WO2020250439A1 - Rotation speed detector - Google Patents

Rotation speed detector Download PDF

Info

Publication number
WO2020250439A1
WO2020250439A1 PCT/JP2019/023729 JP2019023729W WO2020250439A1 WO 2020250439 A1 WO2020250439 A1 WO 2020250439A1 JP 2019023729 W JP2019023729 W JP 2019023729W WO 2020250439 A1 WO2020250439 A1 WO 2020250439A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
magnet
magnetic
rotation speed
rotation
Prior art date
Application number
PCT/JP2019/023729
Other languages
French (fr)
Japanese (ja)
Inventor
久範 鳥居
武史 武舎
琢也 野口
雅史 大熊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019560414A priority Critical patent/JP6647478B1/en
Priority to PCT/JP2019/023729 priority patent/WO2020250439A1/en
Priority to KR1020217036567A priority patent/KR102446180B1/en
Priority to CN201980097323.8A priority patent/CN113939714B/en
Publication of WO2020250439A1 publication Critical patent/WO2020250439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core

Definitions

  • the present invention relates to a rotation speed detector that detects the rotation speed of a rotating body.
  • Patent Document 1 includes a magnetic wire that causes magnetization reversal due to a large bulkhausen effect based on a change in a magnetic field, and a coil that is wound around the magnetic wire and generates an induced voltage according to the magnetization reversal of the magnetic wire. Number detectors are disclosed.
  • the magnetic wire and the coil face the magnet in the direction perpendicular to the rotation axis of the rotating body, so that the distance between the end of the magnetic wire and the magnet is set between the center of the magnetic wire and the magnet. It will be longer than the interval. Therefore, the magnetic flux from the magnet is weaker at the end of the magnetic wire than at the center of the magnetic wire. Since the large bulkhausen effect is more stable at the center of the magnetic wire than at the end of the magnetic wire, the magnetic flux is weakened at the end of the magnetic wire rather than at the center of the magnetic wire, thereby stabilizing the generation of the induced voltage. .. As a result, the rotation speed detector can reduce the variation in the amount of power generation.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a rotation speed detector capable of improving the reliability of rotation speed detection.
  • the rotation speed detector has a magnet attached to a rotating body rotating around a rotation axis and an induced voltage according to a change in a magnetic field due to the rotation of the magnet. It has a power generation element that generates the above, and detects the number of rotations of the rotating body based on the induced voltage.
  • the power generation element includes a magnetic wire, a coil wound between the first end and the second end of the magnetic wire, which are both ends of the magnetic wire, and a soft magnetic material, which is the first end and the first end. It has a cylinder provided at each of the two ends.
  • the magnet has a plurality of magnetic poles arranged in the direction of rotation of the magnet. Each of the plurality of magnetic poles has a first region and a second region in which the strengths of the magnetic forces are different from each other.
  • the rotation speed detector according to the present invention has the effect of improving the reliability of rotation speed detection.
  • the figure which shows the rotation speed detector which concerns on Embodiment 1 of this invention Top view showing a magnet and a power generation element included in the rotation speed detector according to the first embodiment. The figure which shows the example of the relationship between the rotation angle of a magnet, and the magnetic flux density in the rotation speed detector which concerns on Embodiment 1. Top view showing a magnet and a power generation element included in the rotation speed detector according to the second embodiment of the present invention. The figure which shows the example of the relationship between the rotation angle of a magnet, and the magnetic flux density in the rotation speed detector which concerns on Embodiment 2. The figure which shows the rotation speed detector which concerns on Embodiment 3 of this invention. The figure which shows the rotation speed detector which concerns on Embodiment 4 of this invention. Top view showing a magnet and a power generation element included in the rotation speed detector according to the fourth embodiment. The figure which shows the rotation speed detector which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a diagram showing a rotation speed detector according to the first embodiment of the present invention.
  • the rotation speed detector 1 according to the first embodiment is a magnetic rotation speed detector that detects the rotation speed of a rotating body based on an induced voltage generated according to a change in a magnetic field.
  • the rotation speed detector 1 detects the number of times the rotating body rotates.
  • the rotation speed detector 1 processes the magnet 2 attached to the shaft 4, the power generation element 3 that generates an induced voltage according to the change in the magnetic field due to the rotation of the magnet 2, and outputs a signal, and the signal from the power generation element 3. It has a processing unit 5.
  • the magnet 2 is a flat plate having a circular shape.
  • the magnet 2 is a permanent magnet.
  • the shaft 4 is a rotating body that rotates around a rotating shaft 9. The magnet 2 is fixed to the tip of the shaft 4 by adhesion, screwing, or press fitting.
  • the shaft 4 is a drive shaft of the motor. In FIG. 1, the motor body that rotates the shaft 4 is not shown.
  • the processing unit 5 counts the number of pulses generated by power generation based on the signal from the power generation element 3.
  • the processing unit 5 detects the rotation speed of the shaft 4 by counting the number of pulses. Since the processing unit 5 can operate using the induced voltage, the rotation speed can be detected without a power source.
  • the power generation element 3 is arranged to face the magnet 2 in a direction parallel to the rotation axis 9.
  • the power generation element 3 faces the surface of the magnet 2 opposite to the surface fixed to the shaft 4.
  • the power generation element 3 may be arranged so as to face the surface of the magnet 2 on the side fixed to the shaft 4.
  • the power generation element 3 includes a magnetic wire 6, a coil 7 wound around the magnetic wire 6, and ferrite beads provided on each of the first end portion 6a and the second end portion 6b, which are both ends of the magnetic wire 6. Has 8 and.
  • the magnetic wire 6 is a magnetic material processed into a wire shape.
  • the magnetic wire 6 causes magnetization reversal due to the large Barkhausen effect based on the change in the magnetic field.
  • the large Barkhausen effect is a phenomenon in which the magnetization direction is reversed in a short time by moving the domain wall inside the magnetic material at once when the magnetic material is magnetized.
  • the coil 7 is wound between the first end portion 6a and the second end portion 6b. That is, the coil 7 is provided between the ferrite beads 8 provided at the first end portion 6a and the ferrite beads 8 provided at the second end portion 6b.
  • the coil 7 is a pickup coil.
  • Ferrite beads 8 are cylinders made of soft magnetic material.
  • the magnetic permeability of the ferrite beads 8 is higher than the magnetic permeability of the magnetic wire 6.
  • One ferrite bead 8 covers the first end portion 6a.
  • the other ferrite bead 8 covers the second end portion 6b.
  • the cylinder provided at the first end portion 6a and the second end portion 6b may be a soft magnetic material other than the ferrite beads 8, or may be a cylinder made of a soft magnetic material such as iron. ..
  • a steel material such as SS400 or S45C, a magnetic stainless steel material such as SUS430 or SUS440, or a high magnetic permeability material such as permalloy or permendur may be used as the soft magnetic material.
  • a steel material such as SS400 or S45C
  • a magnetic stainless steel material such as SUS430 or SUS440
  • a high magnetic permeability material such as permalloy or permendur
  • FIG. 2 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the first embodiment.
  • FIG. 2 shows a view of the magnet 2 and the power generation element 3 in a direction parallel to the rotating shaft 9 and from a side opposite to the shaft 4.
  • the power generation element 3 is arranged so as to face the magnet 2 at a position away from the center of the circular shape of the magnet 2.
  • the rotation speed detector 1 is generally used in combination with an angle detector that detects the rotation angle of the rotating body.
  • the angle detection unit includes an optical detection disk on which an optical slit is formed, a light emitting unit that generates light, and a light receiving unit that emits light from the light emitting unit and detects light that has passed through the optical slit.
  • the disk is fixed to the rotating body on the upper surface side of the magnet 2.
  • the light emitting unit and the light receiving unit are provided at positions facing the optical slit. In FIGS. 1 and 2, the angle detection unit is not shown.
  • the magnet 2 has a plurality of magnetic poles arranged in the rotation direction of the magnet 2.
  • the magnet 2 has two magnetic poles, a first magnetic pole and a second magnetic pole.
  • the first magnetic pole and the second magnetic pole are two magnetic poles having different magnetizing directions.
  • the magnet 2 is bisected into an N pole 2N, which is the first magnetic pole, and an S pole 2S, which is the second magnetic pole, with the diameter of the circle as a boundary.
  • the magnet 2 is magnetized in a direction parallel to the rotation axis 9.
  • the magnet 2 is not limited to one having a pair of N poles 2N and S pole 2S, and may have two or more pairs of N poles 2N and S poles 2S. That is, the magnet 2 may have four or more magnetic poles. Further, the magnet 2 is not limited to a flat plate having a circular shape, and may be a cylindrical body having an opening at the center.
  • the N pole 2N has two strongly magnetized regions Na1 and Na2, which are the first regions, and one weakly magnetized region Nb, which is the second region.
  • the strong magnetization regions Na1 and Na2 and the weak magnetization regions Nb have the same magnetizing direction and different magnetic force strengths.
  • the weakly magnetized region Nb is a region having a weaker magnetic force than the strongly magnetized regions Na1 and Na2. That is, the surface magnetic flux density of the weakly magnetized region Nb is smaller than the surface magnetic flux density of the strongly magnetized regions Na1 and Na2.
  • the surface magnetic flux density of the strong magnetization region Na1 and the surface magnetic flux density of the strong magnetization region Na2 are about the same.
  • the S pole 2S has two strongly magnetized regions Sa1 and Sa2, which are the first regions, and one weakly magnetized region Sb, which is the second region.
  • the strongly magnetized regions Sa1 and Sa2 and the weakly magnetized regions Sb have the same magnetizing direction and different magnetic force strengths.
  • the weakly magnetized region Sb is a region having a weaker magnetic force than the strongly magnetized regions Sa1 and Sa2. That is, the surface magnetic flux density of the weakly magnetized region Sb is smaller than the surface magnetic flux density of the strongly magnetized regions Sa1 and Sa2.
  • the surface magnetic flux density of the strong magnetization region Sa1 and the surface magnetic flux density of the strong magnetization region Sa2 are about the same.
  • the boundary between the strongly magnetized regions Na1, Na2, Sa1, Sa2 and the weakly magnetized regions Nb and Sb is represented by a solid line.
  • the weak magnetization region Nb is provided between the strong magnetization region Na1 and the strong magnetization region Na2 in the rotation direction. That is, the weakly magnetized region Nb is arranged so as to be sandwiched between the strongly magnetized regions Na1 and Na2 in the rotation direction.
  • the weakly magnetized region Nb is arranged at the center of the N pole 2N in the rotation direction.
  • the weak magnetization region Sb is provided between the strong magnetization region Sa1 and the strong magnetization region Sa2 in the rotation direction. That is, the weakly magnetized region Sb is arranged so as to be sandwiched between the strongly magnetized regions Sa1 and Sa2 in the rotation direction.
  • the weakly magnetized region Sb is arranged at the center of the S pole 2S in the rotation direction.
  • the strong magnetization region Na1 and the strong magnetization region Sa1 are adjacent to each other in the rotation direction.
  • the strong magnetization region Na2 and the strong magnetization region Sa2 are adjacent to each other in the rotation direction.
  • the strong magnetization regions Na1, Na2, Sa1, and Sa2 are provided at the boundary between the N pole 2N and the S pole 2S in the magnet 2.
  • the strong magnetization regions Na1 and Na2 and the weak magnetization region Nb of the N pole 2N and the strong magnetization regions Sa1 and Sa2 and the weak magnetization region Sb of the S pole 2S are magnetized when the magnet 2 is magnetized. This is achieved by changing the strength of the external magnetic field applied to each region of the magnet 2. Two types of materials having different magnetic permeabilitys are used for the yoke core portion of the magnetizing yoke used when magnetizing the magnet 2.
  • the power generation element 3 faces the strong magnetization region Na1 and the strong magnetization region Sa1.
  • the entire power generation element 3 is in a region in which the strong magnetization region Na1 and the strong magnetization region Sa1 are combined.
  • FIG. 3 is a diagram showing an example of the relationship between the rotation angle of the magnet and the magnetic flux density in the rotation speed detector according to the first embodiment.
  • the angle “0 degree” is assumed to be when the magnet 2 is in the state shown in FIG.
  • the horizontal axis of the graph shown in FIG. 3 represents the rotation angle when the magnet 2 is rotated in the counterclockwise direction in FIG.
  • the vertical axis of the graph shown in FIG. 3 represents the magnetic flux density in the magnetic wire 6.
  • the curve M1 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the first embodiment is rotated.
  • the curve M2 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the comparative example is rotated. It is assumed that the magnet 2 of the comparative example has a pair of north and south poles consisting of only a strong magnetization region.
  • the direction of the magnetic flux is parallel to the length direction of the magnetic wire 6.
  • the magnetic flux density when the angle is 0 degrees is a maximum value.
  • the direction of the magnetic flux is opposite to that when the angle is 0 degrees.
  • the magnetic flux density when the angle is 180 degrees is a minimum value.
  • the magnetic flux density decreases uniformly in the range of about 30 degrees to about 150 degrees while the magnet 2 is rotated from 0 degrees to 180 degrees. Further, while rotating the magnet from 180 degrees to 360 degrees, the magnetic flux density increases uniformly in the range from around 210 degrees to around 330 degrees.
  • the magnetic flux density decreases from the maximum value to zero in the range from about 30 degrees to about 70 degrees.
  • the magnetic flux density remains zero in the range from around 70 degrees to around 120 degrees, and decreases from zero to the minimum value in the range from around 120 degrees to around 160 degrees.
  • the magnetic flux density decreases in a narrower angle range than in the case of the comparative example. That is, in the case of the first embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
  • the magnetic flux density increases from the minimum value to zero in the range from about 200 degrees to about 250 degrees.
  • the magnetic flux density remains zero in the range from around 250 degrees to around 300 degrees and increases from zero to the maximum value in the range from around 300 degrees to around 340 degrees.
  • the magnetic flux density increases in a narrower angle range than in the case of the comparative example. That is, in the case of the first embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
  • the weakly magnetized region Sb reaches a position facing the second end portion 6b. Further, by rotating the magnet 2, the strong magnetization regions Na1 and Sa1 are separated from the position facing the power generation element 3, and the weak magnetization region Sb reaches the position facing the power generation element 3.
  • the change in magnetic flux density when the weakly magnetized region Sb passes through the position facing the power generation element 3 is smaller than the change in magnetic flux density when the strong magnetization region Sa1 passes through the position facing the power generation element 3. Therefore, in the case of the first embodiment, the magnetic flux density does not change in the angle range including 90 degrees.
  • the weakly magnetized region Sb moves away from the position facing the power generation element 3, and the strong magnetization regions Sa2 and Na2 reach the position facing the power generation element 3.
  • the magnetic flux density sharply decreases from zero to the minimum value.
  • the change in the magnetic flux density when the magnet 2 rotates from 180 degrees to 360 degrees is the same as the change in the magnetic flux density when the magnet 2 rotates from 0 degrees to 180 degrees, except that the positive and negative of the magnetic flux density are different.
  • the magnetic flux density is reduced in one rotation of the magnet 2 by providing the strong magnetization regions Na1, Na2, Sa1, and Sa2 at the boundary between the N pole 2N and the S pole 2S of the magnet 2.
  • the angle range to be magnetized and the angle range to increase the magnetic flux density are limited.
  • the magnetization reversal in the magnetic wire 6 occurs in an angle range from about 120 degrees to about 160 degrees and an angle range from about 200 degrees to about 250 degrees.
  • the angle range in which the magnetization reversal occurs can be limited as compared with the case of the comparative example.
  • the power generation element 3 can suppress variations in the timing of outputting the induced voltage due to the rotation of the magnet 2.
  • the power generation element 3 can reduce variations in power generation timing each time the magnet 2 rotates.
  • the power generation element 3 can increase the amount of power generation as compared with the case of the comparative example because the change in the magnetic flux density with respect to the change in the angle is steep.
  • the magnetic flux from the magnet 2 can be applied to the entire magnetic wire 6 by the power generation element 3 facing the magnet 2 in the direction parallel to the rotation axis 9. Therefore, the power generation element 3 can increase the amount of power generation as compared with the case where the magnetic flux is applied only to the central portion of the magnetic wire 6.
