WO2020253627A1 - 局域网隧道建立、释放的方法及设备 - Google Patents

局域网隧道建立、释放的方法及设备 Download PDF

Info

Publication number
WO2020253627A1
WO2020253627A1 PCT/CN2020/095802 CN2020095802W WO2020253627A1 WO 2020253627 A1 WO2020253627 A1 WO 2020253627A1 CN 2020095802 W CN2020095802 W CN 2020095802W WO 2020253627 A1 WO2020253627 A1 WO 2020253627A1
Authority
WO
WIPO (PCT)
Prior art keywords
upf
tunnel
smf
local area
area network
Prior art date
Application number
PCT/CN2020/095802
Other languages
English (en)
French (fr)
Inventor
刘超
刘棠青
王丹
Original Assignee
***通信有限公司研究院
***通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信有限公司研究院, ***通信集团有限公司 filed Critical ***通信有限公司研究院
Priority to EP20827290.6A priority Critical patent/EP3989672A4/en
Publication of WO2020253627A1 publication Critical patent/WO2020253627A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a method and device for establishing and releasing a local area network tunnel.
  • 5G fifth-generation
  • 5G fifth-generation
  • Session Management Function responsible for the life cycle management of 5G user sessions, Internet Protocol (IP) address allocation, data routing, business continuity management, policy rule matching, and traffic accounting processing, etc.
  • IP Internet Protocol
  • UPF User plane function
  • Unified Data Management responsible for 5G user subscription data management, user authentication data management, user identification management and other functions;
  • 5G Local Area Network is one of the most promising technologies in the relevant phase of 3GPP. It can provide partners with customized 5G industry LANs, so that enterprise terminals and enterprise clouds are in the same "local area network”. Mainly oriented to enterprise cloud access, intelligent manufacturing and other fields, to achieve flexible terminal group management, direct communication and access to enterprise cloud anytime and anywhere.
  • the user subscription data can specify the group to which the user belongs, and use a specific data network name (Data Network Name, DNN) or group identifier (group ID, group identifier) to indicate a group.
  • DNN Data Network Name
  • group ID group identifier
  • 5GLAN group is an important granularity. Different from the N9 tunnel between the UPF of the big network, the local area network tunnel is a tunnel between the UPFs established for communication between UEs in the 5GLAN group. How to establish and release the LAN tunnel is an urgent problem to be solved.
  • the embodiments of the present disclosure provide a method and device for establishing and releasing a local area network tunnel, which solves the problem of 5G local area network tunnel management, and realizes the establishment and deletion of N19 tunnels through signaling, instead of manual configuration by operation and maintenance personnel to maintain The N19 tunnel greatly improves the efficiency of network operation and maintenance.
  • the embodiment of the present disclosure provides a method for establishing a local area network tunnel, which is applied to SMF, including:
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the local area network tunnel is a local area network tunnel between two 5G local area network type service PDU session anchors UPF, and the name of the local area network tunnel is N19 tunnel.
  • the establishment request is used to establish an N19 tunnel, and the establishment request is: an N4 session establishment or modification request; or, an N19 session establishment request.
  • the establishment request sent to the first UPF and the second UPF includes: N19 core network tunnel information allocated by the SMF.
  • the establishment request sent to the first UPF does not include: N19 core network tunnel information;
  • the establishment response received from the first UPF includes: N19 core network tunnel information allocated by the first UPF;
  • the establishment request sent to the second UPF includes: N19 core network tunnel information allocated by the first UPF;
  • the establishment response received from the second UPF includes: N19 core network tunnel information allocated by the second UPF.
  • the timing of triggering the sending of the establishment request includes one or more of the following combinations:
  • the first UPF is the UPF selected by the PDU session when the PDU session is established, and the second UPF is any other UPF in the LAN group; or, the first UPF and the second UPF UPF is any UPF in the LAN group.
  • the embodiment of the present disclosure also provides a method for releasing a local area network tunnel, which is applied to SMF, including:
  • a release response is received from the first UPF and the second UPF respectively.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the local area network tunnel is a local area network tunnel between two 5G local area network type service PDU session anchors UPF, and the name of the local area network tunnel is N19 tunnel.
  • the release request is used to delete the N19 tunnel, and the release request is: N4 session release/modification/deletion request; or, N19 session release or deletion request.
  • the release request includes N19 core network tunnel information.
  • timing of triggering the sending of the release request includes one or more of the following combinations:
  • the first UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the LAN group; or, the first UPF and the second UPF are the LAN group Any UPF within.
  • the embodiment of the present disclosure also provides a method for establishing a local area network tunnel, which is applied to UPF, including:
  • the establishment request being used to establish a LAN tunnel between UPFs
  • the embodiment of the present disclosure also provides a method for releasing a local area network tunnel, which is applied to UPF, including:
  • the embodiment of the present disclosure also provides an SMF, including:
  • the first sending module is configured to send establishment requests to the first UPF and the second UPF, respectively, for establishing a local area network tunnel between the first UPF and the second UPF;
  • the first receiving module is configured to receive establishment responses from the first UPF and the second UPF respectively.
  • the embodiment of the present disclosure also provides an SMF, including: a first transceiver and a first processor;
  • the first transceiver is configured to send establishment requests to the first UPF and the second UPF, respectively, for establishing a local area network tunnel between the first UPF and the second UPF;
  • the first transceiver is further configured to receive establishment responses from the first UPF and the second UPF respectively.
  • the embodiment of the present disclosure also provides an SMF, including:
  • a second sending module configured to send release requests to the first UPF and the second UPF, respectively, for releasing the local area network tunnel between the first UPF and the second UPF;
  • the second receiving module is configured to receive release responses from the first UPF and the second UPF respectively.
  • the embodiment of the present disclosure also provides an SMF, including: a second transceiver and a second processor;
  • the second transceiver is configured to send release requests to the first UPF and the second UPF, respectively, for releasing the local area network tunnel between the first UPF and the second UPF;
  • the second transceiver is further configured to receive release responses from the first UPF and the second UPF respectively.
  • the embodiments of the present disclosure also provide a UPF, including:
  • the third receiving module is used to receive the establishment request from the SMF, and is used to establish the LAN tunnel between the UPFs;
  • the third sending module is used to send an establishment response to the SMF.
  • the embodiment of the present disclosure also provides a UPF, including: a third transceiver and a third processor;
  • the third transceiver is used to receive an establishment request from the SMF, and is used to establish a local area network tunnel between UPFs;
  • the third transceiver is also used to send an establishment response to the SMF.
  • the embodiments of the present disclosure also provide a UPF, including:
  • the fourth receiving module is used to receive a release request from the SMF and used to release the LAN tunnel between UPFs;
  • the fourth sending module is used to send a release response to the SMF.
  • the embodiment of the present disclosure also provides a UPF, including: a fourth transceiver and a fourth processor;
  • the fourth transceiver is configured to receive a release request from the SMF, and is configured to release the LAN tunnel between UPFs;
  • the fourth transceiver is also used to send a release response to the SMF.
  • the embodiments of the present disclosure also provide a network device, including: a processor, a memory, and a program stored on the memory and capable of running on the processor, and when the program is executed by the processor, the above The steps of the method for establishing a local area network tunnel; or, the steps of the method for releasing a local area network tunnel as described above.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for establishing a local area network tunnel as described above are implemented; or , The steps of the method for releasing the LAN tunnel as described above.
  • the establishment and deletion of N19 tunnels are realized through signaling, instead of manual configuration by operation and maintenance personnel to maintain N19 tunnels, which greatly improves the efficiency of network operation and maintenance, and realizes the LAN between different UPFs in 5G LAN
  • the establishment and release of tunnels will improve the management process of 5G LAN tunnels.
  • Figure 1 is a schematic diagram of a service-based 5G network architecture
  • FIG. 2 is one of the flowcharts of the method for establishing a local area network tunnel according to an embodiment of the disclosure
  • FIG. 3 is one of the flowcharts of the method for releasing a local area network tunnel according to an embodiment of the disclosure
  • FIG. 4 is the second flowchart of a method for establishing a local area network tunnel according to an embodiment of the disclosure
  • FIG. 5 is the second flowchart of a method for releasing a local area network tunnel according to an embodiment of the disclosure
  • FIG. 6 shows the N19 tunnel establishment process that is triggered when the terminal requests the establishment of a PDU session in the non-roaming/roaming traffic local offloading scenario in the embodiment of the present disclosure
  • FIG. 7 is a flow of triggering N19 tunnel establishment when user plane data is transmitted for the first time in a non-roaming/roaming traffic local offloading scenario in an embodiment of the present disclosure
  • FIG. 8 is a process of triggering the establishment of the N19 tunnel when the terminal requests to establish a PDU session in the scenario of roaming and returning to the territory in an embodiment of the present disclosure
  • FIG. 9 shows the N19 tunnel release process that is triggered when the terminal requests to release the PDU session in the non-roaming/roaming traffic local offloading scenario in the embodiment of the present disclosure
  • FIG. 10 shows the N19 tunnel release process when the PCF/SMF requests to release the PDU Session in the local offloading scenario of non-roaming/roaming traffic in the embodiment of the present disclosure
  • FIG. 11 shows the N19 tunnel release process that is triggered when the terminal requests to release the PDU session in the scenario of roaming and returning to the territory in the embodiment of the present disclosure
  • FIG. 12 shows the N19 tunnel release process that is triggered when the SMF requests to release the PDU session in the scenario of roaming and returning to the territory in the embodiment of the present disclosure
  • FIG. 13 is one of the structural schematic diagrams of the SMF of the embodiment of the disclosure.
  • FIG. 14 is the second structural diagram of the SMF of the embodiment of the disclosure.
  • FIG. 15 is the third structural diagram of the SMF of the embodiment of the disclosure.
  • FIG. 16 is the fourth structural diagram of the SMF of the embodiment of the disclosure.
  • FIG. 17 is one of the schematic structural diagrams of the UPF of the embodiment of the disclosure.
  • FIG. 18 is the second structural diagram of the UPF of the embodiment of the disclosure.
  • FIG. 19 is the third structural diagram of the UPF of the embodiment of the disclosure.
  • FIG. 20 is the fourth structural diagram of the UPF of the embodiment of the disclosure.
  • FIG. 21 is a schematic structural diagram of a network device according to an embodiment of the disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the technology described in this article is not limited to the fifth-generation mobile communication (5th-generation, 5G) system and subsequent evolution communication systems, and is not limited to the Long Term Evolution (LTE)/LTE-Advanced (LTE-A) ) System, and can also be used in various wireless communication systems, such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA) ), Orthogonal Frequency Division Multiple Access (OFDMA), Single-carrier Frequency-Division Multiple Access (SC-FDMA) and other systems.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wireless Fidelity, Wi-Fi), IEEE 802.16 (Global Microwave) Access interoperability (Worldwide Interoperability for Microwave Access, WiMAX), IEEE 802.20, Flash-OFDM and other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the terminal provided by the embodiment of the present disclosure may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook or a personal digital assistant (PDA), and a mobile Internet device (Mobile Internet).
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • Mobile Internet Mobile Internet
  • Device MID
  • Wearable Device Wearable Device
  • vehicle-mounted equipment etc.
  • an embodiment of the present disclosure provides a method for establishing a local area network tunnel.
  • the execution body of the method is SMF, and the specific steps include: step 201 and step 202.
  • Step 201 Send an establishment request to the first UPF and the second UPF, respectively, for establishing a local area network tunnel between the two first UPF and the second UPF;
  • the first UPF is the UPF selected by the PDU session when the PDU session is established, and the second UPF is any other UPF in the local area network group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • Step 202 Receive establishment responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the first UPF and the second UPF are protocol data unit (Protocol Data Unit, PDU) session anchor UPFs used for 5G LAN type services.
  • PDU Protocol Data Unit
  • the local area network tunnel is an N19 tunnel.
  • the name of the local area network tunnel is not specifically limited in the embodiments of the present disclosure.
  • the establishment request is used to establish the N19 tunnel, and the establishment request is: N4 Session Establishment Request or N4 Session Modification Request; or N19 Session Establishment Request (N19 Session Establishment Request) .
  • the establishment request includes: a session identifier (for example, N19 Session ID) and/or a tunnel identifier.
  • the establishment request sent to the first UPF and the second UPF includes: N19 core network tunnel information allocated by the SMF, such as the identifier and/or address of the N19 tunnel.
  • the establishment request sent to the first UPF does not include: N19 core network tunnel information, such as the identifier and/or address of the N19 tunnel.
  • the establishment response received from the first UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment request sent to the second UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment response received from the second UPF includes: N19 core network tunnel information allocated by the second UPF, such as the identifier and/or address of the N19 tunnel.
  • the request messages for the first UPF and the second UPF both include the core network tunnel messages allocated to the first UPF and the second UPF, that is, the ID of the N19 tunnel on the UPF side And IP address.
  • the UPF allocates information such as the tunnel ID
  • the response message contains the tunnel information of the UPF (core network tunnel message, that is, the ID and IP address of the N19 tunnel on the UPF side)
  • the message sent by the SMF to the second UPF includes tunnel information.
  • the tunnel information of the second UPF divided by the second UPF is given to the SMF, and then the SMF transmits the tunnel information to the first UPF.
  • the trigger to send the establishment request time includes one or more of the following:
  • PCF Policy Control Function
  • the N19 tunnel establishment process is illustrated.
  • SMF initiates the N19 tunnel establishment process.
  • the SMF initiates the N19 tunnel establishment process, and the SMF allocates and carries the N19 GPRS Tunneling Protocol User Plane (GPRS Tunneling Protocol User Plane, GTP-U) Tunnel ID. After the first UPF receives the response, it responds.
  • the SMF initiates a N19 tunnel establishment request, carrying the N19 GTP-U Tunnel ID to inform the second UPF in the group, and the second UPF responds to the tunnel establishment request.
  • GPRS Tunneling Protocol User Plane GPRS Tunneling Protocol User Plane
  • the SMF initiates the judgment logic of the N19 tunnel establishment process: After receiving the PDU Session establishment request, the SMF queries the UPF that the 5GLAN group belongs to. If the UPF selected during the PDU Session establishment process is the new UPF in the 5GLAN group, then Initiate the establishment of the N19 tunnel between the new UPF and the existing UPF under the group. The SMF allocates and carries the N19 GTP-U Tunnel ID.
  • UPF initiates the N19 tunnel establishment process.
  • the first UPF notifies the SMF when the UE in the group has a data transmission demand.
  • the SMF queries whether the N19 tunnel has been established between the first UPF and the second UPF. If not, it initiates a request to the first UPF, assigns and carries the N19 GTP-U Tunnel ID. Then initiate a N19 tunnel establishment request to the second UPF, carrying the N19 GTP-U Tunnel ID.
  • UPF initiates the judgment logic of the N19 tunnel establishment process: when the UE has data transmission needs, UPF checks whether it is a 5GLAN group user. If so, UPF notifies SMF. The SMF queries whether the N19 tunnel has been established between UPF1 and another UPF2 that needs to communicate. If not, the N19 tunnel establishment process is initiated, and the SMF assigns the N19 GTP-U Tunnel ID.
  • the N19 tunnel is established.
  • UPF detects that it needs to exchange data with other UPFs that have not established N19 tunnels, and establishes N19 tunnels to realize the establishment of LAN tunnels between different UPFs in 5G LANs and improve the management of 5G LAN tunnels Process. It realizes the establishment and deletion of N19 tunnels through signaling, instead of manual configuration by operation and maintenance personnel to maintain N19 tunnels, which greatly improves the efficiency of network operation and maintenance.
