WO2020249991A1 - Vehicle control method and vehicle - Google Patents

Vehicle control method and vehicle Download PDF

Info

Publication number
WO2020249991A1
WO2020249991A1 PCT/IB2019/000594 IB2019000594W WO2020249991A1 WO 2020249991 A1 WO2020249991 A1 WO 2020249991A1 IB 2019000594 W IB2019000594 W IB 2019000594W WO 2020249991 A1 WO2020249991 A1 WO 2020249991A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
electric heating
catalyst
heating catalyst
internal combustion
Prior art date
Application number
PCT/IB2019/000594
Other languages
French (fr)
Japanese (ja)
Inventor
村上浩一
酒井亮和
横山仁
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2019/000594 priority Critical patent/WO2020249991A1/en
Publication of WO2020249991A1 publication Critical patent/WO2020249991A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a vehicle control method and a vehicle.
  • Patent Document 1 discloses a technique for regenerating a catalyst provided in an exhaust passage of an internal combustion engine in a hybrid vehicle capable of transmitting the power of an internal combustion engine and a motor to wheels (driving wheels).
  • the catalyst of Patent Document 1 collects particulate matter in exhaust gas.
  • Patent Document 1 when the particulate matter collected in the catalyst is burned to regenerate the catalyst, an internal combustion engine is rotated by a motoring operation or the like to supply oxygen to the catalyst. .. Therefore, in Patent Document 1, energy for rotating the internal combustion engine is required to regenerate the catalyst.
  • the present invention has an internal combustion engine and an exhaust purification device provided in an exhaust passage of the internal combustion engine.
  • the exhaust gas purification device includes an electric heating catalyst that generates heat when energized, an exhaust fine particle filter that is located on the downstream side of the electric heating catalyst and can collect exhaust fine particles in the exhaust, and a downstream side of the exhaust fine particle filter. It is equipped with a three-way catalyst located in.
  • the exhaust gas purification device keeps the three-way catalyst warm by energizing the electric heating catalyst while the internal combustion engine is stopped while traveling.
  • the vehicle does not require the energy to rotate the internal combustion engine for regeneration of the exhaust particulate filter. That is, the vehicle can regenerate the exhaust particulate filter while suppressing the energy consumption of the internal combustion engine.
  • the vehicle can keep the three-way catalyst warm by utilizing the combustion of the exhaust particulates deposited on the exhaust particulate filter regardless of the temperature of the exhaust particulate filter.
  • FIG. 1 is an explanatory diagram schematically showing an outline of a drive system of a vehicle 1 to which the present invention is applied.
  • FIG. 2 is an explanatory diagram schematically showing an outline of a system configuration of an internal combustion engine 10 mounted on a vehicle 1 to which the present invention is applied.
  • the vehicle 1 is, for example, a hybrid vehicle, and has a drive unit 3 for driving the drive wheels 2 and a power generation unit 4 for generating electric power for driving the drive wheels 2.
  • the drive unit 3 has a drive motor 5 as an electric motor that rotationally drives the drive wheels 2, and a first gear train 6 and a differential gear 7 that transmit the driving force of the drive motor 5 to the drive wheels 2. .. Power is supplied to the drive motor 5 from a battery 8 (not shown) charged with the power generated by the power generation unit 4.
  • the power generation unit 4 includes a generator 9 that generates electric power to be supplied to the drive motor 5, an internal combustion engine 10 that drives the generator 9, and a second gear train 11 that transmits the rotation of the internal combustion engine 10 to the generator 9. have.
  • the vehicle 1 of this embodiment is a so-called series hybrid vehicle that does not use the internal combustion engine 10 as power. That is, in the vehicle 1 of this embodiment, the internal combustion engine 10 is dedicated to power generation, and the drive motor 5 drives the drive wheels 2 to travel. In the vehicle 1 of the present embodiment, for example, when the remaining battery level (remaining charge) of the battery 8 becomes low, the internal combustion engine 10 is driven to charge the battery 8 and the generator 9 generates electricity.
  • the drive motor 5 is a direct drive source for the vehicle 1, and is driven by, for example, AC power from the battery 8.
  • the drive motor 5 includes, for example, a synchronous motor using a permanent magnet in the rotor.
  • the drive motor 5 functions as a generator when the vehicle 1 is decelerated. That is, the drive motor 5 is a generator motor that can charge the battery 8 using the regenerative energy during vehicle deceleration as electric power.
  • the first gear train 6 decelerates the rotation of the drive motor 5 and increases the motor torque to secure the running drive torque.
  • the first gear train 6 is, for example, a gear train by two-stage deceleration, and is a motor shaft 14 having a drive unit first gear 13, and a first idler shaft 17 having a drive unit second gear 15 and a drive unit third gear 16. And have.
  • the motor shaft 14 is a rotation shaft of the drive motor 5.
  • the drive unit first gear 13 is meshed with the drive unit second gear 15.
  • the third gear 16 of the drive unit is meshed with the input side gear 18 provided on the input side of the differential gear 7.
  • the differential gear 7 transmits the drive torque input from the first gear train 6 via the input side gear 18 to the left and right drive wheels 2 and 2 via the left and right drive shafts 19 and 19.
  • the differential gear 7 can transmit the same drive torque to the left and right drive wheels 2 and 2 while allowing a difference in the number of rotations of the left and right drive wheels 2 and 2.
  • the generator 9 is composed of, for example, a synchronous motor using a permanent magnet in the rotor.
  • the generator 9 converts the rotational energy generated in the internal combustion engine 10 into electrical energy, and charges, for example, the battery 8.
  • the generator 9 also has a function as an electric motor for driving the internal combustion engine 10, and functions as a starter motor when the internal combustion engine 10 is started. That is, the generator 9 is a generator motor, can supply the generated electric power to the battery 8, and can be rotationally driven by the electric power from the battery 8.
  • the electric power generated by the generator 9 may be directly supplied to the drive motor 5 instead of charging the battery 8, for example, depending on the operating state.
  • the internal combustion engine 10 may be started by, for example, a dedicated starter motor different from the generator 9.
  • the second gear train 11 is a gear train that connects the internal combustion engine 10 and the generator 9.
  • the second gear train 11 includes an engine shaft 24 having a power generation unit first gear 23, a second idler shaft 26 having a power generation unit second gear 25, and a generator input shaft 28 having a power generation unit third gear 27. And have.
  • the second gear train 11 speeds up the rotation speed of the internal combustion engine 10 during power generation operation to transmit the engine torque required for the generator 9.
  • the second gear train 11 decelerates the rotation speed of the generator 9 and transmits the motor torque required for the internal combustion engine 10.
  • the engine shaft 24 rotates synchronously with the crankshaft (not shown) of the internal combustion engine 10.
  • the generator input shaft 28 rotates synchronously with the rotor (not shown) of the generator 9.
  • the first gear 23 of the power generation unit is meshed with the second gear 25 of the power generation unit.
  • the third gear 27 of the power generation unit is meshed with the second gear 25 of the power generation unit. That is, the power generation unit first gear 23 and the power generation unit third gear 27 are meshed with the power generation unit second gear 25.
  • the internal combustion engine 10 is, for example, a gasoline engine arranged in an engine room located on the front side of the vehicle 1.
  • a manifold catalyst 32 and an underfloor catalyst 33 are provided in the exhaust passage 31 of the internal combustion engine 10.
  • the exhaust passage 31 is connected to the secondary air introduction passage 35 that supplies the secondary air (oxygen) sent out from the air pump 34.
  • the secondary air introduction passage 35 is the entrance of the underfloor catalyst 33 and is connected to the exhaust passage 31. That is, the secondary air introduction passage 35 is connected to the exhaust passage 31 at a position downstream of the manifold catalyst 32 and upstream of the underfloor catalyst 33.
  • the air pump 34 and the secondary air introduction passage 35 correspond to an oxygen supply unit capable of supplying oxygen to the inlet of the EHC 40 described later. That is, the secondary air can be supplied to the upstream side of the EHC 40 described later.
  • the manifold catalyst 32 is arranged in the engine room and is close to the internal combustion engine 10.
  • the manifold catalyst 32 is composed of, for example, a three-way catalyst.
  • the three-way catalyst purifies the exhaust gas discharged from the internal combustion engine 10, and when the excess air ratio is approximately "1", that is, when the exhaust air-fuel ratio is approximately the theoretical air-fuel ratio, the inflowing exhaust gas is used.
  • the purification rates of the three components HC, CO, and NOx are all increased.
  • the underfloor catalyst 33 corresponds to an exhaust gas purification device, and is located on the downstream side of the manifold catalyst 32, for example, at a position such as under the floor of the vehicle 1 relatively far from the engine room of the vehicle 1. ..
  • the underfloor catalyst 33 has a larger capacity than the manifold catalyst 32.
  • the underfloor catalyst 33 includes an electric heating catalyst (EHC) 40 that generates heat when energized, a GPF (Gasoline Particulate Filter) 41 as an exhaust particulate filter (particulate filter), and three.
  • EHC electric heating catalyst
  • GPF Gas Particulate Filter
  • the downstream catalyst 42 made of the original catalyst is connected in series.
  • the electric heating catalyst 40 is located on the upstream side of the GPF 41.
  • the GPF 41 is located on the upstream side of the downstream catalyst 42.
  • the electric heating catalyst 40 is a catalyst that generates heat when energized.
  • the energization of the electric heating catalyst 40 is controlled by the control unit 51.
  • the source of electric power supplied to the electric heating catalyst 40 is, for example, a battery 8 that supplies electric power to the drive motor 5.
  • the power supply source of the electric power supplied to the electric heating catalyst 40 may be a battery different from the battery 8 that supplies the electric power to the drive motor 5.
  • the GPF 41 collects PM, which is exhaust fine particles (Particulate Matter) in the exhaust gas discharged from the internal combustion engine 10.
  • the GPF 41 for example, a filter having a wall flow honeycomb structure (so-called sealing type) in which a large number of honeycomb-shaped fine passages are formed in a filter material such as cordierite and the ends thereof are alternately closed.
  • the GPF 41 may support a catalyst of the same type as the three-way catalyst so as to have the function of the three-way catalyst.
  • the underfloor catalyst 33 is provided with a GPF temperature sensor 52 that detects the temperature of the GPF 41 and a GPF differential pressure sensor 53 that detects the front-rear differential pressure of the GPF 41.
  • the detection signals of the GPF temperature sensor 52 and the GPF differential pressure sensor 53 are input to the control unit 51.
  • the GPF temperature sensor 52 corresponds to the exhaust particulate filter temperature detection unit.
  • the control unit 51 is a well-known digital computer equipped with a CPU, ROM, RAM, and an input / output interface.
  • the control unit 51 includes an air flow meter 54 that detects the amount of intake air, a crank angle sensor 55 that detects the crank angle of the crankshaft, an accelerator opening sensor 56 that detects the amount of depression of the accelerator pedal, and a temperature of secondary air.
  • the detection signals of the secondary air temperature sensor 57 and various sensors such as the vehicle speed sensor 58 that detects the vehicle speed are input.
  • the crank angle sensor 55 can detect the engine speed of the internal combustion engine 10.
  • the control unit 51 calculates the required load of the internal combustion engine 10 (load of the internal combustion engine 10) by using the detected value of the accelerator opening sensor 56.
  • the control unit 51 controls the internal combustion engine 10 based on the detection signals of various sensors. Further, the control unit 51 controls the drive of the air pump 34 to control the amount of secondary air supplied to the GPF 41.
  • the internal combustion engine 10 is stopped if the remaining battery level (remaining charge) of the battery 8 is high while the vehicle 1 is running. That is, the underfloor catalyst 33 is mounted on the vehicle 1 having a function of stopping the internal combustion engine 10 during traveling.
  • Exhaust particles collected in GPF41 can be removed by burning.
  • the control unit 51 drives the air pump 34 to supply secondary air to the upstream side of the electric heating catalyst 40 when exhaust fine particles are accumulated on the GPF 41.
  • the electric heating catalyst 40 is energized.
  • the amount of secondary air supplied to the electric heating catalyst 40 is set so that at least the exhaust particles deposited on the GPF 41 cause an oxidation reaction (combustion reaction).