  • the change in magnetic flux density of the first end portion 6a and the second end portion 6b of the magnetic wire 6 is unstable as compared with the portion of the magnetic wire 6 between the first end portion 6a and the second end portion 6b. Easy to become.
  • the magnetic wire 6 is manufactured by cutting a wire-like material into a size suitable for the power generation element 3. Since stress is applied to the first end portion 6a and the second end portion 6b at the time of cutting, the state of the tissue is changed from the portion between the first end portion 6a and the second end portion 6b. In some cases.
  • the change in the state of the tissue can be one of the factors that make the change in the magnetic flux density unstable.
  • the power generation element 3 receives the magnetic flux from the magnet 2 toward the first end portion 6a.
  • the magnetic flux from the magnet 2 toward the second end 6b is guided to the ferrite beads 8. Since the magnetic permeability of the ferrite beads 8 is higher than the magnetic permeability of the magnetic wire 6, the magnetic flux toward the first end portion 6a and the magnetic flux toward the second end portion 6b can be attracted to the ferrite beads 8.
  • the power generation element 3 does not allow magnetic flux to act on the first end portion 6a and the second end portion 6b, but allows magnetic flux to act on the magnetic wire 6 through the ferrite beads 8.
  • the power generation element 3 can suppress variations in the timing at which magnetization reversal occurs due to the rotation of the magnet 2 and variations in the amount of power generation. As a result, the power generation element 3 can reduce the variation in the timing of power generation each time the magnet 2 rotates, and reduce the variation in the amount of power generation each time the magnet 2 rotates.
  • the power generation element 3 faces the magnet 2 in the direction parallel to the rotation axis 9, and the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb
  • the rotation speed detector 1 can suppress the variation in the timing of power generation and the variation in the amount of power generation by providing a cylinder which is a soft magnetic material at both ends of the magnetic wire 6. As described above, the rotation speed detector 1 has an effect that the reliability of the rotation speed detection can be improved.
  • FIG. 4 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the second embodiment of the present invention.
  • the magnet 2 of the second embodiment is provided with weakly magnetized regions Nb1, Nb2, Sb1, Sb2 at the boundary between the N pole 2N and the S pole 2S.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
  • FIG. 4 shows a view of the magnet 2 and the power generation element 3 in a direction parallel to the rotating shaft 9 and from a side opposite to the shaft 4.
  • the magnet 2 of the second embodiment is a cylindrical body having an opening 11 at the center.
  • the magnet 2 may be a flat plate having a circular shape, as in the case of the first embodiment.
  • the N pole 2N has one strong magnetization region Na which is the first region and two weak magnetization regions Nb1 and Nb2 which are the second regions.
  • the strong magnetization region Na and the weak magnetization regions Nb1 and Nb2 have the same magnetizing direction and different magnetic force strengths.
  • the weakly magnetized regions Nb1 and Nb2 are regions in which the magnetic force is weaker than that of the strongly magnetized region Na. That is, the surface magnetic flux densities of the weakly magnetized regions Nb1 and Nb2 are smaller than the surface magnetic flux densities of the strongly magnetized regions Na.
  • the surface magnetic flux density of the weakly magnetized region Nb1 and the surface magnetic flux density of the weakly magnetized region Nb2 are about the same.
  • the S pole 2S has one strong magnetization region Sa which is the first region and two weak magnetization regions Sb1 and Sb2 which are the second regions.
  • the strong magnetization region Sa and the weak magnetization regions Sb1 and Sb2 have the same magnetizing direction and different magnetic force strengths.
  • the weakly magnetized regions Sb1 and Sb2 are regions in which the magnetic force is weaker than the strongly magnetized region Sa. That is, the surface magnetic flux densities of the weakly magnetized regions Sb1 and Sb2 are smaller than the surface magnetic flux densities of the strongly magnetized regions Sa.
  • the surface magnetic flux density of the weakly magnetized region Sb1 and the surface magnetic flux density of the weakly magnetized region Sb2 are about the same.
  • the boundary between the strongly magnetized regions Na and Sa and the weakly magnetized regions Nb1, Nb2, Sb1 and Sb2 is represented by a solid line.
  • the strong magnetization region Na is provided between the weak magnetization region Nb1 and the weak magnetization region Nb2 in the rotation direction. That is, the weakly magnetized regions Nb1 and Nb2 are arranged so as to sandwich the strongly magnetized region Na.
  • the strong magnetization region Na is arranged at the center of the N pole 2N in the rotation direction.
  • the strong magnetization region Sa is provided between the weak magnetization region Sb1 and the weak magnetization region Sb2 in the rotation direction. That is, the weakly magnetized regions Sb1 and Sb2 are arranged so as to sandwich the strongly magnetized region Sa.
  • the strong magnetization region Sa is arranged at the center of the S pole 2S in the rotation direction.
  • the weakly magnetized region Nb1 and the weakly magnetized region Sb1 are adjacent to each other in the rotation direction.
  • the weakly magnetized region Nb2 and the weakly magnetized region Sb2 are adjacent to each other in the rotation direction.
  • the weakly magnetized regions Nb1, Nb2, Sb1, Sb2 are provided at the boundary between the N pole 2N and the S pole 2S of the magnet 2.
  • the strong magnetization region Na and the weak magnetization region Nb1 and Nb2 of the N pole 2N and the strong magnetization region Sa and the weak magnetization region Sb1 and Sb2 of the S pole 2S are magnetized when the magnet 2 is magnetized. This is achieved by changing the strength of the external magnetic field applied to each region of the magnet 2.
  • the portion of the power generation element 3 between the first end portion 6a and the second end portion 6b faces the weakly magnetized region Nb1 and the weakly magnetized region Sb1.
  • the first end portion 6a faces the strong magnetization region Na.
  • the second end portion 6b faces the strong magnetization region Sa.
  • the range of the strong magnetization region Na in the rotation direction is larger than the range of the combined region of the weak magnetization region Nb1 and the weak magnetization region Sb1 in the rotation direction, and the weak magnetization region Nb2 and the weak magnetization region Sb2 in the rotation direction are formed. Greater than the combined area range.
  • the range of the strong magnetization region Sa in the rotation direction is larger than the range of the combined region of the weak magnetization region Nb1 and the weak magnetization region Sb1 in the rotation direction, and the weak magnetization region Nb2 and the weak magnetization region Sb2 in the rotation direction are combined. Greater than the combined area range.
  • FIG. 5 is a diagram showing an example of the relationship between the rotation angle of the magnet and the magnetic flux density in the rotation speed detector according to the second embodiment.
  • the angle “0 degree” is assumed to be when the magnet 2 is in the state shown in FIG.
  • the horizontal axis of the graph shown in FIG. 5 represents the rotation angle when the magnet 2 is rotated in the counterclockwise direction in FIG.
  • the vertical axis of the graph shown in FIG. 5 represents the magnetic flux density in the magnetic wire 6.
  • the curve M3 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the second embodiment is rotated.
  • the curve M2 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the comparative example is rotated, as in the case of the first embodiment.
  • the magnetic flux density starts to decrease from the maximum value at around 30 degrees and reaches the minimum value at around 150 degrees.
  • the magnetic flux density starts to decrease from the maximum value at around 60 degrees and reaches the minimum value at around 120 degrees.
  • the magnetic flux density decreases in a narrower angle range than in the case of the comparative example. That is, in the case of the second embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
  • the magnetic flux density starts to increase from the minimum value at around 200 degrees and reaches the maximum value at around 340 degrees while rotating the magnet 2 from 180 degrees to 360 degrees. ..
  • the magnetic flux density starts to increase from the minimum value at around 220 degrees and reaches the maximum value at around 310 degrees.
  • the magnetic flux density increases in a narrower angle range than in the case of the comparative example. That is, in the case of the second embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
  • the strong magnetization region Sa reaches the position facing the power generation element 3. Further, by rotating the magnet 2, the strong magnetization region Sa moves away from the position facing the power generation element 3, and the weak magnetization regions Sb2 and Nb2 reach the position facing the power generation element 3. Since the range of the combined weakly magnetized regions Sb2 and Nb2 is smaller than the range of the strongly magnetized region Sa, the magnetic flux density sharply decreases.
  • the change in the magnetic flux density when the magnet 2 rotates from 180 degrees to 360 degrees is the same as the change in the magnetic flux density when the magnet 2 rotates from 0 degrees to 180 degrees, except that the positive and negative of the magnetic flux density are different.
  • the weak magnetization regions Nb1, Nb2, Sb1, Sb2 are provided at the boundary between the N pole 2N and the S pole 2S of the magnet 2, so that the magnetic flux density is reduced while the magnet 2 is rotated once.
  • the angle range to be magnetized and the angle range to increase the magnetic flux density are limited.
  • the angle range in which the magnetization reversal occurs can be limited as compared with the case of the comparative example.
  • the power generation element 3 can suppress variations in the timing of outputting the induced voltage due to the rotation of the magnet 2.
  • the power generation element 3 can reduce variations in power generation timing each time the magnet 2 rotates.
  • the power generation element 3 can increase the amount of power generation as compared with the case of the comparative example because the change in the magnetic flux density with respect to the change in the angle is steep.
  • the rotation speed detector 1 increases the amount of power generation in the power generation element 3 by providing the strong magnetization regions Na and Sa and the weak magnetization regions Nb1, Nb2, Sb1 and Sb2 in the magnet 2. It is possible to suppress variations in the timing of power generation. As a result, the rotation speed detector 1 has the effect of improving the reliability of the rotation speed detection.
  • the strong magnetization regions Na1, Na2, Sa1, Sa2 which are the first regions of the magnet 2 of the first embodiment, the weak magnetization regions Nb and Sb which are the second regions, and the second magnet 2 of the second embodiment.
  • the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, Sb1, Sb2, which are the second regions, are realized by changing the strength of the external magnetic field applied at the time of magnetization. Not limited to things.
  • the first region and the second region may be realized by the shape of the magnet 2 or the material of the magnet 2. The case where the first region and the second region are realized by the shape of the magnet 2 or the material of the magnet 2 will be described in the third and subsequent embodiments.
  • FIG. 6 is a diagram showing a rotation speed detector according to the third embodiment of the present invention.
  • the rotation speed detector 20 according to the third embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 21 is provided instead of the magnet 2 shown in FIG.
  • the same components as those in the first and second embodiments are designated by the same reference numerals, and the configurations different from those of the first and second embodiments will be mainly described. Note that in FIG. 6, the processing unit 5 is not shown.
  • the strong magnetization regions Na1, Na2, Sa1, Sa2, which are the first regions, and the weak magnetization regions Nb, Sb, which are the second regions, have different thicknesses in the direction parallel to the rotation axis 9.
  • the length of the strong magnetization regions Na1, Na2, Sa1, Sa2 in the direction parallel to the rotation axis 9 of the magnet 21 is longer than the length of the weak magnetization regions Nb, Sb in the direction parallel to the rotation axis 9 of the magnet 21. ..
  • the arrangement of the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb in the magnet 21 is the same as that of the magnet 2 shown in FIG.
  • the magnet 21 is a deformed cylindrical body so that the thickness differs between the first region and the second region.
  • the magnet 21 may not be provided with the opening 11.
  • the magnet 21 may be a deformed disk so that the thickness differs between the first region and the second region.
  • the first region which is a region having a large total magnetic flux amount
  • the second region which is a region having a small total magnetic flux amount
  • the first region is brought into close contact with the yoke core portion, while a gap is provided between the second region and the yoke core portion. Occurs.
  • the magnet 21 is formed with a first region having a large total magnetic flux amount and a second region having a small total magnetic flux amount.
  • the magnet 21 has the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, which are the second regions, as in the case of the magnet 2 shown in FIG. , Sb1 and Sb2 may be provided.
  • FIG. 7 is a diagram showing a rotation speed detector according to the fourth embodiment of the present invention.
  • FIG. 8 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the fourth embodiment.
  • the rotation speed detector 30 according to the fourth embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 31 is provided instead of the magnet 2 shown in FIG.
  • the same components as those in the first to third embodiments are designated by the same reference numerals, and the configurations different from those in the first to third embodiments will be mainly described.
  • FIG. 8 shows a view of the magnet 31 and the power generation element 3 from a direction parallel to the rotation axis 9. Note that in FIG. 7, the processing unit 5 is not shown.
  • the strong magnetization regions Na1, Na2, Sa1, Sa2, which are the first regions, and the weakly magnetized regions Nb, Sb, which are the second regions, have different lengths in the radial direction.
  • the lengths of the strong magnetization regions Na1, Na2, Sa1 and Sa2 in the radial direction of the circle centered on the rotation axis 9 of the magnet 31 are the weak magnetization regions in the radial direction of the circle centered on the rotation axis 9 of the magnet 31. It is longer than the length of Nb and Sb.
  • the arrangement of the strongly magnetized regions Na1, Na2, Sa1, Sa2 and the weakly magnetized regions Nb, Sb in the magnet 31 is the same as that of the magnet 2 shown in FIG. In FIG. 8, the boundary between the N pole 2N and the S pole 2S is represented by a solid line.
  • the magnet 31 is a deformed cylindrical body so that the length in the radial direction differs between the first region and the second region.
  • the magnet 31 may not be provided with the opening 11.
  • the magnet 31 may be a deformed disk so that the thickness in the radial direction differs between the first region and the second region.
  • the first region which is a region having a large total magnetic flux amount
  • the second region which is a region having a small total magnetic flux amount
  • the magnet 31 has the strong magnetization regions Na and Sa, which are the first regions
  • FIG. 9 is a diagram showing a rotation speed detector according to a fifth embodiment of the present invention.
  • the rotation speed detector 40 according to the fifth embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 41 is provided instead of the magnet 2 shown in FIG.
  • the same components as those in the first to fourth embodiments are designated by the same reference numerals, and the configurations different from those in the first to fourth embodiments will be mainly described. Note that in FIG. 9, the processing unit 5 is not shown.
  • the magnet 41 has a first portion 41a and a second portion 41b, which are portions made of different materials.
  • the first portion 41a constitutes a strong magnetization region Na1, Na2, Sa1, Sa2 which is a first region.
  • the second portion 41b constitutes the weakly magnetized regions Nb and Sb, which are the second regions.
  • As the material of the first portion 41a a material having a higher residual magnetic flux density than the material of the second portion 41b is used.
  • the arrangement of the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb in the magnet 41 is the same as that of the magnet 2 shown in FIG.
  • the magnet 41 is a cylindrical body having an opening 11 at the center.
  • the magnet 41 is not limited to a cylindrical body, and may be a disk.
  • the magnet 41 a material having a higher residual magnetic flux density than the material of the second portion 41b is used as the material of the first portion 41a, so that the first region and the total magnetic flux, which are regions where the total magnetic flux amount is large, are used.
  • the magnet 41 has the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, which are the second regions, as in the case of the magnet 2 shown in FIG. , Sb1 and Sb2 may be provided.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A rotation speed detector (1) has: a magnet (2) attached to a shaft (4), which is a rotating body that rotates about a rotation axis (9); and a power generation element (3) that generates an inducement voltage in accordance with a change in a magnetic field produced due to rotation of the magnet (2). The rotation speed detector (1) detects the rotation speed of the rotating body on the basis of the inducement voltage. The power generation element (3) has: a magnetic wire (6); a coil (7) wound between a first end part and a second end part of the magnetic wire (6), these end parts being the two end parts of the magnetic wire (6); and cylindrical ferrite beads (8) that are provided to each of the first end part and the second end part, the ferrite beads (8) being soft magnetic bodies. The magnet (2) has a plurality of magnetic poles arranged in the rotation direction of the magnet (2). Each of the plurality of magnetic poles has a first region and a second region having mutually different strengths of magnetic force.

