WO2020252681A1 - Flame retardant composition - Google Patents

Flame retardant composition Download PDF

Info

Publication number
WO2020252681A1
WO2020252681A1 PCT/CN2019/091841 CN2019091841W WO2020252681A1 WO 2020252681 A1 WO2020252681 A1 WO 2020252681A1 CN 2019091841 W CN2019091841 W CN 2019091841W WO 2020252681 A1 WO2020252681 A1 WO 2020252681A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
epoxy resin
flame retardant
total weight
brominated epoxy
Prior art date
Application number
PCT/CN2019/091841
Other languages
French (fr)
Inventor
Bin Cao
Huan CHEN
Xiaolin Huang
Original Assignee
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc filed Critical Dow Global Technologies Llc
Priority to PCT/CN2019/091841 priority Critical patent/WO2020252681A1/en
Publication of WO2020252681A1 publication Critical patent/WO2020252681A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present disclosure relates to a flame retardant composition, in particular a flame retardant composition for battery shell.
  • the shell of the battery should have mechanical strength and heat/fire resistance.
  • the shell of the battery is made by a metal such as steel or aluminum alloy, which has high weight.
  • High pressure resin transfer molding is a process for producing a composite by injecting a resin composition under high pressure into a mold with preformed fiber.
  • HPRTM composition need low viscosity such as ⁇ 30mP ⁇ s (100°C) due to fluidity.
  • HPRTM composition comprising a liquid epoxy resin, a brominate epoxy resin and a flame retardant can achieve the above requirements, i.e., the HPRTM composition can have a viscosity ⁇ 30mP ⁇ s (100°C) , Tg>95°C, and 1mm UL94 V0 flame resistance.
  • the present disclosure provides a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • the present disclosure provides a composite formed from a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • the present disclosure provides a battery comprising a shell made from a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • composition As disclosed herein, the term “composition” , “formulation” or “mixture” refers to a physical blend of different components, which is obtained by mixing simply different components by a physical means.
  • glass transition temperature or "Tg” is determined by differential scanning calorimetry (DSC) .
  • all the percentages and parts of all components of the composition refer to the weight. All the percentages of all components of the composition are calculated based on the total weight of the composition. The sum of the percentages of all the components of the composition is 100%.
  • the present disclosure provides a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • composition according to the present disclosure generally comprises 40-70wt%, typically 45-65wt%, more typically 45-55wt%, of a liquid epoxy resin, based on the total weight of the composition.
  • composition according to the present disclosure comprises a liquid epoxy resin.
  • liquid epoxy resin is meant an epoxy resin that is liquid at room temperature, for example, liquid at 25°C, 15°C or 5°C.
  • the liquid epoxy resin is also referred to as polyepoxide.
  • Polyepoxides useful herein can be monomeric (for example, the diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, digylcidyl ether of tetrabromobisphenol A, novolac-based epoxy resins, and tris-epoxy resins) , higher molecular weight resins (for example, the diglycidyl ether of bisphenol A advanced with bisphenol A) or polymerized unsaturated monoepoxides (for example, glycidyl acrylates, glycidyl methacrylate, allyl glycidyl ether, etc.
  • epoxy resins contain, on the average, at least one pendant or terminal 1, 2-epoxy group (that is, vicinal epoxy group) per molecule.
  • a preferred epoxy resin is diglycidyl ether of bisphenol A.
  • Some preferred liquid epoxy resins include DER 330, DER 331 and DER 332, commercially available from Olin.
  • One preferable epoxy resin has general formula:
  • n is generally in the range of 0 to about 25.
  • Some basic liquid resins for example, D.E.R. 331, can have epoxy equivalent weights in the range of about 180 to 195 g/mol.
  • Others such as D.E.R. 332, can have epoxy equivalent weights in the range of about 170 to 175 g/mol.
  • D.E.R. 330 can have epoxy equivalent weights in the range of about 176 to 185 g/mol.
  • the liquid epoxy resin may include, but not limited to, NPEL-127, NPEL-127E, NPEL-128 (commercially available from Nanya) , DER383 (commercially available from Blue Cube) , BE-188EL (commercially available from Chuangchun Group) , and TTA21 (commercially available from TetraChem) .
  • the liquid epoxy resin has a viscosity of from about 100mP ⁇ s to about 20,000 mP ⁇ s (100°C) , more typically from about 500 mP ⁇ s to about 15,000 mP ⁇ s (100°C) , most typically from about 500 mP ⁇ s to about 5,000 mP ⁇ s (100°C) .
  • the liquid epoxy resin has an epoxy equivalent weight (EEW) of ⁇ 190, more typically ⁇ 100.
  • composition according to the present disclosure may include 30-50wt%, typically 32-48wt%, more typically 35-45wt%, of a brominated epoxy resin, based on the total weight of the composition.
