WO2020250291A1 - 半導体光集積素子および半導体光集積素子の製造方法 - Google Patents

半導体光集積素子および半導体光集積素子の製造方法 Download PDF

Info

Publication number
WO2020250291A1
WO2020250291A1 PCT/JP2019/023014 JP2019023014W WO2020250291A1 WO 2020250291 A1 WO2020250291 A1 WO 2020250291A1 JP 2019023014 W JP2019023014 W JP 2019023014W WO 2020250291 A1 WO2020250291 A1 WO 2020250291A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light receiving
receiving element
semiconductor
Prior art date
Application number
PCT/JP2019/023014
Other languages
English (en)
French (fr)
Inventor
山口 勉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980097117.7A priority Critical patent/CN113906640B/zh
Priority to US17/600,811 priority patent/US20220200242A1/en
Priority to JP2021525432A priority patent/JP7134350B2/ja
Priority to PCT/JP2019/023014 priority patent/WO2020250291A1/ja
Priority to TW109118774A priority patent/TWI737336B/zh
Publication of WO2020250291A1 publication Critical patent/WO2020250291A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers

Definitions

  • the present application relates to a semiconductor optical integrated device in which a semiconductor laser and a light receiving element are integrated.
  • a semiconductor light receiving element for monitoring an optical output
  • the semiconductor light receiving element is arranged above a waveguide for waveguideing the laser and integrated.
  • Each of these devices has a structure having an embedded layer in which an active layer of a semiconductor laser or a core layer of a waveguide is embedded, and an InGaAs layer or an InGaAsP layer crystal-grown as a contact layer grown on the embedded layer. , It is used as a light absorbing layer in the light receiving element portion (see Patent Document 1).
  • the surface morphology of the embedded layer is not ideally flat and has some micron protrusions due to the regrowth interface, so the contact layer that grows on such a surface condition is a crystal defect. Since there is a region containing defects (anti-phase domain), crystal defects are present in the InGaAs layer or InGaAsP layer used as the light absorption layer, which is a factor of deteriorating the light receiving characteristics and reliability.
  • the present application is a semiconductor optical integrated device that integrates a semiconductor light receiving element (monitor PD) that uses an InGaAs layer or an InGaAsP layer as a light absorbing layer in the semiconductor laser unit, and has a stacking defect (anti-phase domain, etc.) of the light absorbing layer. ) Is suppressed, and the purpose is to obtain a semiconductor optical integrated device with little deterioration in light receiving characteristics.
  • monitor PD semiconductor light receiving element
  • InGaAs layer or an InGaAsP layer as a light absorbing layer in the semiconductor laser unit
  • a laser unit constituting a semiconductor element and a light receiving element unit constituting a light receiving element are arranged along the optical axis of the laser on the same semiconductor substrate, and the laser unit and the light receiving element unit are arranged.
  • Each has a light confining layer, a clad layer, and a contact layer formed of an InGaAs layer or an InGaAsP layer in order from the side closest to the semiconductor substrate, and the light confining layer of the laser portion is an active layer.
  • the clad layer has a shape in which the width of the light confining layer side is narrower than the width of the contact layer side in a cross section perpendicular to the optical axis. This is a ridge structure of the above, which does not have a semiconductor embedded layer on the side surface of the light confinement layer, the clad layer and the contact layer.
  • the semiconductor optical integrated device disclosed in the present application it is possible to obtain a semiconductor optical integrated element with less deterioration in the light receiving characteristics of the light receiving element.
  • FIG. 1 shows the structure of the semiconductor optical integrated device by Embodiment 1 by the cross section in the center of the waveguide. It is sectional drawing at the position AA of FIG. 1 of the semiconductor optical integrated device according to Embodiment 1.
  • FIG. It is sectional drawing at the position BB of FIG. 1 of the semiconductor optical integrated device according to Embodiment 1.
  • FIG. It is sectional drawing at the CC position of FIG. 1 of the semiconductor optical integrated device according to Embodiment 1.
  • FIG. It is sectional drawing of the position corresponding to the AA position of FIG. 1 of the semiconductor optical integrated device according to Embodiment 2.
  • FIG. 5 is a cross-sectional view of a position corresponding to the CC position of FIG. 1 of the semiconductor optical integrated device according to the second embodiment. It is a figure which shows the structure of the semiconductor optical integrated device by Embodiment 3 by the cross section in the center of the waveguide. It is sectional drawing at the position AA of FIG. 8 of the semiconductor optical integrated device according to Embodiment 3. It is sectional drawing at the BB position of FIG. 8 of the semiconductor optical integrated device according to Embodiment 3.
  • FIG. 5 is a cross-sectional view of the semiconductor optical integrated device according to the third embodiment at the CC position in FIG. It is a figure which shows the structure of the semiconductor optical integrated device by Embodiment 4 by the cross section in the center of the waveguide.
  • FIG. 5 is a cross-sectional view of the semiconductor optical integrated device according to the fifth embodiment at a position corresponding to the CC position in FIG. It is the first figure for demonstrating the manufacturing method of the semiconductor optical integrated element by Embodiment 6. It is a 2nd figure for demonstrating the manufacturing method of the semiconductor optical integrated element by Embodiment 6. It is a 3rd figure for demonstrating the manufacturing method of the semiconductor optical integrated element by Embodiment 6. It is a 4th figure for demonstrating the manufacturing method of the semiconductor optical integrated device by Embodiment 6. It is a fifth figure for demonstrating the manufacturing method of the semiconductor optical integrated element by Embodiment 6.
  • FIG. 1 is a cross-sectional view showing the configuration of the semiconductor optical integrated device according to the first embodiment by a cross section parallel to the optical axis direction in which light propagates and perpendicular to the semiconductor substrate 10 in the center of the waveguide.
  • 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line CC of FIG.
  • the semiconductor optical integrated element 1 has a configuration in which a laser unit 2 constituting a semiconductor laser and a light receiving element unit 3 constituting a light receiving element are integrated.
  • Both the laser unit 2 and the light receiving element unit 3 have a common n-InP substrate 10 (hereinafter, may be simply referred to as a semiconductor substrate 10), and have a configuration in which a semiconductor layer or the like is laminated on the n-InP substrate 10. It has become.
  • the drawing of the present application is a drawing in which each part can be clearly recognized, the dimensions such as the thickness, length, and width of the substrate and other layers are described differently from the actual dimensional ratio.
  • the active layer 12 as a light confining layer is formed on the n-InP substrate 10 via the n-InP buffer layer 11 inserted for adjusting the refractive index and carrier concentration of the n-InP substrate 10 and the active layer 12. It is formed.
  • the active layer 12 is accompanied by a diffraction grating, for example, when the laser unit 2 is a DFB laser. Further, the light receiving element portion 3 may also be accompanied by a diffraction grating.
  • An etching stopper layer 13 is formed on the active layer 12 so that the active layer 12 is not etched in the etching step.
  • a p-InP clad layer 14 is formed with the etching stopper layer 13 interposed therebetween.
  • a p-InGaAs layer is formed as a contact layer on the p-InP clad layer 14, and the contact layer is the p-InGaAs contact layer 152 of the laser unit 2 and the p-InGaAs contact layer 153 of the light receiving element unit 3. It is separated from and the separated portion functions as an electric isolation unit 4.
  • a p-InP electrode 102 is formed on the p-InGaAs contact layer 152 of the laser unit 2.
  • An n-InP contact layer (light receiving element contact layer) 16 and a p-InP electrode 103 are formed on the p-InGaAs contact layer 153 of the light receiving element portion 3, and n is formed on the n-InP contact layer 16.
  • -InP electrode 104 is formed. Further, an n-InP electrode 101 is formed on the back surface of the n-InP substrate 10.
  • a front end face reflective coating film 201 is formed on an end face from which laser light in the optical axis direction is taken out, and a rear end face reflective coating film 202 is formed on the other end faces to form a laser resonator.
  • the width of the p-InP clad layer 14 is narrower on the lower side, that is, on the side of the active layer 12, and on the upper side, that is, the p-InGaAs contact layers 152 and 153. It has a so-called inverted mesa shape with a wide side, and the entire upper part of the active layer 12 (including the etching stopper layer 13) has a so-called ridge structure.
  • the side surface and the upper surface of the ridge structure portion 140 are insulating films including the electric isolation portion 4 so that at least a part of each electrode of the p-InP electrode 102, the p-InP electrode 103, and the n-InP electrode 104 is exposed. It is covered with 20.