Description

回転数検出器Rotation speed detector
 本発明は、回転体の回転数を検出する回転数検出器に関する。 The present invention relates to a rotation speed detector that detects the rotation speed of a rotating body.
 回転体に取り付けられる磁石を有し、磁石の回転による磁界の変化にしたがって発生する誘起電圧を基に回転体の回転数を検出する回転数検出器が知られている。特許文献1には、磁界の変化に基づいて大バルクハウゼン効果による磁化反転を生じる磁性ワイヤと、磁性ワイヤに巻回されており磁性ワイヤの磁化反転にしたがって誘起電圧を発生するコイルとを有する回転数検出器が開示されている。 There is known a rotation speed detector that has a magnet attached to a rotating body and detects the rotation speed of the rotating body based on an induced voltage generated according to a change in a magnetic field due to the rotation of the magnet. Patent Document 1 includes a magnetic wire that causes magnetization reversal due to a large bulkhausen effect based on a change in a magnetic field, and a coil that is wound around the magnetic wire and generates an induced voltage according to the magnetization reversal of the magnetic wire. Number detectors are disclosed.
 特許文献1によると、磁性ワイヤおよびコイルが、回転体の回転軸と垂直な方向において磁石と対向することによって、磁性ワイヤの端部と磁石との間隔が、磁性ワイヤの中心部と磁石との間隔よりも長くなる。このため、磁石からの磁束は、磁性ワイヤの中心部よりも磁性ワイヤの端部において弱くなる。大バルクハウゼン効果は磁性ワイヤの端部よりも磁性ワイヤの中心部において安定することから、磁性ワイヤの中心部よりも磁性ワイヤの端部において磁束が弱められることによって、誘起電圧の発生が安定する。これにより、回転数検出器は、発電量のばらつきを低減できる。 According to Patent Document 1, the magnetic wire and the coil face the magnet in the direction perpendicular to the rotation axis of the rotating body, so that the distance between the end of the magnetic wire and the magnet is set between the center of the magnetic wire and the magnet. It will be longer than the interval. Therefore, the magnetic flux from the magnet is weaker at the end of the magnetic wire than at the center of the magnetic wire. Since the large bulkhausen effect is more stable at the center of the magnetic wire than at the end of the magnetic wire, the magnetic flux is weakened at the end of the magnetic wire rather than at the center of the magnetic wire, thereby stabilizing the generation of the induced voltage. .. As a result, the rotation speed detector can reduce the variation in the amount of power generation.
特開2018-189426号公報JP-A-2018-189426
 特許文献1にかかる従来の技術によると、磁性ワイヤの端部において磁束が弱められているため、磁性ワイヤの中心部に作用する磁束と同じ強さの磁束が磁性ワイヤの全体に作用する場合に比べて、発電量が低下する。発電量の低下は、発電量のばらつきと同様、回転数の検出における信頼性の低下を招来する。このように、従来の技術によると、回転数検出器は、発電量のばらつきの低減と発電量の低下の抑制との両立が困難であり、回転数検出の信頼性向上が容易ではなかった。 According to the conventional technique according to Patent Document 1, since the magnetic flux is weakened at the end of the magnetic wire, when a magnetic flux having the same strength as the magnetic flux acting on the central portion of the magnetic wire acts on the entire magnetic wire. In comparison, the amount of power generated is reduced. A decrease in the amount of power generation leads to a decrease in reliability in the detection of the number of revolutions as well as a variation in the amount of power generation. As described above, according to the conventional technique, it is difficult for the rotation speed detector to both reduce the variation in the power generation amount and suppress the decrease in the power generation amount, and it is not easy to improve the reliability of the rotation speed detection.
 本発明は、上記に鑑みてなされたものであって、回転数検出の信頼性を向上可能な回転数検出器を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a rotation speed detector capable of improving the reliability of rotation speed detection.
 上述した課題を解決し、目的を達成するために、本発明にかかる回転数検出器は、回転軸を中心に回転する回転体に取り付けられる磁石と、磁石の回転による磁界の変化にしたがって誘起電圧を発生する発電素子とを有し、誘起電圧を基に回転体の回転数を検出する。発電素子は、磁性ワイヤと、磁性ワイヤのうち磁性ワイヤの両端部である第1端部および第2端部の間に巻回されたコイルと、軟磁性体であって第1端部および第2端部の各々に設けられている筒体と、を有する。磁石は、磁石の回転方向に並べられた複数の磁極を有する。複数の磁極の各々は、磁力の強さが互いに異なる第1の領域と第2の領域とを有する。 In order to solve the above-mentioned problems and achieve the object, the rotation speed detector according to the present invention has a magnet attached to a rotating body rotating around a rotation axis and an induced voltage according to a change in a magnetic field due to the rotation of the magnet. It has a power generation element that generates the above, and detects the number of rotations of the rotating body based on the induced voltage. The power generation element includes a magnetic wire, a coil wound between the first end and the second end of the magnetic wire, which are both ends of the magnetic wire, and a soft magnetic material, which is the first end and the first end. It has a cylinder provided at each of the two ends. The magnet has a plurality of magnetic poles arranged in the direction of rotation of the magnet. Each of the plurality of magnetic poles has a first region and a second region in which the strengths of the magnetic forces are different from each other.
 本発明にかかる回転数検出器は、回転数検出の信頼性を向上できるという効果を奏する。 The rotation speed detector according to the present invention has the effect of improving the reliability of rotation speed detection.
本発明の実施の形態1にかかる回転数検出器を示す図The figure which shows the rotation speed detector which concerns on Embodiment 1 of this invention. 実施の形態1にかかる回転数検出器が有する磁石と発電素子とを示す平面図Top view showing a magnet and a power generation element included in the rotation speed detector according to the first embodiment. 実施の形態1にかかる回転数検出器における磁石の回転角度と磁束密度との関係の例を示す図The figure which shows the example of the relationship between the rotation angle of a magnet, and the magnetic flux density in the rotation speed detector which concerns on Embodiment 1. 本発明の実施の形態2にかかる回転数検出器が有する磁石と発電素子とを示す平面図Top view showing a magnet and a power generation element included in the rotation speed detector according to the second embodiment of the present invention. 実施の形態2にかかる回転数検出器における磁石の回転角度と磁束密度との関係の例を示す図The figure which shows the example of the relationship between the rotation angle of a magnet, and the magnetic flux density in the rotation speed detector which concerns on Embodiment 2. 本発明の実施の形態3にかかる回転数検出器を示す図The figure which shows the rotation speed detector which concerns on Embodiment 3 of this invention. 本発明の実施の形態4にかかる回転数検出器を示す図The figure which shows the rotation speed detector which concerns on Embodiment 4 of this invention. 実施の形態4にかかる回転数検出器が有する磁石と発電素子とを示す平面図Top view showing a magnet and a power generation element included in the rotation speed detector according to the fourth embodiment. 本発明の実施の形態5にかかる回転数検出器を示す図The figure which shows the rotation speed detector which concerns on Embodiment 5 of this invention.
 以下に、本発明の実施の形態にかかる回転数検出器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The rotation speed detector according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる回転数検出器を示す図である。実施の形態1にかかる回転数検出器1は、磁界の変化にしたがって発生する誘起電圧を基に回転体の回転数を検出する磁気式回転数検出器である。回転数検出器1は、回転体が回転する回数を検出する。
Embodiment 1.
FIG. 1 is a diagram showing a rotation speed detector according to the first embodiment of the present invention. The rotation speed detector 1 according to the first embodiment is a magnetic rotation speed detector that detects the rotation speed of a rotating body based on an induced voltage generated according to a change in a magnetic field. The rotation speed detector 1 detects the number of times the rotating body rotates.
 回転数検出器1は、シャフト4に取り付けられる磁石2と、磁石2の回転による磁界の変化にしたがって誘起電圧を発生して信号を出力する発電素子3と、発電素子3からの信号を処理する処理部5とを有する。磁石2は、円形を呈する平板である。磁石2は、永久磁石である。シャフト4は、回転軸9を中心に回転する回転体である。磁石2は、接着、ねじ止め、あるいは圧入によって、シャフト4の先端に固定されている。シャフト4は、モータの駆動軸である。図1では、シャフト4を回転させるモータ本体の図示を省略する。 The rotation speed detector 1 processes the magnet 2 attached to the shaft 4, the power generation element 3 that generates an induced voltage according to the change in the magnetic field due to the rotation of the magnet 2, and outputs a signal, and the signal from the power generation element 3. It has a processing unit 5. The magnet 2 is a flat plate having a circular shape. The magnet 2 is a permanent magnet. The shaft 4 is a rotating body that rotates around a rotating shaft 9. The magnet 2 is fixed to the tip of the shaft 4 by adhesion, screwing, or press fitting. The shaft 4 is a drive shaft of the motor. In FIG. 1, the motor body that rotates the shaft 4 is not shown.
 処理部5は、発電素子3からの信号を基に、発電によるパルスの数をカウントする。処理部5は、パルスの数をカウントすることによって、シャフト4の回転数を検出する。処理部5は、誘起電圧を利用して動作可能であるため、回転数の検出を無電源で行うことができる。 The processing unit 5 counts the number of pulses generated by power generation based on the signal from the power generation element 3. The processing unit 5 detects the rotation speed of the shaft 4 by counting the number of pulses. Since the processing unit 5 can operate using the induced voltage, the rotation speed can be detected without a power source.
 発電素子3は、回転軸9に平行な方向において磁石2と対向して配置されている。発電素子3は、磁石2のうちシャフト4に固定される側の面とは逆側の表面と対向する。発電素子3は、磁石2のうちシャフト4に固定される側の面と対向して配置されても良い。発電素子3は、磁性ワイヤ6と、磁性ワイヤ6に巻回されたコイル7と、磁性ワイヤ6の両端部である第1端部6aおよび第2端部6bの各々に設けられているフェライトビーズ8とを有する。 The power generation element 3 is arranged to face the magnet 2 in a direction parallel to the rotation axis 9. The power generation element 3 faces the surface of the magnet 2 opposite to the surface fixed to the shaft 4. The power generation element 3 may be arranged so as to face the surface of the magnet 2 on the side fixed to the shaft 4. The power generation element 3 includes a magnetic wire 6, a coil 7 wound around the magnetic wire 6, and ferrite beads provided on each of the first end portion 6a and the second end portion 6b, which are both ends of the magnetic wire 6. Has 8 and.
 磁性ワイヤ6は、ワイヤ状に加工された磁性体である。磁性ワイヤ6は、磁界の変化に基づいて大バルクハウゼン効果による磁化反転を生じる。大バルクハウゼン効果は、磁性体が磁化する際に磁性体内部の磁壁が一度に移動することによって短時間において磁化方向が反転する現象である。 The magnetic wire 6 is a magnetic material processed into a wire shape. The magnetic wire 6 causes magnetization reversal due to the large Barkhausen effect based on the change in the magnetic field. The large Barkhausen effect is a phenomenon in which the magnetization direction is reversed in a short time by moving the domain wall inside the magnetic material at once when the magnetic material is magnetized.
 コイル7は、第1端部6aおよび第2端部6bとの間に巻回されている。すなわち、コイル7は、第1端部6aに設けられているフェライトビーズ8と第2端部6bに設けられているフェライトビーズ8との間に設けられている。コイル7は、ピックアップコイルである。 The coil 7 is wound between the first end portion 6a and the second end portion 6b. That is, the coil 7 is provided between the ferrite beads 8 provided at the first end portion 6a and the ferrite beads 8 provided at the second end portion 6b. The coil 7 is a pickup coil.
 フェライトビーズ8は、軟磁性体の筒体である。フェライトビーズ8の透磁率は、磁性ワイヤ6の透磁率よりも高い。1つのフェライトビーズ8は、第1端部6aに被せられている。他の1つのフェライトビーズ8は、第2端部6bに被せられている。なお、第1端部6aと第2端部6bとに設けられる筒体は、フェライトビーズ8以外の軟磁性体であっても良く、鉄などの軟磁性材料からなる筒体であっても良い。軟磁性体には、フェライトビーズ8以外に、SS400またはS45Cといった鉄鋼材、SUS430またはSUS440といった磁性ステンレス鋼材、あるいは、パーマロイまたはパーメンジュールといった高透磁率材などが用いられても良い。発電素子3において2つの軟磁性体の筒体の間隔が広いほど、磁性ワイヤ6の磁化反転領域が増えることによって、発電素子3による発電量が大きくなる。したがって、2つの軟磁性体の筒体のうちの一方は磁性ワイヤ6の一方の端あるいは当該一方の端にできるだけ近い位置に配置され、2つの軟磁性体の筒体のうちの他方は磁性ワイヤ6の他方の端あるいは当該他方の端にできるだけ近い位置に配置されることが望ましい。 Ferrite beads 8 are cylinders made of soft magnetic material. The magnetic permeability of the ferrite beads 8 is higher than the magnetic permeability of the magnetic wire 6. One ferrite bead 8 covers the first end portion 6a. The other ferrite bead 8 covers the second end portion 6b. The cylinder provided at the first end portion 6a and the second end portion 6b may be a soft magnetic material other than the ferrite beads 8, or may be a cylinder made of a soft magnetic material such as iron. .. In addition to the ferrite beads 8, a steel material such as SS400 or S45C, a magnetic stainless steel material such as SUS430 or SUS440, or a high magnetic permeability material such as permalloy or permendur may be used as the soft magnetic material. The wider the distance between the cylinders of the two soft magnetic materials in the power generation element 3, the larger the magnetization reversal region of the magnetic wire 6, and the larger the amount of power generated by the power generation element 3. Therefore, one of the two soft magnetic cylinders is arranged at one end of the magnetic wire 6 or as close as possible to the one end, and the other of the two soft magnetic cylinders is the magnetic wire. It is desirable to place the 6 at the other end or as close as possible to the other end.
 図2は、実施の形態1にかかる回転数検出器が有する磁石と発電素子とを示す平面図である。図2には、回転軸9に平行な方向かつシャフト4とは逆側から磁石2と発電素子3とを見た様子を示している。発電素子3は、磁石2の平面形状である円形の中心から離れた位置において磁石2と対向して配置されている。なお、回転数検出器1は、一般に、回転体の回転角度を検出する角度検出器と併せて使用される。角度検出部は、光学スリットが形成された光学検出用の円板と、光を発生する発光部と、発光部から出射して光学スリットを経由した光を検出する受光部とを備える。例えば、円板は、磁石2の上面側において回転体に固定される。発光部と受光部とは、光学スリットと対向する位置に設けられる。図1および図2では、角度検出部の図示を省略する。 FIG. 2 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the first embodiment. FIG. 2 shows a view of the magnet 2 and the power generation element 3 in a direction parallel to the rotating shaft 9 and from a side opposite to the shaft 4. The power generation element 3 is arranged so as to face the magnet 2 at a position away from the center of the circular shape of the magnet 2. The rotation speed detector 1 is generally used in combination with an angle detector that detects the rotation angle of the rotating body. The angle detection unit includes an optical detection disk on which an optical slit is formed, a light emitting unit that generates light, and a light receiving unit that emits light from the light emitting unit and detects light that has passed through the optical slit. For example, the disk is fixed to the rotating body on the upper surface side of the magnet 2. The light emitting unit and the light receiving unit are provided at positions facing the optical slit. In FIGS. 1 and 2, the angle detection unit is not shown.
 磁石2は、磁石2の回転方向に並べられた複数の磁極を有する。実施の形態1では、磁石2は、2つの磁極である第1の磁極と第2の磁極とを有する。第1の磁極と第2の磁極とは、着磁方向が互いに異なる2つの磁極である。磁石2は、円の直径を境界として、第1の磁極であるN極2Nと第2の磁極であるS極2Sとに2等分されている。磁石2は、回転軸9に平行な方向に着磁されている。 The magnet 2 has a plurality of magnetic poles arranged in the rotation direction of the magnet 2. In the first embodiment, the magnet 2 has two magnetic poles, a first magnetic pole and a second magnetic pole. The first magnetic pole and the second magnetic pole are two magnetic poles having different magnetizing directions. The magnet 2 is bisected into an N pole 2N, which is the first magnetic pole, and an S pole 2S, which is the second magnetic pole, with the diameter of the circle as a boundary. The magnet 2 is magnetized in a direction parallel to the rotation axis 9.