  • the vehicle 1 can regenerate the GPF 41 with the internal combustion engine 10 stopped without rotating the internal combustion engine 10. That is, the vehicle 1 does not need the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
  • the vehicle 1 does not need to rotate the internal combustion engine 10 when the GPF 41 is regenerated, the components (for example, hydrocarbon) contained in the oil (lubricating oil) are released to the outside as the internal combustion engine 10 rotates. There is no risk of it.
  • the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41. That is, the vehicle 1 can suppress the temperature drop while the internal combustion engine 10 is stopped by utilizing the combustion heat of the exhaust fine particles. Therefore, the vehicle 1 can suppress the deterioration of the exhaust gas purification performance when the internal combustion engine 10 is started.
  • control unit 51 controls the energization of the electric heating catalyst 40 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. That is, the control unit 51 selects either the first heat retention control or the second heat retention control according to the accumulated amount S of the exhaust fine particles.
  • the first heat retention control continues until the stopped internal combustion engine 10 restarts.
  • the second heat retention control continues until the stopped internal combustion engine 10 is restarted or the combustion of the exhaust fine particles accumulated on the GPF 41 is completed.
  • the downstream side catalyst 42 is kept warm with the secondary air heated by the heat of the electric heating catalyst 40.
  • the power consumption (integrated value) increases as the elapsed time from the start of the control increases.
  • the amount of electric energy per unit time supplied to the electric heating catalyst 40 during the first heat retention control is set so that the downstream side catalyst 42 can be kept warm by the secondary air heated when passing through the electric heating catalyst 40. ..
  • the electric heating catalyst 40 is energized until the exhaust fine particles deposited on the GPF 41 start to burn to raise the temperature of the GPF 41, and the downstream catalyst 42 is kept warm by the heat generated by the combustion of the exhaust fine particles.
  • the second heat retention control temporarily supplies a larger electric power to the electric heating catalyst 40 than the first heat retention control, and then does not supply the electric power to the electric heating catalyst 40. Therefore, the elapsed time from the start of the control Regardless, the power consumption (integrated value) is constant.
  • the amount of electric energy per unit time temporarily supplied to the electric heating catalyst 40 at the start of the second heat retention control is larger than the amount of electric energy per unit time supplied to the electric heating catalyst 40 at the time of the first heat retention control.
  • the temperature of the GPF 41 is set to rise to a temperature at which the fine particles (deposited on the GPF 41) begin to burn.
  • FIG. 4 shows a characteristic line A (solid line) showing a change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is performed, and a consumption of the electric heating catalyst 40 when the second heat retention control is performed.
  • the characteristic line B (broken line) which shows the change of the integrated value of electric power.
  • the characteristic line A is a linear line in which the integrated value of power consumption increases as the control time increases.
  • the characteristic line B rises stepwise (stepped) at the start of control, and thereafter becomes a characteristic line in which the integrated value of power consumption becomes constant regardless of the control time.
  • the magnitude relationship between the power consumption in the first heat retention control and the power consumption in the second heat retention control is reversed with respect to the condition when the characteristic line A and the characteristic line B intersect.
  • the elapsed time from the start of the first and second heat retention controls until the intersection of the characteristic line A and the characteristic line B is defined as the time T1.
  • the accumulated amount S of the exhaust particles collected in the GPF 41 is calculated, and the combustion time Tp of the exhaust particles is calculated from the calculated accumulated amount S of the exhaust particles.
  • the accumulated amount S of the exhaust fine particles collected in the GPF 41 can be calculated by the control unit 51 using, for example, the front-rear differential pressure of the GPF 41 and the gas flow rate (exhaust flow rate) passing through the GPF 41. Further, the accumulated amount S of the exhaust fine particles collected in the GPF 41 controls, for example, a map in which the engine rotation speed and the intake air amount of the internal combustion engine 10 are associated with the accumulated amount S of the exhaust fine particles collected in the GPF 41 in advance. It can also be calculated by preparing it in the unit 51. That is, the control unit 51 corresponds to a deposit amount calculation unit that calculates the deposit amount S of the exhaust fine particles collected in the GPF 41.
  • FIG. 5 is a characteristic diagram showing the correlation between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the combustion time Tp thereof.
  • the combustion time Tp of the exhaust fine particles can be calculated from the accumulated amount S of the exhaust fine particles.
  • the control unit 51 stores a map as shown in FIG. 5 in which the accumulated amount S of exhaust particles and the combustion time Tp thereof are associated with each other.
  • control unit 51 corresponds to the combustion time calculation unit that calculates the combustion time Tp according to the accumulated amount S of the exhaust fine particles.
  • the combustion time Tp of the exhaust fine particles is the time when the exhaust fine particles are burned under a predetermined constant condition, and is the time when the exhaust fine particles collected in the GPF 41 are burned so that the downstream catalyst 42 can be kept warm. is there.
  • the first heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is less than the predetermined amount, the downstream catalyst 42 is kept warm by using the secondary air heated by the heat of the electric heating catalyst 40.
  • the second heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is equal to or more than a predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated in the GPF 41 start to burn to raise the temperature of the GPF 41.
  • control unit 51 of the first embodiment corresponds to a catalyst control unit that controls energization of the electric heating catalyst 40 according to the accumulated amount S of exhaust fine particles collected in the GPF 41.
  • the vehicle 1 suppresses the amount of electric power consumed by the electric heating catalyst 40 by changing the heat retention method of the downstream catalyst 42 while the internal combustion engine 10 is stopped according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. At the same time, it is possible to suppress a decrease in exhaust gas purification performance when the internal combustion engine 10 is started.
  • the first heat retention control is carried out in which the downstream side catalyst 42 is kept warm by the secondary air heated by the vehicle 1 and the electric heating catalyst 40.
  • the vehicle 1 can suppress a decrease in the temperature of the downstream catalyst 42 even when the accumulated amount S of exhaust fine particles in the GPF 41 is small, and can suppress a decrease in the exhaust gas purification performance when the internal combustion engine 10 is started.
  • the vehicle 1 implements a second heat retention control in which the temperature of the GPF 41 is raised by the electric heating catalyst 40 until the exhaust fine particles deposited on the GPF 41 start to burn.
  • the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
  • FIG. 6 is a flowchart showing an example of the control flow of the vehicle 1 in the first embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
  • step S1 it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S1, the process proceeds to step S2. When starting the internal combustion engine 10 in step S1, the process proceeds to step S12.
  • step S2 it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S2 to step S3. If the internal combustion engine 10 is not stopped, the current routine is terminated.
  • step S3 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S3 to step S4. If heat retention control is being implemented, this routine ends.
  • step S4 the power consumption characteristic when the first heat retention control is executed is calculated.
  • the power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
  • step S5 the power consumption characteristic when the second heat retention control is executed is calculated.
  • the power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
  • step S6 the time T1 is calculated.
  • the time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
  • step S7 the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
  • step S8 the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S.
  • the combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
  • step S9 it is determined whether or not the burning time Tp is smaller than the time T1. If the combustion time Tp is smaller than the time T1, the process proceeds to step S10, the first heat retention control is performed, and the current routine is completed. If the combustion time Tp is the time T1 or more, the process proceeds to step S11, the second heat retention control is performed, and the current routine is completed.
  • step S12 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is being implemented, the process proceeds to step S13, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
  • the heat retention control first heat retention control or second heat retention control
  • the second heat retention control when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the first embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
  • the electric heating catalyst 40 when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention.
  • the downstream catalyst 42 may be kept warm with secondary air as in the control.
  • FIG. 7 is a timing chart showing an example of the case where the second heat retention control is performed on the vehicle 1 in the first embodiment.
  • the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted.
  • the time t1 in FIG. 7 is the timing at which the internal combustion engine 10 stops while the vehicle 1 is running. At time t1 in FIG. 7, the electric heating catalyst 40 is started to be energized and the secondary air is started to be supplied.
  • the time t2 in FIG. 7 is the timing at which the combustion of the exhaust fine particles collected in the GPF 41 starts. At time t2 in FIG. 7, energization of the electric heating catalyst 40 is terminated.
  • the time t3 in FIG. 7 is the timing at which the exhaust fine particles collected in the GPF 41 are burned out.
  • energization of the electric heating catalyst 40 is started.
  • the amount of electric power supplied to the electric heating catalyst 40 is the same as the amount of electric energy supplied to the electric heating catalyst 40 in the first heat retention control.
  • the time t4 in FIG. 7 is the timing at which the internal combustion engine 10 starts (restarts). At time t4 in FIG. 7, the energization of the electric heating catalyst 40 is terminated and the supply of secondary air is terminated.
  • the period from time t1 to time t4 in FIG. 7 is a period in which the vehicle 1 is running without starting the internal combustion engine 10.
  • the characteristic lines P1 and P2 shown by the broken lines in FIG. 7 indicate the energization of the electric heating catalyst 40 and the exhaust fine particles collected by the GPF 41 between the time when the internal combustion engine 10 is stopped and the time when the internal combustion engine 10 is restarted. It shows the temperature change of the GPF 41 (characteristic line P1) and the temperature change of the downstream catalyst 42 (characteristic line P2) when it is not burned.
  • the second embodiment of the present invention will be described.
  • the vehicle 1 of the second embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above.
  • the control unit 51 of the second embodiment controls the energization of the electric heating catalyst 40 according to the battery SOC (State Of Charge), which is the charged state of the battery 8 that supplies electric power to the electric heating catalyst 40. That is, the control unit 51 of the second embodiment selects either the first heat retention control or the second heat retention control according to the state of charge of the battery 8.
  • SOC State Of Charge
  • the battery SOC is the ratio of the remaining charge to the charge capacity of the battery 8 and can be detected by the control unit 51. That is, the control unit 51 corresponds to a battery SOC detection unit capable of detecting the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40.
  • the system configuration of the internal combustion engine 10 in the second embodiment is the same as that in the first embodiment described above.
  • the battery SOC of the battery 8 is detected, and the EV travel time Ts is calculated from the detected battery SOC of the battery 8.
  • FIG. 8 is a characteristic diagram showing the correlation between the state of charge of the battery 8 and the EV running time Ts (internal combustion engine stop time). That is, FIG. 8 is a characteristic diagram showing the correlation between the battery SOC of the battery 8 and the EV travel time Ts that can be traveled by the battery SOC without starting the internal combustion engine 10. The EV travel time Ts can be calculated from the battery SOC of the battery 8.
  • control unit 51 stores a map as shown in FIG. 8 in which the battery SOC of the battery 8 and the EV travel time Ts are associated with each other.
  • control unit 51 corresponds to a travel time calculation unit that calculates the EV travel time Ts according to the battery SOC of the battery 8.
  • the EV travel time Ts is a travel time during which the vehicle 1 can be driven only by the driving force of the drive motor 5 driven under a predetermined constant condition.
  • the first heat retention control is performed. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the downstream side catalyst 42 is kept warm by using the secondary air heated by the heat of the electric heating catalyst 40.
  • the second heat retention control is performed. That is, when the battery SOC of the battery 8 is a predetermined amount or more, the electric heating catalyst 40 is energized to raise the temperature of the GPF 41 until the exhaust particles accumulated on the GPF 41 start to burn.
  • control unit 51 of the second embodiment corresponds to the second catalyst control unit that controls the energization of the electric heating catalyst 40 according to the charging state of the battery 8 that supplies electric power to the electric heating catalyst 40.
  • the vehicle 1 suppresses the amount of electric power consumed by the electric heating catalyst 40 by changing the heat retention method of the three-way catalyst while the internal combustion engine is stopped according to the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40. At the same time, it is possible to suppress a decrease in exhaust purification performance when the internal combustion engine is started.
  • the running time (EV running time Ts) with the internal combustion engine 10 stopped is relatively short. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the amount of electric power supplied to the electric heating catalyst 40 in order to keep the downstream side catalyst 42 warm with the secondary air is reduced. In that case, the vehicle 1 implements the first heat retention control in which the downstream side catalyst 42 is kept warm with the secondary air heated by the electric heating catalyst 40.