  • an embodiment of the present disclosure also provides a method for releasing a local area network tunnel.
  • the execution body of the method is SMF, and the specific steps include: step 301 and step 302.
  • Step 301 Send a release request to the first UPF and the second UPF, respectively, for releasing the local area network tunnel between the first UPF and the second UPF;
  • the first UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the local area network group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • Step 301 Receive release responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the name of the local area network tunnel is N19 tunnel. It is understandable that the name of the local area network tunnel is not limited in the embodiment of the present disclosure.
  • the release request is used to delete the N19 tunnel, and the release request is: N4 Session release/delete/modify Request; or, N19 Session release or delete request ( N19 Session release/delete Request).
  • the release request carries N19 GTP-U Tunnel ID parameters, etc.
  • the release request includes N19 core network tunnel information, such as an N19 tunnel identifier or address (for example, an IP address).
  • N19 core network tunnel information such as an N19 tunnel identifier or address (for example, an IP address).
  • the timing of triggering the sending of the release request includes one or more of the following:
  • the SMF initiates the N19 tunnel release process. After the first UPF receives it, it discards all data packets, clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • the SMF carries the N19 GTP-U Tunnel ID and sends a N19 tunnel release request to UPF2.
  • the second UPF discards all data packets, clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • the SMF initiates the N19 tunnel release judgment logic: After receiving the PDU Session release request, the SMF queries whether there are any users in the UPF according to the 5GLAN group ID. If the UE is the last user in the group, initiates the N19 release process (N19 GTP-U Tunnel ID).
  • the policy sent by the PCF specifies the retention period after the last user in the group releases the PDU Session, then the retention time expires and no new UE goes online during the period, and then the N19 release process is initiated.
  • the SMF or UPF when the SMF detects that there is no user of the 5G LAN group under the UPF, the SMF or UPF initiates the deletion of tunnels to other UPFs. This process improves the management of the 5G LAN tunnel. It realizes the establishment and deletion of N19 tunnels through signaling, instead of manual configuration by operation and maintenance personnel to maintain N19 tunnels, which greatly improves the efficiency of network operation and maintenance.
  • an embodiment of the present disclosure also provides a method for establishing a local area network tunnel.
  • the execution subject of the method is UPF, and the specific steps include: step 401 and step 402.
  • Step 401 Receive an establishment request from SMF, which is used to establish a LAN tunnel between UPFs;
  • Step 402 Send an establishment response to the SMF.
  • the UPF is the UPF where the PDU session is located when the PDU session is deleted.
  • the UPF is any UPF in the local area network group.
  • the UPF is a PDU session anchor UPF for 5G LAN type services.
  • the name of the local area network tunnel is N19 tunnel.
  • the name of the local area network tunnel is not specifically limited in the embodiments of the present disclosure.
  • the establishment request is used to establish the N19 tunnel, and the establishment request is: N4 Session Establishment Request or N4 Session Modification Request; or N19 Session Establishment Request (N19 Session Establishment Request) .
  • the establishment request includes: a session identifier (for example, N19 Session ID) and/or a tunnel identifier.
  • the establishment request may include: the identification and/or address of the N19 tunnel allocated by the SMF. In some other implementation manners, the establishment request may not include: the identifier and/or address of the N19 tunnel.
  • the establishment response may include: the identifier and/or address of the N19 tunnel allocated by the UPF.
  • the request messages for the first UPF and the second UPF both include the core network tunnel messages allocated to the first UPF and the second UPF, that is, the ID of the N19 tunnel on the UPF side And IP address.
  • the UPF allocates information such as the tunnel ID
  • the response message contains the tunnel information of the UPF (core network tunnel message, that is, the ID and IP address of the N19 tunnel on the UPF side)
  • the message sent by the SMF to the second UPF includes tunnel information.
  • the tunnel information of the second UPF divided by the second UPF is given to the SMF, and then the SMF transmits the tunnel information to the first UPF.
  • the timing of triggering the SMF to send the establishment request includes one or more of the following:
  • PCF Policy Control Function
  • the embodiments of the present disclosure improve the management of 5G LAN tunnels. It realizes the establishment and deletion of N19 tunnels through signaling, instead of manual configuration by operation and maintenance personnel to maintain N19 tunnels, which greatly improves the efficiency of network operation and maintenance.
  • an embodiment of the present disclosure also provides a method for releasing a local area network tunnel.
  • the execution subject of the method is UPF, and the specific steps include: step 501 and step 502.
  • Step 501 Receive a release request from SMF for releasing the LAN tunnel between UPFs;
  • Step 502 Send a release response to the SMF.
  • the UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the local area network group.
  • the UPF is any UPF in the local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the local area network tunnel is a local area network tunnel between two 5G local area network type service PDU session anchor points UPF, and the name of the local area network tunnel is N19 tunnel. It is understandable that the name of the local area network tunnel is not limited in the embodiment of the present disclosure.
  • the release request is used to delete the N19 tunnel, and the release request is: N4 Session release/delete/modify Request; or, N19 Session release or delete request ( N19 Session release/delete Request).
  • the release request carries N19 GTP-U Tunnel ID parameters, etc.
  • the release request includes N19 core network tunnel information, such as an N19 tunnel identifier or address (for example, an IP address).
  • N19 core network tunnel information such as an N19 tunnel identifier or address (for example, an IP address).
  • the timing of triggering the SMF to send the release request includes one or more of the following:
  • the embodiments of the present disclosure improve the management of 5G LAN tunnels. It realizes the establishment and deletion of N19 tunnels through signaling, instead of manual configuration by operation and maintenance personnel to maintain N19 tunnels, which greatly improves the efficiency of network operation and maintenance.
  • Embodiment 1 In the non-roaming/roaming traffic local offloading scenario, the UE requests the establishment of PDU and the N19 tunnel establishment process is triggered when the Session establishment
  • Step 1 The UE sends a PDU session establishment request to the Access and Mobility Management Function (AMF).
  • AMF Access and Mobility Management Function
  • the PDU session establishment request includes a 5GLAN group ID or DNN, and DNN or group ID may be used to represent a group.
  • AMF can obtain group information from UDM/PCF/Network Element Function (NEF)/User Data Repository (UDR).
  • NEF Network Element Function
  • UDR User Data Repository
  • Step 2 AMF selects SMF based on 5GLAN group ID or DNN.
  • Step 3 AMF requests the establishment of PDU Session SM context information from SMF by calling Nsmf_PDUSession_CreateSMContext Request.
  • Step 4 SMF goes to UDM to fetch UE subscription data.
  • Step 5 SMF sends Nsmf_PDUSession_CreateSMContext response to AMF.
  • Step 6 SMF selects UPF for the UE according to the strategy in PCF.
  • Step 7 The SMF establishes an N4 tunnel with the selected UPF1.
  • Step 8 UPF1 sends a N4 tunnel establishment success response.
  • Step 9 SMF queries the UPF that the 5GLAN group belongs to. If the UPF selected in the sixth step above is a new UPF in the 5GLAN group, initiate the establishment of the N19 tunnel between the new UPF and the existing UPF under the group , SMF sends N19 tunnel establishment request to UPF1 through N4. Assign and carry N19 GTP-U Tunnel ID.
  • Step 10 UPF1 sends a N19 tunnel establishment request response to SMF.
  • Step 11 SMF sends a N19 tunnel establishment request to UPF2 through N4. Carry N19 GTP-U Tunnel ID.
  • Step 12 UPF2 sends a N19 tunnel establishment success response to SMF, carrying 5GLAN group ID, N19 GTP-U Tunnel ID, UPF IP address.
  • Step 13 SMF calls Namf_Communication_N1N2MessageTransfer service.
  • Step 14 AMF sends N2 PDU Session establishment request to RAN
  • Step 15 The RAN exchanges specific signaling with the UE.
  • Step 16 RAN sends N2 PDU Session response to AMF.
  • Embodiment 2 In the non-roaming/roaming traffic local offloading scenario, the N19 tunnel establishment process is triggered when the user plane data is first transmitted.
  • Step 1 The UE communicates in the group and sends uplink data.
  • Step 2 After the UPF receives the data transmission request, it triggers the data transmission notification subscribed to by the SMF.
  • Step 3 SMF queries the UPF that the 5GLAN group belongs to. If the UPF1 is a new UPF in the 5GLAN group, it initiates the establishment of the N19 tunnel between the new UPF and the existing UPF under the group, and the SMF is sent to UPF1 through N4 N19 tunnel establishment request. Assign and carry N19 GTP-U Tunnel ID.
  • Step 4 UPF1 sends a N19 tunnel establishment request response to SMF.
  • Step 5 SMF sends a N19 tunnel establishment request to UPF2 through N4. Carry N19 GTP-U Tunnel ID.
  • Step 6 UPF2 sends a N19 tunnel establishment success response to SMF, carrying 5GLAN group ID, N19 GTP-U Tunnel ID, UPF IP address.
  • Embodiment 3 The N19 tunnel establishment process is triggered when the terminal requests the establishment of PDU and Session establishment in the scenario of roaming and returning to the territory.
  • Step 1 The UE sends a PDU session establishment request to the AMF.
  • the PDU session establishment request includes the 5GLAN group ID.
  • Step 2 AMF selects V-SMF according to the 5GLAN group ID.
  • Step 3 The AMF requests the establishment of PDU Session SM context information to the V-SMF by calling Nsmf_PDUSession_CreateSMContext Request.
  • Step 4 V-SMF sends Nsmf_PDUSession_CreateSMContext response to AMF.
  • Step 5 V-SMF selects V-UPF for the UE according to the strategy in PCF.
  • Step 6 V-SMF establishes N4 tunnel with selected V-UPF.
  • V-UPF sends a N4 tunnel establishment success response.
  • Step 7 V-SMF requests H-SMF to establish PDU Session SM context information.
  • Step 8 The H-SMF selects the H-UPF for the UE according to the strategy in the PCF.
  • Step 9 The H-SMF establishes an N4 tunnel with the selected H-UPF1. H-UPF1 sends an N4 tunnel establishment success response.
  • Step 10 H-SMF queries the UPF that the 5GLAN group belongs to. If the H-UPF selected in step 8 above is a new UPF in the 5GLAN group, an N19 tunnel between the new UPF and the existing UPF under the group is initiated H-SMF sends a N19 tunnel establishment request to H-UPF1 through N4. Assign and carry N19 GTP-U Tunnel ID.
  • Step 11 H-UPF1 sends a N19 tunnel establishment request response to H-SMF.
  • Step 12 H-SMF sends a N19 tunnel establishment request to H-UPF2 through N4. Carry N19 GTP-U Tunnel ID.
  • Step 13 H-UPF2 sends a N19 tunnel establishment success response to H-SMF, carrying 5GLAN group ID, N19 GTP-U Tunnel ID, UPF IP address.
  • Step 14 H-SMF sends SM context establishment response to V-SMF.
  • Step 15 V-SMF calls Namf_Communication_N1N2MessageTransfer service.
  • Step 16 AMF sends N2 PDU Session establishment request to RAN.
  • Step 17 Perform RRC reconfiguration.
  • Step 18 RAN sends N2 PDU Session response to AMF.
  • Embodiment 4 In the non-roaming/roaming traffic local offloading scenario, the N19 tunnel release process is triggered when the terminal requests to release the PDU Session.
  • Step 1 The UE sends a PDU session release request (carrying 5G LAN group ID, PDU session ID) by sending a NAS message, and the NAS message is sent to the AMF through the RAN.
  • AMF calls the Nsmf_PDUSession_UpdateSMContext service to provide N1SM messages (carrying 5G LAN group ID, PDU session ID) to SMF.
  • Step 2 SMF releases the IP address and other user plane resources.
  • SMF sends an N4 session release request to UPF1.
  • UPF1 sends an N4 session release response to SMF.
  • SMF sends N4 session release request to UPF2.
  • UPF2 sends an N4session release response to SMF (not shown in the figure).
  • Step 3 According to the group ID (5GLAN group ID/DNN), the SMF queries whether there are users of the group on the UPF. If the UE is the last user in the group, it initiates the N19 release process (N19 GTP-U Tunnel ID) .
  • the policy sent by the PCF specifies the retention period after the last user in the group releases the PDU Session, then the retention time expires and no new UE goes online during the period, and then the N19 release process is initiated.
  • Step 4 UPF1 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • Step 5 SMF initiates N19 tunnel release request (N19 GTP-U Tunnel ID) to UPF2 at the other end of the N19 tunnel in the group.
  • Step 6 UPF2 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • Step 7 SMF responds to Nsmf_PDUSession_UpdateSMContext response of AMF.
  • Step 8 AMF initiates an N2 resource release request.
  • Step 9 Release AN resources.
  • Step 10 N2 releases resource response.
  • Step 11 AMF informs SMF that the session has been released through the Nsmf_PDUSession_UpdateSMContext service.
  • Step 12 The UE sends a learned PDU Session Release message.
  • Step 13 The AMF informs the SMF that the UE has learned that the PDU Session has been released.
  • Step 14 The SMF responds that the UE has learned the PDU Session Released message.
  • Step 15 SMF informs AMF that the SM context of the PDU Session has been released.
  • Step 16 AMF releases the association between SMF ID and PDU Session ID, DNN, and 5GLAN group ID.
  • Embodiment 5 The N19 tunnel release process is triggered when the PCF/SMF requests to release the PDU Session in the non-roaming/roaming traffic local offload scenario.
  • Step 1a PCF invokes the SM policy association termination process and initiates the PDU Session release process.
  • Step 1b SMF (DN initiated request/UDM initiated request/received AMF notification, the UE has moved out of the LAND service area/local configuration policy/) decides to initiate the termination PDU Session process.
  • SMF DNS (DN initiated request/UDM initiated request/received AMF notification, the UE has moved out of the LAND service area/local configuration policy/) decides to initiate the termination PDU Session process.
  • Step 2 SMF releases the IP address and other user plane resources.
  • SMF sends an N4 session release request to UPF1.
  • UPF1 sends an N4 session release response to SMF.
  • SMF sends N4 session release request to UPF2.
  • UPF2 sends an N4 session release response to the SMF (not shown in the figure).
  • Step 3 According to the group ID (5GLAN group ID/DNN), the SMF queries whether there are users of the group on the UPF. If the UE is the last user in the group, it initiates the N19 release process (N19 GTP-U Tunnel ID) .
  • the policy sent by the PCF specifies the retention period after the last user in the group releases the PDU Session, then the retention time expires and no new UE goes online during the period, and then the N19 release process is initiated.
  • Step 4 UPF1 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • Step 5 SMF initiates N19 tunnel release request (N19 GTP-U Tunnel ID) to UPF2 at the other end of the N19 tunnel in the group.
  • Step 6 UPF2 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to the SMF.
  • Step 7 SMF calls Namf_Communication_N1N2MessageTransfer. If the user plane connection is still in use, the SMF calls the N2 resource release request to release the RAN side resources.
  • Step 8 AMF initiates an N2 resource release request.
  • Step 9 Release AN resources.
  • Step 10 N2 releases resource response.
  • Step 11 AMF informs SMF that the session has been released through the Nsmf_PDUSession_UpdateSMContext service.
  • Step 12 The UE sends a learned PDU Session Release message.
  • Step 13 The AMF informs the SMF that the UE has learned that the PDU Session has been released.
  • Step 14 The SMF responds that the UE has learned the PDU Session Released message.
  • Step 15 SMF informs AMF that the SM context of the PDU Session has been released.
  • Step 16 AMF releases the association between SMF ID and PDU Session ID, DNN, and 5GLAN group ID.
  • Embodiment 6 The N19 tunnel release process is triggered when the UE requests to release the PDU Session in the scenario of roaming back to the territory
  • Step 1 The UE sends a PDU session release request (carrying 5G LAN group ID, PDU session ID) by sending a NAS message, and the NAS message is sent to the AMF through the RAN.
  • AMF calls the Nsmf_PDUSession_UpdateSMContext service to provide N1SM messages (carrying 5G LAN group ID, PDU session ID) to SMF.
  • Step 2 H-SMF releases the IP address and other user plane resources.
  • H-SMF sends N4 session release request to H-UPF1.
  • H-UPF1 sends an N4 session release response to H-SMF.
  • H-SMF sends N4 session release request to H-UPF2.
  • H-UPF2 sends an N4 session release response to H-SMF (not shown in the figure).
  • Step 3 According to the group ID (5GLAN group ID/DNN), the H-SMF queries whether there are users of the group on the H-UPF1. If the UE is the last user in the group, it initiates the N19 release process (N19 GTP- U Tunnel ID).
  • the policy sent by the PCF specifies the retention period after the last user in the group releases the PDU Session, then the retention time expires and no new UE goes online during the period, and then the N19 release process is initiated.
  • Step 4 H-UPF1 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to H-SMF.
  • Step 5 H-SMF initiates N19 tunnel release request (N19 GTP-U Tunnel ID) to H-UPF2 at the other end of the N19 tunnel in the group.
  • Step 6 H-UPF2 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to H-SMF.
  • Step 7 H-SMF sends a PDU session release request response to V-SMF.
  • Step 8 V-SMF sends N4 session release request to V-UPF.
  • V-UPF sends N4 session release response to V-SMF.
  • Step 9 V-SMF responds to Nsmf_PDUSession_UpdateSMContext response of AMF.
  • Step 10 AMF initiates an N2 resource release request.
  • Step 11 Release AN resources.
  • Step 12 N2 releases resource response.
