electrode portion 51. Remains. As a result, the second bus bar electrode portion 50 covered with the second interface peeling layer 36 is not substantially peeled from the back side electrode layer 22.
  • the portion mainly contributing to energization is the base material 2.
  • 3 and the sealing materials 6a and 6b are not peeled off, so that initial defects and the like can be accurately evaluated.
  • the interleaving layers 26 and 36 are provided so as to straddle the electrode layers 20 and 22 from above the bus bar electrode portions 40 and 50, and the bus bar is provided from the side surface of the bus bar electrode portions 40 and 50. Since the widths W1 and W3 of the electrode portions 40 and 50 are expanded to a range of 0.5 times or more, the bus bar electrode portions 40 and 50 are unlikely to be peeled off from above the electrode layers 20 and 22.
  • the sheet-shaped sealing material 6a and the thin-film first collecting electrode 25 are interposed between the first interfacial release layer 26 which is preferentially aggregated and broken. .. That is, since a portion that is easily coagulated and broken is formed on the first collecting electrode 25 and the cohesive breaking of the first collecting electrode 25 is suppressed, the portion covered by the first interface peeling layer 26 of the first collecting electrode 25.
  • the first bus bar electrode portion 40 of the first collecting electrode 25 is less likely to peel off from the front electrode layer 20 even if the sealing material 6a is floated. Therefore, long-term reliability is high.
  • a second interfacial release layer 36 that is preferentially aggregated and broken is interposed between the sheet-shaped sealing material 6b and the thin-film second collecting electrode 35. doing. That is, since a portion that is easily coagulated and broken is formed on the second collecting electrode 35 and the cohesive fracture of the second collecting electrode 35 is suppressed, the portion covered by the second interface peeling layer 36 of the second collecting electrode 35. Is difficult to peel off the second bus bar electrode portion 50 of the second collecting electrode 35 from the back side electrode layer 22 even if the sealing material 6b is lifted. Therefore, long-term reliability is high.
  • the solar cell module of the second embodiment of the present invention will be described.
  • the same components as those of the solar cell module 1 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the solar cell module of the second embodiment of the present invention is a so-called PERC type solar cell module, and the solar cell is different from that of the first embodiment.
  • the solar cell 110 of the second embodiment has a reverse conductive semiconductor layer 112 and an antireflection layer on one main surface of a monoconductive semiconductor substrate 111 (hereinafter, also simply referred to as a semiconductor substrate 111). It includes 113 and a first collecting electrode 25.
  • the solar cell 110 includes a back surface electric field layer 116, a protective layer 117, a back side electrode layer 118, and a second collecting electrode 35 on the other main surface of the semiconductor substrate 111.
  • the solar cell 110 is composed of an antireflection layer 113, a reverse conductive semiconductor layer 112, a semiconductor substrate 111, a back surface electric field layer 116, and a protective layer 117 to form a photoelectric conversion unit 120. That is, in the solar cell 110, the first collecting electrode 25 is formed on the front side of the photoelectric conversion unit 120, and the back side electrode layer 118 and the second collecting electrode 35 are formed on the back side of the photoelectric conversion unit 120.
  • the semiconductor substrate 111 is an n-type or p-type semiconductor substrate, and for example, a p-type or n-type silicon substrate can be used.
  • the reverse conductive semiconductor layer 112 is a semiconductor substrate having a conductive type opposite to that of the semiconductor substrate 111, and for example, an n-type or p-type silicon thin film layer can be used.
  • the semiconductor substrate 111 is composed of a p-type silicon substrate
  • the reverse conductive semiconductor layer 112 is composed of an n-type silicon thin film layer
  • the semiconductor substrate 111 and the reverse conductive semiconductor layer are formed.
  • a PN junction is formed at 112.
  • the antireflection layer 113 is a layer for reducing the reflectance on the light receiving surface of the solar cell 110, and is a layer for confining the light incident on the photoelectric conversion unit 120 in the photoelectric conversion unit 120.
  • the antireflection layer 113 is an insulating layer having an insulating property, and for example, a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, or the like can be used.
  • the back surface electric field layer 116 is a so-called BSF (Back Surface Field) layer, and is a semiconductor layer having the same conductive type as the semiconductor substrate 111.
  • the back surface electric field layer 116 is a layer having a dopant concentration higher than that of the semiconductor substrate 111 and forming an internal electric field.
  • the backside electric field layer 116 can be formed, for example, by diffusing a dopant element such as boron or aluminum on the other main surface of the semiconductor substrate 111.
  • the back surface electric field layer 116 of this embodiment uses aluminum as a dopant element.
  • the protective layer 117 is a passivation layer, which is a layer that reduces the defect position that causes recombination of a small number of carriers at the interface with the semiconductor substrate 111.
  • the protective layer 117 is an insulating layer having an insulating property, and for example, a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, or the like can be used.
  • the protective layer 117 is preferably formed of a material having a negative fixed charge such as aluminum oxide.
  • the protective layer 117 is preferably formed of a material having a positive fixed charge such as silicon nitride.
  • the back side electrode layer 118 is an electrode that collects electricity from the photoelectric conversion unit 120, and is also an extraction electrode that extracts electricity to the wiring member 11.
  • the back side electrode layer 118 is a conductive layer having conductivity, and for example, metals such as aluminum, silver, gold, platinum, and palladium, and alloys thereof can be used.
  • the solar cell 110 will be mainly described, and the same description as in the first embodiment will be omitted.
  • the solar cell module includes a front-side bottomed hole 121 that penetrates the antireflection layer 113 and has the reverse conductive semiconductor layer 112 as the bottom.
  • the first collecting electrode 25 is filled in the bottomed hole 121 on the front side, and is in contact with the reverse conductive semiconductor layer 112 inside the bottomed hole 121 on the front side. That is, the first collecting electrode 25 is electrically connected to the reverse conductive semiconductor layer 112 via the bottomed hole 121 on the front side.
  • the front-side bottomed hole 121 is a bottomed groove that extends continuously or intermittently in the extending direction of the first bus bar electrode portion 40.
  • the antireflection layer 113 covers the reverse conductive semiconductor layer 112.
  • the first interface peeling layer 26 spreads from both sides of the first solder layer 12 in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extending direction of the first bus bar electrode portion 40. 1 It extends over the antireflection layer 113 through the end surface of the bus bar electrode portion 40.
  • a back surface electric field layer 116, a protective layer 117, and a back side electrode layer 118 are laminated on the other main surface of the semiconductor substrate 111.
  • the solar cell 110 penetrates the protective layer 117 and includes a back-side bottomed hole 122 with the back-side electric field layer 116 as the bottom.
  • the back side bottomed hole 122 is filled with the back side electrode layer 118, and the back side electrode layer 118 and the back side electric field layer 116 are in contact with each other inside the back side bottomed hole 122. That is, the back side electrode layer 118 is electrically connected to the back side electric field layer 116.
  • the bottomed hole 122 on the back side is a bottomed groove that extends continuously or intermittently in the extending direction of the second bus bar electrode portion 50.
  • the protective layer 117 is interposed between the back side electrode layer 118 and the semiconductor substrate 111, and the back side electrode layer 118 and the semiconductor substrate 111 are not directly connected to each other.
  • the second interface peeling layer 36 has a second in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extending direction of the second bus bar electrode portion 50. It is in contact with the end faces on both sides of the solder layer 13 and extends from both sides of the second solder layer 13. Further, the second interfacial peeling layer 36 passes over the overhanging portions 52 and 53 of the second bus bar electrode portion 50, covers the end surface of the second bus bar electrode portion 50, and further extends over the back side electrode layer 118.
  • the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 shown in FIG. 12 is larger than the adhesive strength at the interface between the antireflection layer 113 and the first interface peeling layer 26. That is, the interface between the sealing material 6a and the first interface peeling layer 26 is less likely to peel off than the interface between the antireflection layer 113 and the first interface peeling layer 26.
  • the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 118 and the second interface peeling layer 36. That is, the interface between the sealing material 6b and the second interface peeling layer 36 is less likely to peel off than the interface between the back side electrode layer 118 and the second interface peeling layer 36.
  • the photoelectric conversion unit 120 is formed, the back side electrode layer 118 is formed on the back side of the photoelectric conversion unit 120, and the first collection electrode 25 is further formed on the reverse conductive semiconductor layer 112.
  • the second collecting electrode 35 is formed on the back side electrode layer 118 to form the solar cell 110 (collection electrode forming step).
  • the flux 70 having fluidity is applied to the bus bar electrode portions 40 and 50 of the solar cell 110 (coating step). Specifically, on the front side of the solar cell 110, the coating is intentionally projected from the first bus bar electrode portion 40 so as to straddle the antireflection layer 113 from the bus bar electrode portion 40. Similarly, on the back side of the solar cell 10, the coating is intentionally projected from the top of the bus bar electrode portion 50 so as to straddle the top of the second bus bar electrode portion 50 and the back side electrode layer 118.
  • the flux 70 is applied from the side surface of the first bus bar electrode portion 40 onto the antireflection layer 113 to a range of 0.5 times or more the width W1 of the bus bar electrode portion 40.
  • the flux 70 is applied from the side surface of the second bus bar electrode portion 50 to a range of 0.5 times or more the width W3 of the second bus bar electrode portion 50 on the back side electrode layer 118.
  • the connector portions 60, 61 of the wiring member 11 having the solder 71 formed on the surface thereof are placed on the bus bar electrode portions 40, 50 covered with the flux 70 and heated to melt the solder 71, and the solder 71 melts the bus bar electrode portions 40, The connector portions 60 and 61 of the wiring member 11 are bonded to 50 (adhesion step).
  • the base materials 2 and 3 having the sealing materials 6a and 6b formed on the surface are adhered and sealed so that the sealing materials 6a and 6b face each other and sandwich the solar cell 110, and if necessary, the terminals
  • the solar cell module is completed by providing a box or the like.
  • the adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26.
  • the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the antireflection layer 113 and the first interface peeling layer 26. Therefore, when the first base material 2 is pulled and peeled off from the solar cell string 5, the portion of the first interface peeling layer 26 in contact with the first bus bar electrode portion 40 remains, and the portion in contact with the antireflection layer 113 has priority. It peels off.
  • the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36.
  • the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 118 and the second interface peeling layer 36. Therefore, when the second base material 3 is pulled and peeled off from the solar cell string 5, the portion of the second interface peeling layer 36 in contact with the second bus bar electrode portion 50 remains, and the portion in contact with the back side electrode layer 118 has priority.
  • the second bus bar electrode portion 50 is substantially not peeled off from the back side electrode layer 118.
  • the portion contributing to energization is the base materials 2 and 3. And since it does not peel off following the sealing materials 6a and 6b, it is possible to accurately evaluate initial defects and the like.
  • the first interface peeling layer 26 is provided so as to straddle the first bus bar electrode portion 40 and the photoelectric conversion portion 120, and the first bus bar is provided from the side surface of the first bus bar electrode portion 40. Since the width of the electrode portion 40 extends to 0.5 times or more the width W1, the first bus bar electrode portion 40 is unlikely to be peeled off from the photoelectric conversion portion 120.
  • the second interface peeling layer 36 is provided so as to straddle the second bus bar electrode portion 50 and the back side electrode layer 118, and the second bus bar is provided from the side surface of the second bus bar electrode portion 50. Since the width of the electrode portion 50 extends to 0.5 times or more the width W3, the second bus bar electrode portion 50 is unlikely to peel off from the back side electrode layer 118.
  • the solar cell module according to the third embodiment of the present invention will be described.
  • the solar cell module of the third embodiment further includes interfacial peeling layers 246 and 256 that cover the outside of the wiring member 11 with reference to the photoelectric conversion unit 21 in the solar cell module of the first embodiment.
  • the interfacial peeling layers 246 and 256 are organic compound layers having translucency and containing a rosin compound as a main component, like the first interfacial peeling layer 26, and are flux layers in which the flux 70 is cured.
  • the interfacial peeling layers 246 and 256 of the wiring members 11 and 11 with reference to the photoelectric conversion unit 21 when viewed in cross section in a cross section orthogonal to the extension direction of the first bus bar electrode unit 40. It is located on the outside. Further, the interfacial release layers 246 and 256 are interposed between the wiring members 11 and 11 and the sealing materials 6a and 6b, and cover the side surfaces and the outer surfaces of the wiring members 11 and 11. That is, the interface peeling layers 246 and 256 cover the exposed portions of the wiring members 11 and 11 from the interface peeling layers 26 and 36, and also cover a part of the interface peeling layers 26 and 36.
  • the adhesive strength at the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256 is larger than the adhesive strength at the interface between the interface peeling layers 246 and 256 and the sealing materials 6a and 6b.
  • the adhesive strength between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 via the solder layers 12 and 13 is larger than the adhesive strength at the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256.
  • the interface between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 is less likely to be peeled off than the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256, and the interface peeling layers 246 and 256 and the sealing materials 6a and 6b It is harder to peel off than the adhesive strength of the interface.
  • the method for manufacturing the solar cell module of the third embodiment is almost the same as the method for manufacturing the solar cell module of the first embodiment.
  • the flux 70 is applied to the wiring member 11 again, and then the sealing material is applied. It is sandwiched between the base materials 2 and 3 on which 6a and 6b are formed and sealed.
  • the interface between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 is less likely to be peeled off than the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256, and the interface peeling layer. It is harder to peel off than the adhesive strength at the interface between 246, 256 and the sealing materials 6a and 6b. Therefore, when the first base material 2 is pulled to peel off the sealing material 6a from the solar cell string 5, the interfacial release layer 246 is coagulated and broken or the sealing material 6a is as shown in FIG. 17A. , 6b and peel off preferentially at the interface.
  • the portion in contact with the wiring member 11 remains, and the portion in contact with the sealing material 6a is preferentially peeled off. Therefore, the wiring member 11 is not substantially peeled off from the first bus bar electrode portion 40.
  • the interfacial release layer 256 is cohesively broken or the sealing material is broken as shown in FIG. 17 (b). It is preferentially peeled off at the interface with 6a and 6b.
  • the wiring member 11 is not substantially peeled off from the second bus bar electrode portion 50.
  • interfacial peeling layers 246 and 256 that are preferentially coagulated and broken are interposed between the sealing materials 6a and 6b and the wiring members 11 and 11. That is, since a portion that is easily coagulated and broken is formed on the wiring members 11 and 11, the wiring members 11 and 11 covered by the first interface peeling layer 26 are floated in the sealing materials 6a and 6b. However, the wiring members 11 and 11 are not easily peeled off from the bus bar electrode portions 40 and 50. Therefore, long-term reliability is high.
  • the solar cell module according to the fourth embodiment of the present invention will be described.
  • the structure of the solar cell string of the solar cell module of the fourth embodiment is different from that of the second embodiment. That is, as shown in FIG. 18, the solar cell string of the fourth embodiment includes the solar cell 110, the wiring member 11, and the solder layers 12 and 13, and is on the outside of the wiring member 11 as in the third embodiment.
  • the interfacial release layer 246, 256 is provided.
  • the front electrode layer 20 and the back electrode layer 22 are formed on the photoelectric conversion unit 21, and the collector electrodes 25 and 35 are connected to the photoelectric conversion unit 21 via the front electrode layer 20 and the back electrode layer 22.
  • the present invention is not limited to this.
  • the collector electrodes 25 and 35 may be formed directly on the photoelectric conversion unit 21.
  • the collecting electrodes 25 and 35 include the finger electrode portions 41 and 51, but the present invention is not limited thereto.
  • the collecting electrodes 25 and 35 do not have to include the finger electrode portions 41 and 51.
  • each solar cell is connected by two wiring members 11, but the present invention is not limited to this. It may be connected by one wiring member 11 or may be connected by three or more wiring members 11.
  • solder layers 12 and 13 are formed of the solder 71 coated on the surface of the wiring member 11, but the present invention is not limited thereto.
  • the solder layers 12 and 13 may be formed of solder prepared separately from the wiring member 11.
  • first bus bar electrode portion 40 and the second bus bar electrode portion 50 have different widths, but the present invention is not limited to this.