  • the etching stopper layer 13 on which the ridge structure portion 140 is not formed is also covered with the insulating film 20.
  • the side surfaces of the active layer 12, the p-InP clad layer 14, and the p-InGaAs contact layers 152 and 153 have a semiconductor embedded layer. Instead, light and current are confined by the ridge structure portion 140 in the lateral direction of the cross section of each of the cross-sectional views of FIGS. 2, 3, and 4.
  • the p-InGaAs contact layer 153 serves as a light absorption layer, a photodiode is formed between the p-InP electrode 103 and the n-InP electrode 104, and the p-InGaAs contact layer 153, which is a light absorption layer, forms a photodiode. It can detect absorbed light and is used for monitoring laser light.
  • the semiconductor optical integrated element according to the first embodiment shown in FIGS. 1 to 4 has a so-called ridge structure, and the side surfaces of the active layer 12 to the ridge structure portion 140 are not embedded in the semiconductor embedded layer. Since the surface morphology of the embedded layer of a semiconductor is not ideally flat and has some several micron protrusions due to the regrowth interface, the contact layer that grows on such a surface condition is a crystal defect. There is an area containing defects (anti-phase domain). However, since the semiconductor optical integrated element according to the first embodiment does not have a semiconductor embedded layer, the contact layer does not include crystal defects caused by the embedded layer. Therefore, the p-InGaAs contact layer 153 used as the light absorption layer of the integrated light receiving element portion 3 has no crystal defects, and the device can be an element in which deterioration of light receiving characteristics and reliability is suppressed.
  • the refractive index of the semiconductor layer of the ridge structure portion 140 is sufficiently larger than that of the insulating film and the air layer. , Light confinement is stronger than the configuration having an embedded layer. It is important to secure a sufficient amount of light absorption in the light receiving element unit 3, but since the entire integrated element has a ridge structure, the light is strongly confined in the ridge structure portion 140 in the light receiving element unit 3, so that light is received. A sufficient amount of light received by the element unit 3 can be secured, and monitoring becomes easy. Further, the ridge structure portion 140 has a wide inverted mesa shape at the upper part where the contact layer including the light absorption layer is arranged, so that a sufficient amount of light absorption can be secured.
  • the contact layer may be the InGaAsP layer.
  • the configuration in which the laser unit 2 is taken out from the rear end surface side and the light receiving element unit 3 is taken out from the front end surface side, that is, the side where the light receiving element unit 3 is arranged has been described, but the positional relationship is reversed. May be good. That is, the laser unit 2 may be arranged on the front end surface side, and the light receiving element unit 3 may be arranged on the rear end surface side.
  • Embodiment 2 The configuration of the cross section at the center of the waveguide along the optical axis of the semiconductor optical integrated device according to the second embodiment is the same as that in FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the semiconductor optical integrated device according to the second embodiment at a position corresponding to the AA position in FIG. 1
  • FIG. 6 is a cross-sectional view at a position corresponding to the BB position in FIG.
  • FIG. 7 is a cross-sectional view at a position corresponding to the CC position of FIG.
  • the cross-sectional shape of the ridge structure portion is an inverted mesa shape, but in the second embodiment, as shown in FIGS.
  • the cross-sectional shape of the ridge structure portion 140 is a T-shape. And said.
  • the same reference numerals as those in FIGS. 1 to 4 indicate the same or corresponding parts, and only the parts different from those in the first embodiment will be described below.
  • the p-InP clad layer 14 constituting the ridge structure portion 140 has a narrow width on the active layer 12 side and a wide upper portion on the opposite side of the active layer 12. It has a so-called T-shape with two stages.
  • the shape of the ridge structure portion 140 does not have to be the inverted trapezoidal inverted mesa shape shown in the first embodiment, and the width of the upper portion opposite to the active layer 12 is wide, and the active layer 12 Any shape may be used as long as the width of the side is narrower than that of the upper part.
  • the inverted mesa shape shown in the first embodiment or the T-shaped shape shown in the second embodiment can be formed by etching, for example, it can be manufactured by a simple manufacturing process.
  • the semiconductor optical integrated device according to the second embodiment shown in FIGS. 5 to 7 has a so-called ridge structure like the semiconductor optical integrated element according to the first embodiment, and the active layer 12 to the ridge.
  • the side surface of the structural portion 140 is not embedded with the embedded layer of the semiconductor. Therefore, since the contact layer does not contain crystal defects caused by the embedded layer, the p-InGaAs layer 153 used as the light absorption layer of the integrated light receiving element portion 3 has no crystal defects, and has light receiving characteristics and reliability. It can be an element in which deterioration is suppressed.
  • the refractive index of the semiconductor layer of the ridge structure portion 140 is sufficiently larger than that of the insulating film and the air layer. , Light confinement is stronger than that of a configuration having an embedded layer.
  • the upper portion of the ridge structure portion 140 on which the contact layer including the light absorption layer is arranged has a wide T-shape. With these configurations, it is possible to sufficiently secure the amount of light received by the light receiving element unit 3.
  • FIG. 8 is a cross-sectional view showing the configuration of the semiconductor optical integrated device 1 according to the third embodiment by a cross section parallel to the optical axis direction in which light propagates and perpendicular to the semiconductor substrate 10 in the center of the waveguide.
  • 9 is a cross-sectional view at position AA of FIG. 8
  • FIG. 10 is a cross-sectional view at position BB of FIG. 8
  • FIG. 11 is a cross-sectional view showing the configuration of the semiconductor optical integrated device according to the third embodiment. It is sectional drawing at the position corresponding to the CC position of.
  • the semiconductor optical integrated element 1 according to the third embodiment has a configuration in which an optical modulator unit 5 constituting an electric field absorption type optical modulator (EAM) is integrated between a laser unit 2 and a light receiving element unit 3. ..
  • EAM electric field absorption type optical modulator
  • a modulator unit light absorption layer 17 whose light absorption changes depending on the presence or absence of an electric field is formed as a light confinement layer which is a layer corresponding to the active layer 12 of the laser unit 2.
  • the laser light can be modulated.
  • a p-InGaAs contact layer 155 which is a contact layer, is formed on the p-InP clad layer 14, and a p-InP electrode is formed on the upper surface of the p-InGaAs contact layer 155. 105 is formed.
  • the light confinement layer is simply an optical waveguide layer 18 that is not active.
  • the light confinement layer does not have to be an active layer, and may be a simple optical waveguide layer.
  • the ridge structure portion 140 including the p-InP clad layer 14 has an inverted mesa shape. ing.
  • the shape of the ridge structure portion 140 may be the T-shape described in the second embodiment, which is opposite to the side of the light confinement layer such as the active layer 12, the modulator portion light absorption layer 17, and the optical waveguide layer 18. Any shape may be used as long as the width of the upper part on the side is wide and the width of the lower part on the side of the light confinement layer is narrower than that of the upper part.
  • the semiconductor optical integrated device according to the third embodiment shown in FIGS. 8 to 11 has a so-called ridge structure like the semiconductor optical integrated element according to the first embodiment and the second embodiment.
  • the sides of the light confinement layer and the ridge structure 140 are not embedded with an embedded layer. Therefore, since the contact layer does not contain crystal defects (anti-phase domain) caused by the embedded layer, the p-InGaAs contact layer 153 used as the light absorption layer of the integrated light receiving element portion 3 has no crystal defects.
  • the element can be an element in which deterioration of light receiving characteristics and reliability is suppressed.
  • the light confining layer and the side surface of the ridge structure portion 140 have a ridge structure that is not embedded in the embedded layer, it is possible to sufficiently secure the amount of light received by the light receiving element portion 3.
  • FIG. 12 is a cross-sectional view showing the configuration of the semiconductor optical integrated device 1 according to the fourth embodiment by a cross section parallel to the optical axis direction in which light propagates and perpendicular to the semiconductor substrate 10 in the center of the waveguide.