  • Step 13 AMF informs SMF that the session has been released through Nsmf_PDUSession_UpdateSMContext service.
  • Step 14 The UE sends a learned PDU Session release message.
  • Step 15 The AMF informs the V-SMF that the UE has learned that the PDU Session has been released.
  • Step 16 V-SMF responds that the UE has learned the PDU and Session has been released message.
  • Step 17 The V-SMF sends a PDU Session release response to the H-SMF.
  • Step 18 The H-SMF notifies the V-SMF PDU Session that the SM context has been released.
  • Step 19 V-SMF notifies AMF that the SM context of the PDU Session has been released.
  • Step 20 AMF releases the association between SMF ID and PDU Session ID, DNN, and 5GLAN group ID.
  • Embodiment 7 The N19 tunnel release procedure is triggered when the SMF requests to release the PDU Session in the scenario of roaming back to the territory.
  • Step 1 H-SMF (DN initiated request/UDM initiated request/received AMF notification, UE has removed the LAND service area/local configuration policy/) decided to initiate the termination of PDU Session process.
  • H-SMF DNS initiated request/UDM initiated request/received AMF notification, UE has removed the LAND service area/local configuration policy/
  • Step 2 H-SMF releases the IP address and other user plane resources.
  • H-SMF sends N4 session release request to H-UPF1.
  • H-UPF1 sends an N4 session release response to H-SMF.
  • H-SMF sends N4 session release request to H-UPF2.
  • H-UPF2 sends an N4 session release response to H-SMF (not shown in the figure).
  • Step 3 According to the group ID (5GLAN group ID/DNN), the H-SMF queries whether there are users of the group on the H-UPF1. If the UE is the last user in the group, it initiates the N19 release process (N19 GTP- U Tunnel ID).
  • the policy sent by the PCF specifies the retention period after the last user in the group releases the PDU Session, then the retention time expires and no new UE goes online during the period, and then the N19 release process is initiated.
  • Step 4 H-UPF1 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to H-SMF.
  • Step 5 H-SMF initiates N19 tunnel release request (N19 GTP-U Tunnel ID) to H-UPF2 at the other end of the N19 tunnel in the group.
  • Step 6 H-UPF2 discards all data packets and clears the N19 tunnel information and context, and sends an N19 tunnel release response to H-SMF.
  • Step 7 H-SMF sends a PDU session release request response to V-SMF.
  • Step 8 V-SMF sends N4 session release request to V-UPF.
  • V-UPF sends N4 session release response to V-SMF.
  • Step 9 V-SMF responds to Nsmf_PDUSession_UpdateSMContext response of AMF.
  • Step 10 AMF initiates N2 resource release request.
  • Step 11 Release AN resources.
  • Step 12 N2 releases resource response.
  • Step 13 AMF informs SMF that the session has been released through Nsmf_PDUSession_UpdateSMContext service.
  • Step 14 The UE sends a learned PDU Session release message.
  • Step 15 The AMF informs the V-SMF that the UE has learned that the PDU Session has been released.
  • Step 16 V-SMF responds that the UE has learned the PDU and Session has been released message.
  • Step 17 The V-SMF sends a PDU Session release response to the H-SMF.
  • Step 18 The H-SMF notifies the V-SMF PDU Session that the SM context has been released.
  • Step 19 V-SMF notifies AMF that the SM context of the PDU Session has been released.
  • Step 20 AMF releases the association between SMF ID and PDU Session ID, DNN, and 5GLAN group ID.
  • an embodiment of the present disclosure further provides an SMF, and the SMF 1300 includes:
  • the first sending module 1301 is configured to send establishment requests to the first UPF and the second UPF, respectively, for establishing a local area network tunnel between the first UPF and the second UPF;
  • the first receiving module 1302 is configured to receive establishment responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the name of the local area network tunnel is N19 tunnel.
  • the establishment request is used to establish an N19 tunnel, and the establishment request is: an N4 session establishment or modification request; or, an N19 session establishment request.
  • the establishment request sent to the first UPF and the second UPF includes: N19 core network tunnel information allocated by the SMF, such as the identifier and/or address of the N19 tunnel.
  • the establishment request sent to the first UPF does not include: N19 core network tunnel information, such as the identifier and/or address of the N19 tunnel.
  • the establishment response received from the first UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment request sent to the second UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment response received from the second UPF includes: N19 core network tunnel information allocated by the second UPF, such as the identifier and/or address of the N19 tunnel.
  • the trigger to send the establishment request time includes one or a combination of the following:
  • the first UPF is the UPF selected by the PDU session when the PDU session is established, and the second UPF is any other UPF in the local area network group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • the SMF provided in the embodiments of the present disclosure can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • an embodiment of the present disclosure also provides an SMF, and the SMF 1200 includes: a first transceiver 1401 and a first processor 1402;
  • the first transceiver 1401 is configured to send establishment requests to the first UPF and the second UPF, respectively, for establishing a local area network tunnel between the first UPF and the second UPF;
  • the first transceiver 1402 is further configured to receive establishment responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the name of the local area network tunnel is N19 tunnel.
  • the establishment request is used to establish an N19 tunnel, and the establishment request is: an N4 session establishment or modification request; or, an N19 session establishment request.
  • the establishment request sent to the first UPF and the second UPF includes: N19 core network tunnel information allocated by the SMF, such as the identifier and/or address of the N19 tunnel.
  • the establishment request sent to the first UPF does not include: N19 core network tunnel information, such as the identifier and/or address of the N19 tunnel.
  • the establishment response received from the first UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment request sent to the second UPF includes: N19 core network tunnel information allocated by the first UPF, such as the identifier and/or address of the N19 tunnel;
  • the establishment response received from the second UPF includes: N19 core network tunnel information allocated by the second UPF, such as the identifier and/or address of the N19 tunnel.
  • the trigger to send the establishment request time includes one or a combination of the following:
  • the first UPF is the UPF selected by the PDU session when the PDU session is established, and the second UPF is any other UPF in the local area network group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • the SMF provided in the embodiments of the present disclosure can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • an embodiment of the present disclosure further provides an SMF, and the SMF 1500 includes:
  • the second sending module 1501 is configured to send release requests to the first UPF and the second UPF, respectively, for releasing the local area network tunnel between the first UPF and the second UPF;
  • the second receiving module 1502 is configured to receive release responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the name of the local area network tunnel is N19 tunnel, but of course it is not limited to this.
  • the release request is used to delete the N19 tunnel, and the release request is: a N4 session release or deletion or modification request; or, an N19 session release or deletion request.
  • the release request includes N19 core network tunnel information, such as N19 tunnel identifier or address.
  • triggering the timing of sending the release request includes one or more of the following combinations:
  • the first UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the local area network group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • the SMF provided in the embodiments of the present disclosure can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the SMF 1600 includes: a second transceiver 1601 and a second processor 1602;
  • the second transceiver 1601 is configured to send release requests to the first UPF and the second UPF, respectively, for releasing the local area network tunnel between the first UPF and the second UPF;
  • the second transceiver 1602 is further configured to receive release responses from the first UPF and the second UPF respectively;
  • the first UPF and the second UPF belong to the same local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the name of the local area network tunnel is N19 tunnel.
  • the release request is used to delete the N19 tunnel, and the release request is: a N4 session release or deletion or modification request; or, an N19 session release or deletion request.
  • the release request includes N19 core network tunnel information, such as N19 tunnel identifier or address.
  • the timing of triggering the sending of the release request includes one or a combination of the following:
  • the first UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the LAN group.
  • the first UPF and the second UPF are any UPF in the local area network group.
  • the SMF provided in the embodiments of the present disclosure can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • an embodiment of the present disclosure further provides a UPF, and the UPF 1700 includes:
  • the third receiving module 1701 is configured to receive an establishment request from the SMF, and is used to establish a LAN tunnel between UPFs;
  • the third sending module 1702 is configured to send an establishment response to the SMF.
  • the UPF is the UPF selected by the SMF when the PDU session is established.
  • the UPF is any UPF in the local area network group.
  • the UPF is a PDU session anchor UPF for 5G LAN type services.
  • the name of the local area network tunnel is N19 tunnel.
  • the name of the local area network tunnel is not specifically limited in the embodiments of the present disclosure.
  • the establishment request is used to establish the N19 tunnel, and the establishment request is: N4 Session Establishment Request or N4 Session Modification Request; or N19 Session Establishment Request (N19 Session Establishment Request) .
  • the establishment request includes: a session identifier (for example, N19 Session ID) and/or a tunnel identifier.
  • the establishment request may include: the identification and/or address of the N19 tunnel allocated by the SMF. In some other implementation manners, the establishment request may not include: the identifier and/or address of the N19 tunnel.
  • the establishment response may include: the identifier and/or address of the N19 tunnel allocated by the UPF.
  • the request messages for the first UPF and the second UPF both include the core network tunnel messages allocated to the first UPF and the second UPF, that is, the ID of the N19 tunnel on the UPF side And IP address.
  • the message sent by the SMF to the first UPF does not contain the tunnel ID information, and the response message contains the tunnel information of the UPF (core network tunnel message, that is, the ID and IP address of the N19 tunnel on the UPF side)
  • the message sent by the SMF to the second UPF includes tunnel information.
  • the tunnel information of UPF2 divided by UPF2 is given to the SMF, and then the SMF transmits the tunnel information to the first UPF.
  • the timing of triggering the SMF to send the establishment request includes one or more of the following:
  • PCF Policy Control Function
  • the UPF 1800 includes: a third transceiver 1801 and a third processor 1802;
  • the third transceiver 1801 is configured to receive an establishment request from the SMF, and is configured to establish a local area network tunnel between UPFs;
  • the third transceiver 1801 is also used to send an establishment response to the SMF.
  • the UPF is the UP selected by the SMF when the PDU session is established.
  • the UPF is any UPF in the local area network group.
  • the UPF is a PDU session anchor UPF for 5G LAN type services.
  • the name of the local area network tunnel is N19 tunnel.
  • the name of the local area network tunnel is not specifically limited in the embodiments of the present disclosure.
  • the establishment request is used to establish the N19 tunnel, and the establishment request is: N4 Session Establishment Request or N4 Session Modification Request; or N19 Session Establishment Request (N19 Session Establishment Request) .
  • the establishment request includes: a session identifier (for example, N19 Session ID) and/or a tunnel identifier.
  • the establishment request may include: the identification and/or address of the N19 tunnel allocated by the SMF. In some other implementation manners, the establishment request may not include: the identifier and/or address of the N19 tunnel.
  • the establishment response may include: the identifier and/or address of the N19 tunnel allocated by the UPF.
  • the request messages for the first UPF and the second UPF both include the core network tunnel messages allocated to the first UPF and the second UPF, that is, the ID of the N19 tunnel on the UPF side And IP address.
  • the UPF allocates information such as the tunnel ID
  • the response message contains the tunnel information of the UPF (core network tunnel message, that is, the ID and IP address of the N19 tunnel on the UPF side)
  • the message sent by the SMF to the second UPF includes tunnel information.
  • the tunnel information of UPF2 divided by UPF2 is given to the SMF, and then the SMF transmits the tunnel information to the first UPF.
  • the timing of triggering the SMF to send the establishment request includes one or more of the following:
  • PCF Policy Control Function
  • an embodiment of the present disclosure further provides a UPF, and the UPF 1900 includes:
  • the fourth receiving module 1901 is configured to receive a release request from the SMF, and is configured to release the LAN tunnel between UPFs;
  • the fourth sending module 1902 is configured to send a release response to the SMF.
  • the UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the local area network group.
  • the UPF is any UPF in the local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the local area network tunnel is a local area network tunnel between two 5G local area network type service PDU session anchor points UPF, and the name of the local area network tunnel is N19 tunnel. It is understandable that the name of the local area network tunnel is not limited in the embodiment of the present disclosure.
  • the release request is used to delete the N19 tunnel, and the release request is: N4 Session release/delete/modify Request; or, N19 Session release or delete request ( N19 Session release/delete Request).
  • the release request carries N19 GTP-U Tunnel ID parameters, etc.
  • the release request includes N19 core network tunnel information, such as an N19 tunnel identifier or address (for example, an IP address).
  • N19 core network tunnel information such as an N19 tunnel identifier or address (for example, an IP address).
  • the timing of triggering the SMF to send the release request includes one or more of the following:
  • an embodiment of the present disclosure further provides a UPF, and the UPF 2000 includes: a fourth transceiver 2001 and a fourth processor 2002;
  • the fourth transceiver 2001 is configured to receive a release request from the SMF, and is configured to release the LAN tunnel between UPFs;
  • the fourth transceiver 2001 is also used to send a release response to the SMF.
  • the UPF is the UPF where the PDU session is located when the PDU session is deleted, and the second UPF is any other UPF in the local area network group.
  • the UPF is any UPF in the local area network group.
  • the first UPF and the second UPF are PDU session anchor points UPF for 5G local area network type services.
  • the local area network tunnel is a local area network tunnel between two 5G local area network type service PDU session anchor points UPF, and the name of the local area network tunnel is N19 tunnel. It is understandable that the name of the local area network tunnel is not limited in the embodiment of the present disclosure.
  • the release request is used to delete the N19 tunnel, and the release request is: N4 Session release/delete/modify Request; or, N19 Session release or delete request ( N19 Session release/delete Request).
  • the release request carries N19 GTP-U Tunnel ID parameters, etc.
  • the release request includes N19 core network tunnel information, such as an N19 tunnel identifier or address (for example, an IP address).
  • N19 core network tunnel information such as an N19 tunnel identifier or address (for example, an IP address).
  • the timing of triggering the SMF to send the release request includes one or more of the following:
  • FIG. 21 is a structural diagram of a network device applied in an embodiment of the present disclosure.
  • the network device 2100 includes: a processor 2101, a transceiver 2102, a memory 1703, and a bus interface, where:
  • the network device 2100 further includes: a computer program that is stored in the memory 2103 and can be run on the processor 2101.
  • the computer program is executed by the processor 2101 as shown in Figure 2 or Figure 3 or Figure 4 Or the steps shown in Figure 5.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2101 and various circuits of the memory represented by the memory 2103 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2102 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 2101 is responsible for managing the bus architecture and general processing, and the memory 2103 can store data used by the processor 2101 when performing operations.
  • the memory 2103 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synch link DRAM, SLDRAM
  • DRRAM Direct Rambus RAM
  • the network device provided by the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the steps of the method or algorithm described in connection with the disclosure of the present disclosure may be implemented in a hardware manner, or may be implemented in a manner of executing software instructions on a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disks, mobile hard disks, read-only optical disks, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium can be carried in an ASIC.
  • the ASIC can be carried in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in the present disclosure can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Other electronic units or combinations of the functions described above.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种局域网隧道建立、释放的方法及设备,该局域网隧道建立的方法包括:向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;从所述第一UPF和所述第二UPF分别接收建立响应;其中,所述第一UPF和所述第二UPF属同一局域网组。