  • the first bus bar electrode portion 40 and the second bus bar electrode portion 50 may have the same width.
  • the first bus bar electrode portion 40 has the same width as the width of the wiring member 11, but the present invention is not limited to this.
  • the width of the first bus bar electrode portion 40 may be wider than the width of the wiring member 11.
  • the width of the second bus bar electrode portion 50 is wider than the width of the wiring member 11, but the present invention is not limited thereto.
  • the width of the second bus bar electrode portion 50 may be the same as the width of the wiring member 11.
  • the present invention is not limited thereto. It may be a double-sided light receiving type solar cell module in which both sides of the main surface of the first base material 2 and the main surface of the second base material 3 are light receiving surfaces.
  • the interface peeling layer is formed by flux, but the present invention is not limited to this.
  • the delamination layer may be formed of another material.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a solar battery module having a bus bar electrode unit that is hardly peeled compared with conventional electrodes when being decomposed. A solar battery cell (10) and a wiring member (60) are arranged between two base materials (2, 3), and a sealing material (6a) is filled between the two base materials (2, 3). The solar battery cell (10) comprises a front electrode layer (20), a rear electrode layer (22), and a photoelectric conversion unit (21), and a bus bar electrode unit (40) is provided onto at least one electrode layer (20) among the front electrode layer (20) and the rear electrode layer (22). The wiring member (60) is adhered to the bus bar electrode unit (60) via a solder layer (12). The solar battery cell (10) has an interfacial peeling layer (26) containing a rosin compound. In a sectional view, the interfacial peeling layer (26) covers at least a part of the side of the bus bar electrode unit (60) and extends further to one of the electrode layers (20). Adhesion strength of an interface between the bus bar electrode unit (60) and the interfacial peeling layer (26) is larger than adhesion strength of an interface between the sealing material (6a) and the interfacial peeling layer (26), and the adhesion strength of the interface between the sealing material (6a) and the interfacial peeling layer (26) is larger than adhesion strength of the interface between the one electrode layer (20) and the interfacial peeling layer (26).

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 従来から、結晶型の太陽電池モジュールは、複数の太陽電池セルが配線部材を介して電気的に接続されている。例えば、特許文献1の太陽電池モジュールでは、各太陽電池セルの両面に、集電極としてバスバー電極部及びフィンガー電極部が設けられ、バスバー電極部に配線部材の端部をはんだ付けして各太陽電池セル間を接続している。 Conventionally, in a crystalline solar cell module, a plurality of solar cell cells are electrically connected via a wiring member. For example, in the solar cell module of Patent Document 1, bus bar electrode portions and finger electrode portions are provided as collecting electrodes on both sides of each solar cell, and the end portions of wiring members are soldered to the bus bar electrode portions to each solar cell. The cells are connected.
国際公開第2017/179317号International Publication No. 2017/179317
 ところで、従来の太陽電池モジュールは、太陽電池セルをEVAシートで挟み、さらにEVAシートの外側をガラス基板やバックシートなどの基材で挟んで封止する。
 太陽電池モジュールの製造において初期不良等が生じた場合には、基材及びEVAシートを剥がして分解し、不良原因を特定する。
 しかしながら、従来の太陽電池モジュールは、基材及びEVAシートを剥がしたときに、集電極の一部であるバスバー電極部と、バスバー電極部の下地となる下地層との間の接着強度がバスバー電極部とEVAシートの接着強度に比べて小さい。そのため、基材及びEVAシートを剥がすと、バスバー電極部がEVAシートに引っ張られて下地層から剥がれてしまうことがある。下地層からバスバー電極部が剥がれると、通電等を検査することができず、初期不良等の不良原因を特定できない問題がある。
By the way, in a conventional solar cell module, a solar cell is sandwiched between EVA sheets, and the outside of the EVA sheet is sandwiched between a base material such as a glass substrate or a back sheet to seal the solar cells.
When an initial defect occurs in the manufacture of the solar cell module, the base material and the EVA sheet are peeled off and disassembled to identify the cause of the defect.
However, in the conventional solar cell module, when the base material and the EVA sheet are peeled off, the adhesive strength between the bus bar electrode portion which is a part of the collecting electrode and the base layer which is the base of the bus bar electrode portion is the bus bar electrode. It is small compared to the adhesive strength between the part and the EVA sheet. Therefore, when the base material and the EVA sheet are peeled off, the bus bar electrode portion may be pulled by the EVA sheet and peeled off from the base layer. If the bus bar electrode portion is peeled off from the base layer, it is not possible to inspect the energization or the like, and there is a problem that the cause of the defect such as the initial defect cannot be identified.
 そこで、本発明は、基材や封止材を剥がしたときに、従来に比べてバスバー電極部が剥がれにくい太陽電池モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a solar cell module in which the bus bar electrode portion is less likely to be peeled off when the base material or the sealing material is peeled off.
 上記した課題を解決するための本発明の一つの様相は、2枚の基材の間に太陽電池セル及び配線部材が配され、前記2枚の基材の間が封止材によって充填された太陽電池モジュールであって、前記太陽電池セルは、表側電極層と、裏側電極層と、前記表側電極層と前記裏側電極層に挟まれた光電変換部を有し、かつ前記表側電極層及び前記裏側電極層の少なくとも一方の電極層上にバスバー電極部が設けられており、前記配線部材は、前記バスバー電極部に対してはんだ層を介して接着されており、前記太陽電池セルは、界面剥離層を有し、前記界面剥離層は、前記太陽電池セルを断面視したときに、少なくとも前記バスバー電極部の側面の一部を覆い、さらに前記一方の電極層まで跨っており、前記バスバー電極部と前記界面剥離層の界面の接着強度は、前記封止材と前記界面剥離層の界面の接着強度よりも大きく、前記封止材と前記界面剥離層の界面の接着強度は、前記一方の電極層と前記界面剥離層の界面の接着強度よりも大きい、太陽電池モジュールである。 One aspect of the present invention for solving the above-mentioned problems is that a solar cell and a wiring member are arranged between two base materials, and the space between the two base materials is filled with a sealing material. A solar cell module, the solar cell has a front electrode layer, a back electrode layer, a photoelectric conversion portion sandwiched between the front electrode layer and the back electrode layer, and the front electrode layer and the front electrode layer. A bus bar electrode portion is provided on at least one electrode layer of the back side electrode layer, the wiring member is adhered to the bus bar electrode portion via a solder layer, and the solar cell is interfacially peeled. The interface peeling layer has a layer, and when the solar cell is viewed in cross section, it covers at least a part of the side surface of the bus bar electrode portion, and further extends to the one electrode layer, and the bus bar electrode portion. The adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer, and the adhesive strength at the interface between the sealing material and the interface peeling layer is the one electrode. A solar cell module having a strength greater than the adhesive strength at the interface between the layer and the interface peeling layer.
 本様相によれば、バスバー電極部と界面剥離層の界面の接着強度は、封止材と界面剥離層の界面の接着強度よりも大きいので、基材及び封止材を剥がしたときに、界面剥離層が封止材につられて自己破壊して部分的に剥がれるか、バスバー電極部と界面剥離層の界面に比べて封止材と界面剥離層の界面が優先的に剥がれる。
 また、本様相によれば、封止材と界面剥離層の界面の接着強度は、一方の電極層と界面剥離層の界面の接着強度よりも大きいので、基材及び封止材を剥がしたときに、封止材と界面剥離層の界面に比べて一方の電極層と界面剥離層の界面が優先的に剥がれる。
 すなわち、本様相によれば、基材及び封止材を剥がしたときに、界面剥離層のバスバー電極部の側面から一方の電極層まで延びる部分においては、界面剥離層と一方の電極層の界面で剥がれ、バスバー電極部上においては、バスバー電極部と界面剥離層の界面で剥がれる。そのため、バスバー電極部が一方の電極部から剥がれずに基材や封止材を剥がすことができる。その結果、バスバー電極部が封止材に引っ張られることによるバスバー電極部の断線等が生じにくく、基材及び封止材を剥がした状態で初期不良等の評価を行うことができる。
According to this aspect, the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer. Therefore, when the base material and the sealing material are peeled off, the interface The release layer is hung by the sealing material and self-destructs and partially peels off, or the interface between the sealing material and the interface release layer is peeled off preferentially as compared with the interface between the bus bar electrode portion and the interface release layer.
Further, according to this aspect, the adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between one electrode layer and the interface peeling layer, so that when the base material and the sealing material are peeled off. In addition, the interface between one electrode layer and the interface peeling layer is preferentially peeled off as compared with the interface between the sealing material and the interface peeling layer.
That is, according to this aspect, when the base material and the sealing material are peeled off, the interface between the interface peeling layer and one electrode layer is formed in the portion extending from the side surface of the bus bar electrode portion of the interface peeling layer to one electrode layer. On the bus bar electrode portion, it is peeled off at the interface between the bus bar electrode portion and the interface peeling layer. Therefore, the base material and the sealing material can be peeled off without the bus bar electrode portion being peeled off from one electrode portion. As a result, the bus bar electrode portion is less likely to be broken due to being pulled by the encapsulant, and initial defects and the like can be evaluated with the base material and the encapsulant peeled off.
 好ましい様相は、前記界面剥離層は、前記一方の電極層上で前記バスバー電極部の側面から前記バスバー電極部の幅の0.5倍以上の範囲まで広がっていることである。 A preferable aspect is that the interfacial peeling layer extends from the side surface of the bus bar electrode portion to a range of 0.5 times or more the width of the bus bar electrode portion on the one electrode layer.
 より好ましい様相は、前記界面剥離層は、前記一方の電極層上で前記バスバー電極部の側面から前記バスバー電極部の幅の1.5倍以上の範囲まで広がっていることである。 A more preferable aspect is that the interface peeling layer extends from the side surface of the bus bar electrode portion to a range of 1.5 times or more the width of the bus bar electrode portion on the one electrode layer.
 好ましい様相は、前記一方の電極層は、透明導電性酸化物で形成されていることである。 The preferred aspect is that one of the electrode layers is made of a transparent conductive oxide.
 好ましい様相は、前記界面剥離層は、ロジン化合物を含むフラックス層であって、フラックス成分のハライド含有量が0.5wt%以下であることである。 The preferred aspect is that the delamination layer is a flux layer containing a rosin compound, and the halide content of the flux component is 0.5 wt% or less.
 本様相によれば、JIS Z 3283:2006に準ずる等級がA又はAAであり、活性度が中又は低のフラックスで界面剥離層が構成されるため、下地となる一方の電極層の腐食を抑制又は防止できる。 According to this aspect, the grade equivalent to JIS Z 3283: 2006 is A or AA, and the interfacial exfoliation layer is composed of a flux with medium or low activity, so that corrosion of one of the underlying electrode layers is suppressed. Or it can be prevented.
 好ましい様相は、前記バスバー電極部は、前記はんだ層よりも幅が広いものであり、前記界面剥離層は、前記太陽電池セルを断面視したときに、前記バスバー電極部の前記はんだ層からの露出部分を覆っていることである。 The preferred aspect is that the bus bar electrode portion is wider than the solder layer, and the interface peeling layer is exposed from the solder layer of the bus bar electrode portion when the solar cell is viewed in cross section. It covers the part.
 本様相によれば、バスバー電極部の幅がはんだ層の幅よりも広いため、はんだ層を形成するにあたってはんだがバスバー電極部で留まり、一方の電極層上に接触しない。そのため、一方の電極層がはんだ層の形成により高温になりにくい。
 本様相によれば、界面剥離層がバスバー電極部の露出部分を覆っているため、バスバー電極部が一方の電極層に対して剥がれにくく、基材や封止材を剥がすときに、バスバー電極部を残して剥がしやすい。
According to this aspect, since the width of the bus bar electrode portion is wider than the width of the solder layer, the solder stays at the bus bar electrode portion when forming the solder layer and does not come into contact with one of the electrode layers. Therefore, one of the electrode layers is unlikely to become hot due to the formation of the solder layer.
According to this aspect, since the interface peeling layer covers the exposed portion of the bus bar electrode portion, the bus bar electrode portion is difficult to peel off from one electrode layer, and when the base material or the sealing material is peeled off, the bus bar electrode portion Easy to peel off leaving.
 好ましい様相は、前記光電変換部を基準として、前記表側電極層側から受光して発電する電池モジュールであって、前記表側電極層及び前記裏側電極層は、バスバー電極部が設けられており、前記裏側電極層のバスバー電極部は、前記表側電極層のバスバー電極部よりも幅が広いことである。 A preferred aspect is a battery module that receives light from the front side electrode layer side to generate power with reference to the photoelectric conversion part, and the front side electrode layer and the back side electrode layer are provided with a bus bar electrode part. The bus bar electrode portion of the back side electrode layer is wider than the bus bar electrode portion of the front side electrode layer.
 本様相によれば、裏側電極層の幅が受光側の表側電極層の幅よりも広いため、十分な裏側電極層の面積を確保でき、裏側電極層での抵抗損失を抑制できる。 According to this aspect, since the width of the back side electrode layer is wider than the width of the front side electrode layer on the light receiving side, a sufficient area of the back side electrode layer can be secured, and the resistance loss in the back side electrode layer can be suppressed.
 好ましい様相は、前記封止材は、封止シートを含み、前記バスバー電極部は、薄膜で形成されていることである。 The preferred aspect is that the sealing material contains a sealing sheet and the bus bar electrode portion is formed of a thin film.
 ここで、従来の太陽電池モジュールは、太陽電池セルをEVAシート等の封止シートで挟んで封止した場合、一見、きっちりと密着しているように見えていても、正確に封止できていない場合がある。このような場合、長期に亘って使用すると、空気や水等が封止シートとその接着面との間に入って空隙が発生し、封止シートに浮きが発生する。
 本様相のように、バスバー電極部が薄膜で形成されている場合、バスバー電極部自身の剛性がバルク材料でバスバー電極部を形成した場合に比べて小さい。そのため、封止シートの浮きが広がると、バスバー電極部が封止シートに引っ張られ、バスバー電極部内で凝集破壊が起こるか下地の電極層から剥がれてしまう問題がある。
 このような場合でも、本様相によれば、バスバー電極部と界面剥離層の界面の接着強度が封止材と界面剥離層の界面の接着強度よりも大きいので、封止材に浮きが発生しても、バスバー電極部と界面剥離層の界面よりも、先に界面剥離層が内部で凝集破壊されるか、封止材との界面で剥がれる。そのため、封止材の浮きにより発生する力が逃がされ、バスバー電極部が下地の電極層から剥離することを防止できる。
Here, when the conventional solar cell module is sealed by sandwiching the solar cell between a sealing sheet such as an EVA sheet, even if it seems to be in close contact with each other, it can be sealed accurately. It may not be. In such a case, when used for a long period of time, air, water, or the like enters between the sealing sheet and its adhesive surface to generate voids, and the sealing sheet floats.
When the bus bar electrode portion is formed of a thin film as in this aspect, the rigidity of the bus bar electrode portion itself is smaller than that of the case where the bus bar electrode portion is formed of a bulk material. Therefore, when the floating of the sealing sheet spreads, the bus bar electrode portion is pulled by the sealing sheet, and there is a problem that cohesive failure occurs in the bus bar electrode portion or the sealing sheet is peeled off from the underlying electrode layer.
Even in such a case, according to this aspect, the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer, so that the sealing material floats. However, the interface peeling layer is coagulated and broken inside before the interface between the bus bar electrode portion and the interface peeling layer, or is peeled off at the interface with the sealing material. Therefore, the force generated by the floating of the sealing material is released, and it is possible to prevent the bus bar electrode portion from peeling off from the underlying electrode layer.
 好ましい様相は、前記バスバー電極部は、前記封止材を剥がしたときに、前記一方の電極層上にとどまることである。 The preferred aspect is that the bus bar electrode portion stays on the one electrode layer when the sealing material is peeled off.
 本様相によれば、バスバー電極部が一方の電極層から剥がれず、信頼性が高い。 According to this aspect, the bus bar electrode part does not peel off from one electrode layer, and the reliability is high.