  • the semiconductor optical integrated element 1 according to the fourth embodiment has a configuration in which an optical amplifier unit 6 constituting a semiconductor optical amplifier (SOA) is integrated between a laser unit 2 and a light receiving element unit 3.
  • SOA semiconductor optical amplifier
  • the optical confinement layer is the active layer 19 similar to the laser unit 2
  • the p-InP clad layer 14 is placed on the active layer as in the laser unit 2.
  • a p-InGaAs contact layer 156 which is a contact layer, is formed on the 14 and a p-InP electrode 106 is formed on the upper surface of the p-InGaAs contact layer 156.
  • the laser light generated by the laser unit 2 is amplified.
  • FIG. 13 is a cross-sectional view taken along the line BB of FIG.
  • the cross section at the AA position of FIG. 12 is the same as that of FIGS. 2 and 9, and the cross section at the CC position is the same as that of FIG. That is, the clad layer and the contact layer have a ridge structure, and the side surfaces of the light confinement layer and the ridge structure portion 140 are not embedded by the embedded layer.
  • the contact layer does not contain crystal defects due to the embedded layer
  • the p-InGaAs contact layer 153 used as the light absorption layer of the integrated light receiving element portion 3 has no crystal defects, and has light receiving characteristics and reliability. It is possible to use an element in which deterioration of the element is suppressed. Further, since the light confining layer and the side surface of the ridge structure portion 140 have a ridge structure that is not embedded in the embedded layer, it is possible to sufficiently secure the amount of light received by the light receiving element portion 3.
  • Embodiment 5 The configuration of the cross section at the center of the waveguide along the optical axis of the semiconductor optical integrated device according to the fifth embodiment is the same as that in FIG.
  • FIG. 14 is a cross-sectional view showing the configuration of the semiconductor optical integrated device according to the second embodiment at a position corresponding to the CC position in FIG.
  • the semiconductor light integrated element according to the fifth embodiment has a configuration in which the side surface of the ridge structure portion 140 of the light receiving element portion 3 is covered with a metal 30 that reflects laser light such as gold plating.
  • the ridge structure portion 140 of the light receiving element portion 3 is covered with a material that reflects laser light, the amount of light received by the light receiving element portion 3 is larger than that in the case where it is not covered. To increase. Therefore, the output of the monitor is increased, and it becomes easier to monitor the optical output.
  • Embodiment 6 the method of manufacturing the semiconductor optical integrated device shown in FIG. 1 will be described with reference to FIGS. 15 to 24.
  • the n-InP buffer layer 11, the active layer 12 (light confinement layer), and the etching stopper layer 13 are grown on the n-InP semiconductor substrate 10.
  • a diffraction grating structure necessary for DFB laser operation is formed on the active layer 12 which is a part of the light emitting element.
  • the etching stopper layer 13 can be partially used to form the diffraction grating structure.
  • the clad foundation layer 14a which is the source of the p-InP clad layer 14 and the p-InGaAs contact layers 152, 153 and the n-InP contact layer (light receiving element contact layer) 16 used as the contact layer on the etching stopper layer 13,
  • the contact base layer 15a and the light receiving element portion contact base layer 16a are grown.
  • P-InGaAsP having an intermediate composition may be formed between the clad base layer 14a and the contact base layer 15a. Crystal growth on the n-InP semiconductor substrate is performed by MOCVD.
  • the contact base layer 15a is a p-InGaAs contact layer 152 which is a contact layer of the laser portion and a p-InGaAs contact layer 153 which is a light absorbing layer of the light receiving element portion, and is formed on a clad foundation layer 14a having good flatness. Since it is grown, it has good crystallinity and has a quality that does not cause problems in properties and reliability.
  • the laminate formed by crystal growth by MOCVD to form each layer shown in FIG. 15 is referred to as a basic laminate 60.
  • the step of forming the basic laminate 60 is called a basic laminate forming step.
  • an insulating film mask (first insulating film mask) 90 such as SiN or SiO 2 is formed at a position serving as a light receiving element portion on the surface of the basic laminate 60, and n -InP layer n-InP on the contact base layer 15a, which is a p-InGaAs layer, by removing unnecessary parts for forming the light receiving element from the contact base layer 16a, which is an InP layer, by selective wet etching.
  • the basic laminate 60 in the state of FIG. 17 in which the light receiving element contact layer 16 is formed is obtained (light receiving element contact layer forming step).
  • the surface of the basic laminate 60 in the state of FIG. 17 becomes the electrical isolation section 4.
  • the contact layer 15a between the light receiving element portion and the laser portion is removed by selective wet etching to form the electrical isolation portion 4 by covering with an insulating film mask (second insulating film mask) 91 having an opening. (Electrical isolation section forming step).
  • the contact base layer 15a existing at the end 50 of the light receiving element portion is also removed.
  • the basic laminate in the state of FIG. 19 is obtained.
  • an insulating film hard mask such as SiO 2 having the maximum width of the ridge structure portion is formed on the surface of the basic laminate 60 in the state of FIG. 19 after the electric isolation portion forming step.
  • (Third insulating film mask) 92 is formed.
  • FIG. 21 shows the AA position of FIG. 20, that is, a cross-sectional view of the light receiving element portion
  • FIG. 22 shows the BB position of FIG. 20, that is, a cross-sectional view of the laser portion.
  • a ridge structure portion is formed by etching using this insulating film hard mask (third insulating film mask) 92.
  • 23 and 24 are cross-sectional views showing the state of etching in the light receiving element portion using the insulating film hard mask 92.
  • both side surfaces of the contact base layer 15a and the clad base layer 14a are removed by dry etching to the front of the etching stopper layer 13 so that the etching stopper layer 13 is not exposed.
  • the clad base layer 14a is wet-etched to form the p-InP clad layer 14 having an inverted mesa shape shown in FIG. The above is called a ridge structure forming step.
  • the contact base layer 15a on the p-InP clad layer 14 remains as the p-InGaAs contact layer 153 of the light receiving element portion and the p-InGaAs contact layer 152 of the laser portion only where necessary for each operation.
  • an etched electric isolation portion 4 is formed between the light receiving element portion and the laser portion to ensure electrical insulation, and since there are many steps on the surface, an insulating film having high coating properties is formed. It is necessary to do.
  • an insulating film such as SiO 2 or SiN is formed so as to cover the exposed surface including the side surfaces of the clad layer and the contact layer (insulating film forming step).
  • the insulating film at the electrode forming portion is removed, and the n-side electrode 104 of the light receiving element and the p-side electrodes 102 and 103 of the light receiving element and the light emitting element are formed by metal film formation and etching.
  • the n-side electrode 101 of the light emitting element is formed on the n-InP semiconductor substrate, and the reflective coating films 201 and 202 are formed after cutting out the chip.
  • the semiconductor optical integrated device shown in FIGS. 1 to 4 is completed by the above manufacturing process. That is, it is possible to obtain a structure having no embedded layer of the semiconductor material on the side surfaces of the light confinement layer, the clad layer and the contact layer, and the contact layer which is the InGaAs layer or the InGaAsP layer contains crystal defects caused by the embedded layer. It is possible to obtain a semiconductor optical integrated device that does not exist. Therefore, it is possible to obtain an element in which the p-InGaAs layer 153, which is a contact layer used as the light absorption layer 153 of the integrated light receiving element portion 3, has no crystal defects and the deterioration of the light receiving characteristics and reliability is suppressed.
  • the semiconductor optical integrated device using the semiconductor substrate 10 as the n-InP substrate has been described, but the structure is such that the conductive type of each semiconductor layer is reversed by using the p-InP substrate. Is also good.
  • 1 semiconductor optical integrated element 2 laser unit, 3 light receiving element unit, 4 electric isolation unit, 5 optical modulator unit, 6 optical amplifier unit, 10 n-InP substrate (semiconductor substrate), 12, 19 active layer (optical confinement) Layer), 14 p-InP clad layer (clad layer), 14a clad base layer, 15a contact base layer, 16 n-InP contact layer (light receiving element contact layer), 16a light receiving element contact base layer, 17 modulator Light absorption layer (light confinement layer), 18 optical waveguide layer (light confinement layer), 20 insulation film, 30 metal, 140 ridge structure, 152, 153, 155, 156 p-InGaAs contact layer (contact layer), 60 foundation Laminate, 90 first insulating film mask, 91 second insulating film mask, 92 third insulating film mask mask