  • the composition according to the present disclosure may include a brominated epoxy resin.
  • the brominated epoxy resin according to the present disclosure may be any brominated epoxy resin well known in the art.
  • the bromine containing epoxy resins include tetrabromo bisphenol A, diglycidyl ether of tetrabromo bisphenol A, and other brominated epoxies such as those commercially available from The Dow Chemical Company under the trademarks D.E.R.
  • a preferred epoxy resin containing bromine used in the present disclosure includes NPEB-400.
  • the composition according to the present disclosure may contain one or more brominated epoxy resins. Two or more different brominated epoxy resins may be blended together to make up the brominated epoxy resin component of the present disclosure.
  • the bromine content of the brominated epoxy resin may be from about 5 wt percent (wt%) to about 50 wt%, preferably from about 10 wt%to about 25 wt %, and more preferably from about 18 wt%to about 21 wt%.
  • composition according to the present disclosure may comprise 5-20 wt%, typically 8-15wt%, more typically 8-12wt%, of a flame retardant, based on the total weight of the composition.
  • the composition according to the present disclosure may include a flame retardant.
  • This flame retardant may typically be a liquid flame retardant with viscosity of ⁇ 50 mPa ⁇ s at 25°C and a phosphorus content of >15wt%.
  • the flame retardant according to the present disclosure is an organic phosphate flame retardant.
  • the organic phosphate flame retardant useful in the practice of this disclosure includes both aromatic and aliphatic phosphate esters and their polymers.
  • aliphatic phosphate ester flame retardants include trimethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, triethyl phosphate, tris- (2-chloroethyl) phosphate, tris- (2-chloroisopropyl) phosphate, tributoxyethyl phosphate, monoisodecyl phosphate and 2-acryloyloxyethylacid phosphate.
  • aromatic phosphate esters examples include trixylenyl phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyldiphenyl phosphate, xylenyldiphenyl phosphate, isopropylated triphenyl phosphate and dipheny-2-methacryloyloxyethyl phosphate.
  • aromatic bis (phosphate esters) examples include resorcinol bis (diphenyl phosphate) (RDP) , resorcinol bis (dixylenyl phosphate) , resorcinol bis (dicresylphosphate) , hydroquinone bis (dixylenyl phosphate) , bisphenol-A bis (diphenyl phosphate) (BPADP) and tetrakis (2, 6-dimethyl-phenyl) -1, 3-phenylene bisphosphate.
  • RDP resorcinol bis
  • resorcinol bis (dixylenyl phosphate) resorcinol bis (dicresylphosphate)
  • hydroquinone bis disixylenyl phosphate
  • BPADP bisphenol-A bis
  • tetrakis 2, 6-dimethyl-phenyl) -1, 3-phenylene bisphosphate.
  • organic phosphate esters can be used alone
  • the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater, preferably 3.0: 1 or greater, more preferably 2.5: 1 to 10: 1, even more preferably 2.5: 1 to 6: 1, most preferably 3: 1 to 5: 1.
  • the composition according to the present disclosure may further include a hardener.
  • the hardener may be any conventional amine curing agent known in the art.
  • the hardener may include, for example, an aliphatic amine, a cycloaliphatic amine, an aromatic amine, a polycyclic amine, or a mixture thereof.
  • the hardener may have a viscosity of ⁇ 30 mPa ⁇ s (100°C) , and can be cured within 120s under 120 to 140°C.
  • the hardener may be selected from aliphatic amines, polyether amines, aromatic amines, cycloaliphatic amines, piperazines, and mixtures thereof.
  • the hardener can be an aliphatic polyamine including for example, an aliphatic diamine such as methylene diamine, ethylenediamine, 1, 2-diaminopropane, 1, 3-diaminopropane, 1, 4-diaminobutane, 1, 5-diamino pentane, 1, 6-diamino hexane, 1, 7-diamino heptane, 1, 8-diamino octane, 1, 9-diamino nonane, 1, 10-diamino decane, o-xylylene diamine, m-xylylene diamine, p-xylylene diamine or mixtures thereof; a tetra- (aminomethyl) methane such as diethylenetriamine, dipropylene triamine, triethylenetetramine, tripropylene tetramine, tetraethylenepentamine, tetrapropylenepentamine, pent
  • composition according to the present disclosure may comprise 0-20 wt%, typically 1-20wt%, more typically 5 to 15 wt%, most typically 8 to 12 wt%of a hardener, based on the total weight of the composition.
  • composition according to the present disclosure may also contain other optional components such as impact modifiers, internal mold release agents (IMR) , pigments, antioxidants, preservatives, reinforcing fibers short (up to about 6 inches (15.24 cm) in length, preferably up to 2 inches (5.08 cm) in length, more preferably up to about 1/2 inch (1.27 cm) in length) , non-fibrous particulate fillers including micron-and nanoparticles, wetting agents, internal mold release agents and the like.
  • An electroconductive filler may be present in the composition.