 好ましい様相は、前記配線部材と前記封止材の間に第2界面剥離層が介在しており、前記配線部材と前記バスバー電極部との接着強度は、前記第2界面剥離層と前記封止材との接着強度よりも大きいことである。 A preferred aspect is that a second interface peeling layer is interposed between the wiring member and the sealing material, and the adhesive strength between the wiring member and the bus bar electrode portion is such that the second interface peeling layer and the sealing material are sealed. It is greater than the adhesive strength with the material.
 本様相によれば、配線部材がバスバー電極部から封止材側に剥がれることを防止できる。 According to this aspect, it is possible to prevent the wiring member from peeling off from the bus bar electrode portion toward the sealing material side.
 本発明の一つの様相は、2枚の基材の間に太陽電池セル及び配線部材が配され、前記2枚の基材の間が封止材によって充填された太陽電池モジュールであって、前記太陽電池セルは、光電変換部を有し、前記光電変換部上にバスバー電極部が設けられており、前記配線部材は、前記バスバー電極部に対してはんだ層を介して接着されており、前記太陽電池セルは、ロジン化合物を含む界面剥離層を有し、前記界面剥離層は、前記太陽電池セルを断面視したときに、少なくとも前記バスバー電極部の側面の一部を覆い、さらに前記光電変換部まで跨っており、前記バスバー電極部と前記界面剥離層の界面の接着強度は、前記封止材と前記界面剥離層の界面の接着強度よりも大きく、前記封止材と前記界面剥離層の界面の接着強度は、前記光電変換部と前記界面剥離層の界面の接着強度よりも大きい、太陽電池モジュールである。 One aspect of the present invention is a solar cell module in which a solar cell and a wiring member are arranged between two base materials, and the space between the two base materials is filled with a sealing material. The solar cell has a photoelectric conversion unit, a bus bar electrode portion is provided on the photoelectric conversion portion, and the wiring member is adhered to the bus bar electrode portion via a solder layer. The solar cell has an interfacial exfoliation layer containing a rosin compound, and the interfacial exfoliation layer covers at least a part of the side surface of the bus bar electrode portion when the solar cell is viewed in cross section, and further, the photoelectric conversion The adhesive strength between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength between the sealing material and the interface peeling layer, and the sealing material and the interface peeling layer The adhesive strength of the interface is larger than the adhesive strength of the interface between the photoelectric conversion unit and the interface peeling layer, which is a solar cell module.
 本様相によれば、バスバー電極部と界面剥離層の界面の接着強度は、封止材と界面剥離層の界面の接着強度よりも大きいので、基材及び封止材を剥がしたときに、バスバー電極部と界面剥離層の界面に比べて封止材と界面剥離層の界面が優先的に剥がれる。
 本様相によれば、封止材と界面剥離層の界面の接着強度は、光電変換部と界面剥離層の界面の接着強度よりも大きいので、基材及び封止材を剥がしたときに、封止材と界面剥離層の界面に比べて光電変換部と界面剥離層の界面が優先的に剥がれる。
 すなわち、本様相によれば、基材を剥がしたときに、界面剥離層のバスバー電極部の側面から光電変換部まで延びる部分においては、界面剥離層と光電変換部の界面で剥がれ、バスバー電極部上においては、バスバー電極部と界面剥離層の界面で剥がれるので、バスバー電極部が光電変換部から剥がれずに基材を剥がすことができる。その結果、バスバー電極部が封止材に引っ張られることによるバスバー電極部の断線等が生じにくく、基材及び封止材を剥がした状態で初期不良等の評価を行うことができる。
According to this aspect, the adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer. Therefore, when the base material and the sealing material are peeled off, the bus bar The interface between the encapsulant and the interface release layer is preferentially peeled off as compared with the interface between the electrode portion and the interface release layer.
According to this aspect, the adhesive strength at the interface between the encapsulant and the interfacial release layer is larger than the adhesive strength at the interface between the photoelectric conversion part and the interfacial release layer. Therefore, when the base material and the encapsulant are peeled off, the seal is sealed. The interface between the photoelectric conversion part and the interface peeling layer is preferentially peeled off as compared with the interface between the stop material and the interface peeling layer.
That is, according to this aspect, when the base material is peeled off, the portion extending from the side surface of the bus bar electrode portion of the interface peeling layer to the photoelectric conversion portion is peeled off at the interface between the interface peeling layer and the photoelectric conversion portion, and the bus bar electrode portion. In the above, since the bus bar electrode portion is peeled off at the interface between the interface peeling layer, the base material can be peeled off without the bus bar electrode portion being peeled off from the photoelectric conversion portion. As a result, the bus bar electrode portion is less likely to be broken due to being pulled by the encapsulant, and initial defects and the like can be evaluated with the base material and the encapsulant peeled off.
 本発明の太陽電池モジュールによれば、基材や封止材を剥がしたときに、従来に比べてバスバー電極部が剥がれにくい。 According to the solar cell module of the present invention, when the base material or the sealing material is peeled off, the bus bar electrode portion is less likely to be peeled off as compared with the conventional case.
本発明の第1実施形態の太陽電池モジュールを模式的に示した斜視図である。It is a perspective view which shows typically the solar cell module of 1st Embodiment of this invention. 図1の太陽電池モジュールの分解斜視図である。It is an exploded perspective view of the solar cell module of FIG. 図1の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置での断面図である。It is a cross-sectional view orthogonal to the extension direction of the 1st bus bar electrode part of the solar cell module of FIG. 1, and is the cross-sectional view at the position which does not pass through a 1st finger electrode part. 図1の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過する位置での断面図である。It is a cross-sectional view orthogonal to the extension direction of the 1st bus bar electrode part of the solar cell module of FIG. 1, and is the cross-sectional view at the position which passes through the 1st finger electrode part. 図2の太陽電池ストリングを表側からみた断面斜視図である。FIG. 5 is a cross-sectional perspective view of the solar cell string of FIG. 2 as viewed from the front side. 図2の太陽電池ストリングを裏側からみた断面斜視図である。FIG. 5 is a cross-sectional perspective view of the solar cell string of FIG. 2 as viewed from the back side. 図2の太陽電池ストリングの分解斜視図である。It is an exploded perspective view of the solar cell string of FIG. 図7の太陽電池セルの説明図であり、(a)は正面図であり、(b)は背面図である。It is explanatory drawing of the solar cell of FIG. 7, (a) is a front view, and (b) is a rear view. 図1の太陽電池モジュールの製造工程において塗布工程直後の太陽電池モジュールを示す断面斜視図である。It is sectional drawing which shows the solar cell module immediately after the coating process in the manufacturing process of the solar cell module of FIG. 図1の太陽電池モジュールから基材及び封止材を剥がす際の表側の要部の状況を示す断面図であり、(a)は太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置の状況を表し、(b)は太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過する位置の状況を表す。It is sectional drawing which shows the state of the main part of the front side when the base material and the sealing material are peeled off from the solar cell module of FIG. 1, and (a) is orthogonal to the extension direction of the 1st bus bar electrode part of a solar cell module. (B) is a cross section orthogonal to the extension direction of the first bus bar electrode portion of the solar cell module, and represents the situation of the position where it does not pass through the first finger electrode portion. Represents the situation of the position passing through the part. 図1の太陽電池モジュールから基材及び封止材を剥がす際の裏側の要部の状況を示す断面図であり、(a)は太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置の状況を表し、(b)は太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過する位置の状況を表す。It is sectional drawing which shows the state of the main part of the back side at the time of peeling the base material and the sealing material from the solar cell module of FIG. 1, and (a) is orthogonal to the extension direction of the 1st bus bar electrode part of a solar cell module. (B) is a cross section orthogonal to the extension direction of the first bus bar electrode portion of the solar cell module, and represents the situation of the position where it does not pass through the first finger electrode portion. Represents the situation of the position passing through the part. 本発明の第2実施形態の太陽電池モジュールの説明図であり、第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置での断面図である。It is explanatory drawing of the solar cell module of 2nd Embodiment of this invention, is the cross-sectional view orthogonal to the extension direction of the 1st bus bar electrode part, and is the cross-sectional view at the position which does not pass through a 1st finger electrode part. .. 図12の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過する位置での断面図である。FIG. 12 is a cross-sectional view orthogonal to the extending direction of the first bus bar electrode portion of the solar cell module of FIG. 12, and is a cross-sectional view at a position passing through the first finger electrode portion. 図12の太陽電池ストリングを表側からみた断面斜視図である。It is sectional drawing which looked at the solar cell string of FIG. 12 from the front side. 図12の太陽電池モジュールの製造工程において塗布工程直後の太陽電池モジュールを示す断面斜視図である。It is sectional drawing which shows the solar cell module immediately after the coating process in the manufacturing process of the solar cell module of FIG. 本発明の第3実施形態の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置での断面図である。It is a cross-sectional view orthogonal to the extension direction of the 1st bus bar electrode part of the solar cell module of 3rd Embodiment of this invention, and is the cross-sectional view at the position which does not pass through a 1st finger electrode part. 図16の太陽電池モジュールから基材及び封止材を剥がす際の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面図であって、第1フィンガー電極部を通過しない位置の状況を表し、(a)は表側を表し、(b)は裏側を表す。FIG. 16 is a cross-sectional view orthogonal to the extending direction of the first bus bar electrode portion of the solar cell module when the base material and the sealing material are peeled off from the solar cell module of FIG. 16, at a position not passing through the first finger electrode portion. The situation is represented, (a) represents the front side, and (b) represents the back side. 本発明の第4実施形態の太陽電池モジュールの第1バスバー電極部の延び方向に対して直交する断面であって、第1フィンガー電極部を通過しない位置での断面図である。It is sectional drawing which is orthogonal to the extension direction of the 1st bus bar electrode portion of the solar cell module of 4th Embodiment of this invention, and is the sectional view at the position which does not pass through a 1st finger electrode portion.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の第1実施形態の太陽電池モジュール1は、ヘテロ接合型の太陽電池モジュールである。
 太陽電池モジュール1は、図1,図2のように、第1基材2と、第2基材3と、太陽電池ストリング5と、封止材6a,6bを備えている。
 太陽電池モジュール1は、太陽電池ストリング5の光電変換部21(図3参照)を基準として、第1基材2の外側主面が受光面をなし、第1基材2側から受光して太陽電池ストリング5で発電する片面受光型の太陽電池モジュールである。
The solar cell module 1 of the first embodiment of the present invention is a heterojunction type solar cell module.
As shown in FIGS. 1 and 2, the solar cell module 1 includes a first base material 2, a second base material 3, a solar cell string 5, and sealing materials 6a and 6b.
In the solar cell module 1, the outer main surface of the first base material 2 forms a light receiving surface with reference to the photoelectric conversion unit 21 (see FIG. 3) of the solar cell string 5, and the solar cell module 1 receives light from the first base material 2 side and receives the sun. This is a single-sided light receiving type solar cell module that generates electricity with the battery string 5.
 第1基材2は、面状に広がりをもつ板状又はフィルム状の部材であり、本実施形態では、透光性及び絶縁性を有した透明絶縁基板である。
 第1基材2は、透光性及び絶縁性を有していれば、特に限定されるものではなく、例えば、ガラス基板や透明樹脂基板等が使用できる。
The first base material 2 is a plate-like or film-like member having a planar spread, and in the present embodiment, is a transparent insulating substrate having translucency and insulation.
The first base material 2 is not particularly limited as long as it has translucency and insulating properties, and for example, a glass substrate, a transparent resin substrate, or the like can be used.
 第2基材3は、面状に広がりをもつ板状又はフィルム状の部材であり、本実施形態では、絶縁性を有した絶縁シートである。
 第2基材3は、絶縁性を有していれば、特に限定されるものではなく、例えば、ガラス基板や樹脂シート等が使用できる。
The second base material 3 is a plate-like or film-like member having a planar spread, and in the present embodiment, is an insulating sheet having an insulating property.
The second base material 3 is not particularly limited as long as it has an insulating property, and for example, a glass substrate, a resin sheet, or the like can be used.
 太陽電池ストリング5は、図2~図4のように、複数の太陽電池セル10と、太陽電池セル10間を接続する配線部材11と、太陽電池セル10と配線部材11を接続するはんだ層12,13を備えている。 As shown in FIGS. 2 to 4, the solar cell string 5 includes a plurality of solar cells 10, a wiring member 11 connecting the solar cells 10, and a solder layer 12 connecting the solar cells 10 and the wiring member 11. , 13 is provided.
 太陽電池セル10は、結晶型の太陽電池セルであり、図3,図4のように、表側電極層20と、光電変換部21と、裏側電極層22を備えている。また、太陽電池セル10は、表側電極層20上に第1集電極25及び第1界面剥離層26が設けられており、裏側電極層22上に第2集電極35と第2界面剥離層36が設けられている。 The solar cell 10 is a crystalline solar cell, and includes a front electrode layer 20, a photoelectric conversion unit 21, and a back electrode layer 22 as shown in FIGS. 3 and 4. Further, in the solar cell 10, the first collecting electrode 25 and the first interfacial peeling layer 26 are provided on the front electrode layer 20, and the second collecting electrode 35 and the second interfacial peeling layer 36 are provided on the back electrode layer 22. Is provided.
 表側電極層20は、透光性及び導電性を有した透明導電層である。
 本実施形態の表側電極層20は、インジウム錫酸化物(ITO)や酸化亜鉛等の透明導電性酸化物で構成されている。
The front electrode layer 20 is a transparent conductive layer having translucency and conductivity.
The front electrode layer 20 of this embodiment is made of a transparent conductive oxide such as indium tin oxide (ITO) or zinc oxide.
 光電変換部21は、PN接合を有し、半導体基板上に半導体層が形成されたものである。具体的には、太陽電池セル10は、結晶シリコン太陽電池セルであり、一導電型シリコン基板を支持基板とし、一導電型シリコン基板上に逆導電型シリコン層等が形成されたものである。「一導電型」とは、n型又はp型の一方の導電型であることをいい、「逆導電型」とは、「一導電型」とは逆の導電型であることをいう。すなわち、「一導電型」がn型の場合、「逆導電型」はp型となり、「一導電型」がp型の場合、「逆導電型」はn型となる。 The photoelectric conversion unit 21 has a PN junction, and a semiconductor layer is formed on a semiconductor substrate. Specifically, the solar cell 10 is a crystalline silicon solar cell, in which a monoconductive silicon substrate is used as a support substrate, and a reverse conductive silicon layer or the like is formed on the monoconductive silicon substrate. The "uniconductive type" means that it is either an n-type or a p-type conductive type, and the "reverse conductive type" means that it is a conductive type opposite to the "uniconductive type". That is, when the "single conductive type" is n type, the "reverse conductive type" is p type, and when the "uniconductive type" is p type, the "reverse conductive type" is n type.
 裏側電極層22は、表側電極層20と同様、透光性及び導電性を有した透明導電層である。
 本実施形態の裏側電極層22は、インジウム錫酸化物(ITO)や酸化亜鉛等の透明導電性酸化物で構成されている。
The back side electrode layer 22 is a transparent conductive layer having translucency and conductivity like the front side electrode layer 20.
The back electrode layer 22 of the present embodiment is made of a transparent conductive oxide such as indium tin oxide (ITO) or zinc oxide.
 第1集電極25は、表側電極層20から電気を取り出す櫛歯状の電極であり、薄膜状の薄膜電極である。
 第1集電極25は、表側電極層20よりも高い導電性を有すれば特に限定されるものではなく、例えば、金、銀、銅、パラジウム等の金属や金属合金などが使用できる。
 第1集電極25の形成方法は、特に限定されるものではなく、例えば、印刷法、めっき法、気相製膜法で形成できる。これらの中でも、第1集電極25は、コストの低減の観点から、印刷法又は気相製膜法で形成されることが好ましく、より効果的に発揮する観点から、印刷法で形成されることがより好ましい。気相製膜法としては、CVD法やスパッタ法などが挙げられる。
The first collecting electrode 25 is a comb-shaped electrode that extracts electricity from the front electrode layer 20, and is a thin film-shaped electrode.