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

同一の半導体基板(10)に、レーザ部(2)と受光素子部(3)がレーザの光軸に沿って配置され、レーザ部(2)および受光素子部(3)は、いずれも、半導体基板(10)に近い側から順に、光を閉じ込める光閉じ込め層(12)、クラッド層(14)、およびInGaAs層またはInGaAsP層で形成されたコンタクト層(152、153)を有し、レーザ部(2)の光閉じ込め層は活性層(12)であり、受光素子部のコンタクト層(153)は光吸収層となる半導体光集積素子において、クラッド層(14)は、光軸に垂直な断面において、光閉じ込め層(12)の側の幅が、コンタクト層(152、153)の側の幅よりも狭い形状のリッジ構造であり、光閉じ込め層(12)、クラッド層(14)およびコンタクト層(152、153)の側面に半導体の埋め込み層を有しない構造とした。

Description

半導体光集積素子および半導体光集積素子の製造方法
 本願は、半導体レーザと受光素子が集積された半導体光集積素子に関する。
 光通信用半導体レーザにおいて、光出力をモニタする半導体受光素子(モニタPD)を半導体レーザに集積する場合、半導体受光素子を、レーザを導波する導波路の上部に配置し、集積化した形態がいくつか提案されている。
 これらデバイスの形態は、いずれも半導体レーザの活性層または導波路のコア層を埋め込んだ埋め込み層を有する構造で、且つ埋め込み層上に成長されるコンタクト層として結晶成長されたInGaAs層またはInGaAsP層を、受光素子部では光吸収層として用いている(特許文献1参照)。
 しかし、埋め込み層の表面モフォロジーは理想的に平坦でなく、再成長界面に起因するいくつかの数ミクロンの突起を有するため、この様な表面状態を下地として成長するコンタクト層は結晶欠陥である積層欠陥(アンチ・フェーズドメイン)を含む領域があるので、光吸収層として用いているInGaAs層又はInGaAsP層に結晶欠陥が存在し、受光特性及び信頼性を劣化させる要因となっていた。
特開2005-333144号公報
 以上説明したように、受光素子とレーザとを集積した半導体光集積素子において、埋め込み層を有する場合、光吸収層の結晶欠陥が原因で、受光素子の受光特性が劣化する課題があった。
 本願は、半導体レーザ部ではコンタクト層としているInGaAs層またはInGaAsP層を光吸収層として用いる半導体受光素子(モニタPD)を集積した半導体光集積素子で、光吸収層の積層欠陥(アンチ・フェーズドメイン等)が抑制され、受光特性の劣化が少ない半導体光集積素子を得ることを目的とする。
 本願に開示される半導体光集積素子は、同一の半導体基板に、半導体素子を構成するレーザ部と受光素子を構成する受光素子部がレーザの光軸に沿って配置され、レーザ部および受光素子部は、いずれも、半導体基板に近い側から順に、光を閉じ込める光閉じ込め層、クラッド層、およびInGaAs層またはInGaAsP層で形成されたコンタクト層を有し、レーザ部の光閉じ込め層は活性層であり、受光素子部のコンタクト層は光吸収層となる半導体光集積素子において、クラッド層は、光軸に垂直な断面において、光閉じ込め層の側の幅が、コンタクト層の側の幅よりも狭い形状のリッジ構造であり、光閉じ込め層、クラッド層およびコンタクト層の側面に半導体の埋め込み層を有しない構造としたものである。
 本願に開示される半導体光集積素子によれば、受光素子の受光特性の劣化が少ない半導体光集積素子を得ることができる。
実施の形態1による半導体光集積素子の構成を導波路中央における断面により示す図である。 実施の形態1による半導体光集積素子の図1のA-A位置での断面図である。 実施の形態1による半導体光集積素子の図1のB-B位置での断面図である。 実施の形態1による半導体光集積素子の図1のC-C位置での断面図である。 実施の形態2による半導体光集積素子の図1のA-A位置に相当する位置の断面図である。 実施の形態2による半導体光集積素子の図1のB-B位置に相当する位置の断面図である。 実施の形態2による半導体光集積素子の図1のC-C位置に相当する位置の断面図である。 実施の形態3による半導体光集積素子の構成を導波路中央における断面により示す図である。 実施の形態3による半導体光集積素子の図8のA-A位置での断面図である。 実施の形態3による半導体光集積素子の図8のB-B位置での断面図である。 実施の形態3による半導体光集積素子の図8のC-C位置での断面図である。 実施の形態4による半導体光集積素子の構成を導波路中央における断面により示す図である。 実施の形態4による半導体光集積素子の図12のB-B位置での断面図である。 実施の形態5による半導体光集積素子の図1のC-C位置に相当する位置での断面図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第一の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第二の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第三の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第四の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第五の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第六の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第七の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第八の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第九の図である。 実施の形態6による半導体光集積素子の製造方法を説明するための第十の図である。
実施の形態1.
 図1は実施の形態1による半導体光集積素子の構成を、光が伝搬する方向である光軸方向と平行で、導波路中央における半導体基板10に垂直な断面により示す断面図である。図2は、図1のA-A位置での断面図、図3は図1のB-B位置での断面図、図4は図1のC-C位置での断面図である。この半導体光集積素子1は、半導体レーザを構成するレーザ部2と受光素子を構成する受光素子部3とが集積された構成となっている。レーザ部2および受光素子部3はいずれも共通のn-InP基板10(以降、単に半導体基板10と称することもある)を有し、n-InP基板10に半導体層などが積層された構成となっている。なお、本願の図面は、各部分が明確に認識できる図面とするため、基板および他の層の厚さ、長さ、幅などの寸法は、実際の寸法比とは異なって記載されている。
 n-InP基板10上に、n-InP基板10と活性層12との屈折率およびキャリア濃度の調整のために挿入されたn-InPバッファ層11を介して光閉じ込め層としての活性層12が形成されている。活性層12には、例えばレーザ部2がDFBレーザの場合、回折格子が伴う。また、受光素子部3においても回折格子が伴う場合がある。活性層12の上には、エッチング工程において活性層12がエッチングされないようにエッチングストッパ層13が形成されている。エッチングストッパ層13を挟んで、p-InPクラッド層14が形成されている。p-InPクラッド層14の上にはコンタクト層としてp-InGaAs層が形成されており、このコンタクト層は、レーザ部2のp-InGaAsコンタクト層152と受光素子部3のp-InGaAsコンタクト層153との間で分離され、分離された部分は電気アイソレーション部4として機能する。レーザ部2のp-InGaAsコンタクト層152の上にはp-InP電極102が形成されている。受光素子部3のp-InGaAsコンタクト層153の上には、n-InPコンタクト層(受光素子部コンタクト層)16とp-InP電極103が形成され、n-InPコンタクト層16の上にはn-InP電極104が形成されている。また、n-InP基板10の裏面にはn-InP電極101が形成されている。