  • Suitable impact modifiers include natural or synthetic polymers having a Tg of lower than -40°C. These include natural rubber, styrene-butadiene rubbers, polybutadiene rubbers, isoprene rubbers, polyethers such as poly (propylene oxide) , poly (tetrahydrofuran) and butylene oxide-ethylene oxide block copolymers, core-shell rubbers, mixtures of any two or more of the foregoing, and the like.
  • the rubbers are preferably present in the form of small particles that become dispersed in the composition.
  • an internal mold release agent may constitute up to 5%, more preferably up to about 1%of the total weight of the composition.
  • Suitable internal mold release agents are well known and commercially available, including those marketed as Marbalease. TM. by Rexco-USA, Mold-Wiz. TM. by Axel Plastics Research Laboratories, Inc., Chemlease. TM. by Chem-Trend, PAT. TM. by Wurtz GmbH, Waterworks Aerospace Release by Zyvax and Kantstik. TM. by Specialty Products Co.
  • Suitable particulate fillers have an aspect ratio of less than 5, preferably less than 2, and do not melt or thermally degrade under the curing conditions.
  • Suitable fillers include, for example, glass flakes, aramid particles, carbon black, carbon nanotubes, various clays such as montmorillonite, and other mineral fillers such as wollastonite, talc, mica, titanium dioxide, barium sulfate, calcium carbonate, calcium silicate, flint powder, carborundum, molybdenum silicate, sand, and the like.
  • Some fillers are somewhat electroconductive, and their presence in the composition can increase the electroconductivity of the composition.
  • Conductive fillers of this type include metal particles (such as aluminum and copper) , carbon black, carbon nanotubes, graphite and the like.
  • composition according to the present disclosure generally has a viscosity of less than 30mP ⁇ s (100°C) and a EEW (epoxy equivalent weight) /AHEW (Active hydrogen equivalent weight) molar ratio of from 0.5 to 1.5, preferably 0.8 to 1.0.
  • the present disclosure provides a composite formed from a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • the composite according to the present disclosure is produced by a high pressure transfer resin molding (HPTRM) process.
  • HPTRM high pressure transfer resin molding
  • the HPTRM process is conventional in the art, such as those as disclosed in US9,868,831B, which is incorporated herein by reference.
  • the mold is closed with an opposite half of the mold, a reduced pressure may be generated in the mold, and then the composition is introduced under pressure.
  • flow aids for example in the form of pressure-stable but resin-permeable mats
  • these can be removed again after the curing.
  • the composite according to the present disclosure comprise a fabric layer.
  • the fabric layer is made from a synthesized fiber such as a polyester fiber, glass fiber and carbon fiber; and a natural fiber such as cotton fiber.
  • the present disclosure provides a battery comprising a shell made from a high pressure resin transfer molding composition comprising:
  • weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  • the method of flame resistance of vertical burning test is according to UL 94 Standard for Safety-Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
  • the glass transition temperature (Tg) was determined with a DSC (Differential Scanning Calorimetry) apparatus of TA Q2000. Samples of 5 mg to 10 mg of the cured epoxy resins were weighed and carefully placed in non-hermetic closed aluminum pan. Scaning was performed at a heating rate of 20°C/min under nitrogen. Two scanning cycles were conducted and Tg was determined by the mid-point method from the second cycle. The first cycle was used to to enable polymer chains relaxation and release any potential residual thermal stress of the curing reaction.
  • DSC Different Scanning Calorimetry
  • Dynamic viscosity was measured by using ARES-G2 rheometer from TA. A small amount of sample (around 0.5 ml) was used. The measurement was done in the steady flow mode by using 25 mm parallel disposable aluminum plates. The measurement was done at different temperature with a shear rate of 10s -1 .
  • the EEW is tested by method according to ASTM D-1652.
  • NPEL-127E, NPEB-400, Triethyl phosphate were premixed under 100°C to form resin pre-mixture.
  • the pre-mixture was preheated, mixed and degased in a mixing tank.
  • VORAFORCE 5350 was preheated and degased in another mixing tank.
  • the pre-mixture was then mixed with VORAFORCE 5350 by static mixing head to form a resin composition.
  • the resin composition is then high pressure injected to glass fabric (Owenscorning, SE1200 600TEX) in vacuum mold by using HPRTM machine (KraussMaffei) .
  • the resultant composite has a thickness of 1mm, with fabric weight loading of 70wt%.
  • the composite was fast cured in 3min and de-molded.
  • the viscosity of inventive example1 was about 27 mPa ⁇ s at 100°C.
  • the viscosity is very suitable for HPRTM injection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A high pressure resin transfer molding composition and a composite is provided. The high pressure resin transfer molding composition has a viscosity <30mP·s (100℃), Tg>95℃, and 1mm UL94 V0 flame resistance.