The first collecting electrode 25 is not particularly limited as long as it has higher conductivity than the front electrode layer 20, and for example, a metal such as gold, silver, copper, or palladium, or a metal alloy can be used.
The method for forming the first collecting electrode 25 is not particularly limited, and for example, it can be formed by a printing method, a plating method, or a vapor phase film forming method. Among these, the first collecting electrode 25 is preferably formed by a printing method or a vapor phase film forming method from the viewpoint of cost reduction, and is formed by a printing method from the viewpoint of more effectively exerting it. Is more preferable. Examples of the vapor phase film forming method include a CVD method and a sputtering method.
 第1集電極25は、図8(a)のように、第1バスバー電極部40と、第1フィンガー電極部41で構成されている。
 第1バスバー電極部40は、表側電極層20上を所定の方向(以下、縦方向Yともいう)に延びた導電部である。
 図8(a)に示される第1バスバー電極部40の幅W1は、第1フィンガー電極部41の幅W2よりも太く、第1フィンガー電極部41の幅W2の2倍以上となっている。
 第1バスバー電極部40の幅W1は、0.5mm以上3mm以下であることが好ましい。
As shown in FIG. 8A, the first collecting electrode 25 is composed of a first bus bar electrode portion 40 and a first finger electrode portion 41.
The first bus bar electrode portion 40 is a conductive portion extending on the front electrode layer 20 in a predetermined direction (hereinafter, also referred to as a vertical direction Y).
The width W1 of the first bus bar electrode portion 40 shown in FIG. 8A is thicker than the width W2 of the first finger electrode portion 41, and is more than twice the width W2 of the first finger electrode portion 41.
The width W1 of the first bus bar electrode portion 40 is preferably 0.5 mm or more and 3 mm or less.
 第1フィンガー電極部41は、図5のように、表側電極層20上を第1バスバー電極部40から第1バスバー電極部40に対して直交して延びる導電部である。すなわち、第1フィンガー電極部41は、横方向Xに延びている。 As shown in FIG. 5, the first finger electrode portion 41 is a conductive portion extending orthogonally from the first bus bar electrode portion 40 to the first bus bar electrode portion 40 on the front electrode layer 20. That is, the first finger electrode portion 41 extends in the lateral direction X.
 第1界面剥離層26は、透光性を有し、主成分としてロジン化合物を含む有機化合物層であり、フラックス70が硬化したフラックス層である。ここでいう「主成分」とは、全ての成分中に占める割合が50%以上であることをいう。
 第1界面剥離層26は、JIS Z 3283:2006に準じた等級がAA又はAのフラックスで構成されており、フラックス成分のハライド含有量が0.5wt%以下であることが好ましい。
 フラックス70は、ロジン化合物と、活性剤を含むことが好ましい。
The first interfacial exfoliation layer 26 is an organic compound layer having translucency and containing a rosin compound as a main component, and is a flux layer in which the flux 70 is cured. The "main component" as used herein means that the proportion of all the components is 50% or more.
The first interfacial delamination layer 26 is composed of a flux having a grade of AA or A according to JIS Z 3283: 2006, and the halide content of the flux component is preferably 0.5 wt% or less.
The flux 70 preferably contains a rosin compound and an activator.
 第2集電極35は、裏側電極層22から電気を取り出す櫛歯状の電極であり、薄膜状の薄膜電極である。
 第2集電極35は、裏側電極層22よりも高い導電性を有すれば特に限定されるものではなく、例えば、金、銀、銅、パラジウム等の金属や金属合金などが使用できる。
 第2集電極35の形成方法は、特に限定されるものではなく、例えば、印刷法、めっき法、気相法で形成できる。これらの中でも、第2集電極35は、コストの低減の観点から、印刷法又は気相法で形成されることが好ましく、より効果的に発揮する観点から、印刷法で形成されることがより好ましい。気相製膜法としては、CVD法やスパッタ法などが挙げられる。
The second collecting electrode 35 is a comb-shaped electrode that extracts electricity from the back side electrode layer 22, and is a thin film-shaped electrode.
The second collecting electrode 35 is not particularly limited as long as it has higher conductivity than the back side electrode layer 22, and for example, a metal such as gold, silver, copper, palladium, or a metal alloy can be used.
The method for forming the second collection electrode 35 is not particularly limited, and can be formed by, for example, a printing method, a plating method, or a vapor phase method. Among these, the second collection electrode 35 is preferably formed by a printing method or a vapor phase method from the viewpoint of cost reduction, and is more preferably formed by a printing method from the viewpoint of more effectively exerting it. preferable. Examples of the vapor phase film forming method include a CVD method and a sputtering method.
 第2集電極35は、図8(b)のように、第2バスバー電極部50と、第2フィンガー電極部51で構成されている。
 第2バスバー電極部50は、裏側電極層22上を縦方向Yに延びた導電部である。
 図8(b)に示される第2バスバー電極部50の幅W3は、第2フィンガー電極部51の幅W4よりも太く、第2フィンガー電極部51の幅W4の4倍以上となっている。
 第2バスバー電極部50の幅W3は、1mm以上3mm以下であることが好ましい。
As shown in FIG. 8B, the second collecting electrode 35 is composed of a second bus bar electrode portion 50 and a second finger electrode portion 51.
The second bus bar electrode portion 50 is a conductive portion extending in the vertical direction Y on the back side electrode layer 22.
The width W3 of the second bus bar electrode portion 50 shown in FIG. 8B is thicker than the width W4 of the second finger electrode portion 51, and is four times or more the width W4 of the second finger electrode portion 51.
The width W3 of the second bus bar electrode portion 50 is preferably 1 mm or more and 3 mm or less.
 第2フィンガー電極部51は、図6のように、裏側電極層22上を第2バスバー電極部50から第2バスバー電極部50に対して直交して延びる導電部である。すなわち、第2フィンガー電極部51は、横方向Xに延びている。 As shown in FIG. 6, the second finger electrode portion 51 is a conductive portion extending perpendicularly from the second bus bar electrode portion 50 to the second bus bar electrode portion 50 on the back side electrode layer 22. That is, the second finger electrode portion 51 extends in the lateral direction X.
 第2界面剥離層36は、透光性を有し、主成分としてロジン化合物を含む有機化合物層であり、フラックス70が硬化したフラックス層である。
 本実施形態の第2界面剥離層36は、第1界面剥離層26と同様、JIS Z 3283:2006に準じた等級がAA又はAのフラックスで構成されており、フラックス成分のハライド含有量が0.5wt%以下であることが好ましい。
The second interfacial exfoliation layer 36 is an organic compound layer having translucency and containing a rosin compound as a main component, and is a flux layer in which the flux 70 is cured.
Like the first interfacial exfoliation layer 26, the second interfacial exfoliation layer 36 of the present embodiment is composed of a flux having a grade of AA or A according to JIS Z 3283: 2006, and the halide content of the flux component is 0. It is preferably 5.5 wt% or less.
 配線部材11は、いわゆるインターコネクタであり、図7のように、ある程度厚みがあって、所定の方向に延びた長尺状の部材である。
 配線部材11は、図7の拡大図のように、表面にはんだ71が形成された導電体であり、導電芯材72の外面にはんだ71が形成されたものである。
 配線部材11の厚みは、薄膜である集電極25,35の厚みに比べて厚く、曲がりにくい。
 配線部材11は、図7のように、コネクター部60,61と、接続部62を備えている。
 コネクター部60,61は、太陽電池セル10のバスバー電極部40,50と接続可能な部位である。
 接続部62は、第1コネクター部60と第2コネクター部61を接続する部位である。
The wiring member 11 is a so-called interconnector, and as shown in FIG. 7, is a long member having a certain thickness and extending in a predetermined direction.
As shown in the enlarged view of FIG. 7, the wiring member 11 is a conductor having the solder 71 formed on the surface thereof, and the solder 71 is formed on the outer surface of the conductive core material 72.
The thickness of the wiring member 11 is thicker than that of the thin film collector electrodes 25 and 35, and it is difficult to bend.
As shown in FIG. 7, the wiring member 11 includes connector portions 60 and 61 and a connection portion 62.
The connector portions 60 and 61 are portions that can be connected to the bus bar electrode portions 40 and 50 of the solar cell 10.
The connection portion 62 is a portion that connects the first connector portion 60 and the second connector portion 61.
 はんだ層12,13は、図3~図5のように、バスバー電極部40,50と配線部材11のコネクター部60,61を物理的及び電気的に接続する接着層である。
 はんだ層12,13は、はんだ71(図7参照)が硬化した層であり、導電性を有する導電層である。はんだ層12,13は、界面剥離層26,36と同様、ロジン化合物成分を含んでいる。
As shown in FIGS. 3 to 5, the solder layers 12 and 13 are adhesive layers that physically and electrically connect the bus bar electrode portions 40 and 50 and the connector portions 60 and 61 of the wiring member 11.
The solder layers 12 and 13 are layers in which the solder 71 (see FIG. 7) is cured, and are conductive layers having conductivity. The solder layers 12 and 13 contain a rosin compound component like the interfacial release layers 26 and 36.
 封止材6a,6bは、図3のように、2枚の基材2,3の間に配された太陽電池ストリング5を封止し、2枚の基材2,3を接着する接着部材である。
 封止材6a,6bは、シート状の封止シートであり、例えば、EVA、ポリオレフィン、アイオノマー等の封止シートを用いることができる。
As shown in FIG. 3, the sealing materials 6a and 6b are adhesive members that seal the solar cell string 5 arranged between the two base materials 2 and 3 and adhere the two base materials 2 and 3. Is.
The sealing materials 6a and 6b are sheet-shaped sealing sheets, and for example, sealing sheets such as EVA, polyolefin, and ionomer can be used.
 続いて、第1実施形態の太陽電池モジュール1の各部材の位置関係について説明する。 Subsequently, the positional relationship of each member of the solar cell module 1 of the first embodiment will be described.
 太陽電池モジュール1は、図2のように、太陽電池ストリング5がシート状の封止材6a,6bによって挟まれており、さらに封止材6a,6bの外側で2枚の基材2,3によって挟まれている。すなわち、太陽電池モジュール1は、基材2,3の間に太陽電池ストリング5が配されており、基材2,3の間に封止材6a,6bが充填されている。
 配線部材11は、図5,図7のように、第1コネクター部60が、接続対象である隣接する2つの太陽電池セル10a,10bのうち、一方の太陽電池セル10aの第1バスバー電極部40と第1はんだ層12を介して接続されており、図6,図7のように、第2コネクター部61が他方の太陽電池セル10bの第2バスバー電極部50と第2はんだ層13を介して接続されている。
 第1バスバー電極部40の幅W1は、図3,図8のように、第1バスバー電極部40の延び方向に対して直交する断面で断面視したときに、第2バスバー電極部50の幅W3よりも狭くなっている。
In the solar cell module 1, as shown in FIG. 2, the solar cell string 5 is sandwiched between the sheet-shaped sealing materials 6a and 6b, and the two base materials 2 and 3 are further outside the sealing materials 6a and 6b. Is sandwiched between. That is, in the solar cell module 1, the solar cell string 5 is arranged between the base materials 2 and 3, and the sealing materials 6a and 6b are filled between the base materials 2 and 3.
As shown in FIGS. 5 and 7, the wiring member 11 has a first bus bar electrode portion of one of the two adjacent solar cells 10a and 10b to which the first connector portion 60 is connected. It is connected to the 40 via the first solder layer 12, and as shown in FIGS. 6 and 7, the second connector portion 61 connects the second bus bar electrode portion 50 and the second solder layer 13 of the other solar cell 10b. Connected via.
The width W1 of the first bus bar electrode portion 40 is the width of the second bus bar electrode portion 50 when viewed in cross section in a cross section orthogonal to the extending direction of the first bus bar electrode portion 40 as shown in FIGS. 3 and 8. It is narrower than W3.
 第1界面剥離層26は、図4のように、第1バスバー電極部40の延び方向に対して直交する断面で断面視したときに、第1はんだ層12の両側の端面(幅方向端面)と接触している。また、第1界面剥離層26は、図3のように、第1フィンガー電極部41を通過しない断面において第1はんだ層12の両側から広がり、第1バスバー電極部40の幅方向(横方向X)の端面を経て、表側電極層20上まで延びている。
 すなわち、第1界面剥離層26は、図5のように、表側電極層20上に広がって、横方向Xにおいて第1バスバー電極部40を挟むように形成されており、第1バスバー電極部40の第1はんだ層12からの露出部分を覆っている。
As shown in FIG. 4, the first interface peeling layer 26 has end faces (end faces in the width direction) on both sides of the first solder layer 12 when viewed in cross section in a cross section orthogonal to the extension direction of the first bus bar electrode portion 40. Is in contact with. Further, as shown in FIG. 3, the first interface peeling layer 26 extends from both sides of the first solder layer 12 in a cross section that does not pass through the first finger electrode portion 41, and extends in the width direction (horizontal direction X) of the first bus bar electrode portion 40. ), And extends onto the front electrode layer 20.
That is, as shown in FIG. 5, the first interface peeling layer 26 is formed so as to spread on the front electrode layer 20 and sandwich the first bus bar electrode portion 40 in the lateral direction X, and the first bus bar electrode portion 40. Covers the exposed portion from the first solder layer 12 of the above.
 第1バスバー電極部40は、図4のように、第1フィンガー電極部41を通過する断面において、横方向Xの両端部が第1界面剥離層26で覆われており、第1フィンガー電極部41には、第1界面剥離層26で覆われた部分と、覆われていない部分が存在する。
 さらに、第1界面剥離層26は、図5のように、第1バスバー電極部40と平行に延び、縦方向Yにおいて複数の第1フィンガー電極部41に跨って延びている。
As shown in FIG. 4, the first bus bar electrode portion 40 has a cross section passing through the first finger electrode portion 41, both ends of the lateral direction X being covered with the first interface peeling layer 26, and the first finger electrode portion 40. The 41 has a portion covered with the first interfacial peeling layer 26 and a portion not covered with the first interface peeling layer 26.
Further, as shown in FIG. 5, the first interface peeling layer 26 extends in parallel with the first bus bar electrode portion 40, and extends across the plurality of first finger electrode portions 41 in the vertical direction Y.
 図3に示される第1界面剥離層26の第1はんだ層12からの延伸長さD1は、0.25mm以上10mm以下であることが好ましい。
 延伸長さD1は、図8(a)に示される第1バスバー電極部40の幅W1の0.5倍以上であることが好ましく、1倍以上であることがより好ましく、1.5倍以上であることが特に好ましい。延伸長さD1は、第1バスバー電極部40の幅W1の10倍以下であることが好ましく、5倍以上であることがより好ましい。
The stretch length D1 of the first interface peeling layer 26 shown in FIG. 3 from the first solder layer 12 is preferably 0.25 mm or more and 10 mm or less.
The stretch length D1 is preferably 0.5 times or more, more preferably 1 time or more, and 1.5 times or more the width W1 of the first bus bar electrode portion 40 shown in FIG. 8 (a). Is particularly preferable. The stretch length D1 is preferably 10 times or less, more preferably 5 times or more, the width W1 of the first bus bar electrode portion 40.
 第2バスバー電極部50は、図3,図6のように、第2はんだ層13の幅よりも広く、幅方向(横方向X)において第2はんだ層13の両側から張り出した張出部52,53を備えている。
 第2界面剥離層36は、図3,図4のように、第2バスバー電極部50の延び方向に対して直交する断面で断面視したときに、幅方向(横方向X)において第2はんだ層13の両側の端面と接触している。
 第2界面剥離層36は、図3のように第2フィンガー電極部51を通過しない断面において、第2はんだ層13の両側から広がり、第2バスバー電極部50の張出部52,53上を経て、第2バスバー電極部50の端面を覆い、さらに裏側電極層22上まで延びている。すなわち、第2界面剥離層36は、図6のように第2バスバー電極部50を挟むように形成されており、第2バスバー電極部50の第2はんだ層13からの露出部分を覆っている。
As shown in FIGS. 3 and 6, the second bus bar electrode portion 50 is wider than the width of the second solder layer 13, and the overhanging portions 52 projecting from both sides of the second solder layer 13 in the width direction (horizontal direction X). , 53 are provided.