 磁石2は、1対のN極2NおよびS極2Sを有するものに限られず、2対以上のN極2NおよびS極2Sを有するものであっても良い。すなわち、磁石2は、4つ以上の磁極を有するものであっても良い。また、磁石2は、円形を呈する平板に限られず、中心に開口が設けられた円筒体であっても良い。 The magnet 2 is not limited to one having a pair of N poles 2N and S pole 2S, and may have two or more pairs of N poles 2N and S poles 2S. That is, the magnet 2 may have four or more magnetic poles. Further, the magnet 2 is not limited to a flat plate having a circular shape, and may be a cylindrical body having an opening at the center.
 N極2Nは、第1の領域である2つの強磁化領域Na1,Na2と第2の領域である1つの弱磁化領域Nbとを有する。強磁化領域Na1,Na2と弱磁化領域Nbとは、着磁方向が互いに同じであって、かつ磁力の強さが互いに異なる。弱磁化領域Nbは、強磁化領域Na1,Na2よりも磁力が弱い領域である。すなわち、弱磁化領域Nbの表面磁束密度は、強磁化領域Na1,Na2の表面磁束密度よりも小さい。強磁化領域Na1の表面磁束密度と強磁化領域Na2の表面磁束密度とは、同程度である。 The N pole 2N has two strongly magnetized regions Na1 and Na2, which are the first regions, and one weakly magnetized region Nb, which is the second region. The strong magnetization regions Na1 and Na2 and the weak magnetization regions Nb have the same magnetizing direction and different magnetic force strengths. The weakly magnetized region Nb is a region having a weaker magnetic force than the strongly magnetized regions Na1 and Na2. That is, the surface magnetic flux density of the weakly magnetized region Nb is smaller than the surface magnetic flux density of the strongly magnetized regions Na1 and Na2. The surface magnetic flux density of the strong magnetization region Na1 and the surface magnetic flux density of the strong magnetization region Na2 are about the same.
 S極2Sは、第1の領域である2つの強磁化領域Sa1,Sa2と第2の領域である1つの弱磁化領域Sbとを有する。強磁化領域Sa1,Sa2と弱磁化領域Sbとは、着磁方向が互いに同じであって、かつ磁力の強さが互いに異なる。弱磁化領域Sbは、強磁化領域Sa1,Sa2よりも磁力が弱い領域である。すなわち、弱磁化領域Sbの表面磁束密度は、強磁化領域Sa1,Sa2の表面磁束密度よりも小さい。強磁化領域Sa1の表面磁束密度と強磁化領域Sa2の表面磁束密度とは、同程度である。なお、図2では、強磁化領域Na1,Na2,Sa1,Sa2と弱磁化領域Nb,Sbとの各領域の境界を実線で表している。 The S pole 2S has two strongly magnetized regions Sa1 and Sa2, which are the first regions, and one weakly magnetized region Sb, which is the second region. The strongly magnetized regions Sa1 and Sa2 and the weakly magnetized regions Sb have the same magnetizing direction and different magnetic force strengths. The weakly magnetized region Sb is a region having a weaker magnetic force than the strongly magnetized regions Sa1 and Sa2. That is, the surface magnetic flux density of the weakly magnetized region Sb is smaller than the surface magnetic flux density of the strongly magnetized regions Sa1 and Sa2. The surface magnetic flux density of the strong magnetization region Sa1 and the surface magnetic flux density of the strong magnetization region Sa2 are about the same. In FIG. 2, the boundary between the strongly magnetized regions Na1, Na2, Sa1, Sa2 and the weakly magnetized regions Nb and Sb is represented by a solid line.
 弱磁化領域Nbは、回転方向において強磁化領域Na1と強磁化領域Na2との間に設けられている。すなわち、弱磁化領域Nbは、回転方向において強磁化領域Na1,Na2に挟まれて配置されている。弱磁化領域Nbは、N極2Nのうち回転方向における中心に配置されている。弱磁化領域Sbは、回転方向において強磁化領域Sa1と強磁化領域Sa2との間に設けられている。すなわち、弱磁化領域Sbは、回転方向において強磁化領域Sa1,Sa2に挟まれて配置されている。弱磁化領域Sbは、S極2Sのうち回転方向における中心に配置されている。強磁化領域Na1と強磁化領域Sa1とは、回転方向において互いに隣り合う。強磁化領域Na2と強磁化領域Sa2とは、回転方向において互いに隣り合う。 The weak magnetization region Nb is provided between the strong magnetization region Na1 and the strong magnetization region Na2 in the rotation direction. That is, the weakly magnetized region Nb is arranged so as to be sandwiched between the strongly magnetized regions Na1 and Na2 in the rotation direction. The weakly magnetized region Nb is arranged at the center of the N pole 2N in the rotation direction. The weak magnetization region Sb is provided between the strong magnetization region Sa1 and the strong magnetization region Sa2 in the rotation direction. That is, the weakly magnetized region Sb is arranged so as to be sandwiched between the strongly magnetized regions Sa1 and Sa2 in the rotation direction. The weakly magnetized region Sb is arranged at the center of the S pole 2S in the rotation direction. The strong magnetization region Na1 and the strong magnetization region Sa1 are adjacent to each other in the rotation direction. The strong magnetization region Na2 and the strong magnetization region Sa2 are adjacent to each other in the rotation direction.
 このように、強磁化領域Na1,Na2,Sa1,Sa2は、磁石2のうちN極2NとS極2Sとの境界に設けられている。実施の形態1において、N極2Nの強磁化領域Na1,Na2および弱磁化領域Nbと、S極2Sの強磁化領域Sa1,Sa2および弱磁化領域Sbとは、磁石2の着磁の際に、磁石2の領域ごとに加えられる外部磁場の強さを変化させることによって実現される。磁石2を着磁する際に使用される着磁ヨークのヨークコア部分には、透磁率が互いに異なる2種類の材料が使用される。 As described above, the strong magnetization regions Na1, Na2, Sa1, and Sa2 are provided at the boundary between the N pole 2N and the S pole 2S in the magnet 2. In the first embodiment, the strong magnetization regions Na1 and Na2 and the weak magnetization region Nb of the N pole 2N and the strong magnetization regions Sa1 and Sa2 and the weak magnetization region Sb of the S pole 2S are magnetized when the magnet 2 is magnetized. This is achieved by changing the strength of the external magnetic field applied to each region of the magnet 2. Two types of materials having different magnetic permeabilitys are used for the yoke core portion of the magnetizing yoke used when magnetizing the magnet 2.
 図2に示す状態において、発電素子3は、強磁化領域Na1と強磁化領域Sa1とに対向している。回転軸9に平行な方向において磁石2と発電素子3とを平面視した場合において、発電素子3の全体は、強磁化領域Na1と強磁化領域Sa1とを合わせた領域の中にある。 In the state shown in FIG. 2, the power generation element 3 faces the strong magnetization region Na1 and the strong magnetization region Sa1. When the magnet 2 and the power generation element 3 are viewed in a plane in a direction parallel to the rotation axis 9, the entire power generation element 3 is in a region in which the strong magnetization region Na1 and the strong magnetization region Sa1 are combined.
 図3は、実施の形態1にかかる回転数検出器における磁石の回転角度と磁束密度との関係の例を示す図である。図3において、角度「0度」は、磁石2が図2に示す状態であるときとする。図3に示すグラフの横軸は、図2において反時計回りの方向へ磁石2を回転させた場合における回転角度を表す。図3に示すグラフの縦軸は、磁性ワイヤ6における磁束密度を表す。 FIG. 3 is a diagram showing an example of the relationship between the rotation angle of the magnet and the magnetic flux density in the rotation speed detector according to the first embodiment. In FIG. 3, the angle “0 degree” is assumed to be when the magnet 2 is in the state shown in FIG. The horizontal axis of the graph shown in FIG. 3 represents the rotation angle when the magnet 2 is rotated in the counterclockwise direction in FIG. The vertical axis of the graph shown in FIG. 3 represents the magnetic flux density in the magnetic wire 6.
 曲線M1は、実施の形態1の磁石2を回転させる場合における角度と磁束密度との関係を表す。曲線M2は、比較例の磁石2を回転させる場合における角度と磁束密度との関係を表す。比較例の磁石2は、強磁化領域のみからなる1対のN極およびS極を有するものとする。 The curve M1 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the first embodiment is rotated. The curve M2 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the comparative example is rotated. It is assumed that the magnet 2 of the comparative example has a pair of north and south poles consisting of only a strong magnetization region.
 実施の形態1と比較例とにおいて、角度が0度であるとき、磁束の方向は磁性ワイヤ6の長さ方向と平行である。角度が0度であるときの磁束密度は極大値である。角度が180度であるとき、磁束の方向は、角度が0度であるときとは逆の方向となる。角度が180度であるときの磁束密度は極小値である。 In the first embodiment and the comparative example, when the angle is 0 degrees, the direction of the magnetic flux is parallel to the length direction of the magnetic wire 6. The magnetic flux density when the angle is 0 degrees is a maximum value. When the angle is 180 degrees, the direction of the magnetic flux is opposite to that when the angle is 0 degrees. The magnetic flux density when the angle is 180 degrees is a minimum value.
 比較例の場合、0度から180度まで磁石2を回転させる間に、磁束密度は、30度付近から150度付近までの範囲において一様に減少する。また、180度から360度まで磁石を回転させる間に、磁束密度は、210度付近から330度付近までの範囲において一様に増加する。 In the case of the comparative example, the magnetic flux density decreases uniformly in the range of about 30 degrees to about 150 degrees while the magnet 2 is rotated from 0 degrees to 180 degrees. Further, while rotating the magnet from 180 degrees to 360 degrees, the magnetic flux density increases uniformly in the range from around 210 degrees to around 330 degrees.
 実施の形態1の場合、0度から磁石2を回転させていくと、磁束密度は、30度付近から70度付近までの範囲において極大値からゼロまで減少する。磁束密度は、70度付近から120度付近までの範囲においてゼロのままとなり、120度付近から160度付近までの範囲においてゼロから極小値まで減少する。このように、実施の形態1の場合、比較例の場合よりも狭い角度範囲において磁束密度が減少する。すなわち、実施の形態1の場合、比較例の場合よりも、角度の変化に対して磁束密度が急峻に変化する。 In the case of the first embodiment, when the magnet 2 is rotated from 0 degrees, the magnetic flux density decreases from the maximum value to zero in the range from about 30 degrees to about 70 degrees. The magnetic flux density remains zero in the range from around 70 degrees to around 120 degrees, and decreases from zero to the minimum value in the range from around 120 degrees to around 160 degrees. As described above, in the case of the first embodiment, the magnetic flux density decreases in a narrower angle range than in the case of the comparative example. That is, in the case of the first embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
 また、実施の形態1の場合において、180度から磁石2を回転させていくと、磁束密度は、200度付近から250度付近までの範囲において極小値からゼロまで増加する。磁束密度は、250度付近から300度付近までの範囲においてゼロのままとなり、300度付近から340度付近までの範囲においてゼロから極大値まで増加する。実施の形態1の場合、比較例の場合よりも狭い角度範囲において磁束密度が増加する。すなわち、実施の形態1の場合、比較例の場合よりも、角度の変化に対して磁束密度が急峻に変化する。 Further, in the case of the first embodiment, when the magnet 2 is rotated from 180 degrees, the magnetic flux density increases from the minimum value to zero in the range from about 200 degrees to about 250 degrees. The magnetic flux density remains zero in the range from around 250 degrees to around 300 degrees and increases from zero to the maximum value in the range from around 300 degrees to around 340 degrees. In the case of the first embodiment, the magnetic flux density increases in a narrower angle range than in the case of the comparative example. That is, in the case of the first embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
 図2に示す状態から磁石2を回転させることによって、第2端部6bに対向する位置に弱磁化領域Sbが到達する。さらに磁石2を回転させることによって、発電素子3と対向する位置から強磁化領域Na1,Sa1は離れていき、発電素子3と対向する位置に弱磁化領域Sbが到達する。発電素子3と対向する位置を弱磁化領域Sbが通過するときにおける磁束密度の変化は、発電素子3と対向する位置を強磁化領域Sa1が通過するときにおける磁束密度の変化よりも小さい。したがって、実施の形態1の場合、90度を含む角度範囲において磁束密度が変化しない状態となる。その後、さらに磁石2を回転させることによって、弱磁化領域Sbは発電素子3と対向する位置から離れていき、発電素子3と対向する位置に強磁化領域Sa2,Na2が到達する。発電素子3と対向する位置に強磁化領域Sa2,Na2が到達することによって、磁束密度は、ゼロから極小値へ急峻に減少する。磁石2が180度から360度まで回転する場合における磁束密度の変化は、磁束密度の正負が異なる以外は、磁石2が0度から180度まで回転する場合における磁束密度の変化と同様である。 By rotating the magnet 2 from the state shown in FIG. 2, the weakly magnetized region Sb reaches a position facing the second end portion 6b. Further, by rotating the magnet 2, the strong magnetization regions Na1 and Sa1 are separated from the position facing the power generation element 3, and the weak magnetization region Sb reaches the position facing the power generation element 3. The change in magnetic flux density when the weakly magnetized region Sb passes through the position facing the power generation element 3 is smaller than the change in magnetic flux density when the strong magnetization region Sa1 passes through the position facing the power generation element 3. Therefore, in the case of the first embodiment, the magnetic flux density does not change in the angle range including 90 degrees. After that, by further rotating the magnet 2, the weakly magnetized region Sb moves away from the position facing the power generation element 3, and the strong magnetization regions Sa2 and Na2 reach the position facing the power generation element 3. When the strong magnetization regions Sa2 and Na2 reach the positions facing the power generation element 3, the magnetic flux density sharply decreases from zero to the minimum value. The change in the magnetic flux density when the magnet 2 rotates from 180 degrees to 360 degrees is the same as the change in the magnetic flux density when the magnet 2 rotates from 0 degrees to 180 degrees, except that the positive and negative of the magnetic flux density are different.
 実施の形態1では、磁石2のうちN極2NとS極2Sとの境界に強磁化領域Na1,Na2,Sa1,Sa2を設けたことによって、磁石2を1回転させる中において、磁束密度が減少する角度範囲と磁束密度が増加する角度範囲とが限定される。実施の形態1では、磁性ワイヤ6における磁化反転は、120度付近から160度付近までの角度範囲と、200度付近から250度付近までの角度範囲とにおいて生じる。 In the first embodiment, the magnetic flux density is reduced in one rotation of the magnet 2 by providing the strong magnetization regions Na1, Na2, Sa1, and Sa2 at the boundary between the N pole 2N and the S pole 2S of the magnet 2. The angle range to be magnetized and the angle range to increase the magnetic flux density are limited. In the first embodiment, the magnetization reversal in the magnetic wire 6 occurs in an angle range from about 120 degrees to about 160 degrees and an angle range from about 200 degrees to about 250 degrees.
 このように、実施の形態1では、比較例の場合に比べて、磁化反転が起きる角度範囲が限定可能となる。発電素子3は、磁化反転が起きる角度範囲が限定されることで、磁石2の回転によって誘起電圧を出力するタイミングのばらつきを抑制できる。これにより、発電素子3は、磁石2が回転するごとにおける発電のタイミングのばらつきを低減できる。また、発電素子3は、角度の変化に対する磁束密度の変化が急峻であることによって、比較例の場合よりも発電量を増加することができる。 As described above, in the first embodiment, the angle range in which the magnetization reversal occurs can be limited as compared with the case of the comparative example. By limiting the angle range in which the magnetization reversal occurs, the power generation element 3 can suppress variations in the timing of outputting the induced voltage due to the rotation of the magnet 2. As a result, the power generation element 3 can reduce variations in power generation timing each time the magnet 2 rotates. Further, the power generation element 3 can increase the amount of power generation as compared with the case of the comparative example because the change in the magnetic flux density with respect to the change in the angle is steep.
 また、実施の形態1では、回転軸9に平行な方向において発電素子3が磁石2と対向することによって、磁性ワイヤ6の全体に磁石2からの磁束を作用させることができる。このため、発電素子3は、磁性ワイヤ6のうち中心部のみに磁束を作用させる場合と比べて、発電量を増加することができる。 Further, in the first embodiment, the magnetic flux from the magnet 2 can be applied to the entire magnetic wire 6 by the power generation element 3 facing the magnet 2 in the direction parallel to the rotation axis 9. Therefore, the power generation element 3 can increase the amount of power generation as compared with the case where the magnetic flux is applied only to the central portion of the magnetic wire 6.