  • the temperature drop of the downstream catalyst 42 can be suppressed, and the drop in the exhaust gas purification performance when the internal combustion engine 10 is started can be suppressed.
  • the running time (EV running time Ts) with the internal combustion engine 10 stopped becomes relatively long. That is, when the battery SOC of the battery 8 becomes a predetermined amount or more, the amount of electric power supplied to the electric heating catalyst 40 in order to keep the downstream side catalyst 42 warm with the secondary air increases. In that case, the vehicle 1 implements a second heat retention control in which the temperature of the GPF 41 is raised by the electric heating catalyst 40 until the exhaust fine particles deposited on the GPF 41 start to burn.
  • the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
  • the vehicle 1 does not require the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
  • the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41, the exhaust gas at the time of starting the internal combustion engine 10 It is possible to suppress the deterioration of purification performance.
  • FIG. 9 is a flowchart showing an example of the control flow of the vehicle 1 in the second embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
  • step S21 it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S21, the process proceeds to step S22. When starting the internal combustion engine 10 in step S21, the process proceeds to step S32.
  • step S22 it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S22 to step S23. If the internal combustion engine 10 is not stopped, the current routine is terminated.
  • step S23 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S23 to step S24. If heat retention control is being implemented, this routine ends.
  • step S24 the power consumption characteristic when the first heat retention control is executed is calculated.
  • the power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
  • step S25 the power consumption characteristic when the second heat retention control is executed is calculated.
  • the power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
  • step S26 the time T1 is calculated.
  • the time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
  • step S27 the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is detected.
  • step S28 the EV travel time Ts is calculated using the battery SOC.
  • the EV travel time Ts is a time during which the EV travel time Ts can be traveled by the battery SOC of the battery 8 without starting the internal combustion engine 10.
  • step S29 it is determined whether or not the EV travel time Ts is smaller than the time T1. If the EV travel time Ts is smaller than the time T1, the process proceeds to step S30, the first heat retention control is performed, and the current routine is completed. If the EV travel time Ts is time T1 or more, the process proceeds to step S31, the second heat retention control is performed, and the current routine is completed.
  • step S32 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented.
  • the heat retention control is performed, the process proceeds to step S33, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
  • the second heat retention control when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the second embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
  • the electric heating catalyst 40 when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention.
  • the downstream catalyst 42 may be kept warm with secondary air as in the control.
  • the third embodiment of the present invention will be described.
  • the vehicle 1 of the third embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above.
  • the control unit 51 of the third embodiment is charged according to the relationship between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40.
  • the energization of the heating catalyst 40 is controlled. That is, the control unit 51 of the third embodiment selects either the first heat retention control or the second heat retention control according to the relationship between the accumulated amount S of exhaust fine particles and the charge state of the battery 8.
  • the system configuration of the internal combustion engine 10 in the third embodiment is the same as that in the first embodiment described above.
  • the electric heating catalyst 40 is energized until the exhaust particles accumulated on the GPF 41 start to burn. The temperature of GPF 41 is raised.
  • the first heat retention control is carried out.
  • the downstream catalyst uses the secondary air heated by the heat of the electric heating catalyst 40. Keep 42 warm.
  • control unit 51 in the third embodiment has the electric heating catalyst 40 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state of the battery 8 that supplies electric power to the electric heating catalyst 40. It corresponds to the third catalyst control unit that controls energization.
  • the vehicle 1 changes the heat retention method of the three-way catalyst while the internal combustion engine is stopped according to the battery SOC of the battery 8 that supplies power to the electric heating catalyst 40 and the accumulated amount S of the exhaust fine particles collected in the GPF 41. By doing so, it is possible to suppress the deterioration of the exhaust purification performance at the time of starting the internal combustion engine while suppressing the amount of electric power consumed by the electric heating catalyst 40.
  • the vehicle 1 when the battery SOC of the battery 8 that supplies power to the electric heating catalyst 40 is larger than the predetermined amount and the accumulated amount S of the exhaust particles collected in the GPF 41 is larger than the predetermined amount, the vehicle 1 is deposited on the exhaust particle filter.
  • the temperature of the exhaust particle filter is raised by the electric heating catalyst 40 until the exhaust particles start to burn. That is, the electric heating catalyst 40 in this case is energized for the purpose of raising the temperature of the GPF 41.
  • the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
  • the heat of the electric heating catalyst 40 By keeping the downstream side catalyst 42 warm using the secondary air heated in 1), the temperature decrease of the three-way catalyst can be suppressed, and the decrease of the exhaust gas purification performance at the time of starting the internal combustion engine can be suppressed.
  • the vehicle 1 does not require the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
  • the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41, the exhaust gas at the time of starting the internal combustion engine 10 It is possible to suppress the deterioration of purification performance.
  • FIG. 10 is a flowchart showing an example of the control flow of the vehicle 1 in the third embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
  • step S41 it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S41, the process proceeds to step S42. When starting the internal combustion engine 10 in step S41, the process proceeds to step S55.
  • step S42 it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S42 to step S43. If the internal combustion engine 10 is not stopped, the current routine is terminated.
  • step S43 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S43 to step S44. If heat retention control is being implemented, this routine ends.
  • step S44 the power consumption characteristic when the first heat retention control is executed is calculated.
  • the power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
  • step S45 the power consumption characteristic when the second heat retention control is executed is calculated.
  • the power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
  • step S46 the time T1 is calculated.
  • the time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
  • step S47 the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
  • step S48 the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is detected.
  • step S49 the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S.
  • the combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
  • step S50 the EV travel time Ts is calculated using the battery SOC.
  • the EV travel time Ts is a time during which the EV travel time Ts can be traveled by the battery SOC of the battery 8 without starting the internal combustion engine 10.
  • step S51 it is determined whether or not the burning time Tp is larger than the time T1. If the burning time Tp is larger than the time T1, the process proceeds to step S52. If the combustion time Tp is less than or equal to the time T1, the process proceeds to step S54, the first heat retention control is performed, and the current routine is completed.
  • step S52 it is determined whether or not the EV travel time Ts is larger than the time T1. If the EV travel time Ts is larger than the time T1, the process proceeds to step S53, the second heat retention control is performed, and the current routine is completed. If the EV travel time Ts is less than or equal to the time T1, the process proceeds to step S54, the first heat retention control is performed, and the current routine is completed.
  • step S55 it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented.
  • the process proceeds to step S56, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
  • the second heat retention control when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the third embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
  • the electric heating catalyst 40 when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention.
  • the downstream catalyst 42 may be kept warm with secondary air as in the control.
  • the fourth embodiment of the present invention will be described.
  • the vehicle 1 of the fourth embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above.
  • the vehicle 1 in the fourth embodiment includes a second electric heating catalyst 43. That is, as shown in FIG. 11, the underfloor catalyst 33 in the fourth embodiment includes a second electric heating catalyst (second EHC) 43 between the GPF 41 and the downstream catalyst 42.
  • second EHC second electric heating catalyst
  • the second electric heating catalyst 43 is a catalyst that generates heat when energized.
  • the energization of the second electric heating catalyst 43 is controlled by the control unit 51.
  • the power supply source of the power supplied to the second electric heating catalyst 43 is, for example, the battery 8 that supplies power to the drive motor 5.
  • the power supply source of the electric power supplied to the second electric heating catalyst 43 may be a battery different from the battery 8 that supplies the electric power to the drive motor 5.
  • the control unit 51 of the fourth embodiment controls the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41.
  • control unit 51 in the fourth embodiment selects either the third heat retention control or the fourth heat retention control according to the accumulated amount S of the exhaust fine particles.
  • the third heat retention control continues until the stopped internal combustion engine 10 restarts.
  • the fourth heat retention control continues until the stopped internal combustion engine 10 restarts or the combustion of the exhaust fine particles accumulated on the GPF 41 is completed.
  • the downstream side catalyst 42 is kept warm with the secondary air heated by the heat of the second electric heating catalyst 43.
  • the power consumption (integrated value) increases as the elapsed time from the start of the control increases.
  • the amount of electric energy per unit time supplied to the second electric heating catalyst 43 during the third heat retention control is such that the downstream side catalyst 42 can be kept warm by the secondary air heated when passing through the second electric heating catalyst 43. Is set to. In the third heat retention control, the electric heating catalyst 40 located on the upstream side of the GPF 41 is not energized.
  • the electric heating catalyst 40 is energized until the exhaust fine particles deposited on the GPF 41 start to burn to raise the temperature of the GPF 41, and the downstream catalyst 42 is kept warm by the heat generated by the combustion of the exhaust fine particles.
  • the second electric heating catalyst 43 located on the downstream side of the GPF 41 is not energized.
  • the fourth heat retention control temporarily supplies a larger electric power to the electric heating catalyst 40 than the third heat retention control, and then does not supply the electric power to the electric heating catalyst 40. Therefore, the elapsed time from the start of the control Regardless, the power consumption (integrated value) is constant.
  • the amount of electric energy per unit time temporarily supplied to the electric heating catalyst 40 at the start of the fourth heat retention control is larger than the amount of electric energy per unit time supplied to the electric heating catalyst 40 at the time of the third heat retention control.
  • the temperature of the GPF 41 is set to rise to a temperature at which the fine particles (deposited on the GPF 41) begin to burn.
  • the relationship between the power consumption when the third heat retention control is carried out and the power consumption when the fourth heat retention control is carried out is similar to that of FIG. 4 described above.
  • the characteristic line showing the change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is performed is a linear straight line in which the integrated value of the power consumption increases as the control time becomes longer.
  • the characteristic line indicating the change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is performed rises in a step shape (step shape) at the start of the control, and becomes constant regardless of the control time thereafter.
  • the characteristic line showing the change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is performed, and the change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is performed.
  • the magnitude relationship between the power consumption in the third heat retention control and the power consumption in the fourth heat retention control is reversed with respect to the condition when the characteristic line indicating the above intersects.
  • the elapsed time from the start of the third and fourth heat retention controls to the intersection of these characteristic lines is defined as the time T2.
  • the power consumption can be reduced by performing the third heat retention control.
  • the power consumption can be reduced by performing the fourth heat retention control.
  • the accumulated amount S of the exhaust particles collected in the GPF 41 is calculated, and the combustion of the exhaust particles is calculated from the calculated accumulated amount S of the exhaust particles. Calculate the time Tp.
  • the third heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is less than a predetermined amount, the downstream catalyst 42 is kept warm by using the secondary air heated by the heat of the second electric heating catalyst 43.
  • the fourth heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is equal to or more than a predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated in the GPF 41 start to burn to raise the temperature of the GPF 41.
  • control unit 51 of the fourth embodiment corresponds to the fourth catalyst control unit that controls the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. To do.
  • the amount of electric energy supplied to the second electric heating catalyst 43 during the third heat retention control is supplied to the electric heating catalyst 40 during the first heat retention control described above. It will be less than the amount of electricity per unit time. This is because in the first heat retention control, the heat of the secondary air is taken away by the GPF 41 located between the electric heating catalyst 40 and the downstream catalyst 42.
  • the vehicle 1 of the fourth embodiment when the accumulated amount S of the exhaust fine particles collected in the GPF 41 is less than the predetermined amount, the vehicle 1 of the fourth embodiment keeps the downstream catalyst 42 warm with a smaller electric energy than the above-mentioned first embodiment. can do.
  • FIG. 12 is a flowchart showing an example of the control flow of the vehicle 1 in the fourth embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
  • step S61 it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S61, the process proceeds to step S62. When starting the internal combustion engine 10 in step S61, the process proceeds to step S72.
  • step S62 it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S62 to step S63. If the internal combustion engine 10 is not stopped, the current routine is terminated.
  • step S63 it is determined whether or not the heat retention control (third heat retention control or fourth heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S63 to step S64. If heat retention control is being implemented, this routine ends.
  • step S64 the power consumption characteristic when the third heat retention control is executed is calculated.
  • the power consumption characteristic when the third heat retention control is carried out is synonymous with a characteristic line showing a change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is carried out.
  • step S65 the power consumption characteristic when the fourth heat retention control is executed is calculated.
  • the power consumption characteristic when the fourth heat retention control is carried out is synonymous with a characteristic line showing a change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is carried out.