Description

FLAME RETARDANT COMPOSITION FIELD OF THE INVENTION
The present disclosure relates to a flame retardant composition, in particular a flame retardant composition for battery shell.
INTRODUCTION
Battery is a key part of the EV car. For safety consideration, the shell of the battery should have mechanical strength and heat/fire resistance. Typically, the shell of the battery is made by a metal such as steel or aluminum alloy, which has high weight.
There is a need to replace the metal shell with a composite. High pressure resin transfer molding (HPRTM) is a process for producing a composite by injecting a resin composition under high pressure into a mold with preformed fiber. Generally, the HPRTM composition need low viscosity such as <30mP·s (100℃) due to fluidity.
For battery-related composites, flame resistance is needed. Some composites also require 1mm UL94 V0 performance. Traditional HPRTM resin composition can’t provide flame resistance performance.
There is a need to provide a HPRTM composition with a viscosity <30mP·s (100℃) , Tg>95℃, and 1mm UL94 V0 flame resistance.
SUMMARY OF THE INVENTION
The inventor have unexpectedly found that a HPRTM composition comprising a liquid epoxy resin, a brominate epoxy resin and a flame retardant can achieve the above requirements, i.e., the HPRTM composition can have a viscosity <30mP·s (100℃) , Tg>95℃, and 1mm UL94 V0 flame resistance.
The present disclosure provides a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
On another aspect, the present disclosure provides a composite formed from a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
On another aspect, the present disclosure provides a battery comprising a shell made from a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
DETAILED DESCRIPTION OF THE INVENTION
As disclosed herein, the term "composition" , "formulation" or "mixture" refers to a physical blend of different components, which is obtained by mixing simply different components by a physical means.
As disclosed herein, the term "glass transition temperature" or "Tg" is determined by differential scanning calorimetry (DSC) .
As disclosed herein, all the percentages and parts of all components of the composition  refer to the weight. All the percentages of all components of the composition are calculated based on the total weight of the composition. The sum of the percentages of all the components of the composition is 100%.
On one aspect, the present disclosure provides a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
The composition according to the present disclosure generally comprises 40-70wt%, typically 45-65wt%, more typically 45-55wt%, of a liquid epoxy resin, based on the total weight of the composition.
The composition according to the present disclosure comprises a liquid epoxy resin. By "liquid epoxy resin" is meant an epoxy resin that is liquid at room temperature, for example, liquid at 25℃, 15℃ or 5℃.
Typically, the liquid epoxy resin is also referred to as polyepoxide. Polyepoxides useful herein can be monomeric (for example, the diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, digylcidyl ether of tetrabromobisphenol A, novolac-based epoxy resins, and tris-epoxy resins) , higher molecular weight resins (for example, the diglycidyl ether of bisphenol A advanced with bisphenol A) or polymerized unsaturated monoepoxides (for example, glycidyl acrylates, glycidyl methacrylate, allyl glycidyl ether, etc. ) to homopolymers or copolymers. Most desirably, epoxy resins contain, on the average, at least one pendant or terminal 1, 2-epoxy group (that is, vicinal epoxy group) per molecule. For example, a preferred epoxy resin is diglycidyl ether of bisphenol A. Some preferred liquid epoxy resins include DER 330, DER 331 and DER 332, commercially available from Olin. One preferable epoxy resin has general formula:
Figure PCTCN2019091841-appb-000001
where n is generally in the range of 0 to about 25. Some basic liquid resins, for example, D.E.R. 331, can have epoxy equivalent weights in the range of about 180 to 195 g/mol. Others, such as D.E.R. 332, can have epoxy equivalent weights in the range of about 170 to 175 g/mol. D.E.R. 330 can have epoxy equivalent weights in the range of about 176 to 185 g/mol.
In one embodiment of the present disclosure, the liquid epoxy resin may include, but not limited to, NPEL-127, NPEL-127E, NPEL-128 (commercially available from Nanya) , DER383 (commercially available from Blue Cube) , BE-188EL (commercially available from Chuangchun Group) , and TTA21 (commercially available from TetraChem) .
Typically, the liquid epoxy resin has a viscosity of from about 100mP·s to about 20,000 mP·s (100℃) , more typically from about 500 mP·s to about 15,000 mP·s (100℃) , most typically from about 500 mP·s to about 5,000 mP·s (100℃) .
Typically, the liquid epoxy resin has an epoxy equivalent weight (EEW) of <190, more typically <100.
The composition according to the present disclosure may include 30-50wt%, typically 32-48wt%, more typically 35-45wt%, of a brominated epoxy resin, based on the total weight of the composition.
The composition according to the present disclosure may include a brominated epoxy resin. The brominated epoxy resin according to the present disclosure may be any brominated epoxy resin well known in the art. Examples of the bromine containing epoxy resins include tetrabromo bisphenol A, diglycidyl ether of tetrabromo bisphenol A, and other brominated epoxies such as those commercially available from The Dow Chemical Company under the trademarks D.E.R. 560, D.E.R 542, D.E.R 592, D.E.R 593, D.E.R 530 and D.E.R 538; those commerically avaiable from Nanya under the trademarks NPEB-400, NPEB-340, BEB350, BEB400, EPON 1163, YDB-400; and mixtures thereof. A preferred epoxy resin containing  bromine used in the present disclosure includes NPEB-400.
The composition according to the present disclosure may contain one or more brominated epoxy resins. Two or more different brominated epoxy resins may be blended together to make up the brominated epoxy resin component of the present disclosure. The bromine content of the brominated epoxy resin may be from about 5 wt percent (wt%) to about 50 wt%, preferably from about 10 wt%to about 25 wt %, and more preferably from about 18 wt%to about 21 wt%.