Description

局域网隧道建立、释放的方法及设备
相关申请的交叉引用
本申请主张在2019年6月18日在中国提交的中国专利申请号No.201910527550.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种局域网隧道建立、释放的方法及设备。
背景技术
在第五代移动通信技术(fifth-generation,5G)网络的架构,若干个相对独立可被灵活调用的服务组成网络功能,这些功能通过统一的接口为任何许可的网络功能提供其服务。
会话管理功能(Session Management Function,SMF),负责5G用户的会话的生命周期管理、互联网协议(Internet Protocol,IP)地址分配、数据路由选择、业务连续性管理、策略规则匹配以及流量计费处理等功能;
用户面功能(User plane function,UPF),负责用户数据报文的路由转发、业务识别与策略执行等功能;
统一数据管理(Unified Data Management,UDM),负责5G用户签约数据的管理、用户鉴权数据管理、用户的标识管理等功能;
5G局域网(Local Area Network,LAN)是3GPP相关阶段最具市场前景的技术之一,可为合作伙伴提供定制化5G行业局域网,使得企业终端与企业云共处于同一个“局域网”中。主要面向企业云接入、智能制造等领域,实现终端的灵活组管理、直接通信及随时随地接入企业云。
在5G LAN技术中,在5G网络中引入了组(group)的概念,处于同一个“局域网”中的用户属于一个组。在用户签约数据中可以指定用户归属的组,并用特定的数据网络名称(Data Network Name,DNN)或者组标识(group ID,group identifier)来指示一个群组。
基于当前的标准,一个5G LAN group内的所有用户由一个SMF或者一组SMF(SMF SET)来服务。由一个或者多个UPF来服务该组的用户。
对于5G局域网来说,5GLAN group是一个重要的粒度。不同于大网UPF之间的N9隧道,局域网隧道是为5GLAN group组内UE之间通信建立的UPF之间的隧道。该局域网隧道如何建立和释放是亟待解决的问题。
发明内容
本公开实施例提供一种局域网隧道建立、释放的方法及设备,解决5G局域网隧道的管理的问题,实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率。
本公开实施例提供一种局域网隧道建立的方法,应用于SMF,包括:
向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
从所述第一UPF和所述第二UPF分别接收建立响应;
可选地,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
可选地,所述局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。
可选地,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立或修改请求;或者,N19会话建立请求。
可选地,发送给所述第一UPF和第二UPF的建立请求包括:所述SMF分配的N19核心网隧道信息。
可选地,发送给所述第一UPF的建立请求不包括:N19核心网隧道信息;
从所述第一UPF接收的建立响应包括:所述第一UPF分配的N19核心网隧道信息;
发送给所述第二UPF的建立请求包括:所述第一UPF分配的N19核心网隧道信息;
从所述第二UPF接收的建立响应包括:所述第二UPF分配的N19核心网隧道信息。
可选地,触发发送建立请求的时机,包括以下一项或多项组合:
在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
有UPF间的数据转发需求且UPF间没有N19隧道;
应用功能AF的应用需求;
策略控制功能PCF的策略;
网管的指示;
在PDU会话建立之前,由SMF预配置。
可选地,所述第一UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF,所述第二UPF是局域网组内其他任意UPF;或者,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例还提供一种局域网隧道释放的方法,应用于SMF,包括:
向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
从所述第一UPF和所述第二UPF分别接收释放响应。
可选地,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
可选地,所述局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。
可选地,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放/修改/删除请求;或者,N19会话释放或删除请求。
可选地,所述释放请求包括N19核心网隧道信息。
可选地,触发发送释放请求的时机,包括以下一项或多项组合:
PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户/会话;
UPF间没有数据转发需求。
可选地,所述第一UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF;或者,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例还提供一种局域网隧道建立的方法,应用于UPF,包括:
从SMF接收建立请求,所述建立请求用于建立UPF之间的局域网隧道;
向所述SMF发送建立响应。
本公开实施例还提供一种局域网隧道释放的方法,应用于UPF,包括:
从SMF接收释放请求,所述释放请求用于释放UPF之间的局域网隧道;
向所述SMF发送释放响应。
本公开实施例还提供一种SMF,包括:
第一发送模块,用于向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
第一接收模块,用于从所述第一UPF和所述第二UPF分别接收建立响应。
本公开实施例还提供一种SMF,包括:第一收发机和第一处理器;
所述第一收发机,用于向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
所述第一收发机,还用于从所述第一UPF和所述第二UPF分别接收建立响应。
本公开实施例还提供一种SMF,包括:
第二发送模块,用于向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
第二接收模块,用于从所述第一UPF和所述第二UPF分别接收释放响应。
本公开实施例还提供一种SMF,包括:第二收发机和第二处理器;
所述第二收发机,用于向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
所述第二收发机,还用于从所述第一UPF和所述第二UPF分别接收释放响应。
本公开实施例还提供一种UPF,包括:
第三接收模块,用于从SMF接收建立请求,用于建立UPF之间的局域网隧道;
第三发送模块,用于向所述SMF发送建立响应。
本公开实施例还提供一种UPF,包括:第三收发机和第三处理器;
所述第三收发机,用于从SMF接收建立请求,用于建立UPF之间的局域网隧道;
所述第三收发机还用于,用于向所述SMF发送建立响应。
本公开实施例还提供一种UPF,包括:
第四接收模块,用于从SMF接收释放请求,用于释放UPF之间的局域网隧道;
第四发送模块,用于向所述SMF发送释放响应。
本公开实施例还提供一种UPF,包括:第四收发机和第四处理器;
所述第四收发机,用于从SMF接收释放请求,用于释放UPF之间的局域网隧道;
所述第四收发机,还用于向所述SMF发送释放响应。
本公开实施例还提供一种网络设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的局域网隧道建立的方法的步骤;或者,如上所述的局域网隧道释放的方法的步骤。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的局域网隧道建立的方法的步骤;或者,如上所述的局域网隧道释放的方法的步骤。
本公开实施例中,实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率,实现5G局域网中不同UPF之间局域网隧道的建立、释放,完善5G局域网隧道的管理流程。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为基于服务的5G网络架构示意图;
图2为本公开实施例的局域网隧道建立的方法流程图之一;
图3为本公开实施例的局域网隧道释放的方法流程图之一;
图4为本公开实施例的局域网隧道建立的方法流程图之二;
图5为本公开实施例的局域网隧道释放的方法流程图之二;
图6为本公开实施例中非漫游/漫游流量本地卸载场景下终端请求建立PDU会话建立时触发N19隧道建立流程;
图7为本公开实施例中非漫游/漫游流量本地卸载场景下用户面数据首次传输时触发N19隧道建立流程;
图8为本公开实施例中漫游回归属地场景下终端请求建立PDU会话建立时触发N19隧道建立流程;
图9为本公开实施例中非漫游/漫游流量本地卸载场景下终端请求释放PDU会话时触发N19隧道释放流程;
图10为本公开实施例中非漫游/漫游流量本地卸载场景下PCF/SMF请求释放PDU Session时触发N19隧道释放流程;
图11为本公开实施例中漫游回归属地场景下终端请求释放PDU会话时触发N19隧道释放流程;
图12为本公开实施例中漫游回归属地场景下SMF请求释放PDU会话时触发N19隧道释放流程;
图13为本公开实施例的SMF的结构示意图之一;
图14为本公开实施例的SMF的结构示意图之二;
图15为本公开实施例的SMF的结构示意图之三;
图16为本公开实施例的SMF的结构示意图之四;
图17为本公开实施例的UPF的结构示意图之一;
图18为本公开实施例的UPF的结构示意图之二;
图19为本公开实施例的UPF的结构示意图之三;
图20为本公开实施例的UPF的结构示意图之四;
图21为本公开实施例的网络设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于第五代移动通信(5th-generation,5G)***以及后续演进通信***,以及不限于长期演进(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。
术语“***”和“网络”常被可互换地使用。CDMA***可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA***可实现诸如全球移动通信***(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA***可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进 型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(无线保真(Wireless Fidelity,Wi-Fi))、IEEE 802.16(全球微波接入互操作性(Worldwide Interoperability for Microwave Access,WiMAX))、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信***(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。
本公开实施例提供的终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。
参见图2,本公开实施例提供一种局域网隧道建立的方法,该方法的执行主体为SMF,具体步骤包括:步骤201和步骤202。
步骤201:向第一UPF和第二UPF分别发送建立请求,用于建立两个所述第一UPF和第二UPF之间的局域网隧道;
在一些实施方式中,所述第一UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,第一UPF和第二UPF是局域网组内的任意UPF。
步骤202:从所述第一UPF和所述第二UPF分别接收建立响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的协议数据单元(Protocol Data Unit,PDU)会话锚点UPF。
在一些实施方式中,所述局域网隧道为N19隧道,当然可以理解的是,在本公开实施例中对局域网隧道的名称不做具体限定。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立请求(N4 Session Establishment Request)或N4会话修改请求; 或者,N19会话建立请求(N19 Session Establishment Request)。可选地,建立请求包括:会话标识(例如N19 Session ID)和/或隧道标识。
在一些实施方式中,发送给所述第一UPF和第二UPF的建立请求包括:所述SMF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
在一些实施方式中,发送给所述第一UPF的建立请求不包括:N19核心网隧道信息,例如N19隧道的标识和/或地址。
从所述第一UPF接收的建立响应包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
发送给所述第二UPF的建立请求包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
从所述第二UPF接收的建立响应包括:所述第二UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
示例性地,如果是SMF分配隧道ID等信息,则给第一UPF和第二UPF的请求消息中都包含分配给第一UPF和第二UPF的核心网隧道消息,即UPF侧N19隧道的ID和IP地址。
如果是UPF分配隧道ID等信息,则SMF给第一UPF发的消息中没有隧道ID信息,响应消息中有UPF分的隧道信息(核心网隧道消息,即UPF侧N19隧道的ID和IP地址),然后SMF给第二UPF发的消息包括隧道信息,第二UPF的响应消息中,把第二UPF分的第二UPF的隧道信息给SMF,然后SMF将隧道信息传给第一UPF。
在一些实施方式中,触发发送建立请求的时机,包括以下一项或多项:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求且UPF间没有N19隧道;
(3)应用功能(Application function,AF)的应用需求;
(4)策略控制功能(Policy Control Function,PCF)的策略;
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
示例性地,N19隧道建立流程。
1)SMF发起N19隧道建立流程。SMF发起N19隧道建立流程,SMF分配并携带N19GPRS隧道协议用户面(GPRS Tunneling Protocol User Plane,GTP-U)Tunnel ID。第一UPF收到后反馈响应。SMF发起N19隧道建立请求,携带N19 GTP-U Tunnel ID告知组内第二UPF,第二UPF响应隧道建立请求。
例如,SMF发起N19隧道建立流程的判断逻辑:SMF在收到PDU Session建立请求后,查询该5GLAN group所属UPF情况,如果PDU Session建立过程中选定的UPF为该5GLAN group中新的UPF,则发起该新UPF到该group下已有UPF之间N19隧道的建立流程,SMF分配并携带N19 GTP-U Tunnel ID。
2)UPF发起N19隧道建立流程。第一UPF在组内UE有数据传输需求时,通知SMF。SMF查询第一UPF和第二UPF之间是否已建立N19隧道,若无,则向第一UPF发起请求,分配并携带N19 GTP-U Tunnel ID。再向第二UPF发起N19隧道建立请求,携带N19 GTP-U Tunnel ID。
例如,UPF发起N19隧道建立流程的判断逻辑:当UE有数据传输需求时,UPF检查是否为5GLAN group用户。若是,则UPF通知SMF。SMF查询UPF1与需要通信的另一UPF2是否已建立N19隧道,如果没有,则发起N19隧道建立流程,SMF分配N19 GTP-U Tunnel ID。
在本公开实施例中,UE会话建立时,SMF分配的UPF与当前组内使用的UPF不同时,建立N19隧道。当用户面有数据传输需求时,UPF检测到需要与未建立过N19隧道的其他UPF进行数据交互时,建立N19隧道,实现5G局域网中不同UPF之间局域网隧道的建立,完善5G LAN隧道的管理流程。实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率。
参见图3,本公开实施例还提供一种局域网隧道释放的方法,该方法的执行主体为SMF,具体步骤包括:步骤301和步骤302。
步骤301:向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
在一些实施方式中,所述第一UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,第一UPF和第二UPF是局域网组内任意的UPF。
步骤301:从所述第一UPF和所述第二UPF分别接收释放响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道。可以理解的是,在本公开实施例对局域网隧道的名称不做限定。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求(N4 Session release/delete/modify Request);或者,N19会话释放或删除请求(N19 Session release/delete Request)。可选地,释放请求携带N19 GTP-U Tunnel ID参数等。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址(例如IP地址)。
在一些实施方式中,触发发送释放请求的时机,包括以下一项或多项:
(1)PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
(2)UPF没有数据转发需求。
示例性地,N19隧道释放流程:
SMF发起N19隧道释放流程,第一UPF收到后放弃所有的数据包,清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。SMF携带N19 GTP-U Tunnel ID向UPF2发送N19隧道释放请求,第二UPF放弃所有的数据包,清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。