  • step S66 the time T2 is calculated.
  • the time T2 is the elapsed time from the start of the third and fourth heat retention controls to the intersection of these characteristic lines.
  • step S67 the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
  • step S68 the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S.
  • the combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
  • step S69 it is determined whether or not the burning time Tp is smaller than the time T2. If the combustion time Tp is smaller than the time T2, the process proceeds to step S70, the third heat retention control is performed, and the current routine is completed. If the combustion time Tp is time T2 or more, the process proceeds to step S71, the fourth heat retention control is performed, and the current routine is completed.
  • step S72 it is determined whether or not the heat retention control (third heat retention control or fourth heat retention control) is being implemented. If the heat retention control is being implemented, the process proceeds to step S73, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
  • the fourth heat retention control when all the exhaust fine particles collected in the GPF 41 are completely burned while the fourth heat retention control is being carried out, the fourth heat retention control is terminated. That is, in the fourth embodiment, when the fourth heat retention control is started while the internal combustion engine 10 is stopped, the fourth heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
  • the second electric heating catalyst 43 when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the fourth heat retention control, the second electric heating catalyst 43 is energized until the internal combustion engine 10 is restarted. 3
  • the downstream catalyst 42 may be kept warm with secondary air as in the heat retention control.
  • FIG. 13 is a timing chart showing an example of the case where the fourth heat retention control is performed on the vehicle 1 in the fourth embodiment.
  • the second electric heating catalyst 43 is energized until the internal combustion engine 10 is restarted.
  • the time t1 in FIG. 13 is the timing at which the internal combustion engine 10 stops while the vehicle 1 is traveling. At time t1 in FIG. 13, the electric heating catalyst 40 is started to be energized and the secondary air is started to be supplied.
  • the time t2 in FIG. 13 is the timing at which the combustion of the exhaust fine particles collected in the GPF 41 starts. At time t2 in FIG. 13, the energization of the electric heating catalyst 40 is terminated.
  • the time t3 in FIG. 13 is the timing at which the exhaust fine particles collected in the GPF 41 are burned out.
  • energization of the second electric heating catalyst 43 is started.
  • the amount of electric power supplied to the second electric heating catalyst 43 is the same as the amount of electric energy supplied to the second electric heating catalyst 43 in the third heat retention control.
  • the time t4 in FIG. 13 is the timing at which the internal combustion engine 10 starts (restarts). At time t4 in FIG. 13, the energization of the second electric heating catalyst 43 is terminated, and the supply of secondary air is terminated.
  • the period from time t1 to time t4 in FIG. 13 is a period in which the vehicle 1 is running without starting the internal combustion engine 10.
  • the characteristic lines P3 and P4 shown by the broken lines in FIG. 13 indicate the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 and the GPF 41 between the time when the internal combustion engine 10 is stopped and the time when the internal combustion engine 10 is restarted.
  • the temperature change of the GPF 41 (characteristic line P3) and the temperature change of the downstream catalyst 42 (characteristic line P4) when the collected exhaust fine particles are not burned are shown.
  • the internal combustion engine 10 was a gasoline engine in each of the above-described embodiments, but may be a diesel engine.
  • a DPF Diesel Particulate Filter
  • GPF 41 the exhaust particulate filter
  • the internal combustion engine 10 is mounted on the series hybrid vehicle, but the present invention is not limited to the application to the series hybrid vehicle, and the drive source is only the parallel hybrid vehicle or the internal combustion engine. It is also applicable to vehicles (non-hybrid vehicles). More specifically, the present invention is applicable to a vehicle having a control to stop an internal combustion engine by a coast stop, a sailing stop, or the like while traveling.
  • control unit 51 of the fourth embodiment is charged according to the charging state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40 instead of the accumulated amount S of the exhaust fine particles collected in the GPF 41.
  • the energization of the heating catalyst 40 may be controlled.
  • the control unit 51 performs the third heat retention control when the EV travel time Ts corresponding to the battery SOC of the battery 8 is shorter than the time T2. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the downstream side catalyst 42 is kept warm by using the secondary air heated by the heat of the second electric heating catalyst 43. Then, when the EV travel time Ts corresponding to the battery SOC of the battery 8 is a length of time T2 or more, the control unit 51 performs the fourth heat retention control. That is, when the battery SOC of the battery 8 is a predetermined amount or more, the electric heating catalyst 40 is energized to raise the temperature of the GPF 41 until the exhaust particles accumulated on the GPF 41 start to burn.
  • control unit 51 of the fourth embodiment corresponds to the relationship between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40.
  • the energization of the electric heating catalyst 40 may be controlled.
  • the control unit 51 has an EV travel time Ts corresponding to the battery SOC of the battery 8 longer than the time T2, and a combustion time Tp corresponding to the accumulated amount S of exhaust fine particles collected in the GPF 41 is longer than the time T2. If it is too long, the fourth heat retention control is carried out. That is, when the battery SOC of the battery 8 is larger than the predetermined amount and the accumulated amount S of the exhaust particles is larger than the predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated on the GPF 41 start to burn. The temperature of GPF 41 is raised.
  • the control unit 51 has a length in which the EV travel time Ts corresponding to the battery SOC of the battery 8 is time T2 or less, or a combustion time Tp corresponding to the accumulated amount S of exhaust particles collected in the GPF 41 is time T2 or less.
  • the third heat retention control is carried out. That is, when the battery SOC of the battery 8 is a predetermined amount or less, or when the accumulated amount S of the exhaust fine particles is a predetermined amount or less, the secondary air heated by the heat of the second electric heating catalyst 43 is used downstream. The side catalyst 42 is kept warm.
  • the amount of secondary air supplied to the exhaust particulate filter such as GPF41 is smaller than the amount of air flowing during so-called fuel cutting or motoring, for example.
  • Each of the above-described embodiments relates to a vehicle control method and a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

An under-floor catalyst (33) comprises an electrically heated catalyst (40), a GPF (41) positioned downstream from the electrically heated catalyst (40), and a downstream catalyst (42) positioned downstream from the GPF (41). When an internal combustion engine (10) stops during travel a vehicle (1) energizes the electrically heated catalyst (40), thereby warming the downstream catalyst (42). Thus, the vehicle (1) does not require energy for rotating the internal combustion engine (10) in order to regenerate the GPF (41). In other words, the vehicle (1) is able to regenerate the GPF (41) while reducing the energy consumption of the internal combustion engine (10).

Description

車両の制御方法及び車両Vehicle control method and vehicle
 本発明は、車両の制御方法及び車両に関する。 The present invention relates to a vehicle control method and a vehicle.
 例えば、特許文献1には、内燃機関及びモータの動力を車輪(駆動輪)に伝達可能なハイブリッド車両において、内燃機関の排気通路に設けた触媒を再生する技術が開示されている。特許文献1の触媒は、排気中の粒子状物質を捕集するものである。 For example, Patent Document 1 discloses a technique for regenerating a catalyst provided in an exhaust passage of an internal combustion engine in a hybrid vehicle capable of transmitting the power of an internal combustion engine and a motor to wheels (driving wheels). The catalyst of Patent Document 1 collects particulate matter in exhaust gas.
 しかしながら、この特許文献1では、触媒に捕集した粒子状物質を燃焼させて当該触媒を再生する際に、モータリング運転等を行って内燃機関を回転させて当該触媒に酸素を供給している。そのため、特許文献1においては、触媒を再生するにあたって、内燃機関を回転させるためのエネルギーが必要になる。 However, in Patent Document 1, when the particulate matter collected in the catalyst is burned to regenerate the catalyst, an internal combustion engine is rotated by a motoring operation or the like to supply oxygen to the catalyst. .. Therefore, in Patent Document 1, energy for rotating the internal combustion engine is required to regenerate the catalyst.
 つまり、排気中の粒子状物質を捕集する触媒を走行中に再生する場合には、更なる改善の余地がある。 In other words, there is room for further improvement when the catalyst that collects particulate matter in the exhaust is regenerated during traveling.
特開2010−125906号公報Japanese Unexamined Patent Publication No. 2010-12596
 本発明は、内燃機関と、当該内燃機関の排気通路に設けられた排気浄化装置と、を有している。上記排気浄化装置は、通電することによって発熱する電気加熱触媒と、当該電気加熱触媒の下流側に位置して排気中の排気微粒子を捕集可能な排気微粒子フィルタと、当該排気微粒子フィルタの下流側に位置する三元触媒と、を備えている。上記排気浄化装置は、走行中で上記内燃機関が停止している際に、上記電気加熱触媒に通電することで上記三元触媒を保温する。 The present invention has an internal combustion engine and an exhaust purification device provided in an exhaust passage of the internal combustion engine. The exhaust gas purification device includes an electric heating catalyst that generates heat when energized, an exhaust fine particle filter that is located on the downstream side of the electric heating catalyst and can collect exhaust fine particles in the exhaust, and a downstream side of the exhaust fine particle filter. It is equipped with a three-way catalyst located in. The exhaust gas purification device keeps the three-way catalyst warm by energizing the electric heating catalyst while the internal combustion engine is stopped while traveling.
 これによって、上記車両は、上記排気微粒子フィルタの再生のために上記内燃機関を回転させるエネルギーを必要としない。つまり、上記車両は、上記内燃機関のエネルギー消費を抑制しつつ上記排気微粒子フィルタの再生を行うことができる。 As a result, the vehicle does not require the energy to rotate the internal combustion engine for regeneration of the exhaust particulate filter. That is, the vehicle can regenerate the exhaust particulate filter while suppressing the energy consumption of the internal combustion engine.
 また、上記車両は、上記排気微粒子フィルタの温度によらず、上記排気微粒子フィルタに堆積した排気微粒子の燃焼を利用して上記三元触媒を保温することができる。 Further, the vehicle can keep the three-way catalyst warm by utilizing the combustion of the exhaust particulates deposited on the exhaust particulate filter regardless of the temperature of the exhaust particulate filter.
本発明が適用されるハ車両の駆動システムの概略を模式的に示した説明図。C. An explanatory diagram schematically showing an outline of a vehicle drive system to which the present invention is applied. 本発明が適用される車両に搭載される内燃機関のシステム構成の概略を模式的に示した説明図。An explanatory view schematically showing an outline of a system configuration of an internal combustion engine mounted on a vehicle to which the present invention is applied. 排気浄化装置としての床下触媒の概略構成を模式的に示した説明図。An explanatory view schematically showing a schematic configuration of an underfloor catalyst as an exhaust gas purification device. 第1保温制御を実施した場合の消費電力の積算値変化と、第2保温制御を実施した場合の消費電力の積算値の変化と、を示した説明図。Explanatory drawing which showed the change of the integrated value of the power consumption when the 1st heat retention control was carried out, and the change of the integrated value of the power consumption when the 2nd heat retention control was carried out. 排気微粒子の堆積量Sとその燃焼時間Tpの相関を示す特性図。The characteristic figure which shows the correlation between the accumulation amount S of exhaust fine particles and the combustion time Tp. 第1実施例における車両の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the vehicle in 1st Example. 第1実施例における車両で第2保温制御を実施した場合のタイミングチャート。The timing chart when the second heat retention control was carried out in the vehicle in 1st Example. バッテリ充電状態とEV走行時間Tsの相関を示す特性図。The characteristic figure which shows the correlation of the battery charge state and the EV running time Ts. 第2実施例における車両の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the vehicle in 2nd Example. 第3実施例における車両の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the vehicle in 3rd Example. 第4実施例における床下触媒の概略構成を模式的に示した説明図。The explanatory view which schematically showed the schematic structure of the underfloor catalyst in 4th Example. 第4実施例における車両の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the vehicle in 4th Example. 第4実施例における車両で第4保温制御を実施した場合のタイミングチャート。The timing chart when the 4th heat retention control was carried out in the vehicle in 4th Example.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が適用される車両1の駆動システムの概略を模式的に示した説明図である。図2は、本発明が適用される車両1に搭載される内燃機関10のシステム構成の概略を模式的に示した説明図である。 FIG. 1 is an explanatory diagram schematically showing an outline of a drive system of a vehicle 1 to which the present invention is applied. FIG. 2 is an explanatory diagram schematically showing an outline of a system configuration of an internal combustion engine 10 mounted on a vehicle 1 to which the present invention is applied.