The composition according to the present disclosure may comprise 5-20 wt%, typically 8-15wt%, more typically 8-12wt%, of a flame retardant, based on the total weight of the composition.
The composition according to the present disclosure may include a flame retardant. This flame retardant may typically be a liquid flame retardant with viscosity of <50 mPa·s at 25℃ and a phosphorus content of >15wt%. Typically, the flame retardant according to the present disclosure is an organic phosphate flame retardant.
Typically, the organic phosphate flame retardant useful in the practice of this disclosure includes both aromatic and aliphatic phosphate esters and their polymers. Examples of aliphatic phosphate ester flame retardants include trimethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, triethyl phosphate, tris- (2-chloroethyl) phosphate, tris- (2-chloroisopropyl) phosphate, tributoxyethyl phosphate, monoisodecyl phosphate and 2-acryloyloxyethylacid phosphate. Examples of aromatic phosphate esters include trixylenyl phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyldiphenyl phosphate, xylenyldiphenyl phosphate, isopropylated triphenyl phosphate and dipheny-2-methacryloyloxyethyl phosphate. Examples of aromatic bis (phosphate esters) include resorcinol bis (diphenyl phosphate) (RDP) , resorcinol bis (dixylenyl phosphate) , resorcinol bis (dicresylphosphate) , hydroquinone bis (dixylenyl phosphate) , bisphenol-A bis (diphenyl phosphate) (BPADP) and tetrakis (2, 6-dimethyl-phenyl) -1, 3-phenylene bisphosphate. These organic phosphate esters can be used alone or in combination with one another. Preferred organic phosphate flame retardants are liquid under ambient conditions (23℃ and atmospheric pressure) .
Generally, the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater, preferably 3.0: 1 or greater, more preferably 2.5: 1 to 10: 1, even more preferably 2.5: 1 to 6: 1, most preferably 3: 1 to 5: 1.
The composition according to the present disclosure may further include a hardener. In general, the hardener may be any conventional amine curing agent known in the art. The hardener may include, for example, an aliphatic amine, a cycloaliphatic amine, an aromatic amine, a polycyclic amine, or a mixture thereof. The hardener may have a viscosity of <30 mPa·s (100℃) , and can be cured within 120s under 120 to 140℃.
In one embodiment, the hardener may be selected from aliphatic amines, polyether amines, aromatic amines, cycloaliphatic amines, piperazines, and mixtures thereof.
In another embodiment, the hardener can be an aliphatic polyamine including for example, an aliphatic diamine such as methylene diamine, ethylenediamine, 1, 2-diaminopropane, 1, 3-diaminopropane, 1, 4-diaminobutane, 1, 5-diamino pentane, 1, 6-diamino hexane, 1, 7-diamino heptane, 1, 8-diamino octane, 1, 9-diamino nonane, 1, 10-diamino decane, o-xylylene diamine, m-xylylene diamine, p-xylylene diamine or mixtures thereof; a tetra- (aminomethyl) methane such as diethylenetriamine, dipropylene triamine, triethylenetetramine, tripropylene tetramine, tetraethylenepentamine, tetrapropylenepentamine, penta ethylene hexamine, nonaethylene decamine; or mixtures thereof; a trimethyl hexamethylenediamine; tetrakis (2-aminoethylaminomethyl) methane; an aliphatic triamine such as 1, 3-bis (2'-amino ethyl amino) propane, triethylene-bis (trimethylene) hexamine, bis (3-amino ethyl) amine, bis-hexamethylene triamine or mixtures thereof; 1, 4-cyclohexanediamine; 4, 4'-methylene his cyclohexylamine; an alicyclic diamine such as 4, 4'-isopropylidene biscyclo hexylamine, norborna diamine, bis (aminomethyl) cyclohexane, diamino dicyclo hexylmethane, isophorone diamine, menthen diamine or mixtures thereof; bis (aminoalkyl) benzene; bis (aminoalkyl) naphthalene; bis (cyanoethyl) diethylenetriamine; phenylenediamine; naphtylene diamine; diamino diphenylmethane; diamino diethyl phenylmethane; 2, 2-bis (4-aminophenyl) propane; 4, 4'-diamino diphenylether; 4, 4'-diamino benzophenone; 4, 4'-diamino diphenylether; 4, 4'-diaminodiphenyl sulfone; a 2, 2'-dimethyl-4, 4'-diamino diphenylmethane; 2, 4'-diamino biphenyl; 2, 3'-dimethyl-4, 4'-diamino biphenyl; 3, 3'-dimethoxy-4, 4'-diamino biphenyl; an  aromatic diamine such as bis (aminomethyl) naphthalene, bis (amino ethyl) naphthalene or mixtures thereof; N-methyl piperazine; morpholine; 1, 4-bis (8-aminopropyl) -piperazine; a heterocyclic diamine such as piperazine-1, 4-diaza cycloheptane, 1- (2'-amino ethyl piperazine) , 1- [2'- (2”-aminoethylamino) ethyl] piperazine, 1, 11-diazacycloeicosane, 1, 15-diazacyclo octacosane or mixtures thereof; or any combination of two or more of the above aliphatic polyamines. The hardener may be those commercially available from Dow Chemical under the trademark name VORAFORCE 5350, ARALDITE XB3458, EPIKURE 05443.
The composition according to the present disclosure may comprise 0-20 wt%, typically 1-20wt%, more typically 5 to 15 wt%, most typically 8 to 12 wt%of a hardener, based on the total weight of the composition.
The composition according to the present disclosure may also contain other optional components such as impact modifiers, internal mold release agents (IMR) , pigments, antioxidants, preservatives, reinforcing fibers short (up to about 6 inches (15.24 cm) in length, preferably up to 2 inches (5.08 cm) in length, more preferably up to about 1/2 inch (1.27 cm) in length) , non-fibrous particulate fillers including micron-and nanoparticles, wetting agents, internal mold release agents and the like. An electroconductive filler may be present in the composition.
Suitable impact modifiers include natural or synthetic polymers having a Tg of lower than -40℃. These include natural rubber, styrene-butadiene rubbers, polybutadiene rubbers, isoprene rubbers, polyethers such as poly (propylene oxide) , poly (tetrahydrofuran) and butylene oxide-ethylene oxide block copolymers, core-shell rubbers, mixtures of any two or more of the foregoing, and the like. The rubbers are preferably present in the form of small particles that become dispersed in the composition.