 図1に示すように、光軸方向のレーザ光を取り出す端面には前端面反射コート膜201が、他の端面には後端面反射コート膜202が形成され、レーザ共振器が構成されている。図2、図3、および図4の各断面図に示すように、p-InPクラッド層14の幅は、下部、すなわち活性層12の側が狭く、上部、すなわちp-InGaAsコンタクト層152および153の側が広い、いわゆる逆メサ形状となっており、活性層12(エッチングストッパ層13を含む)より上部全体がいわゆるリッジ構造となっている。リッジ構造部140の側面および上面は、電気アイソレーション部4を含めて、p-InP電極102、p-InP電極103、n-InP電極104の各電極の少なくとも一部が露出するように絶縁膜20で覆われている。リッジ構造部140が形成されていないエッチングストッパ層13も絶縁膜20により覆われている。図2、図3、図4の各断面図に示されるように、活性層12、p-InPクラッド層14、およびp-InGaAsコンタクト層152、153の側面は半導体の埋め込み層を有しておらず、図2、図3、図4の各断面図の断面の横方向について、リッジ構造部140により、光および電流が閉じ込められる構成となっている。
 レーザ部2は、p-InP電極102とn-InP電極101の間に電流を流すことにより、活性層12において電子と正孔が結合して光を放出しレーザ発振が起こる。受光素子部3では、p-InGaAsコンタクト層153が光吸収層となり、p-InP電極103とn-InP電極104間がフォトダイオードを形成して、光吸収層であるp-InGaAsコンタクト層153で吸収される光を検出することができ、レーザ光のモニタなどに用いられる。
 図1から図4に示す、実施の形態1による半導体光集積素子は、いわゆるリッジ構造により構成されており、活性層12からリッジ構造部140の側面は半導体の埋め込み層で埋め込まれていない。半導体の埋め込み層の表面モフォロジーは理想的に平坦でなく、再成長界面に起因するいくつかの数ミクロンの突起を有するため、この様な表面状態を下地として成長するコンタクト層は結晶欠陥である積層欠陥(アンチ・フェーズドメイン)を含む領域がある。しかし、実施の形態1による半導体光集積素子は、半導体の埋め込み層を有しないため、コンタクト層は埋め込み層に起因する結晶欠陥が含まれない。したがって、集積した受光素子部3の光吸収層として用いられるp-InGaAsコンタクト層153に結晶欠陥がなく、受光特性および信頼性の劣化が抑制された素子とすることができる。
 さらに、活性層12からp-InPクラッド層14の側面は半導体の埋め込み層で埋め込まれていないリッジ構造であるため、リッジ構造部140の半導体層の屈折率が、絶縁膜および空気層より十分大きく、埋め込み層を有する構成に比較して光の閉じ込めが強い。受光素子部3では十分な光吸収量の確保が重要となるが、集積される素子全体をリッジ構造とすることで、受光素子部3におけるリッジ構造部140への光の閉じ込めが強いため、受光素子部3で受光される受光量を十分確保することができ、モニタが容易となる。また、リッジ構造部140において、光吸収層を含むコンタクト層が配置される上部の幅が広い逆メサ形状となっていることによっても、光吸収量を十分確保することができる。
 なお、コンタクト層をInGaAs層により形成した場合を説明したが、コンタクト層はInGaAsP層であっても良い。また、レーザ部2を後端面側、受光素子部3を前端面側、すなわち、レーザ光を受光素子部3が配置されている側から取り出す構成を説明したが、この位置関係は逆であってもよい。すなわち、レーザ部2を前端面側、受光素子部3を後端面側に配置した構成であっても良い。
実施の形態2.
 実施の形態2による半導体光集積素子の光軸に沿った導波路中央における断面の構成は図1と同じである。図5は、実施の形態2による半導体光集積素子の構成を示す、図1のA-A位置に相当する位置における断面図、図6は、図1のB-B位置に相当する位置における断面図、図7は、図1のC-C位置に相当する位置における断面図である。実施の形態1ではリッジ構造部の断面形状が逆メサ形状であったが、実施の形態2では、図5、図6、図7に示すように、リッジ構造部140の断面形状をT字形状とした。図5、図6、図7において、図1から図4と同一符号は同一または相当部分を示しており、以下、実施の形態1と異なる部分のみ説明する。
 本実施の形態2においては、リッジ構造部140を構成するp-InPクラッド層14は、活性層12側の幅が狭く、活性層12とは反対側である上部部分の幅が広い、幅が2段になっている、いわゆるT字形状としている。このように、リッジ構造部140の形状は、実施の形態1に示した、逆台形である逆メサ形状である必要はなく、活性層12と反対側である上部の幅が広く、活性層12側の幅が上部よりも狭くなっていれば、どのような形状であっても良い。ただし、実施の形態1で示した逆メサ形状、あるいは本実施の形態2で示すT字形状は、例えばエッチングにより形成することができるため、単純な製造工程で製造することができる。
 以上のように、図5から図7に示す、実施の形態2による半導体光集積素子は、実施の形態1による半導体光集積素子と同様、いわゆるリッジ構造により構成されており、活性層12からリッジ構造部140の側面は半導体の埋め込み層で埋め込まれていない。このため、コンタクト層には埋め込み層に起因する結晶欠陥が含まれないため、集積した受光素子部3の光吸収層として用いられるp-InGaAs層153に結晶欠陥がなく、受光特性および信頼性の劣化が抑制された素子とすることができる。
 さらに、活性層12からp-InPクラッド層14の側面は半導体の埋め込み層で埋め込まれていないリッジ構造であるため、リッジ構造部140の半導体層の屈折率が、絶縁膜および空気層より十分大きく、埋め込み層を有する構成に比較しては光の閉じ込めが強い。また、リッジ構造部140において、光吸収層を含むコンタクト層が配置される上部の幅が広いT字形状となっている。これらの構成により、受光素子部3で受光される受光量を十分確保することができる。
実施の形態3.
 図8は実施の形態3による半導体光集積素子1の構成を、光が伝搬する方向である光軸方向と平行で、導波路中央における半導体基板10に垂直な断面により示す断面図である。図9は、実施の形態3による半導体光集積素子の構成を示す、図8のA-A位置における断面図、図10は、図8のB-B位置における断面図、図11は、図8のC-C位置に相当する位置における断面図である。本実施の形態3による半導体光集積素子1は、レーザ部2と受光素子部3の間に、電界吸収型光変調器(EAM)を構成する光変調器部5を集積した構成となっている。
 光変調器部5では、レーザ部2の活性層12に相当する層である光閉じ込め層として電界の有無により光の吸収が変化する変調器部光吸収層17が形成されており、光変調器部5において、レーザ光を変調することができる。光変調器部5においても、レーザ部と同様、p-InPクラッド層14の上にはコンタクト層であるp-InGaAsコンタクト層155が形成され、p-InGaAsコンタクト層155の上面にp-InP電極105が形成されている。本実施の形態3では、受光素子部3では、光閉じ込め層を活性ではない単なる光導波路層18としている。このように、受光素子部3では、光閉じ込め層は活性層である必要は無く、単なる光導波路層であってもよい。図9、図10、図11の各断面図に示すように、本実施の形態3による半導体光集積素子1においても、p-InPクラッド層14を含むリッジ構造部140は、逆メサ形状となっている。リッジ構造部140の形状は、実施の形態2で説明したT字形状であってもよく、活性層12、変調器部光吸収層17、光導波路層18などの光閉じ込め層の側とは反対側である上部の幅が広く、光閉じ込め層の側である下部の幅が上部よりも狭くなっていれば、どのような形状であっても良い。
 以上のように、図8から図11に示す、実施の形態3による半導体光集積素子は、実施の形態1および実施の形態2による半導体光集積素子と同様、いわゆるリッジ構造により構成されており、光閉じ込め層およびリッジ構造部140の側面は埋め込み層で埋め込まれていない。このため、コンタクト層には埋め込み層に起因する結晶欠陥(アンチ・フェーズドメイン)が含まれないため、集積した受光素子部3の光吸収層として用いられるp-InGaAsコンタクト層153に結晶欠陥がなく、受光特性および信頼性の劣化が抑制された素子とすることができる。
 また、光閉じ込め層およびリッジ構造部140の側面は埋め込み層で埋め込まれていないリッジ構造であるため、受光素子部3で受光される受光量を十分確保することができる。
実施の形態4.