 車両1は、例えばハイブリッド車両であって、駆動輪2を駆動する駆動ユニット3と、駆動輪2を駆動するための電力を発電する発電ユニット4と、を有している。 The vehicle 1 is, for example, a hybrid vehicle, and has a drive unit 3 for driving the drive wheels 2 and a power generation unit 4 for generating electric power for driving the drive wheels 2.
 駆動ユニット3は、駆動輪2を回転駆動する電動機としての駆動用モータ5と、駆動用モータ5の駆動力を駆動輪2に伝達する第1ギヤトレーン6及びディファレンシャルギヤ7と、を有している。駆動用モータ5には、発電ユニット4で発電された電力等が充電された図示外のバッテリ8から電力が供給される。 The drive unit 3 has a drive motor 5 as an electric motor that rotationally drives the drive wheels 2, and a first gear train 6 and a differential gear 7 that transmit the driving force of the drive motor 5 to the drive wheels 2. .. Power is supplied to the drive motor 5 from a battery 8 (not shown) charged with the power generated by the power generation unit 4.
 発電ユニット4は、駆動用モータ5に供給する電力を発電する発電機9と、発電機9を駆動する内燃機関10と、内燃機関10の回転を発電機9に伝達する第2ギヤトレーン11と、を有している。 The power generation unit 4 includes a generator 9 that generates electric power to be supplied to the drive motor 5, an internal combustion engine 10 that drives the generator 9, and a second gear train 11 that transmits the rotation of the internal combustion engine 10 to the generator 9. have.
 本実施例の車両1は、内燃機関10を動力としては使用しないいわゆるシリーズハイブリッド車両である。すなわち、本実施例の車両1は、内燃機関10が発電専用であり、駆動用モータ5が駆動輪2を駆動して走行する。本実施例の車両1は、例えば、バッテリ8のバッテリ残量(充電残量)が少なくなると、バッテリ8を充電するために内燃機関10を駆動して発電機9で発電する。 The vehicle 1 of this embodiment is a so-called series hybrid vehicle that does not use the internal combustion engine 10 as power. That is, in the vehicle 1 of this embodiment, the internal combustion engine 10 is dedicated to power generation, and the drive motor 5 drives the drive wheels 2 to travel. In the vehicle 1 of the present embodiment, for example, when the remaining battery level (remaining charge) of the battery 8 becomes low, the internal combustion engine 10 is driven to charge the battery 8 and the generator 9 generates electricity.
 駆動用モータ5は、車両1の直接的な駆動源であり、例えばバッテリ8からの交流電力により駆動する。駆動用モータ5は、例えば、ロータに永久磁石を用いた同期型モータからなっている。 The drive motor 5 is a direct drive source for the vehicle 1, and is driven by, for example, AC power from the battery 8. The drive motor 5 includes, for example, a synchronous motor using a permanent magnet in the rotor.
 また、駆動用モータ5は、車両1の減速時に発電機として機能する。すなわち、駆動用モータ5は、車両減速時の回生エネルギーを電力としてバッテリ8に充電可能な発電電動機である。 Further, the drive motor 5 functions as a generator when the vehicle 1 is decelerated. That is, the drive motor 5 is a generator motor that can charge the battery 8 using the regenerative energy during vehicle deceleration as electric power.
 第1ギヤトレーン6は、駆動用モータ5の回転を減速し、モータトルクを増大して走行駆動トルクを確保するものである。 The first gear train 6 decelerates the rotation of the drive motor 5 and increases the motor torque to secure the running drive torque.
 第1ギヤトレーン6は、例えば2段減速によるギヤトレーンであり、駆動ユニット第1ギヤ13を備えたモータ軸14と、駆動ユニット第2ギヤ15及び駆動ユニット第3ギヤ16を備えた第1アイドラー軸17と、を有している。モータ軸14は、駆動用モータ5の回転軸である。 The first gear train 6 is, for example, a gear train by two-stage deceleration, and is a motor shaft 14 having a drive unit first gear 13, and a first idler shaft 17 having a drive unit second gear 15 and a drive unit third gear 16. And have. The motor shaft 14 is a rotation shaft of the drive motor 5.
 駆動ユニット第1ギヤ13は、駆動ユニット第2ギヤ15と噛み合わされている。 The drive unit first gear 13 is meshed with the drive unit second gear 15.
 駆動ユニット第3ギヤ16は、ディファレンシャルギヤ7の入力側に設けられた入力側ギヤ18と噛み合わされている。 The third gear 16 of the drive unit is meshed with the input side gear 18 provided on the input side of the differential gear 7.
 ディファレンシャルギヤ7は、第1ギヤトレーン6から入力側ギヤ18を介して入力された駆動トルクを、左右のドライブシャフト19、19を介して左右の駆動輪2、2に伝達する。ディファレンシャルギヤ7は、左右の駆動輪2、2の回転数差を許容しつつ、左右の駆動輪2、2に同じ駆動トルクを伝達することができる。 The differential gear 7 transmits the drive torque input from the first gear train 6 via the input side gear 18 to the left and right drive wheels 2 and 2 via the left and right drive shafts 19 and 19. The differential gear 7 can transmit the same drive torque to the left and right drive wheels 2 and 2 while allowing a difference in the number of rotations of the left and right drive wheels 2 and 2.
 発電機9は、例えば、ロータに永久磁石を用いた同期型モータからなっている。発電機9は、内燃機関10に発生した回転エネルギーを電気エネルギーに変換し、例えばバッテリ8を充電する。また、発電機9は、内燃機関10を駆動する電動機としての機能も有しており、内燃機関10の始動時にスタータモータとして機能する。つまり、発電機9は、発電電動機であり、発電した電力をバッテリ8に供給可能で、かつバッテリ8からの電力により回転駆動可能である。 The generator 9 is composed of, for example, a synchronous motor using a permanent magnet in the rotor. The generator 9 converts the rotational energy generated in the internal combustion engine 10 into electrical energy, and charges, for example, the battery 8. The generator 9 also has a function as an electric motor for driving the internal combustion engine 10, and functions as a starter motor when the internal combustion engine 10 is started. That is, the generator 9 is a generator motor, can supply the generated electric power to the battery 8, and can be rotationally driven by the electric power from the battery 8.
 なお、発電機9で発電した電力は、運転状態に応じて、例えばバッテリ8に充電するのではなく駆動用モータ5に直接供給するようにしてよい。また、内燃機関10は、例えば、発電機9とは異なる専用のスタータモータにより始動するようにしてもよい。 Note that the electric power generated by the generator 9 may be directly supplied to the drive motor 5 instead of charging the battery 8, for example, depending on the operating state. Further, the internal combustion engine 10 may be started by, for example, a dedicated starter motor different from the generator 9.
 第2ギヤトレーン11は、内燃機関10と発電機9とを連結するギヤトレーンである。第2ギヤトレーン11は、発電ユニット第1ギヤ23を備えたエンジン軸24と、発電ユニット第2ギヤ25を備えた第2アイドラー軸26と、発電ユニット第3ギヤ27を備えた発電機入力軸28と、を有している。 The second gear train 11 is a gear train that connects the internal combustion engine 10 and the generator 9. The second gear train 11 includes an engine shaft 24 having a power generation unit first gear 23, a second idler shaft 26 having a power generation unit second gear 25, and a generator input shaft 28 having a power generation unit third gear 27. And have.
 第2ギヤトレーン11は、発電運転時には、内燃機関10の回転数を増速して発電機9に必要なエンジントルクを伝達する。第2ギヤトレーン11は、発電機9がスタータとして機能するときには、発電機9の回転数を減速して内燃機関10に必要なモータトルクを伝達する。 The second gear train 11 speeds up the rotation speed of the internal combustion engine 10 during power generation operation to transmit the engine torque required for the generator 9. When the generator 9 functions as a starter, the second gear train 11 decelerates the rotation speed of the generator 9 and transmits the motor torque required for the internal combustion engine 10.
 エンジン軸24は、内燃機関10のクランクシャフト(図示せず)と同期回転する。発電機入力軸28は、発電機9のロータ(図示せず)と同期回転する。 The engine shaft 24 rotates synchronously with the crankshaft (not shown) of the internal combustion engine 10. The generator input shaft 28 rotates synchronously with the rotor (not shown) of the generator 9.
 発電ユニット第1ギヤ23は、発電ユニット第2ギヤ25と噛み合わされている。発電ユニット第3ギヤ27は、発電ユニット第2ギヤ25と噛み合わされている。つまり、発電ユニット第2ギヤ25には、発電ユニット第1ギヤ23及び発電ユニット第3ギヤ27が噛み合わされている。 The first gear 23 of the power generation unit is meshed with the second gear 25 of the power generation unit. The third gear 27 of the power generation unit is meshed with the second gear 25 of the power generation unit. That is, the power generation unit first gear 23 and the power generation unit third gear 27 are meshed with the power generation unit second gear 25.
 内燃機関10は、例えば、車両1のフロント側に位置するエンジンルーム内に配置されるガソリンエンジンである。 The internal combustion engine 10 is, for example, a gasoline engine arranged in an engine room located on the front side of the vehicle 1.
 図2に示すように、内燃機関10の排気通路31には、マニホールド触媒32と床下触媒33が設けられている。 As shown in FIG. 2, a manifold catalyst 32 and an underfloor catalyst 33 are provided in the exhaust passage 31 of the internal combustion engine 10.
 また、排気通路31には、エアポンプ34から送り出された二次空気(酸素)を供給する二次空気導入通路35が接続されている。二次空気導入通路35は、床下触媒33の入り口で、排気通路31に接続されている。すなわち、二次空気導入通路35は、マニホールド触媒32の下流側となり床下触媒33よりも上流側の位置で、排気通路31に接続されている。 Further, the exhaust passage 31 is connected to the secondary air introduction passage 35 that supplies the secondary air (oxygen) sent out from the air pump 34. The secondary air introduction passage 35 is the entrance of the underfloor catalyst 33 and is connected to the exhaust passage 31. That is, the secondary air introduction passage 35 is connected to the exhaust passage 31 at a position downstream of the manifold catalyst 32 and upstream of the underfloor catalyst 33.
 エアポンプ34及び二次空気導入通路35は、後述するEHC40の入口に酸素を供給することが可能な酸素供給部に相当する。つまり、二次空気は、後述するEHC40の上流側に供給可能となっている。 The air pump 34 and the secondary air introduction passage 35 correspond to an oxygen supply unit capable of supplying oxygen to the inlet of the EHC 40 described later. That is, the secondary air can be supplied to the upstream side of the EHC 40 described later.
 マニホールド触媒32は、エンジンルーム内に配置され、内燃機関10に近接している。マニホールド触媒32は、例えば、三元触媒からなっている。 The manifold catalyst 32 is arranged in the engine room and is close to the internal combustion engine 10. The manifold catalyst 32 is composed of, for example, a three-way catalyst.
 三元触媒は、内燃機関10から排出された排気を浄化するものであり、空気過剰率が略「1」のとき、すなわち排気空燃比が略理論空燃比となるときに、流入する排気中のHC、CO、NOxの三成分の浄化率が揃って高くなるものである。 The three-way catalyst purifies the exhaust gas discharged from the internal combustion engine 10, and when the excess air ratio is approximately "1", that is, when the exhaust air-fuel ratio is approximately the theoretical air-fuel ratio, the inflowing exhaust gas is used. The purification rates of the three components HC, CO, and NOx are all increased.
 床下触媒33は、排気浄化装置に相当するものであって、マニホールド触媒32よりも下流側に位置し、例えば車両1のエンジンルームから比較的離れた車両1の床下等の位置に設けられている。床下触媒33は、マニホールド触媒32に比べて容量が大きくなっている。 The underfloor catalyst 33 corresponds to an exhaust gas purification device, and is located on the downstream side of the manifold catalyst 32, for example, at a position such as under the floor of the vehicle 1 relatively far from the engine room of the vehicle 1. .. The underfloor catalyst 33 has a larger capacity than the manifold catalyst 32.