It is generally preferred to cure the composition in the presence of an internal mold release agent. Such an internal mold release agent may constitute up to 5%, more preferably up to about 1%of the total weight of the composition. Suitable internal mold release agents are well known and commercially available, including those marketed as Marbalease. TM. by Rexco-USA, Mold-Wiz. TM. by Axel Plastics Research Laboratories, Inc., Chemlease. TM. by Chem-Trend, PAT. TM. by Wurtz GmbH, Waterworks Aerospace Release by Zyvax and  Kantstik. TM. by Specialty Products Co. In addition to (or instead of) adding the internal mold release agent during mixing, it is also possible to combine such an internal mold release agent into the epoxy component and/or the hardener component before the epoxy component and the hardener component are brought together.
Suitable particulate fillers have an aspect ratio of less than 5, preferably less than 2, and do not melt or thermally degrade under the curing conditions. Suitable fillers include, for example, glass flakes, aramid particles, carbon black, carbon nanotubes, various clays such as montmorillonite, and other mineral fillers such as wollastonite, talc, mica, titanium dioxide, barium sulfate, calcium carbonate, calcium silicate, flint powder, carborundum, molybdenum silicate, sand, and the like. Some fillers are somewhat electroconductive, and their presence in the composition can increase the electroconductivity of the composition. Conductive fillers of this type include metal particles (such as aluminum and copper) , carbon black, carbon nanotubes, graphite and the like.
The composition according to the present disclosure generally has a viscosity of less than 30mP·s (100℃) and a EEW (epoxy equivalent weight) /AHEW (Active hydrogen equivalent weight) molar ratio of from 0.5 to 1.5, preferably 0.8 to 1.0.
On another aspect, the present disclosure provides a composite formed from a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
Typically, the composite according to the present disclosure is produced by a high pressure transfer resin molding (HPTRM) process. The HPTRM process is conventional in the art, such as those as disclosed in US9,868,831B, which is incorporated herein by reference.
In one embodiment, according to the general procedure of HPTRM process, after one or more fabric layers have been inserted into the mold half, the mold is closed with an opposite  half of the mold, a reduced pressure may be generated in the mold, and then the composition is introduced under pressure. If necessary, what are called flow aids (for example in the form of pressure-stable but resin-permeable mats) can be introduced between the mold halves and the fabric material, and these can be removed again after the curing.
In one embodiment, the composite according to the present disclosure comprise a fabric layer. Typically, the fabric layer is made from a synthesized fiber such as a polyester fiber, glass fiber and carbon fiber; and a natural fiber such as cotton fiber.
On another aspect, the present disclosure provides a battery comprising a shell made from a high pressure resin transfer molding composition comprising:
(a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
(b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
(c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
EXAMPLES
Raw materials:
Ingredients Suppliers
NPEL-127E Nanya
NPEB-400 Nanya
Triethyl phosphate Jiangsu Yarui Chemical
VORAFORCE 5350 Dow Chemical
Measure of UL 94 V0
The method of flame resistance of vertical burning test is according to UL 94 Standard for Safety-Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
Measure of Tg
The glass transition temperature (Tg) was determined with a DSC (Differential Scanning Calorimetry) apparatus of TA Q2000. Samples of 5 mg to 10 mg of the cured epoxy resins were weighed and carefully placed in non-hermetic closed aluminum pan. Scaning was performed at a heating rate of 20℃/min under nitrogen. Two scanning cycles were conducted and Tg was determined by the mid-point method from the second cycle. The first cycle was used to to enable polymer chains relaxation and release any potential residual thermal stress of the curing reaction.
Measure of viscosity
Dynamic viscosity was measured by using ARES-G2 rheometer from TA. A small amount of sample (around 0.5 ml) was used. The measurement was done in the steady flow mode by using 25 mm parallel disposable aluminum plates. The measurement was done at different temperature with a shear rate of 10s -1.
EEW/AHEW
The EEW is tested by method according to ASTM D-1652. The hydrogen equivalent is the calculation of the molecular weight of the amine divided by the amount of the active hydrogen atom. Active hydrogen atom is the hydrogen which is connected with a nitrogen. If the amine molecular weight is W, the hydrogen atom number connected with nitrogen is N, AHEW=W/N. Usually this number is calculated by materials vender based on composition’s structure. If it’s a mixture amine, AHEW=Total weight of the amine/ (wt%of part A/AHEW of part A + wt%of part B/AHEW of part B) .
Examples
NPEL-127E, NPEB-400, Triethyl phosphate were premixed under 100℃ to form resin pre-mixture. The pre-mixture was preheated, mixed and degased in a mixing tank. VORAFORCE 5350 was preheated and degased in another mixing tank. The pre-mixture was then mixed with VORAFORCE 5350 by static mixing head to form a resin composition. The resin composition is then high pressure injected to glass fabric (Owenscorning, 
Figure PCTCN2019091841-appb-000002
SE1200 600TEX) in vacuum mold by using HPRTM machine (KraussMaffei) . The resultant composite has a thickness of 1mm, with fabric weight loading of 70wt%. The composite was fast cured in 3min and de-molded.
The components and their amounts were listed in Table 1 below. The results were also listed in Table 1 below.
Figure PCTCN2019091841-appb-000003
The viscosity of inventive example1 was about 27 mPa·s at 100℃. The viscosity is very suitable for HPRTM injection.