 図12は実施の形態4による半導体光集積素子1の構成を、光が伝搬する方向である光軸方向と平行で、導波路中央における半導体基板10に垂直な断面により示す断面図である。本実施の形態4による半導体光集積素子1は、レーザ部2と受光素子部3の間に、半導体光増幅器(SOA)を構成する光増幅器部6を集積した構成となっている。光増幅器部6においては、光閉じ込め層はレーザ部2と同様の活性層19となっており、レーザ部2と同様、活性層の上にはp-InPクラッド層14が、p-InPクラッド層14の上にはコンタクト層であるp-InGaAsコンタクト層156が形成され、p-InGaAsコンタクト層156の上面にp-InP電極106が形成されている。光増幅器部6において、レーザ部2で発生したレーザ光が増幅される。
 図13は図12のB-B位置での断面図である。図12のA-A位置での断面は、図2および図9と同様であり、C-C位置での断面は、図11と同様である。すなわち、クラッド層およびコンタクト層はリッジ構造となっており、光閉じ込め層およびリッジ構造部140の側面は埋め込み層で埋め込まれていない。
 このため、コンタクト層には埋め込み層に起因する結晶欠陥が含まれないため、集積した受光素子部3の光吸収層として用いられるp-InGaAsコンタクト層153に結晶欠陥がなく、受光特性および信頼性の劣化が抑制された素子とすることができる。また、光閉じ込め層およびリッジ構造部140の側面は埋め込み層で埋め込まれていないリッジ構造であるため、受光素子部3で受光される受光量を十分確保することができる。
 レーザ部2と受光素子部3の間に、実施の形態3では光変調器を、実施の形態4では半導体光増幅器を配置した構成を説明したが、レーザ部2と受光素子部3の間に、いわゆるスポットサイズ変換器を配置することもできる。
実施の形態5.
 実施の形態5による半導体光集積素子の光軸に沿った導波路中央における断面の構成は図1と同じである。図14は、実施の形態2による半導体光集積素子の構成を示す、図1のC-C位置に相当する位置における断面図である。本実施の形態5による半導体光集積素子は、受光素子部3のリッジ構造部140の側面を金メッキなどレーザ光を反射する金属30で覆った構成としている。
 本実施の形態5による半導体光集積素子では、受光素子部3のリッジ構造部140がレーザ光を反射する材料で覆われているため、覆われていない場合よりも受光素子部3における受光量が増加する。このため、モニタの出力が増加し、光出力のモニタがより容易になる。
実施の形態6.
 実施の形態6では、図1に示した半導体光集積素子の製造方法を、図15から図24を参照して説明する。まず、図15に示すように、n-InP半導体基板10上にn-InPバッファ層11と活性層12(光閉じ込め層)とエッチングストッパ層13を成長する。発光素子の一部である活性層12にはDFBレーザ動作に必要な回折格子構造を形成する。または、回折格子を活性層12に含めない場合はエッチングストッパ層13を部分的に用いて回折格子構造を作ることも可能である。更にエッチングストッパ層13上にp-InPクラッド層14とコンタクト層として用いるp-InGaAsコンタクト層152、153及びn-InPコンタクト層(受光素子部コンタクト層)16の元となる、クラッド基礎層14a、コンタクト基礎層15a、受光素子部コンタクト基礎層16aを成長する。クラッド基礎層14aとコンタクト基礎層15aの間に中間組成となるp-InGaAsPを形成してもよい。n-InP半導体基板への結晶成長はMOCVDにより行う。コンタクト基礎層15aは、レーザ部のコンタクト層であるp-InGaAsコンタクト層152と受光素子部の光吸収層としてのp-InGaAsコンタクト層153となるが、平坦性の良好なクラッド基礎層14a上に成長しているため結晶性がよく、特性および信頼性で問題を起こさない品質を有する。ここで、図15に示す、MOCVDにより結晶成長させて各層を形成して作成した積層体を基礎積層体60と呼ぶことにする。基礎積層体60を形成する工程を基礎積層体形成工程と呼ぶ。
 次に、上面図により示す図16のように、基礎積層体60の表面の受光素子部となる位置にSiN、SiO等の絶縁膜マスク(第一絶縁膜マスク)90を形成して、n-InP層である受光素子部コンタクト基礎層16aに対し受光素子形成にとって不要な箇所を選択性のあるウェットエッチングにより除去することにより、p-InGaAs層であるコンタクト基礎層15aの上にn-InPの受光素子部コンタクト層16が形成された図17の状態の基礎積層体60を得る(受光素子部コンタクト層形成工程)。次に、図18に示すように、受光素子部とレーザ部との間に電気アイソレーション部4を形成するため、図17の状態の基礎積層体60の表面を電気アイソレーション部4となる部分に開口を有する絶縁膜マスク(第二絶縁膜マスク)91で覆い、受光素子部とレーザ部の間のコンタクト層15aを、選択性のあるウェットエッチングにより除去して電気アイソレーション部4を形成する(電気アイソレーション部形成工程)。このとき、図18に示すように、受光素子部の端部50に存在するコンタクト基礎層15aも除去する。この工程により図19の状態の基礎積層体を得る。
 次に、図20に示すように、電気アイソレーション部形成工程後の、図19の状態の基礎積層体60の表面に、リッジ構造部の最大幅の幅を有するSiO2等の絶縁膜ハードマスク(第三絶縁膜マスク)92を形成する。図21は図20のA-A位置、すなわち受光素子部での断面図、図22は図20のB-B位置、すなわちレーザ部での断面図を示している。この絶縁膜ハードマスク(第三絶縁膜マスク)92を用いてエッチングによりリッジ構造部を形成する。図23および図24は、絶縁膜ハードマスク92を用いて受光素子部におけるエッチングの様子を断面図により示す図である。まず、図23に示すように、ドライエッチングによりコンタクト基礎層15aおよびクラッド基礎層14aの両側面を、エッチングストッパ層13が露出しないようエッチングストッパ層13の手前まで除去する。その後、図24に示すようにクラッド基礎層14aをウエットエッチングすることにより、図1に示す逆メサ形状のp-InPクラッド層14が形成される。以上をリッジ構造形成工程と呼ぶ。この段階ではp-InPクラッド層14の上のコンタクト基礎層15aは受光素子部のp-InGaAsコンタクト層153とレーザ部のp-InGaAsコンタクト層152としてそれぞれの動作に必要な箇所のみ残っている。さらに、受光素子部とレーザ部の間は電気絶縁を確保するためにエッチングされた電気アイソレーション部4が形成されており、表面には数多くの段差があるので被覆性の高い絶縁膜を成膜することが必要となる。
 リッジ形成後、クラッド層およびコンタクト層の側面を含む露出面を覆うようにSiO、SiN等の絶縁膜を形成する(絶縁膜形成工程)。表面の絶縁膜形成後、電極形成箇所の絶縁膜を除去し、受光素子のn側電極104と受光素子と発光素子のp側電極102、103をメタル製成膜とエッチングにより形成する。その後、n-InP半導体基板に発光素子のn側電極101を形成し、チップ切り出し後に反射コーティング膜201、202を形成する。
 以上の製造工程により、図1から図4に示す半導体光集積素子が完成する。すなわち、光閉じ込め層、クラッド層およびコンタクト層の側面に半導体材料の埋め込み層を有しない構造を得ることができ、InGaAs層またはInGaAsP層であるコンタクト層には埋め込み層に起因する結晶欠陥が含まれない半導体光集積素子を得ることができる。このため、集積した受光素子部3の光吸収層153として用いられるコンタクト層であるp-InGaAs層153に結晶欠陥がなく、受光特性および信頼性の劣化が抑制された素子を得ることができる。
 以上の各実施の形態においては、半導体基板10をn-InP基板を用いた半導体光集積素子を説明したが、p-InP基板を用いて各半導体層の導電型を逆にした構造であっても良い。
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 半導体光集積素子、2 レーザ部、3 受光素子部、4 電気アイソレーション部、5 光変調器部、6 光増幅器部、10 n-InP基板(半導体基板)、12、19 活性層(光閉じ込め層)、14 p-InPクラッド層(クラッド層)、14a クラッド基礎層、15a コンタクト基礎層、16 n-InPコンタクト層(受光素子部コンタクト層)、16a 受光素子部コンタクト基礎層、17 変調器部光吸収層(光閉じ込め層)、18 光導波路層(光閉じ込め層)、20 絶縁膜、30 金属、140 リッジ構造部、152、153、155、156 p-InGaAsコンタクト層(コンタクト層)、60 基礎積層体、90 第一絶縁膜マスク、91 第二絶縁膜マスク、92 第三絶縁膜マスク