例如,SMF发起N19隧道释放判断逻辑:SMF在收到PDU Session释放请求后,根据5GLAN group ID查询该UPF上是否还有该组用户,若该UE为组内的最后一个用户,发起N19释放流程(N19 GTP-U Tunnel ID)。
可选地,如果PCF发送的策略中,说明了组内最后一个用户释放PDU Session后要求保留的时长,则保留时间到期同时期间没有新的UE上线,再发起N19释放流程。
在本公开实施例中,当SMF检测到UPF下没有该5G LAN group的用户 时,SMF或者UPF发起到其他UPF的隧道删除,该流程完善了5G LAN隧道的管理。实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率。
参见图4,本公开实施例还提供一种局域网隧道建立的方法,该方法的执行主体为UPF,具体步骤包括:步骤401和步骤402。
步骤401:从SMF接收建立请求,用于建立UPF之间的局域网隧道;
步骤402:向所述SMF发送建立响应。
在一些实施方式中,UPF是PDU会话删除时,所述PDU会话所在的UPF。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道,当然可以理解的是,在本公开实施例中对局域网隧道的名称不做具体限定。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立请求(N4 Session Establishment Request)或N4会话修改请求;或者,N19会话建立请求(N19 Session Establishment Request)。可选地,建立请求包括:会话标识(例如N19 Session ID)和/或隧道标识。
在一些实施方式中,建立请求可以包括:所述SMF分配的N19隧道的标识和/或地址。在另一些实施方式中,建立请求可以不包括:N19隧道的标识和/或地址。
在一些实施方式中,建立响应可以包括:UPF分配的N19隧道的标识和/或地址。
示例性地,如果是SMF分配隧道ID等信息,则给第一UPF和第二UPF的请求消息中都包含分配给第一UPF和第二UPF的核心网隧道消息,即UPF侧N19隧道的ID和IP地址。
如果是UPF分配隧道ID等信息,则SMF给第一UPF发的消息中没有隧道ID信息,响应消息中有UPF分的隧道信息(核心网隧道消息,即UPF侧N19隧道的ID和IP地址),然后SMF给第二UPF发的消息包括隧道信息, 第二UPF的响应消息中,把第二UPF分的第二UPF的隧道信息给SMF,然后SMF将隧道信息传给第一UPF。
在一些实施方式中,触发SMF发送建立请求的时机,包括以下一项或多项:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求,且UPF间没有N19隧道;
(3)应用功能(Application function,AF)的应用需求;
(4)策略控制功能(Policy Control Function,PCF)的策略。
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
本公开实施例,完善了5G LAN隧道的管理。实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率。
参见图5,本公开实施例还提供一种局域网隧道释放的方法,该方法的执行主体为UPF,具体步骤包括:步骤501和步骤502。
步骤501:从SMF接收释放请求,用于释放UPF之间的局域网隧道;
步骤502:向所述SMF发送释放响应。
在一些实施方式中,UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。可以理解的是,在本公开实施例对局域网隧道的名称不做限定。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求(N4 Session release/delete/modify Request);或者,N19会话释放或删除请求(N19 Session release/delete Request)。可选地, 释放请求携带N19 GTP-U Tunnel ID参数等。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址(例如IP地址)。
在一些实施方式中,触发SMF发送释放请求的时机,包括以下一项或多项:
(1)PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
(2)UPF间没有数据转发需求。
本公开实施例,完善了5G LAN隧道的管理。实现了通过信令来建立和删除N19隧道,而不用运维人员通过手工配置的方式来维护N19隧道,大大提升了网络运维效率。
实施例1:非漫游/漫游流量本地卸载场景下UE请求建立PDU Session建立时触发N19隧道建立流程
参见图6,具体流程如下:
步骤1:UE向接入和移动性管理功能(Access and Mobility Management Function,AMF)发送PDU session建立请求。
示例性地,PDU session建立请求包含5GLAN group ID或者DNN,可以用DNN或者group ID表示一个组。
如果UE没有带5GLAN group ID,AMF可以从UDM/PCF/网络单元功能(Network Element Function,NEF)/用户数据存储库(UDR)取group信息。
步骤2:AMF根据5GLAN group ID或者DNN选择SMF。
步骤3:AMF向SMF通过调用Nsmf_PDUSession_CreateSMContext Request请求建立PDU Session SM上下文信息。
步骤4:SMF去UDM处取UE签约数据。
步骤5:SMF向AMF发送Nsmf_PDUSession_CreateSMContext响应。
步骤6:SMF根据PCF中的策略,为该UE选取UPF。
步骤7:SMF与选定的UPF1建立N4隧道。
步骤8:UPF1发送N4隧道建立成功响应。
步骤9:SMF查询该5GLAN group所属UPF情况,如果上述第六步中选 定的UPF为该5GLAN group中新的UPF,则发起该新UPF到该group下已有UPF之间N19隧道的建立流程,SMF通过N4向UPF1发送N19隧道建立请求。分配并携带N19 GTP-U Tunnel ID。
步骤10:UPF1向SMF发送N19隧道建立请求响应。
步骤11:SMF通过N4向UPF2发送N19隧道建立请求。携带N19 GTP-U Tunnel ID。
步骤12:UPF2向SMF发送N19隧道建立成功响应,携带5GLAN group ID,N19 GTP-U Tunnel ID,UPF IP address。
步骤13:SMF调用Namf_Communication_N1N2MessageTransfer服务。
步骤14:AMF向RAN发送N2 PDU Session建立请求
步骤15:RAN向UE进行特定的信令交换。
步骤16:RAN向AMF发送N2 PDU Session响应。
实施例2:非漫游/漫游流量本地卸载场景下用户面数据首次传输时触发N19隧道建立流程。
参见图7,具体流程如下:
步骤1:UE在组内进行通信,发送了上行数据。
步骤2:UPF收到数据传输请求后,触发SMF订阅的数据传输通知。
步骤3:SMF查询该5GLAN group所属UPF情况,如果该UPF1为该5GLAN group中新的UPF,则发起该新UPF到该group下已有UPF之间N19隧道的建立流程,SMF通过N4向UPF1发送N19隧道建立请求。分配并携带N19 GTP-U Tunnel ID。
步骤4:UPF1向SMF发送N19隧道建立请求响应。
步骤5:SMF通过N4向UPF2发送N19隧道建立请求。携带N19 GTP-U Tunnel ID。
步骤6:UPF2向SMF发送N19隧道建立成功响应,携带5GLAN group ID,N19 GTP-U Tunnel ID,UPF IP address。
实施例3:漫游回归属地场景下终端请求建立PDU Session建立时触发N19隧道建立流程。
参见图8,具体流程如下:
步骤1:UE向AMF发送PDU session建立请求。
示例性地,PDU session建立请求包含5GLAN group ID。
步骤2:AMF根据5GLAN group ID选择V-SMF。
步骤3:AMF向V-SMF通过调用Nsmf_PDUSession_CreateSMContext Request请求建立PDU Session SM上下文信息。
步骤4:V-SMF向AMF发送Nsmf_PDUSession_CreateSMContext响应。
步骤5:V-SMF根据PCF中的策略,为该UE选取V-UPF。
步骤6:V-SMF与选定的V-UPF建立N4隧道。V-UPF发送N4隧道建立成功响应。
步骤7:V-SMF向H-SMF请求建立PDU Session SM上下文信息。
步骤8:H-SMF根据PCF中的策略,为该UE选取H-UPF。
步骤9:H-SMF与选定的H-UPF1建立N4隧道。H-UPF1发送N4隧道建立成功响应。
步骤10:H-SMF查询该5GLAN group所属UPF情况,如果上述步骤8中选定的H-UPF为该5GLAN group中新的UPF,则发起该新UPF到该group下已有UPF之间N19隧道的建立流程,H-SMF通过N4向H-UPF1发送N19隧道建立请求。分配并携带N19 GTP-U Tunnel ID。
步骤11:H-UPF1向H-SMF发送N19隧道建立请求响应。
步骤12:H-SMF通过N4向H-UPF2发送N19隧道建立请求。携带N19 GTP-U Tunnel ID。
步骤13:H-UPF2向H-SMF发送N19隧道建立成功响应,携带5GLAN group ID,N19 GTP-U Tunnel ID,UPF IP address。
步骤14:H-SMF向V-SMF发送SM上下文建立响应。
步骤15:V-SMF调用Namf_Communication_N1N2MessageTransfer服务。
步骤16:AMF向RAN发送N2 PDU Session建立请求。
步骤17:进行RRC重新配置。
步骤18:RAN向AMF发送N2 PDU Session响应。
实施例4:非漫游/漫游流量本地卸载场景下终端请求释放PDU Session时触发N19隧道释放流程。
参见图9,具体流程如下:
步骤1:UE通过发送NAS消息来发送PDU session释放请求(携带5G LAN group ID,PDU session ID),NAS消息通过RAN发送给AMF。AMF调用Nsmf_PDUSession_UpdateSMContext服务向SMF提供N1SM消息(携带5G LAN group ID,PDU session ID)。
步骤2:SMF释放IP地址及其他用户面资源。
SMF向UPF1发送N4 session释放请求。UPF1向SMF发送N4 session释放响应。SMF向UPF2发送N4 session释放请求。UPF2向SMF发送N4session释放响应(图中未示出)。
步骤3:SMF根据group ID(可以为5GLAN group ID/DNN)查询该UPF上是否还有该组用户,若该UE为组内的最后一个用户,发起N19释放流程(N19 GTP-U Tunnel ID)。
可选地,如果PCF发送的策略中,说明了组内最后一个用户释放PDU Session后要求保留的时长,则保留时间到期同时期间没有新的UE上线,再发起N19释放流程。
步骤4:UPF1放弃所有的数据包并清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。
步骤5:SMF向组内的N19隧道另一端的UPF2发起N19隧道释放请求(N19 GTP-U Tunnel ID)。
步骤6:UPF2放弃所有的数据包并清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。
步骤7:SMF响应AMF的Nsmf_PDUSession_UpdateSMContext response。
步骤8:AMF发起N2资源释放请求。
步骤9:释放AN资源。
步骤10:N2释放资源响应。
步骤11:AMF通过Nsmf_PDUSession_UpdateSMContext服务通知SMF N2 session已释放。
步骤12:UE发送获知PDU Session释放消息。
步骤13:AMF告知SMF UE已经获知PDU Session已释放。
步骤14:SMF响应UE已经获知PDU Session已释放消息。
步骤15:SMF通知AMF PDU Session的SM上下文已经被释放。
步骤16:AMF释放SMF ID与PDU Session ID、DNN、5GLAN group ID之间的关联。
实施例5:非漫游/漫游流量本地卸载场景下PCF/SMF请求释放PDU Session时触发N19隧道释放流程。
参见图10,具体流程如下:
步骤1a:PCF调用SM策略关联终止流程,发起PDU Session释放流程。
步骤1b:SMF(DN发起请求/UDM发起请求/收到AMF通知,UE已经移出LAND服务区/本地配置策略/)决定发起终止PDU Session流程。
步骤2:SMF释放IP地址及其他用户面资源。
SMF向UPF1发送N4 session释放请求。UPF1向SMF发送N4 session释放响应。SMF向UPF2发送N4 session释放请求。UPF2向SMF发送N4 session释放响应(图中未示出)。
步骤3:SMF根据group ID(可以为5GLAN group ID/DNN)查询该UPF上是否还有该组用户,若该UE为组内的最后一个用户,发起N19释放流程(N19 GTP-U Tunnel ID)。
可选地,如果PCF发送的策略中,说明了组内最后一个用户释放PDU Session后要求保留的时长,则保留时间到期同时期间没有新的UE上线,再发起N19释放流程。
步骤4:UPF1放弃所有的数据包并清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。
步骤5:SMF向组内的N19隧道另一端的UPF2发起N19隧道释放请求(N19 GTP-U Tunnel ID)。
步骤6:UPF2放弃所有的数据包并清除N19隧道信息及上下文,并向SMF发送N19隧道释放响应。
步骤7:SMF调用Namf_Communication_N1N2MessageTransfer。如果用户面连接仍在使用中,则SMF调用N2资源释放请求来释放RAN侧资源。
步骤8:AMF发起N2资源释放请求。
步骤9:释放AN资源。
步骤10:N2释放资源响应。
步骤11:AMF通过Nsmf_PDUSession_UpdateSMContext服务通知SMF N2 session已释放。
步骤12:UE发送获知PDU Session释放消息。
步骤13:AMF告知SMF UE已经获知PDU Session已释放。
步骤14:SMF响应UE已经获知PDU Session已释放消息。
步骤15:SMF通知AMF PDU Session的SM上下文已经被释放。
步骤16:AMF释放SMF ID与PDU Session ID、DNN、5GLAN group ID之间的关联。
实施例6:漫游回归属地场景下UE请求释放PDU Session时触发N19隧道释放流程
参见图11,具体流程如下:
步骤1:UE通过发送NAS消息来发送PDU session释放请求(携带5G LAN group ID,PDU session ID),NAS消息通过RAN发送给AMF。AMF调用Nsmf_PDUSession_UpdateSMContext服务向SMF提供N1SM消息(携带5G LAN group ID,PDU session ID)。
步骤2:H-SMF释放IP地址及其他用户面资源。
H-SMF向H-UPF1发送N4 session释放请求。H-UPF1向H-SMF发送N4 session释放响应。H-SMF向H-UPF2发送N4 session释放请求。H-UPF2向H-SMF发送N4 session释放响应(图中未示出)。
步骤3:H-SMF根据group ID(可以为5GLAN group ID/DNN)查询该H-UPF1上是否还有该组用户,若该UE为组内的最后一个用户,发起N19释放流程(N19 GTP-U Tunnel ID)。
可选地,如果PCF发送的策略中,说明了组内最后一个用户释放PDU Session后要求保留的时长,则保留时间到期同时期间没有新的UE上线,再发起N19释放流程。
步骤4:H-UPF1放弃所有的数据包并清除N19隧道信息及上下文,并向H-SMF发送N19隧道释放响应。
步骤5:H-SMF向组内的N19隧道另一端的H-UPF2发起N19隧道释放请求(N19 GTP-U Tunnel ID)。
步骤6:H-UPF2放弃所有的数据包并清除N19隧道信息及上下文,并向H-SMF发送N19隧道释放响应。
步骤7:H-SMF向V-SMF发送PDU会话释放请求响应。
步骤8:V-SMF向V-UPF发送N4 session释放请求。V-UPF向V-SMF发送N4 session释放响应。
步骤9:V-SMF响应AMF的Nsmf_PDUSession_UpdateSMContext response。
步骤10:AMF发起N2资源释放请求。
步骤11:释放AN资源。
步骤12:N2释放资源响应。
步骤13:AMF通过Nsmf_PDUSession_UpdateSMContext服务通知SMF N2 session已释放。
步骤14:UE发送获知PDU Session释放消息。
步骤15:AMF告知V-SMF UE已经获知PDU Session已释放。
步骤16:V-SMF响应UE已经获知PDU Session已释放消息。
步骤17:V-SMF向H-SMF发送PDU Session释放响应。
步骤18:H-SMF通知V-SMF PDU Session的SM上下文已经被释放。
步骤19:V-SMF通知AMF PDU Session的SM上下文已经被释放。
步骤20:AMF释放SMF ID与PDU Session ID、DNN、5GLAN group ID之间的关联。
实施例7:漫游回归属地场景下SMF请求释放PDU Session时触发N19隧道释放流程。
参见图12,具体流程如下:
步骤1:H-SMF(DN发起请求/UDM发起请求/收到AMF通知,UE已经移除LAND服务区/本地配置策略/)决定发起终止PDU Session流程。
步骤2:H-SMF释放IP地址及其他用户面资源。
H-SMF向H-UPF1发送N4 session释放请求。H-UPF1向H-SMF发送 N4 session释放响应。H-SMF向H-UPF2发送N4 session释放请求。H-UPF2向H-SMF发送N4 session释放响应(图中未示出)。