 磁性ワイヤ6の第1端部6aと第2端部6bとは、磁性ワイヤ6のうち第1端部6aおよび第2端部6bの間の部位に比べて、磁束密度の変化が不安定になり易い。通常、磁性ワイヤ6は、ワイヤ状の材料を発電素子3に適した寸法に切断することによって製造される。第1端部6aと第2端部6bとは、切断時に応力が掛けられていることによって、第1端部6aおよび第2端部6bの間の部位とは組織の状態が変化している場合がある。組織の状態が変化していることは、磁束密度の変化が不安定となる要因の1つとなり得る。 The change in magnetic flux density of the first end portion 6a and the second end portion 6b of the magnetic wire 6 is unstable as compared with the portion of the magnetic wire 6 between the first end portion 6a and the second end portion 6b. Easy to become. Usually, the magnetic wire 6 is manufactured by cutting a wire-like material into a size suitable for the power generation element 3. Since stress is applied to the first end portion 6a and the second end portion 6b at the time of cutting, the state of the tissue is changed from the portion between the first end portion 6a and the second end portion 6b. In some cases. The change in the state of the tissue can be one of the factors that make the change in the magnetic flux density unstable.
 実施の形態1では、軟磁性体であるフェライトビーズ8を第1端部6aと第2端部6bとに被せたことによって、発電素子3は、磁石2から第1端部6aへ向かう磁束と、磁石2から第2端部6bへ向かう磁束とを、フェライトビーズ8へ導く。磁性ワイヤ6の透磁率よりもフェライトビーズ8の透磁率のほうが高いことによって、第1端部6aへ向かう磁束と第2端部6bへ向かう磁束とをフェライトビーズ8へ引き寄せることができる。発電素子3は、第1端部6aと第2端部6bとには磁束を作用させず、フェライトビーズ8を通じて磁性ワイヤ6へ磁束を作用させることが可能となる。発電素子3は、フェライトビーズ8を通じて磁性ワイヤ6へ磁束を作用させることで、磁石2の回転によって磁化反転が生じるタイミングのばらつきと、発電量のばらつきとを抑制できる。これにより、発電素子3は、磁石2が回転するごとにおける発電のタイミングのばらつきの低減と、磁石2が回転するごとにおける発電量のばらつきの低減とが可能となる。 In the first embodiment, by covering the first end portion 6a and the second end portion 6b with the ferrite beads 8 which are soft magnetic materials, the power generation element 3 receives the magnetic flux from the magnet 2 toward the first end portion 6a. , The magnetic flux from the magnet 2 toward the second end 6b is guided to the ferrite beads 8. Since the magnetic permeability of the ferrite beads 8 is higher than the magnetic permeability of the magnetic wire 6, the magnetic flux toward the first end portion 6a and the magnetic flux toward the second end portion 6b can be attracted to the ferrite beads 8. The power generation element 3 does not allow magnetic flux to act on the first end portion 6a and the second end portion 6b, but allows magnetic flux to act on the magnetic wire 6 through the ferrite beads 8. By applying a magnetic flux to the magnetic wire 6 through the ferrite beads 8, the power generation element 3 can suppress variations in the timing at which magnetization reversal occurs due to the rotation of the magnet 2 and variations in the amount of power generation. As a result, the power generation element 3 can reduce the variation in the timing of power generation each time the magnet 2 rotates, and reduce the variation in the amount of power generation each time the magnet 2 rotates.
 実施の形態1によると、回転数検出器1は、回転軸9に平行な方向において磁石2に発電素子3を対向させるとともに、強磁化領域Na1,Na2,Sa1,Sa2と弱磁化領域Nb,Sbとを磁石2に設けたことによって、発電素子3における発電量を増加させることができ、かつ発電のタイミングのばらつきを抑制できる。また、回転数検出器1は、磁性ワイヤ6の両端部の各々に軟磁性体である筒体を設けたことによって、発電のタイミングのばらつきと発電量のばらつきとを抑制できる。以上により、回転数検出器1は、回転数検出の信頼性を向上できるという効果を奏する。 According to the first embodiment, in the rotation number detector 1, the power generation element 3 faces the magnet 2 in the direction parallel to the rotation axis 9, and the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb By providing the magnet 2 with the above, the amount of power generated by the power generation element 3 can be increased, and the variation in the timing of power generation can be suppressed. Further, the rotation speed detector 1 can suppress the variation in the timing of power generation and the variation in the amount of power generation by providing a cylinder which is a soft magnetic material at both ends of the magnetic wire 6. As described above, the rotation speed detector 1 has an effect that the reliability of the rotation speed detection can be improved.
実施の形態2.
 図4は、本発明の実施の形態2にかかる回転数検出器が有する磁石と発電素子とを示す平面図である。実施の形態2の磁石2には、N極2NとS極2Sとの境界に弱磁化領域Nb1,Nb2,Sb1,Sb2が設けられている。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。図4には、回転軸9に平行な方向かつシャフト4とは逆側から磁石2と発電素子3とを見た様子を示している。実施の形態2の磁石2は、中心に開口11が設けられた円筒体である。磁石2は、実施の形態1の場合と同様に、円形を呈する平板であっても良い。
Embodiment 2.
FIG. 4 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the second embodiment of the present invention. The magnet 2 of the second embodiment is provided with weakly magnetized regions Nb1, Nb2, Sb1, Sb2 at the boundary between the N pole 2N and the S pole 2S. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described. FIG. 4 shows a view of the magnet 2 and the power generation element 3 in a direction parallel to the rotating shaft 9 and from a side opposite to the shaft 4. The magnet 2 of the second embodiment is a cylindrical body having an opening 11 at the center. The magnet 2 may be a flat plate having a circular shape, as in the case of the first embodiment.
 N極2Nは、第1の領域である1つの強磁化領域Naと第2の領域である2つの弱磁化領域Nb1,Nb2とを有する。強磁化領域Naと弱磁化領域Nb1,Nb2とは、着磁方向が互いに同じであって、かつ磁力の強さが互いに異なる。弱磁化領域Nb1,Nb2は、強磁化領域Naよりも磁力が弱い領域である。すなわち、弱磁化領域Nb1,Nb2の表面磁束密度は、強磁化領域Naの表面磁束密度よりも小さい。弱磁化領域Nb1の表面磁束密度と弱磁化領域Nb2の表面磁束密度とは、同程度である。 The N pole 2N has one strong magnetization region Na which is the first region and two weak magnetization regions Nb1 and Nb2 which are the second regions. The strong magnetization region Na and the weak magnetization regions Nb1 and Nb2 have the same magnetizing direction and different magnetic force strengths. The weakly magnetized regions Nb1 and Nb2 are regions in which the magnetic force is weaker than that of the strongly magnetized region Na. That is, the surface magnetic flux densities of the weakly magnetized regions Nb1 and Nb2 are smaller than the surface magnetic flux densities of the strongly magnetized regions Na. The surface magnetic flux density of the weakly magnetized region Nb1 and the surface magnetic flux density of the weakly magnetized region Nb2 are about the same.
 S極2Sは、第1の領域である1つの強磁化領域Saと第2の領域である2つの弱磁化領域Sb1,Sb2とを有する。強磁化領域Saと弱磁化領域Sb1,Sb2とは、着磁方向が互いに同じであって、かつ磁力の強さが互いに異なる。弱磁化領域Sb1,Sb2は、強磁化領域Saよりも磁力が弱い領域である。すなわち、弱磁化領域Sb1,Sb2の表面磁束密度は、強磁化領域Saの表面磁束密度よりも小さい。弱磁化領域Sb1の表面磁束密度と弱磁化領域Sb2の表面磁束密度とは、同程度である。なお、図4では、強磁化領域Na,Saと弱磁化領域Nb1,Nb2,Sb1,Sb2との各領域の境界を実線で表している。 The S pole 2S has one strong magnetization region Sa which is the first region and two weak magnetization regions Sb1 and Sb2 which are the second regions. The strong magnetization region Sa and the weak magnetization regions Sb1 and Sb2 have the same magnetizing direction and different magnetic force strengths. The weakly magnetized regions Sb1 and Sb2 are regions in which the magnetic force is weaker than the strongly magnetized region Sa. That is, the surface magnetic flux densities of the weakly magnetized regions Sb1 and Sb2 are smaller than the surface magnetic flux densities of the strongly magnetized regions Sa. The surface magnetic flux density of the weakly magnetized region Sb1 and the surface magnetic flux density of the weakly magnetized region Sb2 are about the same. In FIG. 4, the boundary between the strongly magnetized regions Na and Sa and the weakly magnetized regions Nb1, Nb2, Sb1 and Sb2 is represented by a solid line.
 強磁化領域Naは、回転方向において弱磁化領域Nb1と弱磁化領域Nb2との間に設けられている。すなわち、弱磁化領域Nb1,Nb2は、強磁化領域Naを挟むように配置されている。強磁化領域Naは、N極2Nのうち回転方向における中心に配置されている。強磁化領域Saは、回転方向において弱磁化領域Sb1と弱磁化領域Sb2との間に設けられている。すなわち、弱磁化領域Sb1,Sb2は、強磁化領域Saを挟むように配置されている。強磁化領域Saは、S極2Sのうち回転方向における中心に配置されている。弱磁化領域Nb1と弱磁化領域Sb1とは、回転方向において互いに隣り合う。弱磁化領域Nb2と弱磁化領域Sb2とは、回転方向において互いに隣り合う。 The strong magnetization region Na is provided between the weak magnetization region Nb1 and the weak magnetization region Nb2 in the rotation direction. That is, the weakly magnetized regions Nb1 and Nb2 are arranged so as to sandwich the strongly magnetized region Na. The strong magnetization region Na is arranged at the center of the N pole 2N in the rotation direction. The strong magnetization region Sa is provided between the weak magnetization region Sb1 and the weak magnetization region Sb2 in the rotation direction. That is, the weakly magnetized regions Sb1 and Sb2 are arranged so as to sandwich the strongly magnetized region Sa. The strong magnetization region Sa is arranged at the center of the S pole 2S in the rotation direction. The weakly magnetized region Nb1 and the weakly magnetized region Sb1 are adjacent to each other in the rotation direction. The weakly magnetized region Nb2 and the weakly magnetized region Sb2 are adjacent to each other in the rotation direction.
 このように、弱磁化領域Nb1,Nb2,Sb1,Sb2は、磁石2のうちN極2NとS極2Sとの境界に設けられている。実施の形態2において、N極2Nの強磁化領域Naおよび弱磁化領域Nb1,Nb2と、S極2Sの強磁化領域Saおよび弱磁化領域Sb1,Sb2とは、磁石2の着磁の際に、磁石2の領域ごとに加えられる外部磁場の強さを変化させることによって実現される。 As described above, the weakly magnetized regions Nb1, Nb2, Sb1, Sb2 are provided at the boundary between the N pole 2N and the S pole 2S of the magnet 2. In the second embodiment, the strong magnetization region Na and the weak magnetization region Nb1 and Nb2 of the N pole 2N and the strong magnetization region Sa and the weak magnetization region Sb1 and Sb2 of the S pole 2S are magnetized when the magnet 2 is magnetized. This is achieved by changing the strength of the external magnetic field applied to each region of the magnet 2.
 図4に示す状態において、発電素子3のうち第1端部6aと第2端部6bとの間の部位は、弱磁化領域Nb1と弱磁化領域Sb1とに対向している。第1端部6aは、強磁化領域Naに対向している。第2端部6bは、強磁化領域Saに対向している。回転方向における強磁化領域Naの範囲は、回転方向における弱磁化領域Nb1と弱磁化領域Sb1とを合わせた領域の範囲よりも大きく、かつ、回転方向における弱磁化領域Nb2と弱磁化領域Sb2とを合わせた領域の範囲よりも大きい。回転方向における強磁化領域Saの範囲は、回転方向における弱磁化領域Nb1と弱磁化領域Sb1とを合わせた領域の範囲よりも大きく、かつ、回転方向における弱磁化領域Nb2と弱磁化領域Sb2とを合わせた領域の範囲よりも大きい。 In the state shown in FIG. 4, the portion of the power generation element 3 between the first end portion 6a and the second end portion 6b faces the weakly magnetized region Nb1 and the weakly magnetized region Sb1. The first end portion 6a faces the strong magnetization region Na. The second end portion 6b faces the strong magnetization region Sa. The range of the strong magnetization region Na in the rotation direction is larger than the range of the combined region of the weak magnetization region Nb1 and the weak magnetization region Sb1 in the rotation direction, and the weak magnetization region Nb2 and the weak magnetization region Sb2 in the rotation direction are formed. Greater than the combined area range. The range of the strong magnetization region Sa in the rotation direction is larger than the range of the combined region of the weak magnetization region Nb1 and the weak magnetization region Sb1 in the rotation direction, and the weak magnetization region Nb2 and the weak magnetization region Sb2 in the rotation direction are combined. Greater than the combined area range.
 図5は、実施の形態2にかかる回転数検出器における磁石の回転角度と磁束密度との関係の例を示す図である。図5において、角度「0度」は、磁石2が図4に示す状態であるときとする。図5に示すグラフの横軸は、図4において反時計回りの方向へ磁石2を回転させた場合における回転角度を表す。図5に示すグラフの縦軸は、磁性ワイヤ6における磁束密度を表す。 FIG. 5 is a diagram showing an example of the relationship between the rotation angle of the magnet and the magnetic flux density in the rotation speed detector according to the second embodiment. In FIG. 5, the angle “0 degree” is assumed to be when the magnet 2 is in the state shown in FIG. The horizontal axis of the graph shown in FIG. 5 represents the rotation angle when the magnet 2 is rotated in the counterclockwise direction in FIG. The vertical axis of the graph shown in FIG. 5 represents the magnetic flux density in the magnetic wire 6.
 曲線M3は、実施の形態2の磁石2を回転させる場合における角度と磁束密度との関係を表す。曲線M2は、実施の形態1の場合と同様に、比較例の磁石2を回転させる場合における角度と磁束密度との関係を表す。 The curve M3 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the second embodiment is rotated. The curve M2 represents the relationship between the angle and the magnetic flux density when the magnet 2 of the comparative example is rotated, as in the case of the first embodiment.
 比較例の場合、0度から180度まで磁石2を回転させる間において、磁束密度は、30度付近にて極大値からの減少を開始して、150度付近にて極小値に到達する。実施の形態2の場合、磁束密度は、60度付近にて極大値からの減少を開始して、120度付近にて極小値に到達する。このように、実施の形態2の場合、比較例の場合よりも狭い角度範囲において磁束密度が減少する。すなわち、実施の形態2の場合、比較例の場合よりも、角度の変化に対して磁束密度が急峻に変化する。 In the case of the comparative example, while rotating the magnet 2 from 0 degrees to 180 degrees, the magnetic flux density starts to decrease from the maximum value at around 30 degrees and reaches the minimum value at around 150 degrees. In the case of the second embodiment, the magnetic flux density starts to decrease from the maximum value at around 60 degrees and reaches the minimum value at around 120 degrees. As described above, in the case of the second embodiment, the magnetic flux density decreases in a narrower angle range than in the case of the comparative example. That is, in the case of the second embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
 また、比較例の場合、180度から360度まで磁石2を回転させる間において、磁束密度は、200度付近にて極小値からの増加を開始して、340度付近にて極大値に到達する。実施の形態2の場合、磁束密度は220度付近にて極小値からの増加を開始して、310度付近にて極大値に到達する。このように、実施の形態2の場合、比較例の場合よりも狭い角度範囲において磁束密度が増加する。すなわち、実施の形態2の場合、比較例の場合よりも、角度の変化に対して磁束密度が急峻に変化する。 Further, in the case of the comparative example, the magnetic flux density starts to increase from the minimum value at around 200 degrees and reaches the maximum value at around 340 degrees while rotating the magnet 2 from 180 degrees to 360 degrees. .. In the case of the second embodiment, the magnetic flux density starts to increase from the minimum value at around 220 degrees and reaches the maximum value at around 310 degrees. As described above, in the case of the second embodiment, the magnetic flux density increases in a narrower angle range than in the case of the comparative example. That is, in the case of the second embodiment, the magnetic flux density changes sharply with the change of the angle as compared with the case of the comparative example.
 図4に示す状態から磁石2を回転させていくと、発電素子3に対向する位置に強磁化領域Saが到達する。さらに磁石2を回転させることによって、強磁化領域Saは発電素子3と対向する位置から離れていき、発電素子3と対向する位置に弱磁化領域Sb2,Nb2が到達する。弱磁化領域Sb2,Nb2を合わせた領域の範囲が強磁化領域Saの範囲よりも小さいことによって、磁束密度は、急峻に減少する。磁石2が180度から360度まで回転する場合における磁束密度の変化は、磁束密度の正負が異なる以外は、磁石2が0度から180度まで回転する場合における磁束密度の変化と同様である。 When the magnet 2 is rotated from the state shown in FIG. 4, the strong magnetization region Sa reaches the position facing the power generation element 3. Further, by rotating the magnet 2, the strong magnetization region Sa moves away from the position facing the power generation element 3, and the weak magnetization regions Sb2 and Nb2 reach the position facing the power generation element 3. Since the range of the combined weakly magnetized regions Sb2 and Nb2 is smaller than the range of the strongly magnetized region Sa, the magnetic flux density sharply decreases. The change in the magnetic flux density when the magnet 2 rotates from 180 degrees to 360 degrees is the same as the change in the magnetic flux density when the magnet 2 rotates from 0 degrees to 180 degrees, except that the positive and negative of the magnetic flux density are different.