Claims (8)

  1.  同一の半導体基板に、半導体レーザを構成するレーザ部と受光素子を構成する受光素子部がレーザの光軸に沿って配置され、
    前記レーザ部および前記受光素子部は、いずれも、前記半導体基板に近い側から順に、光を閉じ込める光閉じ込め層、クラッド層、および、InGaAs層またはInGaAsP層で形成されたコンタクト層を有し、
    前記レーザ部の前記光閉じ込め層は活性層であり、前記受光素子部の前記コンタクト層は、光吸収層となる半導体光集積素子において、
    前記クラッド層は、前記光軸に垂直な断面において、前記光閉じ込め層の側の幅が、前記コンタクト層の側の幅よりも狭い形状のリッジ構造であり、
    前記光閉じ込め層、前記クラッド層および前記コンタクト層の側面に半導体の埋め込み層を有しない構造であることを特徴とする半導体光集積素子。
  2.  前記リッジ構造の形状が、逆メサ形状であることを特徴とする請求項1に記載の半導体光集積素子。
  3.  前記リッジ構造の形状が、T字形状であることを特徴とする請求項1に記載の半導体光集積素子。
  4.  前記クラッド層および前記コンタクト層の側面が絶縁膜で覆われていることを特徴とする請求項1から3のいずれか1項に記載の半導体光集積素子。
  5.  前記レーザ部と前記受光素子部の間に、前記半導体基板に近い側から順に、光を閉じ込める光閉じ込め層としての変調器部光吸収層、クラッド層、およびコンタクト層を有し、電界吸収型光変調器を構成する光変調器部が配置されたことを特徴とする請求項1から4のいずれか1項に記載の半導体光集積素子。
  6.  前記レーザ部と前記受光素子部の間に、前記半導体基板に近い側から順に、光を閉じ込める光閉じ込め層としての活性層、クラッド層、およびコンタクト層を有し、半導体光増幅器を構成する光増幅器部が配置されたことを特徴とする請求項1から4のいずれか1項に記載の半導体光集積素子。
  7.  前記受光素子部のリッジ構造の側面が金属で覆われたことを特徴とする請求項1から6のいずれか1項に記載の半導体光集積素子。
  8.  請求項2に記載の半導体光集積素子の製造方法であって、
     半導体基板上に、前記光閉じ込め層、前記クラッド層の元となるクラッド基礎層、前記コンタクト層の元となるコンタクト基礎層、前記受光素子部における受光素子部コンタクト層の元となる受光素子部コンタクト基礎層、を順にMOCVDにより結晶成長させて基礎積層体を形成する基礎積層体形成工程、
     前記受光素子部の位置の前記基礎積層体の表面に第一絶縁膜マスクを形成した後、前記第一絶縁膜マスクが形成されていない部分の前記受光素子部コンタクト基礎層をウェットエッチングにより除去した後、前記第一絶縁膜マスクを除去して前記受光素子部コンタクト層を形成する受光素子部コンタクト層形成工程、
     前記受光素子部コンタクト層形成工程後の前記基礎積層体の表面を、前記受光素子部と前記レーザ部の間で電気アイソレーション部となる部分に開口を有するように第二絶縁膜マスクで覆った後、ウェットエッチングにより前記開口部分の前記コンタクト基礎層を除去した後、前記第二絶縁膜マスクを除去して前記電気アイソレーション部を形成する、電気アイソレーション部形成工程、
     前記電気アイソレーション部形成工程後の前記基礎積層体の表面に前記リッジ構造の最大幅の幅を有する第三絶縁膜マスクを形成した後、ドライエッチングにより、前記第三絶縁膜マスクが形成されていない部分の前記コンタクト基礎層および前記クラッド基礎層を除去した後、残った前記クラッド基礎層の側面をウェットエッチングによりエッチングして、前記逆メサ形状の前記クラッド層を形成するリッジ構造形成工程、
     前記クラッド層および前記コンタクト層の側面を含む露出面を絶縁膜で覆う絶縁膜形成工程、
    を有する半導体光集積素子の製造方法。
PCT/JP2019/023014 2019-06-11 2019-06-11 半導体光集積素子および半導体光集積素子の製造方法 WO2020250291A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980097117.7A CN113906640B (zh) 2019-06-11 2019-06-11 半导体光集成元件及半导体光集成元件的制造方法
US17/600,811 US20220200242A1 (en) 2019-06-11 2019-06-11 Optical semiconductor integrated element and method of manufacturing optical semiconductor integrated element
JP2021525432A JP7134350B2 (ja) 2019-06-11 2019-06-11 半導体光集積素子および半導体光集積素子の製造方法
PCT/JP2019/023014 WO2020250291A1 (ja) 2019-06-11 2019-06-11 半導体光集積素子および半導体光集積素子の製造方法
TW109118774A TWI737336B (zh) 2019-06-11 2020-06-04 半導體光積體元件及半導體光積體元件之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023014 WO2020250291A1 (ja) 2019-06-11 2019-06-11 半導体光集積素子および半導体光集積素子の製造方法