步骤3:H-SMF根据group ID(可以为5GLAN group ID/DNN)查询该H-UPF1上是否还有该组用户,若该UE为组内的最后一个用户,发起N19释放流程(N19 GTP-U Tunnel ID)。
可选地,如果PCF发送的策略中,说明了组内最后一个用户释放PDU Session后要求保留的时长,则保留时间到期同时期间没有新的UE上线,再发起N19释放流程。
步骤4:H-UPF1放弃所有的数据包并清除N19隧道信息及上下文,并向H-SMF发送N19隧道释放响应。
步骤5:H-SMF向组内的N19隧道另一端的H-UPF2发起N19隧道释放请求(N19 GTP-U Tunnel ID)。
步骤6:H-UPF2放弃所有的数据包并清除N19隧道信息及上下文,并向H-SMF发送N19隧道释放响应。
步骤7:H-SMF向V-SMF发送PDU会话释放请求响应。
步骤8:V-SMF向V-UPF发送N4 session释放请求。V-UPF向V-SMF发送N4 session释放响应。
步骤9:V-SMF响应AMF的Nsmf_PDUSession_UpdateSMContext response。
步骤10:AMF发起N2资源释放请求。
步骤11:释放AN资源。
步骤12:N2释放资源响应。
步骤13:AMF通过Nsmf_PDUSession_UpdateSMContext服务通知SMF N2 session已释放。
步骤14:UE发送获知PDU Session释放消息。
步骤15:AMF告知V-SMF UE已经获知PDU Session已释放。
步骤16:V-SMF响应UE已经获知PDU Session已释放消息。
步骤17:V-SMF向H-SMF发送PDU Session释放响应。
步骤18:H-SMF通知V-SMF PDU Session的SM上下文已经被释放。
步骤19:V-SMF通知AMF PDU Session的SM上下文已经被释放。
步骤20:AMF释放SMF ID与PDU Session ID、DNN、5GLAN group ID之间的关联。
参见图13,本公开实施例还提供一种SMF,该SMF1300包括:
第一发送模块1301,用于向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
第一接收模块1302,用于从所述第一UPF和所述第二UPF分别接收建立响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立或修改请求;或者,N19会话建立请求。
在一些实施方式中,发送给所述第一UPF和第二UPF的建立请求包括:所述SMF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
在一些实施方式中,发送给所述第一UPF的建立请求不包括:N19核心网隧道信息,例如N19隧道的标识和/或地址。
从所述第一UPF接收的建立响应包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
发送给所述第二UPF的建立请求包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
从所述第二UPF接收的建立响应包括:所述第二UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
在一些实施方式中,触发发送建立请求的时机,包括以下一项或多项组合:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求且UPF间没有N19隧道;
(3)应用功能AF的应用需求;
(4)策略控制功能PCF的策略。
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
在一些实施方式中,所述第一UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例提供的SMF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图14,本公开实施例还提供一种SMF,该SMF1200包括:第一收发机1401和第一处理器1402;
所述第一收发机1401,用于向第一UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
所述第一收发机1402,还用于从所述第一UPF和所述第二UPF分别接收建立响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述局域网隧道的名称为N19隧道。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立或修改请求;或者,N19会话建立请求。
在一些实施方式中,发送给所述第一UPF和第二UPF的建立请求包括:所述SMF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
在一些实施方式中,发送给所述第一UPF的建立请求不包括:N19核心网隧道信息,例如N19隧道的标识和/或地址。
从所述第一UPF接收的建立响应包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
发送给所述第二UPF的建立请求包括:所述第一UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址;
从所述第二UPF接收的建立响应包括:所述第二UPF分配的N19核心网隧道信息,例如N19隧道的标识和/或地址。
在一些实施方式中,触发发送建立请求的时机,包括以下一项或多项组合:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求且UPF间没有N19隧道;
(3)应用功能AF的应用需求;
(4)策略控制功能PCF的策略;
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
在一些实施方式中,所述第一UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例提供的SMF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图15,本公开实施例还提供一种SMF,该SMF1500包括:
第二发送模块1501,用于向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
第二接收模块1502,用于从所述第一UPF和所述第二UPF分别接收释放响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道,当然并不限于此。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求;或者,N19会话释放或删除请求。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址。
在一些实施方式中,触发发送释放请求的时机,包括以下一项或多项组 合:
PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
UPF间没有数据转发需求。
在一些实施方式中,所述第一UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例提供的SMF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图16,本公开实施例还提供一种SMF,该SMF1600包括:第二收发机1601和第二处理器1602;
所述第二收发机1601,用于向第一UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
所述第二收发机1602,还用于从所述第一UPF和所述第二UPF分别接收释放响应;
其中,所述第一UPF和所述第二UPF属同一局域网组。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求;或者,N19会话释放或删除请求。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址。
在一些实施方式中,触发发送释放请求的时机,包括以下一项或多项组合:
PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
UPF间没有数据转发需求。
在一些实施方式中,所述第一UPF是PDU会话删除时,所述PDU会话 所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,所述第一UPF和第二UPF为局域网组内任意的UPF。
本公开实施例提供的SMF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图17,本公开实施例还提供一种UPF,该UPF1700包括:
第三接收模块1701,用于从SMF接收建立请求,用于建立UPF之间的局域网隧道;
第三发送模块1702,用于向所述SMF发送建立响应。
在一些实施方式中,UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道,当然可以理解的是,在本公开实施例中对局域网隧道的名称不做具体限定。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立请求(N4 Session Establishment Request)或N4会话修改请求;或者,N19会话建立请求(N19 Session Establishment Request)。可选地,建立请求包括:会话标识(例如N19 Session ID)和/或隧道标识。
在一些实施方式中,建立请求可以包括:所述SMF分配的N19隧道的标识和/或地址。在另一些实施方式中,建立请求可以不包括:N19隧道的标识和/或地址。
在一些实施方式中,建立响应可以包括:UPF分配的N19隧道的标识和/或地址。
示例性地,如果是SMF分配隧道ID等信息,则给第一UPF和第二UPF的请求消息中都包含分配给第一UPF和第二UPF的核心网隧道消息,即UPF侧N19隧道的ID和IP地址。
如果是UPF分配隧道ID等信息,则SMF给第一UPF发的消息中没有隧道ID信息,响应消息中有UPF分的隧道信息(核心网隧道消息,即UPF 侧N19隧道的ID和IP地址),然后SMF给第二UPF发的消息包括隧道信息,第二UPF的响应消息中,把UPF2分的UPF2的隧道信息给SMF,然后SMF将隧道信息传给第一UPF。
在一些实施方式中,触发SMF发送建立请求的时机,包括以下一项或多项:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求且UPF间没有N19隧道;
(3)应用功能(Application function,AF)的应用需求;
(4)策略控制功能(Policy Control Function,PCF)的策略;
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
本公开实施例提供的UPF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图18,本公开实施例还提供一种UPF,该UPF1800包括:第三收发机1801和第三处理器1802;
所述第三收发机1801,用于从SMF接收建立请求,用于建立UPF之间的局域网隧道;
所述第三收发机1801,还用于向所述SMF发送建立响应。
在一些实施方式中,UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UP。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,所述局域网隧道的名称为N19隧道,当然可以理解的是,在本公开实施例中对局域网隧道的名称不做具体限定。
在一些实施方式中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立请求(N4 Session Establishment Request)或N4会话修改请求;或者,N19会话建立请求(N19 Session Establishment Request)。可选地,建 立请求包括:会话标识(例如N19 Session ID)和/或隧道标识。
在一些实施方式中,建立请求可以包括:所述SMF分配的N19隧道的标识和/或地址。在另一些实施方式中,建立请求可以不包括:N19隧道的标识和/或地址。
在一些实施方式中,建立响应可以包括:UPF分配的N19隧道的标识和/或地址。
示例性地,如果是SMF分配隧道ID等信息,则给第一UPF和第二UPF的请求消息中都包含分配给第一UPF和第二UPF的核心网隧道消息,即UPF侧N19隧道的ID和IP地址。
如果是UPF分配隧道ID等信息,则SMF给第一UPF发的消息中没有隧道ID信息,响应消息中有UPF分的隧道信息(核心网隧道消息,即UPF侧N19隧道的ID和IP地址),然后SMF给第二UPF发的消息包括隧道信息,第二UPF的响应消息中,把UPF2分的UPF2的隧道信息给SMF,然后SMF将隧道信息传给第一UPF。
在一些实施方式中,触发SMF发送建立请求的时机,包括以下一项或多项:
(1)在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
(2)有UPF间的数据转发需求且UPF间没有N19隧道;
(3)应用功能(Application function,AF)的应用需求;
(4)策略控制功能(Policy Control Function,PCF)的策略;
(5)网管的指示;
(6)在PDU会话建立之前,由SMF预配置。
本公开实施例提供的UPF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图19,本公开实施例还提供一种UPF,该UPF1900包括:
第四接收模块1901,用于从SMF接收释放请求,用于释放UPF之间的局域网隧道;
第四发送模块1902,用于向所述SMF发送释放响应。
在一些实施方式中,UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。可以理解的是,在本公开实施例对局域网隧道的名称不做限定。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求(N4 Session release/delete/modify Request);或者,N19会话释放或删除请求(N19 Session release/delete Request)。可选地,释放请求携带N19 GTP-U Tunnel ID参数等。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址(例如IP地址)。
在一些实施方式中,触发SMF发送释放请求的时机,包括以下一项或多项:
(1)PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
(2)UPF间没有数据转发需求。
本公开实施例提供的UPF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图20,本公开实施例还提供一种UPF,该UPF2000包括:第四收发机2001和第四处理器2002;
所述第四收发机2001,用于从SMF接收释放请求,用于释放UPF之间的局域网隧道;
所述第四收发机2001,还用于向所述SMF发送释放响应。
在一些实施方式中,UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF。
在一些实施方式中,UPF是局域网组内任意的UPF。
在一些实施方式中,所述第一UPF和所述第二UPF是用于5G局域网类型的业务的PDU会话锚点UPF。
在一些实施方式中,局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。可以理解的是,在本公开实施例对局域网隧道的名称不做限定。
在一些实施方式中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放或删除或修改请求(N4 Session release/delete/modify Request);或者,N19会话释放或删除请求(N19 Session release/delete Request)。可选地,释放请求携带N19 GTP-U Tunnel ID参数等。
在一些实施方式中,所述释放请求包括N19核心网隧道信息,例如N19隧道标识或地址(例如IP地址)。
在一些实施方式中,触发SMF发送释放请求的时机,包括以下一项或多项:
(1)PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户或会话;
(2)UPF间没有数据转发需求。
本公开实施例提供的UPF,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
请参阅图21,图21是本公开实施例应用的网络设备的结构图,如图21所示,网络设备2100包括:处理器2101、收发机2102、存储器1703和总线接口,其中:
在本公开的一个实施例中,网络设备2100还包括:存储在存储器上2103并可在处理器2101上运行的计算机程序,计算机程序被处理器2101执行时实现如上图2或图3或图4或图5所示的步骤。
在图21中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2101代表的一个或多个处理器和存储器2103代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2102可以是多个元件,即包 括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器2101负责管理总线架构和通常的处理,存储器2103可以存储处理器2101在执行操作时所使用的数据。
可以理解,本公开实施例中的存储器2103可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的***和方法的存储器2103旨在包括但不限于这些和任意其它适合类型的存储器。
本公开实施例提供的网络设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以由在处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以携带在ASIC中。另外,该ASIC可以携带在核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、***、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在 一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (27)