 実施の形態2では、磁石2のうちN極2NとS極2Sとの境界に弱磁化領域Nb1,Nb2,Sb1,Sb2を設けたことによって、磁石2を1回転させる中において、磁束密度が減少する角度範囲と磁束密度が増加する角度範囲とが限定される。このように、実施の形態2では、比較例の場合に比べて、磁化反転が起きる角度範囲が限定可能となる。発電素子3は、磁化反転が起きる角度範囲が限定されることで、磁石2の回転によって誘起電圧を出力するタイミングのばらつきを抑制できる。これにより、発電素子3は、磁石2が回転するごとにおける発電のタイミングのばらつきを低減できる。また、発電素子3は、角度の変化に対する磁束密度の変化が急峻であることによって、比較例の場合よりも発電量を増加することができる。 In the second embodiment, the weak magnetization regions Nb1, Nb2, Sb1, Sb2 are provided at the boundary between the N pole 2N and the S pole 2S of the magnet 2, so that the magnetic flux density is reduced while the magnet 2 is rotated once. The angle range to be magnetized and the angle range to increase the magnetic flux density are limited. As described above, in the second embodiment, the angle range in which the magnetization reversal occurs can be limited as compared with the case of the comparative example. By limiting the angle range in which the magnetization reversal occurs, the power generation element 3 can suppress variations in the timing of outputting the induced voltage due to the rotation of the magnet 2. As a result, the power generation element 3 can reduce variations in power generation timing each time the magnet 2 rotates. Further, the power generation element 3 can increase the amount of power generation as compared with the case of the comparative example because the change in the magnetic flux density with respect to the change in the angle is steep.
 実施の形態2によると、回転数検出器1は、強磁化領域Na,Saと弱磁化領域Nb1,Nb2,Sb1,Sb2とを磁石2に設けたことによって、発電素子3における発電量を増加させることができ、かつ発電のタイミングのばらつきを抑制できる。これにより、回転数検出器1は、回転数検出の信頼性を向上できるという効果を奏する。 According to the second embodiment, the rotation speed detector 1 increases the amount of power generation in the power generation element 3 by providing the strong magnetization regions Na and Sa and the weak magnetization regions Nb1, Nb2, Sb1 and Sb2 in the magnet 2. It is possible to suppress variations in the timing of power generation. As a result, the rotation speed detector 1 has the effect of improving the reliability of the rotation speed detection.
 なお、実施の形態1の磁石2における第1の領域である強磁化領域Na1,Na2,Sa1,Sa2および第2の領域である弱磁化領域Nb,Sbと、実施の形態2の磁石2における第1の領域である強磁化領域Na,Saおよび第2の領域である弱磁化領域Nb1,Nb2,Sb1,Sb2とは、着磁の際に加えられる外部磁場の強さを変化させることによって実現されるものに限られない。第1の領域と第2の領域とは、磁石2の形状あるいは磁石2の材料によって実現されるものでも良い。第1の領域と第2の領域とが磁石2の形状あるいは磁石2の材料によって実現される場合について、実施の形態3以降にて説明する。 The strong magnetization regions Na1, Na2, Sa1, Sa2 which are the first regions of the magnet 2 of the first embodiment, the weak magnetization regions Nb and Sb which are the second regions, and the second magnet 2 of the second embodiment. The strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, Sb1, Sb2, which are the second regions, are realized by changing the strength of the external magnetic field applied at the time of magnetization. Not limited to things. The first region and the second region may be realized by the shape of the magnet 2 or the material of the magnet 2. The case where the first region and the second region are realized by the shape of the magnet 2 or the material of the magnet 2 will be described in the third and subsequent embodiments.
実施の形態3.
 図6は、本発明の実施の形態3にかかる回転数検出器を示す図である。実施の形態3にかかる回転数検出器20は、図1に示す磁石2に代えて磁石21が設けられているほかは、実施の形態1にかかる回転数検出器1と同様の構成を有する。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。なお、図6では、処理部5の図示を省略する。
Embodiment 3.
FIG. 6 is a diagram showing a rotation speed detector according to the third embodiment of the present invention. The rotation speed detector 20 according to the third embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 21 is provided instead of the magnet 2 shown in FIG. In the third embodiment, the same components as those in the first and second embodiments are designated by the same reference numerals, and the configurations different from those of the first and second embodiments will be mainly described. Note that in FIG. 6, the processing unit 5 is not shown.
 磁石21において、第1の領域である強磁化領域Na1,Na2,Sa1,Sa2と第2の領域である弱磁化領域Nb,Sbとでは、回転軸9に平行な方向における厚みが互いに異なる。磁石21のうち回転軸9に平行な方向における強磁化領域Na1,Na2,Sa1,Sa2の長さは、磁石21のうち回転軸9に平行な方向における弱磁化領域Nb,Sbの長さよりも長い。磁石21における強磁化領域Na1,Na2,Sa1,Sa2と弱磁化領域Nb,Sbとの配置は、図2に示す磁石2の場合と同様である。 In the magnet 21, the strong magnetization regions Na1, Na2, Sa1, Sa2, which are the first regions, and the weak magnetization regions Nb, Sb, which are the second regions, have different thicknesses in the direction parallel to the rotation axis 9. The length of the strong magnetization regions Na1, Na2, Sa1, Sa2 in the direction parallel to the rotation axis 9 of the magnet 21 is longer than the length of the weak magnetization regions Nb, Sb in the direction parallel to the rotation axis 9 of the magnet 21. .. The arrangement of the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb in the magnet 21 is the same as that of the magnet 2 shown in FIG.
 磁石21の中心には、開口11が設けられている。磁石21は、第1の領域と第2の領域とで厚みを異ならせるように円筒体を変形したものである。なお、磁石21には、開口11が設けられていなくても良い。磁石21は、第1の領域と第2の領域とで厚みを異ならせるように円板を変形したものであっても良い。 An opening 11 is provided in the center of the magnet 21. The magnet 21 is a deformed cylindrical body so that the thickness differs between the first region and the second region. The magnet 21 may not be provided with the opening 11. The magnet 21 may be a deformed disk so that the thickness differs between the first region and the second region.
 磁石21では、回転軸9に平行な方向における長さを領域ごとに異ならせることによって、総磁束量が多い領域である第1の領域と総磁束量が少ない領域である第2の領域とが形成される。また、第1の領域における磁石21と発電素子3との距離が、第2の領域における磁石21と発電素子3との距離よりも短いため、発電素子3に作用する磁力は第2の領域よりも第1の領域において強くなる。磁石21を着磁する際に使用される着磁ヨークのヨークコア部分が平坦であることによって、第1の領域をヨークコア部分と密着させる一方、第2の領域とヨークコア部分との間には隙間が生じる。これにより、総磁束量が多い第1の領域と総磁束量が少ない第2の領域とが磁石21に形成される。 In the magnet 21, by making the length in the direction parallel to the rotation axis 9 different for each region, the first region, which is a region having a large total magnetic flux amount, and the second region, which is a region having a small total magnetic flux amount, are separated. It is formed. Further, since the distance between the magnet 21 and the power generation element 3 in the first region is shorter than the distance between the magnet 21 and the power generation element 3 in the second region, the magnetic force acting on the power generation element 3 is smaller than that in the second region. Also becomes stronger in the first area. Since the yoke core portion of the magnetizing yoke used when magnetizing the magnet 21 is flat, the first region is brought into close contact with the yoke core portion, while a gap is provided between the second region and the yoke core portion. Occurs. As a result, the magnet 21 is formed with a first region having a large total magnetic flux amount and a second region having a small total magnetic flux amount.
 なお、実施の形態3では、磁石21には、図4に示す磁石2の場合と同様に、第1の領域である強磁化領域Na,Saと第2の領域である弱磁化領域Nb1,Nb2,Sb1,Sb2とを設けることとしても良い。 In the third embodiment, the magnet 21 has the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, which are the second regions, as in the case of the magnet 2 shown in FIG. , Sb1 and Sb2 may be provided.
実施の形態4.
 図7は、本発明の実施の形態4にかかる回転数検出器を示す図である。図8は、実施の形態4にかかる回転数検出器が有する磁石と発電素子とを示す平面図である。実施の形態4にかかる回転数検出器30は、図1に示す磁石2に代えて磁石31が設けられているほかは、実施の形態1にかかる回転数検出器1と同様の構成を有する。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。図8には、回転軸9に平行な方向から磁石31と発電素子3とを見た様子を示している。なお、図7では、処理部5の図示を省略する。
Embodiment 4.
FIG. 7 is a diagram showing a rotation speed detector according to the fourth embodiment of the present invention. FIG. 8 is a plan view showing a magnet and a power generation element included in the rotation speed detector according to the fourth embodiment. The rotation speed detector 30 according to the fourth embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 31 is provided instead of the magnet 2 shown in FIG. In the fourth embodiment, the same components as those in the first to third embodiments are designated by the same reference numerals, and the configurations different from those in the first to third embodiments will be mainly described. FIG. 8 shows a view of the magnet 31 and the power generation element 3 from a direction parallel to the rotation axis 9. Note that in FIG. 7, the processing unit 5 is not shown.
 磁石31において、第1の領域である強磁化領域Na1,Na2,Sa1,Sa2と第2の領域である弱磁化領域Nb,Sbとでは、半径方向における長さが互いに異なる。磁石31のうち回転軸9を中心とする円の半径方向における強磁化領域Na1,Na2,Sa1,Sa2の長さは、磁石31のうち回転軸9を中心とする円の半径方向における弱磁化領域Nb,Sbの長さよりも長い。磁石31における強磁化領域Na1,Na2,Sa1,Sa2と弱磁化領域Nb,Sbとの配置は、図2に示す磁石2の場合と同様である。図8では、N極2NとS極2Sとの境界を実線で表している。 In the magnet 31, the strong magnetization regions Na1, Na2, Sa1, Sa2, which are the first regions, and the weakly magnetized regions Nb, Sb, which are the second regions, have different lengths in the radial direction. The lengths of the strong magnetization regions Na1, Na2, Sa1 and Sa2 in the radial direction of the circle centered on the rotation axis 9 of the magnet 31 are the weak magnetization regions in the radial direction of the circle centered on the rotation axis 9 of the magnet 31. It is longer than the length of Nb and Sb. The arrangement of the strongly magnetized regions Na1, Na2, Sa1, Sa2 and the weakly magnetized regions Nb, Sb in the magnet 31 is the same as that of the magnet 2 shown in FIG. In FIG. 8, the boundary between the N pole 2N and the S pole 2S is represented by a solid line.
 磁石31の中心には、開口11が設けられている。磁石31は、半径方向における長さを第1の領域と第2の領域とで異ならせるように円筒体を変形したものである。なお、磁石31には、開口11が設けられていなくても良い。磁石31は、半径方向における厚みを第1の領域と第2の領域とで異ならせるように円板を変形したものであっても良い。 An opening 11 is provided at the center of the magnet 31. The magnet 31 is a deformed cylindrical body so that the length in the radial direction differs between the first region and the second region. The magnet 31 may not be provided with the opening 11. The magnet 31 may be a deformed disk so that the thickness in the radial direction differs between the first region and the second region.
 磁石31では、半径方向における長さを領域ごとに異ならせることによって、総磁束量が多い領域である第1の領域と総磁束量が少ない領域である第2の領域とが形成される。なお、実施の形態4では、磁石31には、図4に示す磁石2の場合と同様に、第1の領域である強磁化領域Na,Saと第2の領域である弱磁化領域Nb1,Nb2,Sb1,Sb2とを設けることとしても良い。 In the magnet 31, the first region, which is a region having a large total magnetic flux amount, and the second region, which is a region having a small total magnetic flux amount, are formed by making the length in the radial direction different for each region. In the fourth embodiment, the magnet 31 has the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, which are the second regions, as in the case of the magnet 2 shown in FIG. , Sb1 and Sb2 may be provided.
実施の形態5.
 図9は、本発明の実施の形態5にかかる回転数検出器を示す図である。実施の形態5にかかる回転数検出器40は、図1に示す磁石2に代えて磁石41が設けられているほかは、実施の形態1にかかる回転数検出器1と同様の構成を有する。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。なお、図9では、処理部5の図示を省略する。
Embodiment 5.
FIG. 9 is a diagram showing a rotation speed detector according to a fifth embodiment of the present invention. The rotation speed detector 40 according to the fifth embodiment has the same configuration as the rotation speed detector 1 according to the first embodiment, except that a magnet 41 is provided instead of the magnet 2 shown in FIG. In the fifth embodiment, the same components as those in the first to fourth embodiments are designated by the same reference numerals, and the configurations different from those in the first to fourth embodiments will be mainly described. Note that in FIG. 9, the processing unit 5 is not shown.
 磁石41は、互いに異なる材料からなる部位である第1の部位41aと第2の部位41bとを有する。第1の部位41aは、第1の領域である強磁化領域Na1,Na2,Sa1,Sa2を構成する。第2の部位41bは、第2の領域である弱磁化領域Nb,Sbを構成する。第1の部位41aの材料には、第2の部位41bの材料よりも残留磁束密度が高い材料が使用されている。磁石41における強磁化領域Na1,Na2,Sa1,Sa2と弱磁化領域Nb,Sbとの配置は、図2に示す磁石2の場合と同様である。磁石41は、中心に開口11が設けられた円筒体である。磁石41は、円筒体に限られず、円板であっても良い。 The magnet 41 has a first portion 41a and a second portion 41b, which are portions made of different materials. The first portion 41a constitutes a strong magnetization region Na1, Na2, Sa1, Sa2 which is a first region. The second portion 41b constitutes the weakly magnetized regions Nb and Sb, which are the second regions. As the material of the first portion 41a, a material having a higher residual magnetic flux density than the material of the second portion 41b is used. The arrangement of the strong magnetization regions Na1, Na2, Sa1, Sa2 and the weak magnetization regions Nb, Sb in the magnet 41 is the same as that of the magnet 2 shown in FIG. The magnet 41 is a cylindrical body having an opening 11 at the center. The magnet 41 is not limited to a cylindrical body, and may be a disk.
 磁石41では、第1の部位41aの材料に、第2の部位41bの材料よりも残留磁束密度が高い材料が使用されることによって、総磁束量が多い領域である第1の領域と総磁束量が少ない領域である第2の領域とが形成される。なお、実施の形態5では、磁石41には、図4に示す磁石2の場合と同様に、第1の領域である強磁化領域Na,Saと第2の領域である弱磁化領域Nb1,Nb2,Sb1,Sb2とを設けることとしても良い。 In the magnet 41, a material having a higher residual magnetic flux density than the material of the second portion 41b is used as the material of the first portion 41a, so that the first region and the total magnetic flux, which are regions where the total magnetic flux amount is large, are used. A second region, which is a region with a small amount, is formed. In the fifth embodiment, the magnet 41 has the strong magnetization regions Na and Sa, which are the first regions, and the weak magnetization regions Nb1, Nb2, which are the second regions, as in the case of the magnet 2 shown in FIG. , Sb1 and Sb2 may be provided.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,20,30,40 回転数検出器、2,21,31,41 磁石、2N N極、2S S極、3 発電素子、4 シャフト、5 処理部、6 磁性ワイヤ、6a 第1端部、6b 第2端部、7 コイル、8 フェライトビーズ、9 回転軸、11 開口、41a 第1の部位、41b 第2の部位、Na,Na1,Na2,Sa,Sa1,Sa2 強磁化領域、Nb,Nb1,Nb2,Sb,Sb1,Sb2 弱磁化領域。 1,20,30,40 rotation number detector, 2,21,31,41 magnet, 2N N pole, 2S S pole, 3 power generation element, 4 shaft, 5 processing unit, 6 magnetic wire, 6a 1st end, 6b 2nd end, 7 coil, 8 ferrite beads, 9 rotating shaft, 11 opening, 41a 1st part, 41b 2nd part, Na, Na1, Na2, Sa, Sa1, Sa2 strong magnetization region, Nb, Nb1 , Nb2, Sb, Sb1, Sb2 Weakly magnetized region.