Publications (1)

Publication Number Publication Date
WO2020250291A1 true WO2020250291A1 (ja) 2020-12-17

Family

ID=73781654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023014 WO2020250291A1 (ja) 2019-06-11 2019-06-11 半導体光集積素子および半導体光集積素子の製造方法

Country Status (5)

Country Link
US (1) US20220200242A1 (ja)
JP (1) JP7134350B2 (ja)
CN (1) CN113906640B (ja)
TW (1) TWI737336B (ja)
WO (1) WO2020250291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364134B1 (ja) 2023-04-26 2023-10-18 三菱電機株式会社 半導体装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117461226A (zh) * 2021-06-17 2024-01-26 三菱电机株式会社 光半导体元件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415978A (ja) * 1990-05-09 1992-01-21 Nippon Telegr & Teleph Corp <Ntt> モニタ付半導体レーザ
JP2000114642A (ja) * 1998-10-02 2000-04-21 Furukawa Electric Co Ltd:The 半導体受発光集積素子
JP2005333144A (ja) * 2004-05-20 2005-12-02 Samsung Electronics Co Ltd 逆メサ構造を用いた光集積素子及びその製造方法
JP2007149937A (ja) * 2005-11-28 2007-06-14 Hitachi Ltd 光半導体素子
WO2017060836A1 (en) * 2015-10-05 2017-04-13 King Abdullah University Of Science And Technology An apparatus comprising a waveguide-modulator and laser-diode and a method of manufacture thereof
WO2018109857A1 (ja) * 2016-12-14 2018-06-21 三菱電機株式会社 光半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105555B2 (ja) * 1986-09-24 1995-11-13 日本電信電話株式会社 光出力モニタ付半導体レ−ザ
EP1668749A4 (en) * 2003-09-03 2007-11-28 Binoptics Corp SINGLE-longitudinal-mode-LASER DIODE
JP2008130869A (ja) * 2006-11-22 2008-06-05 Victor Co Of Japan Ltd 半導体レーザ素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415978A (ja) * 1990-05-09 1992-01-21 Nippon Telegr & Teleph Corp <Ntt> モニタ付半導体レーザ
JP2000114642A (ja) * 1998-10-02 2000-04-21 Furukawa Electric Co Ltd:The 半導体受発光集積素子
JP2005333144A (ja) * 2004-05-20 2005-12-02 Samsung Electronics Co Ltd 逆メサ構造を用いた光集積素子及びその製造方法
JP2007149937A (ja) * 2005-11-28 2007-06-14 Hitachi Ltd 光半導体素子
WO2017060836A1 (en) * 2015-10-05 2017-04-13 King Abdullah University Of Science And Technology An apparatus comprising a waveguide-modulator and laser-diode and a method of manufacture thereof
WO2018109857A1 (ja) * 2016-12-14 2018-06-21 三菱電機株式会社 光半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364134B1 (ja) 2023-04-26 2023-10-18 三菱電機株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2020250291A1 (ja) 2020-12-17
CN113906640A (zh) 2022-01-07
TW202101842A (zh) 2021-01-01
US20220200242A1 (en) 2022-06-23
JP7134350B2 (ja) 2022-09-09
TWI737336B (zh) 2021-08-21
CN113906640B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP5387671B2 (ja) 半導体レーザ及び集積素子
JP6490705B2 (ja) 半導体光集積素子およびその製造方法
US7340142B1 (en) Integrated optoelectronic device and method of fabricating the same
US7733934B2 (en) Optical waveguide and semiconductor optical element
JP3484394B2 (ja) 光半導体装置およびその製造方法
JP2008227367A (ja) 分布帰還型半導体レーザ素子
JP2021193756A (ja) 光半導体素子、光モジュール及び光半導体素子の製造方法
JP2007311522A (ja) 半導体レーザ
WO2020250291A1 (ja) 半導体光集積素子および半導体光集積素子の製造方法
US6821798B2 (en) Semiconductor optical device and method for fabricating same
JP4842983B2 (ja) 半導体光集積素子及びその作製方法
JPH05251812A (ja) 量子井戸構造光変調器付き分布帰還型半導体レーザおよびその製造方法
JP4243506B2 (ja) 半導体レーザ及びそれを用いた光モジュール
JP2002169132A (ja) 電界吸収型光変調器およびその製造方法
JP2003174224A (ja) 化合物半導体デバイス及びその作製方法
JP2012002929A (ja) 半導体光素子の製造方法、レーザモジュール、光伝送装置
JP5163355B2 (ja) 半導体レーザ装置
JPH10163568A (ja) 変調器集積半導体レーザ
JP5957855B2 (ja) 半導体集積素子
JPH11330624A (ja) 半導体装置
JPH0677583A (ja) 半導体レーザ/光変調器集積化光源
JP2011233828A (ja) 半導体光素子
JP2009016878A (ja) 半導体レーザ及びそれを用いた光モジュール
JP2011151088A (ja) 半導体光素子、光送信モジュール、光送受信モジュール、光伝送装置、及び、それらの製造方法
JP4971235B2 (ja) 半導体光集積素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932348

Country of ref document: EP

Kind code of ref document: A1