 ここで、床下触媒33は、図3に示すように、通電することによって発熱する電気加熱触媒(EHC)40と、排気微粒子フィルタ(パティキュレートフィルタ)としてのGPF(Gasoline Particulate Filter)41と、三元触媒からなる下流側触媒42と、が直列に連結されたものである。電気加熱触媒40は、GPF41の上流側に位置している。GPF41は、下流側触媒42の上流側に位置している。 Here, as shown in FIG. 3, the underfloor catalyst 33 includes an electric heating catalyst (EHC) 40 that generates heat when energized, a GPF (Gasoline Particulate Filter) 41 as an exhaust particulate filter (particulate filter), and three. The downstream catalyst 42 made of the original catalyst is connected in series. The electric heating catalyst 40 is located on the upstream side of the GPF 41. The GPF 41 is located on the upstream side of the downstream catalyst 42.
 電気加熱触媒40は、通電することによって発熱する触媒である。電気加熱触媒40への通電は、コントロールユニット51によって制御されている。電気加熱触媒40に供給される電力の供給源は、例えば駆動用モータ5に電力を供給するバッテリ8である。なお、電気加熱触媒40に供給される電力の供給源は、駆動用モータ5に電力を供給するバッテリ8とは異なるバッテリであってもよい。 The electric heating catalyst 40 is a catalyst that generates heat when energized. The energization of the electric heating catalyst 40 is controlled by the control unit 51. The source of electric power supplied to the electric heating catalyst 40 is, for example, a battery 8 that supplies electric power to the drive motor 5. The power supply source of the electric power supplied to the electric heating catalyst 40 may be a battery different from the battery 8 that supplies the electric power to the drive motor 5.
 GPF41は、内燃機関10から排出された排気中の排気微粒子(Particulate Matter)であるPMを捕集するものである。 The GPF 41 collects PM, which is exhaust fine particles (Particulate Matter) in the exhaust gas discharged from the internal combustion engine 10.
 GPF41としては、例えば、コーディエライト等のフィルタ材料にハニカム状の多数の微細な通路を形成するとともに、その端部を交互に閉塞してなるウォールフローハニカム構造(いわゆる目封じ型)のフィルタが用いられる。なお、GPF41は、三元触媒と同種の触媒を担持するようにして、三元触媒の機能を合わせ持つようにしてもよい。 As the GPF 41, for example, a filter having a wall flow honeycomb structure (so-called sealing type) in which a large number of honeycomb-shaped fine passages are formed in a filter material such as cordierite and the ends thereof are alternately closed. Used. The GPF 41 may support a catalyst of the same type as the three-way catalyst so as to have the function of the three-way catalyst.
 床下触媒33には、GPF41の温度を検出するGPF温度センサ52、GPF41の前後差圧を検出するGPF差圧センサ53が設けられている。GPF温度センサ52及びGPF差圧センサ53の検出信号は、コントロールユニット51に入力されている。GPF温度センサ52は、排気微粒子フィルタ温度検出部に相当する。 The underfloor catalyst 33 is provided with a GPF temperature sensor 52 that detects the temperature of the GPF 41 and a GPF differential pressure sensor 53 that detects the front-rear differential pressure of the GPF 41. The detection signals of the GPF temperature sensor 52 and the GPF differential pressure sensor 53 are input to the control unit 51. The GPF temperature sensor 52 corresponds to the exhaust particulate filter temperature detection unit.
 コントロールユニット51は、CPU、ROM、RAM及び入出力インターフェースを備えた周知のデジタルコンピュータである。 The control unit 51 is a well-known digital computer equipped with a CPU, ROM, RAM, and an input / output interface.
 コントロールユニット51には、吸入空気量を検出するエアフローメータ54、クランクシャフトのクランク角を検出するクランク角センサ55、アクセルペダルの踏込量を検出するアクセル開度センサ56、二次空気の温度を検出する二次空気温度センサ57と、車速を検出する車速センサ58等の各種センサ類の検出信号が入力されている。 The control unit 51 includes an air flow meter 54 that detects the amount of intake air, a crank angle sensor 55 that detects the crank angle of the crankshaft, an accelerator opening sensor 56 that detects the amount of depression of the accelerator pedal, and a temperature of secondary air. The detection signals of the secondary air temperature sensor 57 and various sensors such as the vehicle speed sensor 58 that detects the vehicle speed are input.
 クランク角センサ55は、内燃機関10の機関回転数を検出可能なものである。 The crank angle sensor 55 can detect the engine speed of the internal combustion engine 10.
 コントロールユニット51は、アクセル開度センサ56の検出値を用いて、内燃機関10の要求負荷(内燃機関10の負荷)を算出する。 The control unit 51 calculates the required load of the internal combustion engine 10 (load of the internal combustion engine 10) by using the detected value of the accelerator opening sensor 56.
 コントロールユニット51は、各種センサ類の検出信号に基づいて、内燃機関10を制御している。また、コントロールユニット51は、エアポンプ34の駆動を制御してGPF41に供給される二次空気の供給量を制御する。 The control unit 51 controls the internal combustion engine 10 based on the detection signals of various sensors. Further, the control unit 51 controls the drive of the air pump 34 to control the amount of secondary air supplied to the GPF 41.
 内燃機関10は、車両1の走行中にバッテリ8のバッテリ残量(充電残量)が多ければ停止している。つまり、床下触媒33は、走行中に内燃機関10が停止する機能を持った車両1に搭載されている。 The internal combustion engine 10 is stopped if the remaining battery level (remaining charge) of the battery 8 is high while the vehicle 1 is running. That is, the underfloor catalyst 33 is mounted on the vehicle 1 having a function of stopping the internal combustion engine 10 during traveling.
 GPF41に捕集された排気微粒子は、燃焼させることで除去できる。コントロールユニット51は、走行中で内燃機関10が停止している際に、排気微粒子がGPF41に堆積している場合、エアポンプ34を駆動して二次空気を電気加熱触媒40の上流側に供給し、電気加熱触媒40に通電する。電気加熱触媒40に供給される二次空気の供給量は、少なくともGPF41に堆積した排気微粒子が酸化反応(燃焼反応)を起こすように設定されている。 Exhaust particles collected in GPF41 can be removed by burning. When the internal combustion engine 10 is stopped during traveling, the control unit 51 drives the air pump 34 to supply secondary air to the upstream side of the electric heating catalyst 40 when exhaust fine particles are accumulated on the GPF 41. , The electric heating catalyst 40 is energized. The amount of secondary air supplied to the electric heating catalyst 40 is set so that at least the exhaust particles deposited on the GPF 41 cause an oxidation reaction (combustion reaction).
 つまり、コントロールユニット51は、走行中で内燃機関10が停止している際に、排気微粒子がGPF41に堆積している場合には、電気加熱触媒40に通電することでGPF41に堆積している排気微粒子を燃焼させ、排気微粒子を燃焼させた熱で下流側触媒42を保温する制御部に相当する。 That is, when the internal combustion engine 10 is stopped while the control unit 51 is running, if exhaust particles are accumulated on the GPF 41, the exhaust particles accumulated on the GPF 41 are accumulated by energizing the electric heating catalyst 40. It corresponds to a control unit that burns the fine particles and keeps the downstream catalyst 42 warm with the heat of burning the exhaust fine particles.
 これによって、車両1は、GPF41に堆積している排気微粒子が燃焼し、排気微粒子を燃焼させた熱で下流側触媒42を保温できる。換言すれば、車両1は、内燃機関10を回転させることなく、内燃機関10を停止した状態でGPF41を再生させることができる。つまり、車両1は、GPF41の再生のために内燃機関10を回転させるエネルギーを必要としない。そのため、車両1は、内燃機関10のエネルギー消費を抑制しつつGPF41の再生を行うことができる。 As a result, in the vehicle 1, the exhaust fine particles deposited on the GPF 41 are burned, and the heat generated by burning the exhaust fine particles can keep the downstream catalyst 42 warm. In other words, the vehicle 1 can regenerate the GPF 41 with the internal combustion engine 10 stopped without rotating the internal combustion engine 10. That is, the vehicle 1 does not need the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
 また、車両1は、GPF41の再生を行う際に内燃機関10を回転させる必要がないので、内燃機関10の回転に伴いオイル(潤滑油)に含まれる成分(例えばハイドロカーボン)が外部に放出される虞もない。 Further, since the vehicle 1 does not need to rotate the internal combustion engine 10 when the GPF 41 is regenerated, the components (for example, hydrocarbon) contained in the oil (lubricating oil) are released to the outside as the internal combustion engine 10 rotates. There is no risk of it.
 そして、車両1は、GPF41の温度によらず、GPF41に堆積した排気微粒子の燃焼を利用して下流側触媒42を保温することができる。すなわち、車両1は、内燃機関10停止中の温度低下を排気微粒子の燃焼熱を利用して抑制できる。そのため、車両1は、内燃機関10始動時における排気浄化性能の低下を抑制できる。 Then, the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41. That is, the vehicle 1 can suppress the temperature drop while the internal combustion engine 10 is stopped by utilizing the combustion heat of the exhaust fine particles. Therefore, the vehicle 1 can suppress the deterioration of the exhaust gas purification performance when the internal combustion engine 10 is started.
 さらに、コントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sに応じて電気加熱触媒40の通電を制御する。すなわち、コントロールユニット51は、排気微粒子の堆積量Sに応じて第1保温制御と第2保温制御とのいずれかを選択する。第1保温制御は、停止中の内燃機関10が再始動するまで継続する。第2保温制御は、停止中の内燃機関10が再始動するか、GPF41に堆積した排気微粒子の燃焼が終了するまで継続する。 Further, the control unit 51 controls the energization of the electric heating catalyst 40 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. That is, the control unit 51 selects either the first heat retention control or the second heat retention control according to the accumulated amount S of the exhaust fine particles. The first heat retention control continues until the stopped internal combustion engine 10 restarts. The second heat retention control continues until the stopped internal combustion engine 10 is restarted or the combustion of the exhaust fine particles accumulated on the GPF 41 is completed.
 第1保温制御は、電気加熱触媒40の熱で昇温させた二次空気で下流側触媒42を保温する。 In the first heat retention control, the downstream side catalyst 42 is kept warm with the secondary air heated by the heat of the electric heating catalyst 40.
 第1保温制御は、制御中に所定の一定電力を電気加熱触媒40に供給し続けるため、制御開始からの経過時間が長くなるほど消費電力(積算値)が多くなる。 In the first heat retention control, since a predetermined constant power is continuously supplied to the electric heating catalyst 40 during the control, the power consumption (integrated value) increases as the elapsed time from the start of the control increases.
 第1保温制御中に電気加熱触媒40へ供給される単位時間当たりの電力量は、電気加熱触媒40を通過する際に加熱された二次空気によって下流側触媒42を保温できるように設定される。 The amount of electric energy per unit time supplied to the electric heating catalyst 40 during the first heat retention control is set so that the downstream side catalyst 42 can be kept warm by the secondary air heated when passing through the electric heating catalyst 40. ..
 第2保温制御は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させ、排気微粒子の燃焼による熱で下流側触媒42を保温する。 In the second heat retention control, the electric heating catalyst 40 is energized until the exhaust fine particles deposited on the GPF 41 start to burn to raise the temperature of the GPF 41, and the downstream catalyst 42 is kept warm by the heat generated by the combustion of the exhaust fine particles.
 第2保温制御は、制御開始直後に第1保温制御に比べて大きな電力を電気加熱触媒40に一時的に供給し、その後電気加熱触媒40に電力を供給しないため、制御開始からの経過時間に関わらず、消費電力(積算値)が一定となる。 Immediately after the start of the control, the second heat retention control temporarily supplies a larger electric power to the electric heating catalyst 40 than the first heat retention control, and then does not supply the electric power to the electric heating catalyst 40. Therefore, the elapsed time from the start of the control Regardless, the power consumption (integrated value) is constant.