As shown in FIGS. 3 and 4, the second interfacial release layer 36 is the second solder in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extension direction of the second bus bar electrode portion 50. It is in contact with the end faces on both sides of the layer 13.
The second interface peeling layer 36 spreads from both sides of the second solder layer 13 in a cross section that does not pass through the second finger electrode portion 51 as shown in FIG. 3, and extends over the overhanging portions 52 and 53 of the second bus bar electrode portion 50. Then, it covers the end surface of the second bus bar electrode portion 50 and further extends onto the back side electrode layer 22. That is, the second interface peeling layer 36 is formed so as to sandwich the second bus bar electrode portion 50 as shown in FIG. 6, and covers the exposed portion of the second bus bar electrode portion 50 from the second solder layer 13. ..
 第2界面剥離層36は、図4のように第2フィンガー電極部51を通過する断面において、第2バスバー電極部50上から第2フィンガー電極部51の一部に跨って広がっている。すなわち、第2バスバー電極部50は、第2フィンガー電極部51を通過する断面において、横方向Xの両端部が第2界面剥離層36で覆われており、第2フィンガー電極部51には、第2界面剥離層36で覆われた部分と、覆われていない部分が存在する。
 第2界面剥離層36は、図6のように、第2バスバー電極部50と平行に延び、縦方向Yにおいて複数の第2フィンガー電極部51に跨って延びている。
The second interface peeling layer 36 extends from above the second bus bar electrode portion 50 to a part of the second finger electrode portion 51 in a cross section passing through the second finger electrode portion 51 as shown in FIG. That is, in the cross section of the second bus bar electrode portion 50 passing through the second finger electrode portion 51, both ends in the lateral direction X are covered with the second interface peeling layer 36, and the second finger electrode portion 51 is covered with the second finger electrode portion 51. There is a portion covered with the second interfacial release layer 36 and a portion not covered.
As shown in FIG. 6, the second interfacial peeling layer 36 extends in parallel with the second bus bar electrode portion 50, and extends across the plurality of second finger electrode portions 51 in the vertical direction Y.
 図3に示される第2界面剥離層36の第2はんだ層13からの延伸長さD2は、第1界面剥離層26の第1はんだ層12からの延伸長さD1と同程度であり、0.25mm以上10mm以下であることが好ましい。
 延伸長さD2は、図8(b)に示される第2バスバー電極部50の幅W3の0.5倍以上であることが好ましく、1倍以上であることがより好ましく、1.5倍以上であることが特に好ましい。延伸長さD2は、第2バスバー電極部50の幅W3の10倍以下であることが好ましく、5倍以上であることがより好ましい。
 第2界面剥離層36の張出部52,53からの延伸長さD3は、特に限定されるものではないが、第2はんだ層13からの延伸長さD2以下であることが好ましく、第2はんだ層13からの延伸長さD2未満であることが好ましい。
The stretch length D2 of the second interface peeling layer 36 from the second solder layer 13 shown in FIG. 3 is about the same as the stretch length D1 of the first interface peeling layer 26 from the first solder layer 12, and is 0. It is preferably .25 mm or more and 10 mm or less.
The stretch length D2 is preferably 0.5 times or more, more preferably 1 time or more, and 1.5 times or more the width W3 of the second bus bar electrode portion 50 shown in FIG. 8 (b). Is particularly preferable. The stretch length D2 is preferably 10 times or less, more preferably 5 times or more, the width W3 of the second bus bar electrode portion 50.
The stretch length D3 from the overhanging portions 52 and 53 of the second interface peeling layer 36 is not particularly limited, but is preferably not more than the stretch length D2 from the second solder layer 13. The draw length from the solder layer 13 is preferably less than D2.
 ここで、バスバー電極部40,50と界面剥離層26,36と封止材6a,6bの接着強度の関係について説明する。 Here, the relationship between the adhesive strengths of the bus bar electrode portions 40 and 50, the interfacial release layers 26 and 36, and the sealing materials 6a and 6b will be described.
 図3に示される第1バスバー電極部40と第1界面剥離層26の界面の接着強度は、封止材6aと第1界面剥離層26の界面の接着強度よりも大きく、封止材6aと第1界面剥離層26の界面の接着強度は、表側電極層20と第1界面剥離層26の界面の接着強度よりも大きい。すなわち、第1バスバー電極部40と第1界面剥離層26の界面は、封止材6aと第1界面剥離層26の界面よりも剥がれにくく、封止材6aと第1界面剥離層26の界面は、表側電極層20と第1界面剥離層26の界面よりも剥がれにくい。 The adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 shown in FIG. 3 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26. The adhesive strength at the interface of the first interface peeling layer 26 is larger than the adhesive strength at the interface between the front electrode layer 20 and the first interface peeling layer 26. That is, the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is less likely to peel off than the interface between the sealing material 6a and the first interface peeling layer 26, and the interface between the sealing material 6a and the first interface peeling layer 26. Is less likely to peel off than the interface between the front side electrode layer 20 and the first interface peeling layer 26.
 同様に、第2バスバー電極部50と第2界面剥離層36の界面の接着強度は、封止材6bと第2界面剥離層36の界面の接着強度よりも大きく、封止材6bと第2界面剥離層36の界面の接着強度は、裏側電極層22と第2界面剥離層36の界面の接着強度よりも大きい。すなわち、第2バスバー電極部50と第2界面剥離層36の界面は、封止材6bと第2界面剥離層36の界面よりも剥がれにくく、封止材6bと第2界面剥離層36の界面は、裏側電極層22と第2界面剥離層36の界面よりも剥がれにくい。 Similarly, the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36, and the sealing material 6b and the second The adhesive strength at the interface of the interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 22 and the second interface peeling layer 36. That is, the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is less likely to peel off than the interface between the sealing material 6b and the second interface peeling layer 36, and the interface between the sealing material 6b and the second interface peeling layer 36. Is less likely to peel off than the interface between the back side electrode layer 22 and the second interface peeling layer 36.
 続いて、第1実施形態の太陽電池モジュール1の製造方法について説明する。 Subsequently, the manufacturing method of the solar cell module 1 of the first embodiment will be described.
 まず、従来の太陽電池セルと同様、光電変換部21を形成し、光電変換部21のそれぞれの主面に電極層20,22を形成し、さらに電極層20,22上に集電極25,35を形成して太陽電池セル10を形成する(集電極形成工程)。 First, as in the conventional solar cell, the photoelectric conversion unit 21 is formed, the electrode layers 20 and 22 are formed on the respective main surfaces of the photoelectric conversion unit 21, and the collector electrodes 25 and 35 are further formed on the electrode layers 20 and 22. To form the solar cell 10 (collecting electrode forming step).
 続いて、図9のように、太陽電池セル10のバスバー電極部40,50に流動性を持つ界面剥離層26,36の原料たるフラックス70を塗布する(塗布工程)。
 具体的には、太陽電池セル10の表側では、第1バスバー電極部40上から表側電極層20上及び第1フィンガー電極部41に跨るように、第1バスバー電極部40上から意図的にはみ出して塗布する。同様に、太陽電池セル10の裏側でも、第2バスバー電極部50上から裏側電極層22上及び第2フィンガー電極部51上に跨るように、バスバー電極部50上から意図的にはみ出して塗布する。
 このとき、バスバー電極部40,50の側面から電極層20,22上をバスバー電極部40,50の幅W1,W3(図8参照)の0.5倍以上の範囲までフラックス70を塗布する。
 バスバー電極部40,50の側面から電極層20,22上をバスバー電極部40,50の幅W1,W3の1倍以上の範囲までフラックス70を塗布することが好ましく、バスバー電極部40,50の幅W1,W3の1.5倍以上の範囲までフラックス70を塗布することがより好ましい。
Subsequently, as shown in FIG. 9, the flux 70, which is the raw material of the interfacial release layers 26 and 36 having fluidity, is applied to the bus bar electrode portions 40 and 50 of the solar cell 10 (coating step).
Specifically, on the front side of the solar cell 10, it intentionally protrudes from the first bus bar electrode portion 40 so as to straddle the front electrode layer 20 and the first finger electrode portion 41 from above the first bus bar electrode portion 40. And apply. Similarly, on the back side of the solar cell 10, the coating is intentionally projected from the bus bar electrode portion 50 so as to straddle the back side electrode layer 22 and the second finger electrode portion 51 from the top of the second bus bar electrode portion 50. ..
At this time, the flux 70 is applied from the side surfaces of the bus bar electrode portions 40 and 50 to a range of 0.5 times or more the widths W1 and W3 (see FIG. 8) of the bus bar electrode portions 40 and 50 on the electrode layers 20 and 22.
It is preferable to apply the flux 70 from the side surface of the bus bar electrode portions 40, 50 to a range equal to or more than 1 times the widths W1 and W3 of the bus bar electrode portions 40, 50 on the electrode layers 20 and 22, and the bus bar electrode portions 40 and 50. It is more preferable to apply the flux 70 to a range of 1.5 times or more the widths W1 and W3.
 フラックス70で覆われたバスバー電極部40,50上に、表面にはんだ71が形成された配線部材11のコネクター部60,61を載せて加熱してはんだ71を溶かし、はんだ71によってバスバー電極部40,50に対して配線部材11のコネクター部60,61を接着する(接着工程)。
 このとき、フラックス70の成分が気化し、樹脂層たる界面剥離層26,36が形成される。
The connector portions 60 and 61 of the wiring member 11 having the solder 71 formed on the surface are placed on the bus bar electrode portions 40 and 50 covered with the flux 70 and heated to melt the solder 71, and the solder 71 melts the bus bar electrode portion 40. , 50 are bonded to the connector portions 60 and 61 of the wiring member 11 (adhesion step).
At this time, the components of the flux 70 are vaporized to form the interfacial release layers 26 and 36 which are resin layers.
 そして、表面に封止材6a,6bが形成された基材2,3を封止材6a,6b同士が対向し太陽電池セル10を挟むように接着して封止し、必要に応じて端子ボックス等を設けることで太陽電池モジュール1が完成する。 Then, the base materials 2 and 3 having the sealing materials 6a and 6b formed on the surface are adhered and sealed so that the sealing materials 6a and 6b face each other and sandwich the solar cell 10 and seal the terminals, if necessary. The solar cell module 1 is completed by providing a box or the like.
 本実施形態の太陽電池モジュール1によれば、第1バスバー電極部40と第1界面剥離層26の界面の接着強度が封止材6aと第1界面剥離層26の界面の接着強度よりも大きく、封止材6aと第1界面剥離層26の界面の接着強度が表側電極層20と第1界面剥離層26の界面の接着強度よりも大きい。そのため、第1基材2を引っ張って封止材6aを太陽電池ストリング5から剥がしたときに、第1界面剥離層26は、図10(a)のように、第1フィンガー電極部41を通過しない断面において、第1バスバー電極部40と接する部分が残り、表側電極層20と接する部分が優先的に剥がれる。また、第1界面剥離層26は、図10(b)のように、第1フィンガー電極部41を通過する断面において、第1フィンガー電極部41の一部及び第1バスバー電極部40と接する部分が残る。その結果、第1バスバー電極部40が表側電極層20から実質的に剥がれない。
 また、本実施形態の太陽電池モジュール1によれば、第2バスバー電極部50と第2界面剥離層36の界面の接着強度は、封止材6bと第2界面剥離層36の界面の接着強度よりも大きく、封止材6bと第2界面剥離層36の界面の接着強度は、裏側電極層22と第2界面剥離層36の界面の接着強度よりも大きい。そのため、第2基材3を引っ張って封止材6bを太陽電池ストリング5から剥がしたときに、第2界面剥離層36は、図11(a)のように、第2フィンガー電極部51を通過しない断面において、第2バスバー電極部50と接する部分が残り、裏側電極層22と接する部分が優先的に剥がれる。また、第2界面剥離層36は、図11(b)のように、第2フィンガー電極部51を通過する断面において、第2フィンガー電極部51の一部及び第2バスバー電極部50と接する部分が残る。その結果、第2界面剥離層36に覆われた第2バスバー電極部50が裏側電極層22から実質的に剥がれない。
 このように、本実施形態の太陽電池モジュール1によれば、基材2,3や封止材6a,6bを太陽電池ストリング5から剥がした場合でも、主に通電に寄与する部分が基材2,3や封止材6a,6bに追随して剥がれないので、初期不良等の評価を正確に行うことができる。
According to the solar cell module 1 of the present embodiment, the adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26. The adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the front electrode layer 20 and the first interface peeling layer 26. Therefore, when the first base material 2 is pulled to peel off the sealing material 6a from the solar cell string 5, the first interface peeling layer 26 passes through the first finger electrode portion 41 as shown in FIG. 10A. In the cross section not provided, the portion in contact with the first bus bar electrode portion 40 remains, and the portion in contact with the front electrode layer 20 is preferentially peeled off. Further, as shown in FIG. 10B, the first interface peeling layer 26 is a portion in contact with a part of the first finger electrode portion 41 and the first bus bar electrode portion 40 in a cross section passing through the first finger electrode portion 41. Remains. As a result, the first bus bar electrode portion 40 is not substantially peeled off from the front electrode layer 20.
Further, according to the solar cell module 1 of the present embodiment, the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36. The adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 22 and the second interface peeling layer 36. Therefore, when the second base material 3 is pulled to peel off the sealing material 6b from the solar cell string 5, the second interface peeling layer 36 passes through the second finger electrode portion 51 as shown in FIG. 11A. In the cross section not provided, the portion in contact with the second bus bar electrode portion 50 remains, and the portion in contact with the back side electrode layer 22 is preferentially peeled off. Further, as shown in FIG. 11B, the second interface peeling layer 36 is a portion in contact with a part of the second finger electrode portion 51 and the second bus bar electrode portion 50 in a cross section passing through the second finger electrode portion 51. Remains. As a result, the second bus bar electrode portion 50 covered with the second interface peeling layer 36 is not substantially peeled from the back side electrode layer 22.
As described above, according to the solar cell module 1 of the present embodiment, even when the base materials 2 and 3 and the sealing materials 6a and 6b are peeled off from the solar cell string 5, the portion mainly contributing to energization is the base material 2. , 3 and the sealing materials 6a and 6b are not peeled off, so that initial defects and the like can be accurately evaluated.
 第1実施形態の太陽電池モジュール1によれば、界面剥離層26,36がバスバー電極部40,50上から電極層20,22上に跨って設けられ、バスバー電極部40,50の側面からバスバー電極部40,50の幅W1,W3の0.5倍以上の範囲まで広がっているため、バスバー電極部40,50が電極層20,22上から剥がれにくい。 According to the solar cell module 1 of the first embodiment, the interleaving layers 26 and 36 are provided so as to straddle the electrode layers 20 and 22 from above the bus bar electrode portions 40 and 50, and the bus bar is provided from the side surface of the bus bar electrode portions 40 and 50. Since the widths W1 and W3 of the electrode portions 40 and 50 are expanded to a range of 0.5 times or more, the bus bar electrode portions 40 and 50 are unlikely to be peeled off from above the electrode layers 20 and 22.