Claims (12)

  1. A high pressure resin transfer molding composition comprising:
    (a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
    (b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
    (c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
    wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  2. The composition of claim 1, wherein the liquid epoxy resin is diglycidyl ether of bisphenol A.
  3. The composition of claim 1, wherein the liquid epoxy resin has a viscosity of from about 100mP·sto about 20, 000 mP·s (100℃) and/or an epoxy equivalent weight (EEW) of <190.
  4. The composition of claim 1, wherein the brominated epoxy resin includes tetrabromo bisphenol A or diglycidyl ether of tetrabromo bisphenol A.
  5. The composition of claim 1, wherein the bromine content of the brominated epoxy resin is from about 5 wt percent (wt%) to about 50 wt%.
  6. The composition of claim 1, wherein the flame retardant is a liquid flame retardant with viscosity of <50 mPa·sat 25℃ and a phosphorus content of >15wt%.
  7. The composition of claim 1, wherein the flame retardant is an organic phosphate flame retardant selected from the group consisting of aromatic phosphate esters, aliphatic phosphate esters and their polymers.
  8. The composition of claim 1, further comprising a hardener.
  9. The composition of claim 1, wherein the compsotion has a viscosity of less than 30mP·s (100℃) and a EEW/AHEW molar ratio of from 0.5 to 1.5.
  10. A composite formed from a high pressure resin transfer molding composition comprising:
    (a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
    (b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
    (c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
    wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
  11. The composite according to claim 10, wherein the composite is produced by a high pressure transfer resin molding (HPTRM) process.
  12. A battery comprising a shell made from a high pressure resin transfer molding composition comprising:
    (a) 40-70wt%of a liquid epoxy resin, based on the total weight of the composition;
    (b) 30-50wt%of a brominated epoxy resin, based on the total weight of the composition; and
    (c) 5-20 wt%of a flame retardant, based on the total weight of the composition,
    wherein the weight ratio of the brominated epoxy resin and the flame retardant is 2.5: 1 or greater.
PCT/CN2019/091841 2019-06-19 2019-06-19 Flame retardant composition WO2020252681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091841 WO2020252681A1 (en) 2019-06-19 2019-06-19 Flame retardant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091841 WO2020252681A1 (en) 2019-06-19 2019-06-19 Flame retardant composition