 第2保温制御の開始時に一時的に電気加熱触媒40へ供給される単位時間当たりの電力量は、第1保温制御時に電気加熱触媒40へ供給される単位時間当たりの電力量よりも多く、排気微粒子(GPF41に堆積)が燃焼し始める温度までGPF41の温度が上昇するように設定される。 The amount of electric energy per unit time temporarily supplied to the electric heating catalyst 40 at the start of the second heat retention control is larger than the amount of electric energy per unit time supplied to the electric heating catalyst 40 at the time of the first heat retention control. The temperature of the GPF 41 is set to rise to a temperature at which the fine particles (deposited on the GPF 41) begin to burn.
 図4は、第1保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線A(実線)と、第2保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線B(破線)と、を示した説明図である。特性線Aは、制御時間が長くなるほど消費電力の積算値が大きくなる一次直線となる。特性線Bは、制御開始時にステップ状(階段状)立ち上がり、その後は制御時間によらず消費電力の積算値が一定となる特性線となる。 FIG. 4 shows a characteristic line A (solid line) showing a change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is performed, and a consumption of the electric heating catalyst 40 when the second heat retention control is performed. It is explanatory drawing which showed the characteristic line B (broken line) which shows the change of the integrated value of electric power. The characteristic line A is a linear line in which the integrated value of power consumption increases as the control time increases. The characteristic line B rises stepwise (stepped) at the start of control, and thereafter becomes a characteristic line in which the integrated value of power consumption becomes constant regardless of the control time.
 図4に示すように、第1保温制御における消費電力と第2保温制御における消費電力とは、特性線Aと特性線Bとが交差するときの条件を境に大小関係が逆転する。第1、第2保温制御の開始から特性線Aと特性線Bとが交差するまでの経過時間を時間T1とする。 As shown in FIG. 4, the magnitude relationship between the power consumption in the first heat retention control and the power consumption in the second heat retention control is reversed with respect to the condition when the characteristic line A and the characteristic line B intersect. The elapsed time from the start of the first and second heat retention controls until the intersection of the characteristic line A and the characteristic line B is defined as the time T1.
 GPF41に堆積している排気微粒子の燃焼時間Tpが時間T1よりも短い場合は、第1保温制御を実施した方が、電気加熱触媒40の消費電力が小さくなる。 When the combustion time Tp of the exhaust particles deposited on the GPF 41 is shorter than the time T1, the power consumption of the electric heating catalyst 40 becomes smaller when the first heat retention control is performed.
 GPF41に堆積している排気微粒子の燃焼時間Tpが時間T1以上の長さの場合は、第2保温制御を実施した方が、電気加熱触媒40の消費電力が小さくなる。 When the combustion time Tp of the exhaust particles deposited on the GPF 41 is longer than the time T1, the power consumption of the electric heating catalyst 40 becomes smaller when the second heat retention control is performed.
 そこで、GPF41に捕集された排気微粒子の堆積量Sを算出し、算出された排気微粒子の堆積量Sから排気微粒子の燃焼時間Tpを算出する。 Therefore, the accumulated amount S of the exhaust particles collected in the GPF 41 is calculated, and the combustion time Tp of the exhaust particles is calculated from the calculated accumulated amount S of the exhaust particles.
 GPF41に捕集された排気微粒子の堆積量Sは、例えば、GPF41の前後差圧と、GPF41を通過するガス流量(排気流量)とを用いてコントロールユニット51で算出可能である。また、GPF41に捕集された排気微粒子の堆積量Sは、例えば、内燃機関10の機関回転数及び吸入空気量とGPF41に捕集された排気微粒子の堆積量Sとを関連付けたマップを予めコントロールユニット51内に用意しておくことでも算出可能である。つまり、コントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sを算出する堆積量算出部に相当する。 The accumulated amount S of the exhaust fine particles collected in the GPF 41 can be calculated by the control unit 51 using, for example, the front-rear differential pressure of the GPF 41 and the gas flow rate (exhaust flow rate) passing through the GPF 41. Further, the accumulated amount S of the exhaust fine particles collected in the GPF 41 controls, for example, a map in which the engine rotation speed and the intake air amount of the internal combustion engine 10 are associated with the accumulated amount S of the exhaust fine particles collected in the GPF 41 in advance. It can also be calculated by preparing it in the unit 51. That is, the control unit 51 corresponds to a deposit amount calculation unit that calculates the deposit amount S of the exhaust fine particles collected in the GPF 41.
 図5は、GPF41に捕集された排気微粒子の堆積量Sとその燃焼時間Tpの相関を示す特性図である。排気微粒子の燃焼時間Tpは、排気微粒子の堆積量Sから算出可能である。例えば、コントロールユニット51には、排気微粒子の堆積量Sとその燃焼時間Tpとを関連づけた図5に示すようなマップが記憶されている。 FIG. 5 is a characteristic diagram showing the correlation between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the combustion time Tp thereof. The combustion time Tp of the exhaust fine particles can be calculated from the accumulated amount S of the exhaust fine particles. For example, the control unit 51 stores a map as shown in FIG. 5 in which the accumulated amount S of exhaust particles and the combustion time Tp thereof are associated with each other.
 つまり、コントロールユニット51は、排気微粒子の堆積量Sに応じて燃焼時間Tpを算出する燃焼時間算出部に相当する。 That is, the control unit 51 corresponds to the combustion time calculation unit that calculates the combustion time Tp according to the accumulated amount S of the exhaust fine particles.
 排気微粒子の燃焼時間Tpは、排気微粒子を所定の一定条件で燃焼させた場合の時間であり、下流側触媒42を保温できるようにGPF41に捕集された排気微粒子を燃焼させた場合の時間である。 The combustion time Tp of the exhaust fine particles is the time when the exhaust fine particles are burned under a predetermined constant condition, and is the time when the exhaust fine particles collected in the GPF 41 are burned so that the downstream catalyst 42 can be kept warm. is there.
 GPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T1よりも短い場合は、第1保温制御を実施する。つまり、GPF41に捕集されている排気微粒子の堆積量Sが所定量より少ない場合は、電気加熱触媒40の熱で昇温させた二次空気を用いて下流側触媒42を保温する。 When the combustion time Tp corresponding to the accumulated amount S of the exhaust fine particles collected in the GPF 41 is shorter than the time T1, the first heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is less than the predetermined amount, the downstream catalyst 42 is kept warm by using the secondary air heated by the heat of the electric heating catalyst 40.
 GPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T1以上の長さの場合は、第2保温制御を実施する。つまり、GPF41に捕集されている排気微粒子の堆積量Sが所定量以上の場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。 When the combustion time Tp corresponding to the accumulated amount S of the exhaust fine particles collected in the GPF 41 is longer than the time T1, the second heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is equal to or more than a predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated in the GPF 41 start to burn to raise the temperature of the GPF 41.
 すなわち、第1実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sに応じて電気加熱触媒40の通電を制御する触媒制御部に相当する。 That is, the control unit 51 of the first embodiment corresponds to a catalyst control unit that controls energization of the electric heating catalyst 40 according to the accumulated amount S of exhaust fine particles collected in the GPF 41.
 車両1は、GPF41に捕集された排気微粒子の堆積量Sに応じて内燃機関10停止中の下流側触媒42の保温方法を変更することで、電気加熱触媒40で消費する電力量を抑制しつつ、内燃機関10始動時における排気浄化性能の低下を抑制できる。 The vehicle 1 suppresses the amount of electric power consumed by the electric heating catalyst 40 by changing the heat retention method of the downstream catalyst 42 while the internal combustion engine 10 is stopped according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. At the same time, it is possible to suppress a decrease in exhaust gas purification performance when the internal combustion engine 10 is started.
 GPF41における排気微粒子の堆積量Sが少ない場合には、排気微粒子の燃焼時間Tpは短くなり、下流側触媒42の十分な保温時間を確保できない虞がある。その場合、車両1、電気加熱触媒40で昇温させた二次空気で下流側触媒42を保温する第1保温制御を実施する。 When the accumulated amount S of the exhaust fine particles in the GPF 41 is small, the combustion time Tp of the exhaust fine particles becomes short, and there is a possibility that a sufficient heat retention time of the downstream catalyst 42 cannot be secured. In that case, the first heat retention control is carried out in which the downstream side catalyst 42 is kept warm by the secondary air heated by the vehicle 1 and the electric heating catalyst 40.
 これにより、車両1は、GPF41における排気微粒子の堆積量Sが少ない場合でも下流側触媒42の温度低下を抑制すること可能となり、内燃機関10始動時における排気浄化性能の低下を抑制できる。 As a result, the vehicle 1 can suppress a decrease in the temperature of the downstream catalyst 42 even when the accumulated amount S of exhaust fine particles in the GPF 41 is small, and can suppress a decrease in the exhaust gas purification performance when the internal combustion engine 10 is started.
 GPF41における排気微粒子の堆積量Sが多い場合には、排気微粒子の燃焼時間Tpを十分長く確保することが可能となる。その場合、車両1は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40でGPF41を昇温させる第2保温制御を実施する。 When the accumulated amount S of the exhaust fine particles in the GPF 41 is large, it is possible to secure a sufficiently long combustion time Tp of the exhaust fine particles. In that case, the vehicle 1 implements a second heat retention control in which the temperature of the GPF 41 is raised by the electric heating catalyst 40 until the exhaust fine particles deposited on the GPF 41 start to burn.
 これにより、車両1は、排気微粒子の燃焼による熱で下流側触媒42を保温することができる。 As a result, the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
 図6は、第1実施例における車両1の制御の流れの一例を示すフローチャートである。本ルーチンは、車両1の走行中に、コントロールユニット51により所定時間毎(例えば、10ms毎)に繰り返し実行される。 FIG. 6 is a flowchart showing an example of the control flow of the vehicle 1 in the first embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
 ステップS1では、車両走行中に停止している内燃機関10を始動する条件が成立したか否かを判定する。ステップS1にて内燃機関10を始動しない場合は、ステップS2へ進む。ステップS1にて内燃機関10を始動する場合は、ステップS12へ進む。 In step S1, it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S1, the process proceeds to step S2. When starting the internal combustion engine 10 in step S1, the process proceeds to step S12.
 ステップS2では、内燃機関10が停止中であるか否かを判定する。内燃機関10が停止中である場合は、ステップS2からステップS3へ進む。内燃機関10が停止中でない場合は、今回のルーチンを終了する。 In step S2, it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S2 to step S3. If the internal combustion engine 10 is not stopped, the current routine is terminated.
 ステップS3では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施していない場合は、ステップS3からステップS4へ進む。保温制御を実施している場合は、今回のルーチンを終了する。 In step S3, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S3 to step S4. If heat retention control is being implemented, this routine ends.
 ステップS4では、第1保温制御実施時の消費電力特性を算出する。第1保温制御実施時の消費電力特性とは、第1保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Aと同義である。 In step S4, the power consumption characteristic when the first heat retention control is executed is calculated. The power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
 ステップS5では、第2保温制御実施時の消費電力特性を算出する。第2保温制御実施時の消費電力特性とは、第2保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Bと同義である。 In step S5, the power consumption characteristic when the second heat retention control is executed is calculated. The power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
 ステップS6では、時間T1を算出する。時間T1は、第1、第2保温制御の開始から特性線Aと特性線Bとが交差するまでの経過時間である。 In step S6, the time T1 is calculated. The time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
 ステップS7では、GPF41に捕集された排気微粒子の堆積量Sを算出する。 In step S7, the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
 ステップS8では、堆積量Sを用いて排気微粒子の燃焼時間Tpを算出する。燃焼時間Tpは、GPF41に捕集された排気微粒子が所定の一定条件で全て燃焼するまでの時間である。 In step S8, the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S. The combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
 ステップS9では、燃焼時間Tpが時間T1よりも小さいか否かを判定する。燃焼時間Tpが時間T1よりも小さい場合は、ステップS10へ進み、第1保温制御を実施して今回のルーチンを終了する。燃焼時間Tpが時間T1以上の場合は、ステップS11へ進み、第2保温制御を実施して今回のルーチンを終了する。 In step S9, it is determined whether or not the burning time Tp is smaller than the time T1. If the combustion time Tp is smaller than the time T1, the process proceeds to step S10, the first heat retention control is performed, and the current routine is completed. If the combustion time Tp is the time T1 or more, the process proceeds to step S11, the second heat retention control is performed, and the current routine is completed.