 本実施形態の太陽電池モジュール1によれば、シート状の封止材6aと、薄膜状の第1集電極25の間に優先的に凝集破壊される第1界面剥離層26が介在している。すなわち、第1集電極25上にあえて凝集破壊しやすい部分を作り、第1集電極25の凝集破壊を抑制しているので、第1集電極25の第1界面剥離層26が覆っている部分は、封止材6aに浮きが発生しても、表側電極層20から第1集電極25の第1バスバー電極部40が剥がれにくい。そのため、長期信頼性が高い。
 同様に、本実施形態の太陽電池モジュール1によれば、シート状の封止材6bと、薄膜状の第2集電極35の間に優先的に凝集破壊される第2界面剥離層36が介在している。すなわち、第2集電極35上にあえて凝集破壊しやすい部分を作り、第2集電極35の凝集破壊を抑制しているため、第2集電極35の第2界面剥離層36が覆っている部分は、封止材6bに浮きが発生しても、裏側電極層22から第2集電極35の第2バスバー電極部50が剥がれにくい。そのため、長期信頼性が高い。
According to the solar cell module 1 of the present embodiment, the sheet-shaped sealing material 6a and the thin-film first collecting electrode 25 are interposed between the first interfacial release layer 26 which is preferentially aggregated and broken. .. That is, since a portion that is easily coagulated and broken is formed on the first collecting electrode 25 and the cohesive breaking of the first collecting electrode 25 is suppressed, the portion covered by the first interface peeling layer 26 of the first collecting electrode 25. The first bus bar electrode portion 40 of the first collecting electrode 25 is less likely to peel off from the front electrode layer 20 even if the sealing material 6a is floated. Therefore, long-term reliability is high.
Similarly, according to the solar cell module 1 of the present embodiment, a second interfacial release layer 36 that is preferentially aggregated and broken is interposed between the sheet-shaped sealing material 6b and the thin-film second collecting electrode 35. doing. That is, since a portion that is easily coagulated and broken is formed on the second collecting electrode 35 and the cohesive fracture of the second collecting electrode 35 is suppressed, the portion covered by the second interface peeling layer 36 of the second collecting electrode 35. Is difficult to peel off the second bus bar electrode portion 50 of the second collecting electrode 35 from the back side electrode layer 22 even if the sealing material 6b is lifted. Therefore, long-term reliability is high.
 本発明の第2実施形態の太陽電池モジュールについて説明する。なお、第1実施形態の太陽電池モジュール1と同様の構成については、同一の符号を付して説明を省略する。 The solar cell module of the second embodiment of the present invention will be described. The same components as those of the solar cell module 1 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 本発明の第2実施形態の太陽電池モジュールは、いわゆるPERC型の太陽電池モジュールであり、太陽電池セルが第1実施形態と異なる。 The solar cell module of the second embodiment of the present invention is a so-called PERC type solar cell module, and the solar cell is different from that of the first embodiment.
 第2実施形態の太陽電池セル110は、図12のように、一導電型半導体基板111(以下、単に半導体基板111ともいう)の一方の主面上に逆導電型半導体層112、反射防止層113、及び第1集電極25を備えている。太陽電池セル110は、半導体基板111の他方の主面上に裏面電界層116、保護層117、裏側電極層118、及び第2集電極35を備えている。
 そして、太陽電池セル110は、反射防止層113、逆導電型半導体層112、半導体基板111、裏面電界層116、及び保護層117によって光電変換部120を構成している。
 すなわち、太陽電池セル110は、光電変換部120の表側に第1集電極25が形成され、光電変換部120の裏側に裏側電極層118及び第2集電極35が形成されている。
As shown in FIG. 12, the solar cell 110 of the second embodiment has a reverse conductive semiconductor layer 112 and an antireflection layer on one main surface of a monoconductive semiconductor substrate 111 (hereinafter, also simply referred to as a semiconductor substrate 111). It includes 113 and a first collecting electrode 25. The solar cell 110 includes a back surface electric field layer 116, a protective layer 117, a back side electrode layer 118, and a second collecting electrode 35 on the other main surface of the semiconductor substrate 111.
The solar cell 110 is composed of an antireflection layer 113, a reverse conductive semiconductor layer 112, a semiconductor substrate 111, a back surface electric field layer 116, and a protective layer 117 to form a photoelectric conversion unit 120.
That is, in the solar cell 110, the first collecting electrode 25 is formed on the front side of the photoelectric conversion unit 120, and the back side electrode layer 118 and the second collecting electrode 35 are formed on the back side of the photoelectric conversion unit 120.
 半導体基板111は、n型又はp型の半導体基板であり、例えばp型又はn型のシリコン基板などが使用できる。
 逆導電型半導体層112は、半導体基板111とは逆の導電型をもつ半導体基板であり、例えば、n型又はp型のシリコン薄膜層などが使用できる。
 本実施形態の太陽電池セル110は、半導体基板111がp型のシリコン基板で構成され、逆導電型半導体層112がn型シリコン薄膜層で構成されており、半導体基板111と逆導電型半導体層112でPN接合が形成されている。
The semiconductor substrate 111 is an n-type or p-type semiconductor substrate, and for example, a p-type or n-type silicon substrate can be used.
The reverse conductive semiconductor layer 112 is a semiconductor substrate having a conductive type opposite to that of the semiconductor substrate 111, and for example, an n-type or p-type silicon thin film layer can be used.
In the solar cell 110 of the present embodiment, the semiconductor substrate 111 is composed of a p-type silicon substrate, the reverse conductive semiconductor layer 112 is composed of an n-type silicon thin film layer, and the semiconductor substrate 111 and the reverse conductive semiconductor layer are formed. A PN junction is formed at 112.
 反射防止層113は、太陽電池セル110の受光面での反射率を低減する層であり、光を光電変換部120に入射した光を光電変換部120内に封じこめる層である。
 反射防止層113は、絶縁性を有した絶縁層であり、例えば、酸化シリコン層、窒化シリコン層、酸化アルミニウム層などが使用できる。
The antireflection layer 113 is a layer for reducing the reflectance on the light receiving surface of the solar cell 110, and is a layer for confining the light incident on the photoelectric conversion unit 120 in the photoelectric conversion unit 120.
The antireflection layer 113 is an insulating layer having an insulating property, and for example, a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, or the like can be used.
 裏面電界層116は、いわゆるBSF(Back Surface Field)層であり、半導体基板111と同一の導電型を有した半導体層である。
 裏面電界層116は、ドーパント濃度が半導体基板111よりも高く、内部電界を形成する層である。
 裏面電界層116は、例えば、半導体基板111の他方の主面にボロンやアルミニウムなどのドーパント元素を拡散させることによって形成できる。
 本実施形態の裏面電界層116は、ドーパント元素としてアルミニウムを使用している。
The back surface electric field layer 116 is a so-called BSF (Back Surface Field) layer, and is a semiconductor layer having the same conductive type as the semiconductor substrate 111.
The back surface electric field layer 116 is a layer having a dopant concentration higher than that of the semiconductor substrate 111 and forming an internal electric field.
The backside electric field layer 116 can be formed, for example, by diffusing a dopant element such as boron or aluminum on the other main surface of the semiconductor substrate 111.
The back surface electric field layer 116 of this embodiment uses aluminum as a dopant element.
 保護層117は、パッシベーション層であり、半導体基板111との界面において少数キャリアの再結合の原因となる欠陥凖位を低減する層である。
 保護層117は、絶縁性を有した絶縁層であり、例えば、酸化シリコン層、窒化シリコン層、酸化アルミニウム層などが使用できる。
 保護層117は、半導体基板111がp型の場合、酸化アルミニウム等の負の固定電荷を有する材料で形成されていることが好ましい。一方、保護層117は、半導体基板111がn型の場合、窒化シリコン等の正の固定電荷を有する材料で形成されていることが好ましい。
The protective layer 117 is a passivation layer, which is a layer that reduces the defect position that causes recombination of a small number of carriers at the interface with the semiconductor substrate 111.
The protective layer 117 is an insulating layer having an insulating property, and for example, a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, or the like can be used.
When the semiconductor substrate 111 is p-type, the protective layer 117 is preferably formed of a material having a negative fixed charge such as aluminum oxide. On the other hand, when the semiconductor substrate 111 is n-type, the protective layer 117 is preferably formed of a material having a positive fixed charge such as silicon nitride.
 裏側電極層118は、光電変換部120から電気を集める電極であり、配線部材11に電気を取り出す取出電極でもある。
 裏側電極層118は、導電性を有した導電層であり、例えば、アルミニウムや銀、金、白金、パラジウム等の金属やこれらの合金が使用できる。
The back side electrode layer 118 is an electrode that collects electricity from the photoelectric conversion unit 120, and is also an extraction electrode that extracts electricity to the wiring member 11.
The back side electrode layer 118 is a conductive layer having conductivity, and for example, metals such as aluminum, silver, gold, platinum, and palladium, and alloys thereof can be used.
 続いて、第2実施形態の太陽電池モジュールの各部材の位置関係について説明する。主に太陽電池セル110を中心に説明し、第1実施形態と同様のものについては説明を省略する。 Next, the positional relationship of each member of the solar cell module of the second embodiment will be described. The solar cell 110 will be mainly described, and the same description as in the first embodiment will be omitted.
 太陽電池セル110は、図12~図14のように、半導体基板111の一方の主面上に逆導電型半導体層112、反射防止層113及び第1集電極25が積層されている。太陽電池モジュールは、図12のように、反射防止層113を貫通し、逆導電型半導体層112を底部とする表側有底穴121を備えている。
 第1集電極25は、表側有底穴121内に充填されており、表側有底穴121の内部で逆導電型半導体層112と接している。すなわち、第1集電極25は、表側有底穴121を介して逆導電型半導体層112と電気的に接続されている。
 具体的には、表側有底穴121は、第1バスバー電極部40の延び方向に連続的又は間欠的に延びた有底溝である。
 表側有底穴121以外の部分では、逆導電型半導体層112上を反射防止層113が覆っている。
In the solar cell 110, as shown in FIGS. 12 to 14, a reverse conductive semiconductor layer 112, an antireflection layer 113, and a first collecting electrode 25 are laminated on one main surface of the semiconductor substrate 111. As shown in FIG. 12, the solar cell module includes a front-side bottomed hole 121 that penetrates the antireflection layer 113 and has the reverse conductive semiconductor layer 112 as the bottom.
The first collecting electrode 25 is filled in the bottomed hole 121 on the front side, and is in contact with the reverse conductive semiconductor layer 112 inside the bottomed hole 121 on the front side. That is, the first collecting electrode 25 is electrically connected to the reverse conductive semiconductor layer 112 via the bottomed hole 121 on the front side.
Specifically, the front-side bottomed hole 121 is a bottomed groove that extends continuously or intermittently in the extending direction of the first bus bar electrode portion 40.
In the portion other than the bottomed hole 121 on the front side, the antireflection layer 113 covers the reverse conductive semiconductor layer 112.
 第1界面剥離層26は、第1バスバー電極部40の延び方向に対して直交する断面で断面視したときに、幅方向(横方向X)において、第1はんだ層12の両側から広がり、第1バスバー電極部40の端面を経て、反射防止層113上まで延びている。 The first interface peeling layer 26 spreads from both sides of the first solder layer 12 in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extending direction of the first bus bar electrode portion 40. 1 It extends over the antireflection layer 113 through the end surface of the bus bar electrode portion 40.
 太陽電池セル110は、図12~図14のように、半導体基板111の他方の主面上に裏面電界層116、保護層117、及び裏側電極層118が積層されている。
 太陽電池セル110は、保護層117を貫通し、裏面電界層116を底部とする裏側有底穴122を備えている。そして、裏側有底穴122には、裏側電極層118が充填されており、裏側有底穴122の内部で裏側電極層118と裏面電界層116が接している。すなわち、裏側電極層118は、裏面電界層116と電気的に接続されている。
 具体的には、裏側有底穴122は、第2バスバー電極部50の延び方向に連続的又は間欠的に延びた有底溝である。
 裏側有底穴122以外の部分では、裏側電極層118と半導体基板111との間に保護層117が介在しており、裏側電極層118と半導体基板111は、直接接続されていない。
In the solar cell 110, as shown in FIGS. 12 to 14, a back surface electric field layer 116, a protective layer 117, and a back side electrode layer 118 are laminated on the other main surface of the semiconductor substrate 111.
The solar cell 110 penetrates the protective layer 117 and includes a back-side bottomed hole 122 with the back-side electric field layer 116 as the bottom. The back side bottomed hole 122 is filled with the back side electrode layer 118, and the back side electrode layer 118 and the back side electric field layer 116 are in contact with each other inside the back side bottomed hole 122. That is, the back side electrode layer 118 is electrically connected to the back side electric field layer 116.
Specifically, the bottomed hole 122 on the back side is a bottomed groove that extends continuously or intermittently in the extending direction of the second bus bar electrode portion 50.
In the portion other than the back side bottomed hole 122, the protective layer 117 is interposed between the back side electrode layer 118 and the semiconductor substrate 111, and the back side electrode layer 118 and the semiconductor substrate 111 are not directly connected to each other.
 第2界面剥離層36は、図12,図14のように、第2バスバー電極部50の延び方向に対して直交する断面で断面視したときに、幅方向(横方向X)において、第2はんだ層13の両側の端面と接触し、第2はんだ層13の両側から広がっている。また、第2界面剥離層36は、第2バスバー電極部50の張出部52,53上を経て、第2バスバー電極部50の端面を覆い、さらに裏側電極層118上まで延びている。 As shown in FIGS. 12 and 14, the second interface peeling layer 36 has a second in the width direction (horizontal direction X) when viewed in cross section in a cross section orthogonal to the extending direction of the second bus bar electrode portion 50. It is in contact with the end faces on both sides of the solder layer 13 and extends from both sides of the second solder layer 13. Further, the second interfacial peeling layer 36 passes over the overhanging portions 52 and 53 of the second bus bar electrode portion 50, covers the end surface of the second bus bar electrode portion 50, and further extends over the back side electrode layer 118.
 図12に示される封止材6aと第1界面剥離層26の界面の接着強度は、反射防止層113と第1界面剥離層26の界面の接着強度よりも大きい。すなわち、封止材6aと第1界面剥離層26の界面は、反射防止層113と第1界面剥離層26の界面よりも剥がれにくい。
 封止材6bと第2界面剥離層36の界面の接着強度は、裏側電極層118と第2界面剥離層36の界面の接着強度よりも大きい。すなわち、封止材6bと第2界面剥離層36の界面は、裏側電極層118と第2界面剥離層36の界面よりも剥がれにくい。
The adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 shown in FIG. 12 is larger than the adhesive strength at the interface between the antireflection layer 113 and the first interface peeling layer 26. That is, the interface between the sealing material 6a and the first interface peeling layer 26 is less likely to peel off than the interface between the antireflection layer 113 and the first interface peeling layer 26.
The adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 118 and the second interface peeling layer 36. That is, the interface between the sealing material 6b and the second interface peeling layer 36 is less likely to peel off than the interface between the back side electrode layer 118 and the second interface peeling layer 36.
 続いて、第2実施形態の太陽電池モジュールの製造方法について説明する。 Next, a method for manufacturing the solar cell module of the second embodiment will be described.
 まず、従来のPERC型の太陽電池セルと同様、光電変換部120を形成し、光電変換部120の裏側に裏側電極層118を形成し、さらに逆導電型半導体層112上に第1集電極25、裏側電極層118上に第2集電極35を形成して太陽電池セル110を形成する(集電極形成工程)。 First, as in the conventional PERC type solar cell, the photoelectric conversion unit 120 is formed, the back side electrode layer 118 is formed on the back side of the photoelectric conversion unit 120, and the first collection electrode 25 is further formed on the reverse conductive semiconductor layer 112. The second collecting electrode 35 is formed on the back side electrode layer 118 to form the solar cell 110 (collection electrode forming step).
 続いて、図15のように、太陽電池セル110のバスバー電極部40,50に流動性を持つフラックス70を塗布する(塗布工程)。
 具体的には、太陽電池セル110の表側では、バスバー電極部40上から反射防止層113上に跨るように、第1バスバー電極部40上から意図的にはみ出して塗布する。同様に、太陽電池セル10の裏側でも、第2バスバー電極部50上から裏側電極層118上に跨るように、バスバー電極部50上から意図的にはみ出して塗布する。
 このとき、第1実施形態と同様、表側では、第1バスバー電極部40の側面から反射防止層113上をバスバー電極部40の幅W1の0.5倍以上の範囲までフラックス70を塗布し、裏側では、第2バスバー電極部50の側面から裏側電極層118上を第2バスバー電極部50の幅W3の0.5倍以上の範囲までフラックス70を塗布する。
Subsequently, as shown in FIG. 15, the flux 70 having fluidity is applied to the bus bar electrode portions 40 and 50 of the solar cell 110 (coating step).