Publications (1)

Publication Number Publication Date
WO2020252681A1 true WO2020252681A1 (en) 2020-12-24

Family

ID=74037203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091841 WO2020252681A1 (en) 2019-06-19 2019-06-19 Flame retardant composition

Country Status (1)

Country Link
WO (1) WO2020252681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752183A (en) * 2021-11-16 2022-07-15 Sika技术股份公司 Flame-retardant epoxy resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038458A (en) * 1988-06-11 1990-01-03 无锡化工研究设计院 The preparation method of glass fiber reinforcement epoxy molding compound
JP2002249642A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
CN101481490A (en) * 2009-01-19 2009-07-15 东莞联茂电子科技有限公司 Thermosetting resin composition and use
CN102675827A (en) * 2012-05-17 2012-09-19 镇江育达复合材料有限公司 Epoxy resin-based carbon fibre compound material formed by using high polymer (HP)-resin transfer molding (RTM) process quickly
CN105778412A (en) * 2014-12-26 2016-07-20 广东生益科技股份有限公司 Epoxy resin composition and prepreg and laminated board using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038458A (en) * 1988-06-11 1990-01-03 无锡化工研究设计院 The preparation method of glass fiber reinforcement epoxy molding compound
JP2002249642A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
CN101481490A (en) * 2009-01-19 2009-07-15 东莞联茂电子科技有限公司 Thermosetting resin composition and use
CN102675827A (en) * 2012-05-17 2012-09-19 镇江育达复合材料有限公司 Epoxy resin-based carbon fibre compound material formed by using high polymer (HP)-resin transfer molding (RTM) process quickly
CN105778412A (en) * 2014-12-26 2016-07-20 广东生益科技股份有限公司 Epoxy resin composition and prepreg and laminated board using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752183A (en) * 2021-11-16 2022-07-15 Sika技术股份公司 Flame-retardant epoxy resin composition
WO2023088097A1 (en) * 2021-11-16 2023-05-25 Sika技术股份公司 Flame-retardant epoxy resin composition

Similar Documents

Publication Publication Date Title
JP6147770B2 (en) Curable epoxy composition and short-time curing method
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
KR101197524B1 (en) Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment
JP2017149988A (en) Carbon fiber reinforced composite material and structure
TW201702307A (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
JP6985273B2 (en) Clathrate compounds, their manufacturing methods and their uses
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
TW201509981A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, housing for electronic device
TW201841970A (en) Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite material and molded body
JP6657605B2 (en) Epoxy resin composition, molded product, prepreg, fiber reinforced composite material and structure
JP2017149887A (en) Epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP2017510683A (en) Composite material
Reyes et al. Subtle variations in the structure of crosslinked epoxy networks and the impact upon mechanical and thermal properties
WO2020252681A1 (en) Flame retardant composition
US20210277174A1 (en) Epoxy resin system for making fiber reinforced composites
Kim et al. Synthesis of acid anhydride‐modified flexible epoxy resins and enhancement of impact resistance in the epoxy composites
KR20160099609A (en) Epoxy composition containing core-shell rubber
TW201942179A (en) Epoxy resin having oxazolidinone structure, producing method, epoxy resin composition, fiber reinforced composite material and molded body having an oxazolidinone structure excellent in adhesiveness
WO2019082595A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
US20170267808A1 (en) Resin composition
Jia et al. Mechanical and thermal properties of elastic epoxy thermoset cured by cardanol-based diglycidyl epoxy modified polyetheramine
JP2016044246A (en) Epoxy resin composition, prepreg, fiber- reinforced composite material and structure
EP3320013B1 (en) Stable high glass transition temperature epoxy resin system for making composites
KR20140148081A (en) Low temperature curing epoxy resin composition, prepreg using the same, and low temperature curing fiber reinforced polymer composites laminating the prepreg
JPH0948915A (en) Curable resin composition, molded product thereof and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933782

Country of ref document: EP

Kind code of ref document: A1