  1. 一种局域网隧道建立的方法,应用于会话管理功能SMF,包括:
    向第一用户面功能UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
    从所述第一UPF和所述第二UPF分别接收建立响应。
  2. 根据权利要求1所述的方法,其中,所述第一UPF和所述第二UPF是用于第五代移动通信技术5G局域网类型的业务的协议数据单元PDU会话锚点UPF。
  3. 根据权利要求1所述的方法,其中,所述局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。
  4. 根据权利要求1所述的方法,其中,所述建立请求用于建立N19隧道,所述建立请求为:N4会话建立或修改请求;或者,N19会话建立请求。
  5. 根据权利要求1所述的方法,其中,发送给所述第一UPF和第二UPF的建立请求包括:所述SMF分配的N19核心网隧道信息。
  6. 根据权利要求1所述的方法,其中,发送给所述第一UPF的建立请求不包括:N19核心网隧道信息;
    从所述第一UPF接收的建立响应包括:所述第一UPF分配的N19核心网隧道信息;
    发送给所述第二UPF的建立请求包括:所述第一UPF分配的N19核心网隧道信息;
    从所述第二UPF接收的建立响应包括:所述第二UPF分配的N19核心网隧道信息。
  7. 根据权利要求1所述的方法,其中,触发发送建立请求的时机,包括以下一项或多项组合:
    在PDU会话建立时,为所述PDU会话选择的UPF到局域网组内其他UPF之间没有N19隧道;
    有UPF间的数据转发需求且UPF间没有N19隧道;
    应用功能AF的应用需求;
    策略控制功能PCF的策略;
    网管的指示;
    在PDU会话建立之前,由SMF预配置。
  8. 根据权利要求1所述的方法,其中,所述第一UPF是PDU会话建立时,所述SMF为所述PDU会话选择的UPF,所述第二UPF是局域网组内其他任意UPF;或者,所述第一UPF和第二UPF为局域网组内任意的UPF。
  9. 一种局域网隧道释放的方法,应用于会话管理功能SMF,包括:
    向第一用户面功能UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
    从所述第一UPF和所述第二UPF分别接收释放响应。
  10. 根据权利要求9所述的方法,其中,所述第一UPF和所述第二UPF是用于第五代移动通信技术5G局域网类型的业务的协议数据单元PDU会话锚点UPF。
  11. 根据权利要求9所述的方法,其中,所述局域网隧道为两个5G局域网类型的业务的PDU会话锚点UPF之间的局域网隧道,所述局域网隧道的名称为N19隧道。
  12. 根据权利要求9所述的方法,其中,所述释放请求用于删除N19隧道,所述释放请求为:N4会话释放/修改/删除请求;或者,N19会话释放或删除请求。
  13. 根据权利要求9所述的方法,其中,所述释放请求包括N19核心网隧道信息。
  14. 根据权利要求9所述的方法,其中,触发发送释放请求的时机,包括以下一项或多项组合:
    PDU会话删除时,所述PDU会话所在的UPF内没有所述局域网组内其他的用户/会话;
    UPF间没有数据转发需求。
  15. 根据权利要求9所述的方法,其中,所述第一UPF是PDU会话删除时,所述PDU会话所在的UPF,所述第二UPF是局域网组内其他任意UPF; 或者,所述第一UPF和第二UPF为局域网组内任意的UPF。
  16. 一种局域网隧道建立的方法,应用于用户面功能UPF,包括:
    从会话管理功能SMF接收建立请求,所述建立请求用于建立UPF之间的局域网隧道;
    向所述SMF发送建立响应。
  17. 一种局域网隧道释放的方法,应用于用户面功能UPF,包括:
    从会话管理功能SMF接收释放请求,所述释放请求用于释放UPF之间的局域网隧道;
    向所述SMF发送释放响应。
  18. 一种会话管理功能SMF,包括:
    第一发送模块,用于向第一用户面功能UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
    第一接收模块,用于从所述第一UPF和所述第二UPF分别接收建立响应。
  19. 一种会话管理功能SMF,包括:第一收发机和第一处理器;
    所述第一收发机,用于向第一用户面功能UPF和第二UPF分别发送建立请求,用于建立所述第一UPF和第二UPF之间的局域网隧道;
    所述第一收发机,还用于从所述第一UPF和所述第二UPF分别接收建立响应。
  20. 一种会话管理功能SMF,包括:
    第二发送模块,用于向第一用户面功能UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
    第二接收模块,用于从所述第一UPF和所述第二UPF分别接收释放响应。
  21. 一种会话管理功能SMF,包括:第二收发机和第二处理器;
    所述第二收发机,用于向第一用户面功能UPF和第二UPF分别发送释放请求,用于释放所述第一UPF和第二UPF之间的局域网隧道;
    所述第二收发机,还用于从所述第一UPF和所述第二UPF分别接收释放响应。
  22. 一种用户面功能UPF,包括:
    第三接收模块,用于从会话管理功能SMF接收建立请求,用于建立UPF 之间的局域网隧道;
    第三发送模块,用于向所述SMF发送建立响应。
  23. 一种用户面功能UPF,包括:第三收发机和第三处理器;
    所述第三收发机,用于从会话管理功能SMF接收建立请求,用于建立UPF之间的局域网隧道;
    所述第三收发机还用于,用于向所述SMF发送建立响应。
  24. 一种用户面功能UPF,包括:
    第四接收模块,用于从会话管理功能SMF接收释放请求,用于释放UPF之间的局域网隧道;
    第四发送模块,用于向所述SMF发送释放响应。
  25. 一种用户面功能UPF,包括:第四收发机和第四处理器;
    所述第四收发机,用于从会话管理功能SMF接收释放请求,用于释放UPF之间的局域网隧道;
    所述第四收发机,还用于向所述SMF发送释放响应。
  26. 一种网络设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的局域网隧道建立的方法的步骤;或者,如权利要求9至15中任一项所述的局域网隧道释放的方法的步骤;或者,实现如权利要求16所述的局域网隧道建立的方法的步骤;或者,如权利要求17所述的局域网隧道释放的方法的步骤。
  27. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的局域网隧道建立的方法的步骤;或者,如权利要求9至15中任一项所述的局域网隧道释放的方法的步骤;或者,实现如权利要求16所述的局域网隧道建立的方法的步骤;或者,如权利要求17所述的局域网隧道释放的方法的步骤。
PCT/CN2020/095802 2019-06-18 2020-06-12 局域网隧道建立、释放的方法及设备 WO2020253627A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20827290.6A EP3989672A4 (en) 2019-06-18 2020-06-12 METHOD AND DEVICE FOR ESTABLISHING AND RELEASING A LAN TUNNEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910527550.1 2019-06-18
CN201910527550.1A CN112105066B (zh) 2019-06-18 2019-06-18 一种局域网隧道建立、释放的方法及设备