Specifically, on the front side of the solar cell 110, the coating is intentionally projected from the first bus bar electrode portion 40 so as to straddle the antireflection layer 113 from the bus bar electrode portion 40. Similarly, on the back side of the solar cell 10, the coating is intentionally projected from the top of the bus bar electrode portion 50 so as to straddle the top of the second bus bar electrode portion 50 and the back side electrode layer 118.
At this time, as in the first embodiment, on the front side, the flux 70 is applied from the side surface of the first bus bar electrode portion 40 onto the antireflection layer 113 to a range of 0.5 times or more the width W1 of the bus bar electrode portion 40. On the back side, the flux 70 is applied from the side surface of the second bus bar electrode portion 50 to a range of 0.5 times or more the width W3 of the second bus bar electrode portion 50 on the back side electrode layer 118.
 フラックス70で覆われたバスバー電極部40,50上に表面にはんだ71が形成された配線部材11のコネクター部60,61を載せて加熱してはんだ71を溶かし、はんだ71によってバスバー電極部40,50に対して配線部材11のコネクター部60,61を接着する(接着工程)。 The connector portions 60, 61 of the wiring member 11 having the solder 71 formed on the surface thereof are placed on the bus bar electrode portions 40, 50 covered with the flux 70 and heated to melt the solder 71, and the solder 71 melts the bus bar electrode portions 40, The connector portions 60 and 61 of the wiring member 11 are bonded to 50 (adhesion step).
 そして、表面に封止材6a,6bが形成された基材2,3を封止材6a,6b同士が対向し太陽電池セル110を挟むように接着して封止し、必要に応じて端子ボックス等を設けることで太陽電池モジュールが完成する。 Then, the base materials 2 and 3 having the sealing materials 6a and 6b formed on the surface are adhered and sealed so that the sealing materials 6a and 6b face each other and sandwich the solar cell 110, and if necessary, the terminals The solar cell module is completed by providing a box or the like.
 第2実施形態の太陽電池モジュールによれば、第1バスバー電極部40と第1界面剥離層26の界面の接着強度が封止材6aと第1界面剥離層26の界面の接着強度よりも大きく、封止材6aと第1界面剥離層26の界面の接着強度は、反射防止層113と第1界面剥離層26の界面の接着強度よりも大きい。そのため、第1基材2を引っ張って太陽電池ストリング5から剥がしたときに、第1界面剥離層26は、第1バスバー電極部40と接する部分が残り、反射防止層113と接する部分が優先的に剥がれる。その結果、第1バスバー電極部40が反射防止層113から実質的に剥がれない。
 また、第2実施形態の太陽電池モジュールによれば、第2バスバー電極部50と第2界面剥離層36の界面の接着強度は、封止材6bと第2界面剥離層36の界面の接着強度よりも大きく、封止材6bと第2界面剥離層36の界面の接着強度は、裏側電極層118と第2界面剥離層36の界面の接着強度よりも大きい。そのため、第2基材3を引っ張って太陽電池ストリング5から剥がしたときに、第2界面剥離層36は、第2バスバー電極部50と接する部分が残り、裏側電極層118と接する部分が優先的に剥がれる。その結果、第2バスバー電極部50が裏側電極層118から実質的に剥がれない。
 このように、第2実施形態の太陽電池モジュールによれば、基材2,3及び封止材6a,6bを太陽電池ストリング5から剥がした場合でも、通電に寄与する部分が基材2,3及び封止材6a,6bに追随して剥がれないので、初期不良等の評価を正確に行うことができる。
According to the solar cell module of the second embodiment, the adhesive strength at the interface between the first bus bar electrode portion 40 and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26. The adhesive strength at the interface between the sealing material 6a and the first interface peeling layer 26 is larger than the adhesive strength at the interface between the antireflection layer 113 and the first interface peeling layer 26. Therefore, when the first base material 2 is pulled and peeled off from the solar cell string 5, the portion of the first interface peeling layer 26 in contact with the first bus bar electrode portion 40 remains, and the portion in contact with the antireflection layer 113 has priority. It peels off. As a result, the first bus bar electrode portion 40 is substantially not peeled off from the antireflection layer 113.
Further, according to the solar cell module of the second embodiment, the adhesive strength at the interface between the second bus bar electrode portion 50 and the second interface peeling layer 36 is the adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36. The adhesive strength at the interface between the sealing material 6b and the second interface peeling layer 36 is larger than the adhesive strength at the interface between the back side electrode layer 118 and the second interface peeling layer 36. Therefore, when the second base material 3 is pulled and peeled off from the solar cell string 5, the portion of the second interface peeling layer 36 in contact with the second bus bar electrode portion 50 remains, and the portion in contact with the back side electrode layer 118 has priority. It peels off. As a result, the second bus bar electrode portion 50 is substantially not peeled off from the back side electrode layer 118.
As described above, according to the solar cell module of the second embodiment, even when the base materials 2 and 3 and the sealing materials 6a and 6b are peeled off from the solar cell string 5, the portion contributing to energization is the base materials 2 and 3. And since it does not peel off following the sealing materials 6a and 6b, it is possible to accurately evaluate initial defects and the like.
 第2実施形態の太陽電池モジュールによれば、第1界面剥離層26が第1バスバー電極部40上から光電変換部120上に跨って設けられ、第1バスバー電極部40の側面から第1バスバー電極部40の幅W1の0.5倍以上の範囲まで広がっているため、第1バスバー電極部40が光電変換部120上から剥がれにくい。 According to the solar cell module of the second embodiment, the first interface peeling layer 26 is provided so as to straddle the first bus bar electrode portion 40 and the photoelectric conversion portion 120, and the first bus bar is provided from the side surface of the first bus bar electrode portion 40. Since the width of the electrode portion 40 extends to 0.5 times or more the width W1, the first bus bar electrode portion 40 is unlikely to be peeled off from the photoelectric conversion portion 120.
 第2実施形態の太陽電池モジュールによれば、第2界面剥離層36が第2バスバー電極部50上から裏側電極層118上に跨って設けられ、第2バスバー電極部50の側面から第2バスバー電極部50の幅W3の0.5倍以上の範囲まで広がっているため、第2バスバー電極部50が裏側電極層118上から剥がれにくい。 According to the solar cell module of the second embodiment, the second interface peeling layer 36 is provided so as to straddle the second bus bar electrode portion 50 and the back side electrode layer 118, and the second bus bar is provided from the side surface of the second bus bar electrode portion 50. Since the width of the electrode portion 50 extends to 0.5 times or more the width W3, the second bus bar electrode portion 50 is unlikely to peel off from the back side electrode layer 118.
 本発明の第3実施形態の太陽電池モジュールについて説明する。 The solar cell module according to the third embodiment of the present invention will be described.
 第3実施形態の太陽電池モジュールは、図16のように、第1実施形態の太陽電池モジュールにおいて、光電変換部21を基準として配線部材11の外側を覆う界面剥離層246,256をさらに備えている。
 界面剥離層246,256は、第1界面剥離層26と同様、透光性を有し、主成分としてロジン化合物を含む有機化合物層であり、フラックス70が硬化したフラックス層である。
As shown in FIG. 16, the solar cell module of the third embodiment further includes interfacial peeling layers 246 and 256 that cover the outside of the wiring member 11 with reference to the photoelectric conversion unit 21 in the solar cell module of the first embodiment. There is.
The interfacial peeling layers 246 and 256 are organic compound layers having translucency and containing a rosin compound as a main component, like the first interfacial peeling layer 26, and are flux layers in which the flux 70 is cured.
 続いて、第3実施形態の太陽電池モジュールの各部材の位置関係について説明する。 Next, the positional relationship of each member of the solar cell module of the third embodiment will be described.
 界面剥離層246,256は、図16のように、第1バスバー電極部40の延び方向に対して直交する断面で断面視したときに、光電変換部21を基準として、配線部材11,11の外側に位置している。また、界面剥離層246,256は、配線部材11,11と封止材6a,6bとの間に介在しており、配線部材11,11の側面及び外側面を覆っている。すなわち、界面剥離層246,256は、配線部材11,11の界面剥離層26,36からの露出部分を覆っており、さらに界面剥離層26,36の一部も覆っている。 As shown in FIG. 16, the interfacial peeling layers 246 and 256 of the wiring members 11 and 11 with reference to the photoelectric conversion unit 21 when viewed in cross section in a cross section orthogonal to the extension direction of the first bus bar electrode unit 40. It is located on the outside. Further, the interfacial release layers 246 and 256 are interposed between the wiring members 11 and 11 and the sealing materials 6a and 6b, and cover the side surfaces and the outer surfaces of the wiring members 11 and 11. That is, the interface peeling layers 246 and 256 cover the exposed portions of the wiring members 11 and 11 from the interface peeling layers 26 and 36, and also cover a part of the interface peeling layers 26 and 36.
 ここで、バスバー電極部40,50と界面剥離層26,36,246,256と封止材6a,6bとの接着強度の関係について説明する。 Here, the relationship between the adhesive strength between the bus bar electrode portions 40 and 50, the interfacial release layers 26, 36, 246, 256 and the sealing materials 6a and 6b will be described.
 配線部材11,11と界面剥離層246,256の界面の接着強度は、界面剥離層246,256と封止材6a,6bの界面の接着強度よりも大きい。
 はんだ層12,13を介した配線部材11,11とバスバー電極部40,50の接着強度は、配線部材11,11と界面剥離層246,256の界面の接着強度よりも大きい。
 すなわち、配線部材11,11とバスバー電極部40,50の界面は、配線部材11,11と界面剥離層246,256の界面よりも剥がれにくく、界面剥離層246,256と封止材6a,6bの界面の接着強度よりも剥がれにくい。
The adhesive strength at the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256 is larger than the adhesive strength at the interface between the interface peeling layers 246 and 256 and the sealing materials 6a and 6b.
The adhesive strength between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 via the solder layers 12 and 13 is larger than the adhesive strength at the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256.
That is, the interface between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 is less likely to be peeled off than the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256, and the interface peeling layers 246 and 256 and the sealing materials 6a and 6b It is harder to peel off than the adhesive strength of the interface.
 第3実施形態の太陽電池モジュールの製造方法は、第1実施形態の太陽電池モジュールの製造方法とほぼ同様であり、接着工程後に再度、フラックス70を配線部材11に塗布し、その後、封止材6a,6bが形成された基材2,3で挟んで封止する。 The method for manufacturing the solar cell module of the third embodiment is almost the same as the method for manufacturing the solar cell module of the first embodiment. After the bonding step, the flux 70 is applied to the wiring member 11 again, and then the sealing material is applied. It is sandwiched between the base materials 2 and 3 on which 6a and 6b are formed and sealed.
 第3実施形態の太陽電池モジュールによれば、配線部材11,11とバスバー電極部40,50の界面は、配線部材11,11と界面剥離層246,256の界面よりも剥がれにくく、界面剥離層246,256と封止材6a,6bの界面の接着強度よりも剥がれにくい。そのため、第1基材2を引っ張って封止材6aを太陽電池ストリング5から剥がしたときに、界面剥離層246は、図17(a)のように、凝集破壊されるか、封止材6a,6bと界面で優先的に剥がれる。その結果、第1バスバー電極部40の延び方向に対して直交する断面において、配線部材11と接する部分が残り、封止材6aと接する部分が優先的に剥がれる。それ故に、配線部材11が第1バスバー電極部40から実質的に剥がれない。同様に、第2基材3を引っ張って封止材6bを太陽電池ストリング5から剥がしたときに、界面剥離層256は、図17(b)のように、凝集破壊されるか、封止材6a,6bと界面で優先的に剥がれる。その結果、第2バスバー電極部50の延び方向に対して直交する断面において、配線部材11と接する部分が残り、封止材6bと接する部分が優先的に剥がれる。それ故に、配線部材11が第2バスバー電極部50から実質的に剥がれない。 According to the solar cell module of the third embodiment, the interface between the wiring members 11 and 11 and the bus bar electrode portions 40 and 50 is less likely to be peeled off than the interface between the wiring members 11 and 11 and the interface peeling layers 246 and 256, and the interface peeling layer. It is harder to peel off than the adhesive strength at the interface between 246, 256 and the sealing materials 6a and 6b. Therefore, when the first base material 2 is pulled to peel off the sealing material 6a from the solar cell string 5, the interfacial release layer 246 is coagulated and broken or the sealing material 6a is as shown in FIG. 17A. , 6b and peel off preferentially at the interface. As a result, in the cross section orthogonal to the extending direction of the first bus bar electrode portion 40, the portion in contact with the wiring member 11 remains, and the portion in contact with the sealing material 6a is preferentially peeled off. Therefore, the wiring member 11 is not substantially peeled off from the first bus bar electrode portion 40. Similarly, when the second base material 3 is pulled to peel off the sealing material 6b from the solar cell string 5, the interfacial release layer 256 is cohesively broken or the sealing material is broken as shown in FIG. 17 (b). It is preferentially peeled off at the interface with 6a and 6b. As a result, in the cross section orthogonal to the extending direction of the second bus bar electrode portion 50, the portion in contact with the wiring member 11 remains, and the portion in contact with the sealing material 6b is preferentially peeled off. Therefore, the wiring member 11 is not substantially peeled off from the second bus bar electrode portion 50.
 第3実施形態の太陽電池モジュールによれば、封止材6a,6bと配線部材11,11の間に優先的に凝集破壊される界面剥離層246,256が介在している。すなわち、配線部材11,11上にあえて凝集破壊しやすい部分を作っているので、第1界面剥離層26が覆っている配線部材11,11は、封止材6a,6bに浮きが発生しても、バスバー電極部40,50から配線部材11,11が剥がれにくい。そのため、長期信頼性が高い。 According to the solar cell module of the third embodiment, interfacial peeling layers 246 and 256 that are preferentially coagulated and broken are interposed between the sealing materials 6a and 6b and the wiring members 11 and 11. That is, since a portion that is easily coagulated and broken is formed on the wiring members 11 and 11, the wiring members 11 and 11 covered by the first interface peeling layer 26 are floated in the sealing materials 6a and 6b. However, the wiring members 11 and 11 are not easily peeled off from the bus bar electrode portions 40 and 50. Therefore, long-term reliability is high.
 本発明の第4実施形態の太陽電池モジュールについて説明する。 The solar cell module according to the fourth embodiment of the present invention will be described.
 第4実施形態の太陽電池モジュールは、太陽電池ストリングの構造が第2実施形態と異なる。すなわち、第4実施形態の太陽電池ストリングは、図18のように、太陽電池セル110と、配線部材11と、はんだ層12,13を備え、配線部材11の外側に第3実施形態と同様、界面剥離層246,256を備えている。 The structure of the solar cell string of the solar cell module of the fourth embodiment is different from that of the second embodiment. That is, as shown in FIG. 18, the solar cell string of the fourth embodiment includes the solar cell 110, the wiring member 11, and the solder layers 12 and 13, and is on the outside of the wiring member 11 as in the third embodiment. The interfacial release layer 246, 256 is provided.
 上記した第1実施形態では、光電変換部21上に表側電極層20及び裏側電極層22が形成され、集電極25,35は、表側電極層20及び裏側電極層22を介して光電変換部21と電気的に接続されていたが、本発明はこれに限定されるものではない。光電変換部21上に直接集電極25,35を形成してもよい。 In the above-described first embodiment, the front electrode layer 20 and the back electrode layer 22 are formed on the photoelectric conversion unit 21, and the collector electrodes 25 and 35 are connected to the photoelectric conversion unit 21 via the front electrode layer 20 and the back electrode layer 22. However, the present invention is not limited to this. The collector electrodes 25 and 35 may be formed directly on the photoelectric conversion unit 21.
 上記した実施形態では、集電極25,35は、フィンガー電極部41,51を備えていたが、本発明はこれに限定されるものではない。集電極25,35は、フィンガー電極部41,51を備えていなくてもよい。 In the above-described embodiment, the collecting electrodes 25 and 35 include the finger electrode portions 41 and 51, but the present invention is not limited thereto. The collecting electrodes 25 and 35 do not have to include the finger electrode portions 41 and 51.