Claims (10)

  1.  回転軸を中心に回転する回転体に取り付けられる磁石と、前記磁石の回転による磁界の変化にしたがって誘起電圧を発生する発電素子とを有し、前記誘起電圧を基に前記回転体の回転数を検出する回転数検出器であって、
     前記発電素子は、磁性ワイヤと、前記磁性ワイヤのうち前記磁性ワイヤの両端部である第1端部および第2端部の間に巻回されたコイルと、軟磁性体であって前記第1端部および前記第2端部の各々に設けられている筒体と、を有し、
     前記磁石は、前記磁石の回転方向に並べられた複数の磁極を有し、
     前記複数の磁極の各々は、磁力の強さが互いに異なる第1の領域と第2の領域とを有することを特徴とする回転数検出器。
    It has a magnet attached to a rotating body that rotates around a rotating shaft, and a power generation element that generates an induced voltage according to a change in the magnetic field due to the rotation of the magnet, and the number of rotations of the rotating body is determined based on the induced voltage. It is a rotation speed detector to detect
    The power generation element is a magnetic wire, a coil wound between the first end and the second end of the magnetic wire, which are both ends of the magnetic wire, and the first soft magnetic material. It has a cylinder provided at each of the end portion and the second end portion, and has.
    The magnet has a plurality of magnetic poles arranged in the direction of rotation of the magnet.
    A rotation speed detector, wherein each of the plurality of magnetic poles has a first region and a second region having different magnetic force strengths.
  2.  前記発電素子は、前記回転軸に平行な方向において前記磁石と対向していることを特徴とする請求項1に記載の回転数検出器。 The rotation speed detector according to claim 1, wherein the power generation element faces the magnet in a direction parallel to the rotation axis.
  3.  前記複数の磁極は、着磁方向が互いに異なる第1の磁極および第2の磁極を含み、
     前記第2の領域は、前記第1の領域よりも磁力が弱く、かつ前記回転方向において前記第1の領域に挟まれて配置され、
     前記第1の磁極の前記第1の領域と前記第2の磁極の前記第1の領域とは、前記回転方向において互いに隣り合うことを特徴とする請求項1または2に記載の回転数検出器。
    The plurality of magnetic poles include a first magnetic pole and a second magnetic pole having different magnetizing directions.
    The second region has a weaker magnetic force than the first region, and is arranged so as to be sandwiched between the first regions in the rotation direction.
    The rotation speed detector according to claim 1 or 2, wherein the first region of the first magnetic pole and the first region of the second magnetic pole are adjacent to each other in the rotation direction. ..
  4.  前記第1の磁極の前記第1の領域と前記第2の磁極の前記第1の領域とに前記発電素子が対向する状態において、前記回転軸に平行な方向において前記磁石と前記発電素子とを平面視した場合に、前記発電素子の全体は、前記第1の磁極の前記第1の領域と前記第2の磁極の前記第1の領域とを合わせた領域の中にあることを特徴とする請求項3に記載の回転数検出器。 In a state where the power generation element faces the first region of the first magnetic pole and the first region of the second magnetic pole, the magnet and the power generation element are placed in a direction parallel to the rotation axis. When viewed in a plan view, the entire power generation element is in a region in which the first region of the first magnetic pole and the first region of the second magnetic pole are combined. The rotation speed detector according to claim 3.
  5.  複数の磁極は、着磁方向が互いに異なる第1の磁極および第2の磁極を含み、
     前記第2の領域は、前記第1の領域よりも磁力が弱く、かつ前記回転方向において前記第1の領域を挟むように配置され、
     前記第1の磁極の前記第2の領域と前記第2の磁極の前記第2の領域とは、前記回転方向において互いに隣り合うことを特徴とする請求項1または2に記載の回転数検出器。
    The plurality of magnetic poles include a first magnetic pole and a second magnetic pole having different magnetizing directions.
    The second region has a weaker magnetic force than the first region, and is arranged so as to sandwich the first region in the rotation direction.
    The rotation speed detector according to claim 1 or 2, wherein the second region of the first magnetic pole and the second region of the second magnetic pole are adjacent to each other in the rotation direction. ..
  6.  前記回転方向における前記第1の磁極の前記第1の領域の範囲と、前記回転方向における前記第2の磁極の前記第1の領域の範囲との各々は、前記回転方向における前記第1の磁極の前記第2の領域と前記第2の磁極の前記第2の領域とを合わせた領域の範囲よりも大きいことを特徴とする請求項5に記載の回転数検出器。 Each of the range of the first region of the first magnetic pole in the rotation direction and the range of the first region of the second magnetic pole in the rotation direction are the first magnetic pole in the rotation direction. The rotation speed detector according to claim 5, wherein the second region is larger than the range of the combined region of the second region of the second magnetic pole.
  7.  前記筒体の透磁率は、前記磁性ワイヤの透磁率よりも高いことを特徴とする請求項1から6のいずれか1つに記載の回転数検出器。 The rotation speed detector according to any one of claims 1 to 6, wherein the magnetic permeability of the cylinder is higher than the magnetic permeability of the magnetic wire.
  8.  前記磁石のうち前記回転軸に平行な方向における前記第1の領域の長さは、前記磁石のうち前記回転軸に平行な方向における前記第2の領域の長さよりも長いことを特徴とする請求項1から6のいずれか1つに記載の回転数検出器。 A claim characterized in that the length of the first region of the magnet in a direction parallel to the rotation axis is longer than the length of the second region of the magnet in a direction parallel to the rotation axis. Item 4. The rotation speed detector according to any one of Items 1 to 6.
  9.  前記磁石のうち前記回転軸を中心とする円の半径方向における前記第1の領域の長さは、前記磁石のうち前記回転軸を中心とする円の半径方向における前記第2の領域の長さよりも長いことを特徴とする請求項1から6のいずれか1つに記載の回転数検出器。 The length of the first region of the magnet in the radial direction of the circle centered on the rotation axis is greater than the length of the second region of the magnet in the radial direction of the circle centered on the rotation axis. The rotation speed detector according to any one of claims 1 to 6, wherein the rotation speed detector is also long.
  10.  前記磁石のうち前記第1の領域を構成する部位の材料には、前記磁石のうち前記第2の領域を構成する部位の材料よりも残留磁束密度が高い材料が使用されていることを特徴とする請求項1から6のいずれか1つに記載の回転数検出器。 The material of the portion of the magnet that constitutes the first region is characterized in that a material having a higher residual magnetic flux density than the material of the portion of the magnet that constitutes the second region is used. The rotation speed detector according to any one of claims 1 to 6.
PCT/JP2019/023729 2019-06-14 2019-06-14 Rotation speed detector WO2020250439A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019560414A JP6647478B1 (en) 2019-06-14 2019-06-14 Speed detector
PCT/JP2019/023729 WO2020250439A1 (en) 2019-06-14 2019-06-14 Rotation speed detector
KR1020217036567A KR102446180B1 (en) 2019-06-14 2019-06-14 speed detector
CN201980097323.8A CN113939714B (en) 2019-06-14 2019-06-14 Rotation speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023729 WO2020250439A1 (en) 2019-06-14 2019-06-14 Rotation speed detector