Publications (1)

Publication Number Publication Date
WO2020253627A1 true WO2020253627A1 (zh) 2020-12-24

Family

ID=73749370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095802 WO2020253627A1 (zh) 2019-06-18 2020-06-12 局域网隧道建立、释放的方法及设备

Country Status (3)

Country Link
EP (1) EP3989672A4 (zh)
CN (1) CN112105066B (zh)
WO (1) WO2020253627A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143795A (zh) * 2021-12-14 2022-03-04 天翼物联科技有限公司 基于5g网络的局域网组网方法和***
CN115022909A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 Upf网元、基于核心网的数据传输方法、设备及介质
WO2023116560A1 (zh) * 2021-12-21 2023-06-29 华为技术有限公司 通信的方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702724A (zh) * 2016-11-27 2018-10-23 Lg 电子株式会社 无线通信***中的注销方法及其装置
WO2018232253A1 (en) * 2017-06-15 2018-12-20 Convida Wireless, Llc Network exposure function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851856B (zh) * 2016-12-23 2019-04-09 电信科学技术研究院有限公司 一种基于移动中继的无线通信建立方法及网络设备
US10251147B2 (en) * 2017-03-20 2019-04-02 Samsung Electronics Co., Ltd. Method for supporting efficient PDU session activation and deactivation in cellular networks
CN108738086B (zh) * 2017-04-21 2020-08-07 华为技术有限公司 一种用户面重选的方法及装置
CN109275160B (zh) * 2017-07-17 2020-07-07 华为技术有限公司 数据分流方法、设备及***
WO2019027742A1 (en) * 2017-08-04 2019-02-07 Intel IP Corporation ESTABLISHING DATA TRANSFER TUNNEL BETWEEN TWO USER PLAN FUNCTIONS IN A FIFTH GENERATION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702724A (zh) * 2016-11-27 2018-10-23 Lg 电子株式会社 无线通信***中的注销方法及其装置
WO2018232253A1 (en) * 2017-06-15 2018-12-20 Convida Wireless, Llc Network exposure function

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "5G LAN group communication with UPF autonomous traffic forwarding", SA WG2 MEETING #133 S2-1905197, 17 May 2019 (2019-05-17), XP051720706 *
OPPO: "Adding 5GLAN N19 tunnel management", 3GPP TSG-SA WG2 MEETING #133 S2-1906562, 17 May 2019 (2019-05-17), XP051737143 *
See also references of EP3989672A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143795A (zh) * 2021-12-14 2022-03-04 天翼物联科技有限公司 基于5g网络的局域网组网方法和***
CN114143795B (zh) * 2021-12-14 2024-01-30 天翼物联科技有限公司 基于5g网络的局域网组网方法和***
WO2023116560A1 (zh) * 2021-12-21 2023-06-29 华为技术有限公司 通信的方法与装置
CN115022909A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 Upf网元、基于核心网的数据传输方法、设备及介质
CN115022909B (zh) * 2022-05-27 2024-01-30 中国电信股份有限公司 Upf网元、基于核心网的数据传输方法、设备及介质

Also Published As

Publication number Publication date
EP3989672A1 (en) 2022-04-27
CN112105066A (zh) 2020-12-18
EP3989672A4 (en) 2023-07-12
CN112105066B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US20230016378A1 (en) Pdu session management
EP4007367B1 (en) Communication methods, target base station and core network device
KR102092495B1 (ko) 무선 단말, 무선국, 및 이들의 방법
WO2020147837A1 (zh) 信息传送的方法及通信设备
WO2020253627A1 (zh) 局域网隧道建立、释放的方法及设备
US20200022083A1 (en) Method for controlling status of terminal device, terminal device, and network device
US20220264258A1 (en) Communications Method and Apparatus, and Device
CN110519709B (zh) 上下文管理方法及装置
WO2018126535A1 (zh) 一种会话管理方法及装置
WO2019101074A1 (zh) 一种通信方法、装置及***
WO2021164763A1 (zh) 模式切换的方法及设备
US11202338B2 (en) Session establishment method and apparatus
WO2018099291A1 (zh) 数据传输方法、装置及***、存储介质
JP2021505083A (ja) 通信方法、通信装置、及び通信システム
US11206580B2 (en) Communication method and communications apparatus
US11082893B2 (en) Session migration method and device applied to a UE tracking area update
CN113194154A (zh) 设备触发撤销/代替过程的技术
WO2016061735A1 (zh) 一种接入网络的方法以及相关装置
WO2020156404A1 (zh) 一种上报终端能力的方法及装置
CN110859012A (zh) 一种速率控制的方法、装置和***
WO2020034802A1 (zh) 一种激活pdu会话的方法及设备
WO2021160096A1 (zh) 一种私网签约信息更新方法及装置
WO2022008179A2 (en) Operator control of user equipment behavior in registering and deregistering with network slices and establishing and releasing pdu sessions in a communication system
WO2020253708A1 (zh) 选择策略控制功能的方法及设备
WO2012155808A1 (zh) 设备触发方法及网元设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827290

Country of ref document: EP

Effective date: 20220118