 上記した実施形態では、各太陽電池セルは、二本の配線部材11によって接続されていたが、本発明はこれに限定されるものではない。一本の配線部材11によって接続されていてもよいし、三本以上の配線部材11によって接続されていてもよい。 In the above-described embodiment, each solar cell is connected by two wiring members 11, but the present invention is not limited to this. It may be connected by one wiring member 11 or may be connected by three or more wiring members 11.
 上記した実施形態では、はんだ層12,13は、配線部材11の表面にコーティングされたはんだ71によって形成されていたが、本発明はこれに限定されるものではない。はんだ層12,13は、配線部材11とは別途用意されたはんだによって形成されていてもよい。 In the above-described embodiment, the solder layers 12 and 13 are formed of the solder 71 coated on the surface of the wiring member 11, but the present invention is not limited thereto. The solder layers 12 and 13 may be formed of solder prepared separately from the wiring member 11.
 上記した実施形態では、第1バスバー電極部40と第2バスバー電極部50は、異なる幅であったが、本発明はこれに限定されるものではない。第1バスバー電極部40と第2バスバー電極部50は、同じ幅であってもよい。 In the above embodiment, the first bus bar electrode portion 40 and the second bus bar electrode portion 50 have different widths, but the present invention is not limited to this. The first bus bar electrode portion 40 and the second bus bar electrode portion 50 may have the same width.
 上記した実施形態では、第1バスバー電極部40は、配線部材11の幅と同じ幅であったが、本発明はこれに限定されるものではない。第1バスバー電極部40は、配線部材11の幅よりも幅が広くてもよい。
 また、上記した実施形態では、第2バスバー電極部50の幅は、配線部材11の幅よりも広いが、本発明はこれに限定されるものではない。第2バスバー電極部50は、配線部材11の幅と同じ幅であってもよい。
In the above-described embodiment, the first bus bar electrode portion 40 has the same width as the width of the wiring member 11, but the present invention is not limited to this. The width of the first bus bar electrode portion 40 may be wider than the width of the wiring member 11.
Further, in the above-described embodiment, the width of the second bus bar electrode portion 50 is wider than the width of the wiring member 11, but the present invention is not limited thereto. The width of the second bus bar electrode portion 50 may be the same as the width of the wiring member 11.
 上記した実施形態では、第1基材2の主面を受光面とする片面受光型の太陽電池モジュールの場合について説明したが、本発明はこれに限定されるものではない。第1基材2の主面及び第2基材3の主面の両面を受光面とする両面受光型の太陽電池モジュールであってもよい。 In the above-described embodiment, the case of a single-sided light-receiving solar cell module having the main surface of the first base material 2 as the light-receiving surface has been described, but the present invention is not limited thereto. It may be a double-sided light receiving type solar cell module in which both sides of the main surface of the first base material 2 and the main surface of the second base material 3 are light receiving surfaces.
 上記した実施形態では、界面剥離層をフラックスによって形成したが、本発明はこれに限定されるものではない。界面剥離層を他の材料によって形成してもよい。 In the above embodiment, the interface peeling layer is formed by flux, but the present invention is not limited to this. The delamination layer may be formed of another material.
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 As long as the above-described embodiment is included in the technical scope of the present invention, each component can be freely replaced or added between the respective embodiments.
  1 太陽電池モジュール
  2 第1基材
  3 第2基材
  5 太陽電池ストリング
  6a,6b 封止材
 10,10a,10b,110 太陽電池セル
 11 配線部材
 12,13 はんだ層
 20 表側電極層
 21 光電変換部
 22 裏側電極層
 25 第1集電極
 26 第1界面剥離層
 35 第2集電極
 36 第2界面剥離層
 40 第1バスバー電極部
 41 第1フィンガー電極部
 50 第2バスバー電極部
 51 第2フィンガー電極部
 52,53 張出部
111 一導電型半導体基板
112 逆導電型半導体層
113 反射防止層
116 裏面電界層
117 保護層
118 裏面電極層
120 光電変換部
246,256 界面剥離層
1 Solar cell module 2 1st base material 3 2nd base material 5 Solar cell strings 6a, 6b Encapsulant 10, 10a, 10b, 110 Solar cell cell 11 Wiring member 12, 13 Solder layer 20 Front electrode layer 21 Photoelectric conversion part 22 Back side electrode layer 25 1st collecting electrode 26 1st interface peeling layer 35 2nd collecting electrode 36 2nd interface peeling layer 40 1st bus bar electrode part 41 1st finger electrode part 50 2nd bus bar electrode part 51 2nd finger electrode part 52, 53 Overhanging part 111 Single conductive type semiconductor substrate 112 Reverse conductive type semiconductor layer 113 Anti-reflection layer 116 Back side electric field layer 117 Protective layer 118 Back side electrode layer 120 Photoelectric conversion part 246, 256 Interfacial peeling layer

Claims (11)

  1.  2枚の基材の間に太陽電池セル及び配線部材が配され、前記2枚の基材の間が封止材によって充填された太陽電池モジュールであって、
     前記太陽電池セルは、表側電極層と、裏側電極層と、前記表側電極層と前記裏側電極層に挟まれた光電変換部を有し、かつ前記表側電極層及び前記裏側電極層の少なくとも一方の電極層上にバスバー電極部が設けられており、
     前記配線部材は、前記バスバー電極部に対してはんだ層を介して接着されており、
     前記太陽電池セルは、界面剥離層を有し、
     前記界面剥離層は、前記太陽電池セルを断面視したときに、少なくとも前記バスバー電極部の側面の一部を覆い、さらに前記一方の電極層まで跨っており、
     前記バスバー電極部と前記界面剥離層の界面の接着強度は、前記封止材と前記界面剥離層の界面の接着強度よりも大きく、
     前記封止材と前記界面剥離層の界面の接着強度は、前記一方の電極層と前記界面剥離層の界面の接着強度よりも大きい、太陽電池モジュール。
    A solar cell module in which a solar cell and a wiring member are arranged between two base materials, and the space between the two base materials is filled with a sealing material.
    The solar cell has a front electrode layer, a back electrode layer, a photoelectric conversion portion sandwiched between the front electrode layer and the back electrode layer, and at least one of the front electrode layer and the back electrode layer. A bus bar electrode portion is provided on the electrode layer,
    The wiring member is adhered to the bus bar electrode portion via a solder layer.
    The solar cell has an interfacial exfoliation layer and
    The interfacial peeling layer covers at least a part of the side surface of the busbar electrode portion when the solar cell is viewed in cross section, and further extends to the one electrode layer.
    The adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer.
    A solar cell module in which the adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between the one electrode layer and the interface peeling layer.
  2.  前記界面剥離層は、前記一方の電極層上で前記バスバー電極部の側面から前記バスバー電極部の幅の0.5倍以上の範囲まで広がっている、請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the interfacial peeling layer extends from the side surface of the bus bar electrode portion to a range of 0.5 times or more the width of the bus bar electrode portion on one of the electrode layers.
  3.  前記界面剥離層は、前記一方の電極層上で前記バスバー電極部の側面から前記バスバー電極部の幅の1.5倍以上の範囲まで広がっている、請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the interfacial peeling layer extends from the side surface of the bus bar electrode portion to a range of 1.5 times or more the width of the bus bar electrode portion on one of the electrode layers.
  4.  前記一方の電極層は、透明導電性酸化物で形成されている、請求項1乃至3のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein one of the electrode layers is made of a transparent conductive oxide.
  5.  前記界面剥離層は、ロジン化合物を含むフラックス層であって、フラックス成分のハライド含有量が0.5wt%以下である、請求項1乃至4のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the interfacial exfoliation layer is a flux layer containing a rosin compound and has a halide content of a flux component of 0.5 wt% or less.
  6.  前記バスバー電極部は、前記はんだ層よりも幅が広いものであり、
     前記界面剥離層は、前記太陽電池セルを断面視したときに、前記バスバー電極部の前記はんだ層からの露出部分を覆っている、請求項1乃至5のいずれかに記載の太陽電池モジュール。
    The bus bar electrode portion has a width wider than that of the solder layer.
    The solar cell module according to any one of claims 1 to 5, wherein the interfacial peeling layer covers an exposed portion of the bus bar electrode portion from the solder layer when the solar cell is viewed in cross section.
  7.  前記光電変換部を基準として、前記表側電極層側から受光して発電する電池モジュールであって、
     前記表側電極層及び前記裏側電極層は、バスバー電極部が設けられており、
     前記裏側電極層のバスバー電極部は、前記表側電極層のバスバー電極部よりも幅が広い、請求項1乃至6のいずれか1項に記載の太陽電池モジュール。
    A battery module that receives light from the front electrode layer side to generate electricity with reference to the photoelectric conversion unit.
    The front electrode layer and the back electrode layer are provided with a bus bar electrode portion.
    The solar cell module according to any one of claims 1 to 6, wherein the bus bar electrode portion of the back electrode layer is wider than the bus bar electrode portion of the front electrode layer.
  8.  前記封止材は、封止シートを含み、
     前記バスバー電極部は、薄膜で形成されている、請求項1乃至7のいずれかに記載の太陽電池モジュール。
    The sealing material includes a sealing sheet and contains
    The solar cell module according to any one of claims 1 to 7, wherein the bus bar electrode portion is formed of a thin film.
  9.  前記バスバー電極部は、前記封止材を剥がしたときに、前記一方の電極層上にとどまる、請求項1乃至8のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 8, wherein the bus bar electrode portion stays on one of the electrode layers when the sealing material is peeled off.
  10.  前記配線部材と前記封止材の間に第2界面剥離層が介在しており、
     前記配線部材と前記バスバー電極部との接着強度は、前記第2界面剥離層と前記封止材との接着強度よりも大きい、請求項1乃至9のいずれか1項に記載の太陽電池モジュール。
    A second interfacial release layer is interposed between the wiring member and the sealing material.
    The solar cell module according to any one of claims 1 to 9, wherein the adhesive strength between the wiring member and the bus bar electrode portion is larger than the adhesive strength between the second interface peeling layer and the sealing material.
  11.  2枚の基材の間に太陽電池セル及び配線部材が配され、前記2枚の基材の間が封止材によって充填された太陽電池モジュールであって、
     前記太陽電池セルは、光電変換部を有し、前記光電変換部上にバスバー電極部が設けられており、
     前記配線部材は、前記バスバー電極部に対してはんだ層を介して接着されており、
     前記太陽電池セルは、界面剥離層を有し、
     前記界面剥離層は、前記太陽電池セルを断面視したときに、少なくとも前記バスバー電極部の側面の一部を覆い、さらに前記光電変換部まで跨っており、
     前記バスバー電極部と前記界面剥離層の界面の接着強度は、前記封止材と前記界面剥離層の界面の接着強度よりも大きく、
     前記封止材と前記界面剥離層の界面の接着強度は、前記光電変換部と前記界面剥離層の界面の接着強度よりも大きい、太陽電池モジュール。
    A solar cell module in which a solar cell and a wiring member are arranged between two base materials, and the space between the two base materials is filled with a sealing material.
    The solar cell has a photoelectric conversion unit, and a bus bar electrode portion is provided on the photoelectric conversion unit.
    The wiring member is adhered to the bus bar electrode portion via a solder layer.
    The solar cell has an interfacial exfoliation layer and
    When the solar cell is viewed in cross section, the interface peeling layer covers at least a part of the side surface of the bus bar electrode portion and further extends to the photoelectric conversion portion.
    The adhesive strength at the interface between the bus bar electrode portion and the interface peeling layer is larger than the adhesive strength at the interface between the sealing material and the interface peeling layer.
    A solar cell module in which the adhesive strength at the interface between the sealing material and the interface peeling layer is larger than the adhesive strength at the interface between the photoelectric conversion unit and the interface peeling layer.
PCT/JP2020/019287 2019-06-21 2020-05-14 Solar battery module WO2020255597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527464A JPWO2020255597A1 (en) 2019-06-21 2020-05-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-115737 2019-06-21
JP2019115737 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020255597A1 true WO2020255597A1 (en) 2020-12-24

Family

ID=74037456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019287 WO2020255597A1 (en) 2019-06-21 2020-05-14 Solar battery module

Country Status (2)

Country Link
JP (1) JPWO2020255597A1 (en)
WO (1) WO2020255597A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142720A (en) * 2001-11-06 2003-05-16 National Institute Of Advanced Industrial & Technology Recycle countermeasure solar battery module
JP2007201291A (en) * 2006-01-27 2007-08-09 Kyocera Corp Solar battery module and method of reproducing same
JP2009004613A (en) * 2007-06-22 2009-01-08 Sanyo Electric Co Ltd Solar batteries, method of manufacturing the same, solar battery module including the solar batteries, and method of manufacturing the same
JP2011086964A (en) * 2006-08-25 2011-04-28 Sanyo Electric Co Ltd Solar battery module and method of manufacturing solar battery module
JP2012079948A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Solar cell module and disassembling method of solar cell module
US20140000683A1 (en) * 2010-12-20 2014-01-02 Solar Machines Incorporated Single-cell encapsulation and flexible-format module architecture for photovoltaic power generation and method for constructing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142720A (en) * 2001-11-06 2003-05-16 National Institute Of Advanced Industrial & Technology Recycle countermeasure solar battery module
JP2007201291A (en) * 2006-01-27 2007-08-09 Kyocera Corp Solar battery module and method of reproducing same
JP2011086964A (en) * 2006-08-25 2011-04-28 Sanyo Electric Co Ltd Solar battery module and method of manufacturing solar battery module
JP2009004613A (en) * 2007-06-22 2009-01-08 Sanyo Electric Co Ltd Solar batteries, method of manufacturing the same, solar battery module including the solar batteries, and method of manufacturing the same
JP2012079948A (en) * 2010-10-01 2012-04-19 Mitsubishi Electric Corp Solar cell module and disassembling method of solar cell module
US20140000683A1 (en) * 2010-12-20 2014-01-02 Solar Machines Incorporated Single-cell encapsulation and flexible-format module architecture for photovoltaic power generation and method for constructing the same

Also Published As

Publication number Publication date
JPWO2020255597A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5410050B2 (en) Solar cell module
JP4294048B2 (en) Solar cell module
EP2469604B1 (en) Solar battery module
KR101465924B1 (en) Production method for solar cell module, and solar cell module
JP5739076B2 (en) Solar cell module and manufacturing method thereof
WO2011001883A1 (en) Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
JP2008135655A (en) Solar battery module, manufacturing method therefor, and solar battery cell
JP2008135654A (en) Solar battery module
US20130112234A1 (en) Solar cell module
WO2007088751A1 (en) Solar battery element and solar battery module
JP2007201331A (en) Photovoltaic module
JP5745349B2 (en) Manufacturing method of solar cell module
WO2012165353A1 (en) Solar cell module, method for manufacturing solar cell module, and tab wire for thin film solar cells
JP4958525B2 (en) Solar cell module and method for manufacturing solar cell module
JP2010157553A (en) Interconnect sheet, solar cell with the interconnect cell, solar cell module, and method of manufacturing the solar cell with the interconnect sheet, and method of manufacturing the solar cell moidule
US20140069479A1 (en) Photoelectric Device Module and Manufacturing Method Thereof
US20110287568A1 (en) Method of manufacturing thin film solar cell
WO2010150735A1 (en) Wiring sheet, solar cell with wiring sheet attached, wiring sheet roll, solar cell module, and method for producing wiring sheet
EP2897177A1 (en) Wiring material, solar cell module, and method for manufacturing solar cell module
WO2020255597A1 (en) Solar battery module
WO2019202958A1 (en) Solar battery device and method for manufacturing solar battery device
WO2014050193A1 (en) Photoelectric conversion module
JP2014533073A (en) Solar module with flat ribbon conductor and method for manufacturing solar module with flat ribbon conductor
EP2590228B1 (en) Solar cell module and method for manufacturing same
JP2007207795A (en) Solar cell element and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827165

Country of ref document: EP

Kind code of ref document: A1