Publications (1)

Publication Number Publication Date
WO2020250439A1 true WO2020250439A1 (en) 2020-12-17

Family

ID=69568233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023729 WO2020250439A1 (en) 2019-06-14 2019-06-14 Rotation speed detector

Country Status (4)

Country Link
JP (1) JP6647478B1 (en)
KR (1) KR102446180B1 (en)
CN (1) CN113939714B (en)
WO (1) WO2020250439A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230651A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power-generating element, encoder, and method for producing magnetic member
WO2024004423A1 (en) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 Electric power generating element, magnetic sensor, and encoder
JP7471519B2 (en) 2021-05-18 2024-04-19 三菱電機株式会社 Power generation module
WO2024084701A1 (en) * 2022-10-21 2024-04-25 三菱電機株式会社 Power generation element, power generation module, rotation speed detector, and power generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378586B2 (en) 2020-04-01 2023-11-13 三菱電機株式会社 Power generation elements, magnetic sensors, encoders and motors using them

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419134A (en) * 1977-07-12 1979-02-13 Sanyo Electric Co Charging apparatus utilizing electric generation
JPS5576533U (en) * 1978-11-17 1980-05-27
JP2000101401A (en) * 1998-09-18 2000-04-07 Hirose Electric Co Ltd Method and device for generating pulse signal
JP2005114609A (en) * 2003-10-09 2005-04-28 Fuji Electric Fa Components & Systems Co Ltd Magnetic field generation method and sensor using method
WO2013094042A1 (en) * 2011-12-21 2013-06-27 株式会社安川電機 Motor, motor system, and motor encoder
JP2013217792A (en) * 2012-04-10 2013-10-24 Hirose Electric Co Ltd Rotation sensing device
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019022B2 (en) * 1996-11-19 2000-03-13 トヨタ自動車株式会社 Magnetic rotation speed sensor
JP5895774B2 (en) * 2012-09-04 2016-03-30 株式会社安川電機 motor
WO2015136690A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Magnetic position detection device and magnetic position detection method
DE102014220783A1 (en) * 2014-10-14 2016-04-14 Robert Bosch Gmbh Sensor for determining at least one rotational property of a rotating element
JP6336232B1 (en) * 2017-03-21 2018-06-06 三菱電機株式会社 Rotational speed detector
JP7024207B2 (en) 2017-04-28 2022-02-24 株式会社ニコン Encoder device, drive device, stage device, and robot device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419134A (en) * 1977-07-12 1979-02-13 Sanyo Electric Co Charging apparatus utilizing electric generation
JPS5576533U (en) * 1978-11-17 1980-05-27
JP2000101401A (en) * 1998-09-18 2000-04-07 Hirose Electric Co Ltd Method and device for generating pulse signal
JP2005114609A (en) * 2003-10-09 2005-04-28 Fuji Electric Fa Components & Systems Co Ltd Magnetic field generation method and sensor using method
WO2013094042A1 (en) * 2011-12-21 2013-06-27 株式会社安川電機 Motor, motor system, and motor encoder
JP2013217792A (en) * 2012-04-10 2013-10-24 Hirose Electric Co Ltd Rotation sensing device
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230651A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Power-generating element, encoder, and method for producing magnetic member
JP7471519B2 (en) 2021-05-18 2024-04-19 三菱電機株式会社 Power generation module
WO2024004423A1 (en) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 Electric power generating element, magnetic sensor, and encoder
WO2024084701A1 (en) * 2022-10-21 2024-04-25 三菱電機株式会社 Power generation element, power generation module, rotation speed detector, and power generator

Also Published As

Publication number Publication date
CN113939714A (en) 2022-01-14
JP6647478B1 (en) 2020-02-14
JPWO2020250439A1 (en) 2021-09-13
KR20210139475A (en) 2021-11-22
CN113939714B (en) 2022-07-01
KR102446180B1 (en) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2020250439A1 (en) Rotation speed detector
JP2536566Y2 (en) Rotation sensor
KR920006499B1 (en) Torque sensor
JP6181353B2 (en) Magnetic proximity sensor
JP7076781B2 (en) Core and strain detectors for detecting changes in permeability
JP5036030B2 (en) Annular magnetic encoder
US10209096B2 (en) Rotation detecting device
JP2011252836A (en) Position detection device
JP2019200138A (en) Core structure for detecting change of magnetic permeability and strain detection device
JPH1194588A (en) Method and device for generating pulse signal
JP3431471B2 (en) Pulse signal generator
JP5202343B2 (en) Rotation angle detector
JP6489746B2 (en) Magnetic shield cover for magnetic detection encoder and magnetic detection encoder
JP4305271B2 (en) Magnetostrictive torque sensor
JP2002228486A (en) Magnetic encoder
JP2003139560A (en) Rotational position detector
US10554108B2 (en) Resolver stator having multilayered core
US20040222786A1 (en) Contactless hall-effect angular position sensor
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JP7209911B1 (en) RPM detector
JP2006073974A (en) Magnetic sensor
JP6744607B2 (en) Angle detector
JP7111315B2 (en) Strain sensor structure
JP5161505B2 (en) Magnetic sensor
JP2003161643A5 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560414

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217036567

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933189

Country of ref document: EP

Kind code of ref document: A1