 ステップS12では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施している場合は、ステップS13へ進み、保温制御を終了して今回のルーチンを終了する。保温制御を実施していない場合は、今回のルーチンを終了する。 In step S12, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is being implemented, the process proceeds to step S13, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
 第1実施例において、第2保温制御を実施している際に、GPF41に捕集された全ての排気微粒子が燃焼し終えた場合には、第2保温制御を終了する。つまり、第1実施例においては、内燃機関10の停止中に第2保温制御を開始した場合、内燃機関10の始動前に排気微粒子が燃え尽きると第2保温制御は終了する。 In the first embodiment, when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the first embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
 なお、第1実施例においては、第2保温制御の実施中にGPF41に捕集された排気微粒子が燃え尽きた場合、内燃機関10が再始動するまで電気加熱触媒40に通電して、第1保温制御のように二次空気で下流側触媒42を保温するようにしてもよい。 In the first embodiment, when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention. The downstream catalyst 42 may be kept warm with secondary air as in the control.
 図7は、第1実施例における車両1で第2保温制御を実施した場合の一例を示すタイミングチャートである。なお、図7に示す例では、GPF41に捕集された排気微粒子が燃え尽きると、内燃機関10が再始動するまで電気加熱触媒40に通電している。 FIG. 7 is a timing chart showing an example of the case where the second heat retention control is performed on the vehicle 1 in the first embodiment. In the example shown in FIG. 7, when the exhaust fine particles collected in the GPF 41 are burned out, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted.
 図7における時刻t1は、車両1の走行中に内燃機関10が停止するタイミングである。図7における時刻t1では、電気加熱触媒40への通電を開始し、かつ二次空気の供給を開始する。 The time t1 in FIG. 7 is the timing at which the internal combustion engine 10 stops while the vehicle 1 is running. At time t1 in FIG. 7, the electric heating catalyst 40 is started to be energized and the secondary air is started to be supplied.
 図7における時刻t2は、GPF41に捕集された排気微粒子の燃焼が始まるタイミングである。図7における時刻t2では、電気加熱触媒40への通電を終了する。 The time t2 in FIG. 7 is the timing at which the combustion of the exhaust fine particles collected in the GPF 41 starts. At time t2 in FIG. 7, energization of the electric heating catalyst 40 is terminated.
 図7における時刻t3は、GPF41に捕集された排気微粒子が燃え尽きるタイミングである。図7における時刻t3では、電気加熱触媒40への通電を開始する。このとき電気加熱触媒40に供給される電力量は、第1保温制御において電気加熱触媒40に供給される電力量と同じである。 The time t3 in FIG. 7 is the timing at which the exhaust fine particles collected in the GPF 41 are burned out. At time t3 in FIG. 7, energization of the electric heating catalyst 40 is started. At this time, the amount of electric power supplied to the electric heating catalyst 40 is the same as the amount of electric energy supplied to the electric heating catalyst 40 in the first heat retention control.
 図7における時刻t4は、内燃機関10が始動(再始動)するタイミングである。図7における時刻t4では、電気加熱触媒40への通電を終了し、かつ二次空気の供給を終了する。 The time t4 in FIG. 7 is the timing at which the internal combustion engine 10 starts (restarts). At time t4 in FIG. 7, the energization of the electric heating catalyst 40 is terminated and the supply of secondary air is terminated.
 図7における時刻t1~時刻t4の期間は、内燃機関10を始動することなく車両1を走行させている期間である。 The period from time t1 to time t4 in FIG. 7 is a period in which the vehicle 1 is running without starting the internal combustion engine 10.
 なお、図7中に破線で示す特性線P1、P2は、内燃機関10が停止してから再始動するまでの間に、電気加熱触媒40への通電や、GPF41に捕集された排気微粒子を燃焼させなかった場合のGPF41の温度変化(特性線P1)と、下流側触媒42の温度変化(特性線P2)とを示したものである。 The characteristic lines P1 and P2 shown by the broken lines in FIG. 7 indicate the energization of the electric heating catalyst 40 and the exhaust fine particles collected by the GPF 41 between the time when the internal combustion engine 10 is stopped and the time when the internal combustion engine 10 is restarted. It shows the temperature change of the GPF 41 (characteristic line P1) and the temperature change of the downstream catalyst 42 (characteristic line P2) when it is not burned.
 以下、本発明の他の実施例について説明する。なお、上述した第1実施例と同一の構成要素については、同一の符号を付し、重複する説明を省略する。 Hereinafter, other examples of the present invention will be described. The same components as those in the first embodiment described above are designated by the same reference numerals, and duplicate description will be omitted.
 本発明の第2実施例について説明する。第2実施例の車両1は、上述した第1実施例の車両1と略同一構成となっている。第2実施例のコントロールユニット51は、電気加熱触媒40に電力を供給するバッテリ8の充電状態であるバッテリSOC(State Of Charge)に応じて電気加熱触媒40の通電を制御する。すなわち、第2実施例のコントロールユニット51は、バッテリ8の充電状態に応じて第1保温制御と第2保温制御とのいずれかを選択する。 The second embodiment of the present invention will be described. The vehicle 1 of the second embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above. The control unit 51 of the second embodiment controls the energization of the electric heating catalyst 40 according to the battery SOC (State Of Charge), which is the charged state of the battery 8 that supplies electric power to the electric heating catalyst 40. That is, the control unit 51 of the second embodiment selects either the first heat retention control or the second heat retention control according to the state of charge of the battery 8.
 バッテリSOCは、バッテリ8の充電容量に対する充電残量の比率であり、コントロールユニット51により検出可能となっている。つまり、コントロールユニット51は、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCを検出可能なバッテリSOC検出部に相当する。 The battery SOC is the ratio of the remaining charge to the charge capacity of the battery 8 and can be detected by the control unit 51. That is, the control unit 51 corresponds to a battery SOC detection unit capable of detecting the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40.
 第2実施例における内燃機関10のシステム構成は、上述した第1実施例と同一である。 The system configuration of the internal combustion engine 10 in the second embodiment is the same as that in the first embodiment described above.
 上述した図4を参照すると、内燃機関10を始動することなくバッテリ8で走行可能なEV走行時間Ts(走行時間Ts)が時間T1よりも短い場合は、第1保温制御を実施した方が、電気加熱触媒40の消費電力が小さくなる。 With reference to FIG. 4 described above, when the EV running time Ts (running time Ts) that can be run by the battery 8 without starting the internal combustion engine 10 is shorter than the time T1, it is better to perform the first heat retention control. The power consumption of the electric heating catalyst 40 is reduced.
 また、上述した図4を参照すると、内燃機関10を始動することなくバッテリ8で走行可能なEV走行時間Tsが時間T1以上の長さの場合は、第2保温制御を実施した方が、電気加熱触媒40の消費電力が小さくなる。 Further, referring to FIG. 4 described above, when the EV travel time Ts that can be traveled by the battery 8 without starting the internal combustion engine 10 is longer than the time T1, it is better to perform the second heat retention control. The power consumption of the heating catalyst 40 is reduced.
 そこで、バッテリ8のバッテリSOCを検出し、検出されたバッテリ8のバッテリSOCからEV走行時間Tsを算出する。 Therefore, the battery SOC of the battery 8 is detected, and the EV travel time Ts is calculated from the detected battery SOC of the battery 8.
 図8は、バッテリ8の充電状態とEV走行時間Ts(内燃機関停止時間)の相関を示す特性図である。すなわち、図8は、バッテリ8のバッテリSOCとそのバッテリSOCで内燃機関10を始動することなく走行可能なEV走行時間Tsの相関を示す特性図である。EV走行時間Tsは、バッテリ8のバッテリSOCから算出可能である。 FIG. 8 is a characteristic diagram showing the correlation between the state of charge of the battery 8 and the EV running time Ts (internal combustion engine stop time). That is, FIG. 8 is a characteristic diagram showing the correlation between the battery SOC of the battery 8 and the EV travel time Ts that can be traveled by the battery SOC without starting the internal combustion engine 10. The EV travel time Ts can be calculated from the battery SOC of the battery 8.
 例えば、コントロールユニット51には、バッテリ8のバッテリSOCとEV走行時間Tsとを関連づけた図8に示すようなマップが記憶されている。 For example, the control unit 51 stores a map as shown in FIG. 8 in which the battery SOC of the battery 8 and the EV travel time Ts are associated with each other.
 つまり、コントロールユニット51は、バッテリ8のバッテリSOCに応じてEV走行時間Tsを算出する走行時間算出部に相当する。 That is, the control unit 51 corresponds to a travel time calculation unit that calculates the EV travel time Ts according to the battery SOC of the battery 8.
 EV走行時間Tsは、所定の一定条件で駆動した駆動用モータ5の駆動力のみで車両1を走行させることが可能な走行時間である。 The EV travel time Ts is a travel time during which the vehicle 1 can be driven only by the driving force of the drive motor 5 driven under a predetermined constant condition.
 バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T1よりも短い場合は、第1保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量よりも少ない場合は、電気加熱触媒40の熱で昇温させた二次空気を用いて下流側触媒42を保温する。 When the EV travel time Ts corresponding to the battery SOC of the battery 8 is shorter than the time T1, the first heat retention control is performed. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the downstream side catalyst 42 is kept warm by using the secondary air heated by the heat of the electric heating catalyst 40.
 バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T1以上の長さの場合は、第2保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量以上の場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。 When the EV travel time Ts corresponding to the battery SOC of the battery 8 is longer than the time T1, the second heat retention control is performed. That is, when the battery SOC of the battery 8 is a predetermined amount or more, the electric heating catalyst 40 is energized to raise the temperature of the GPF 41 until the exhaust particles accumulated on the GPF 41 start to burn.
 すなわち、第2実施例のコントロールユニット51は、電気加熱触媒40に電力を供給するバッテリ8の充電状態に応じて電気加熱触媒40の通電を制御する第2触媒制御部に相当する。 That is, the control unit 51 of the second embodiment corresponds to the second catalyst control unit that controls the energization of the electric heating catalyst 40 according to the charging state of the battery 8 that supplies electric power to the electric heating catalyst 40.
 車両1は、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCに応じて内燃機関停止中の三元触媒の保温方法を変更することで、電気加熱触媒40で消費する電力量を抑制しつつ、内燃機関始動時における排気浄化性能の低下を抑制できる。 The vehicle 1 suppresses the amount of electric power consumed by the electric heating catalyst 40 by changing the heat retention method of the three-way catalyst while the internal combustion engine is stopped according to the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40. At the same time, it is possible to suppress a decrease in exhaust purification performance when the internal combustion engine is started.
 電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCが少ない場合には、内燃機関10を停止した状態で走行する時間(EV走行時間Ts)が相対的に短くなる。つまり、バッテリ8のバッテリSOCが所定量よりも少ない場合には、二次空気で下流側触媒42を保温するために電気加熱触媒40に供給される電力量が少なくなる。その場合、車両1は、電気加熱触媒40で昇温させた二次空気で下流側触媒42を保温する第1保温制御を実施する。 When the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is low, the running time (EV running time Ts) with the internal combustion engine 10 stopped is relatively short. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the amount of electric power supplied to the electric heating catalyst 40 in order to keep the downstream side catalyst 42 warm with the secondary air is reduced. In that case, the vehicle 1 implements the first heat retention control in which the downstream side catalyst 42 is kept warm with the secondary air heated by the electric heating catalyst 40.
 これにより、車両1は、下流側触媒42の温度低下が抑制され、内燃機関10始動時における排気浄化性能の低下を抑制することができる。 As a result, in the vehicle 1, the temperature drop of the downstream catalyst 42 can be suppressed, and the drop in the exhaust gas purification performance when the internal combustion engine 10 is started can be suppressed.
 電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCが多い場合には、内燃機関10を停止した状態で走行する時間(EV走行時間Ts)が相対的に長くなる。つまり、バッテリ8のバッテリSOCが所定量以上となる場合には、二次空気で下流側触媒42を保温するために電気加熱触媒40に供給される電力量が多くなる。その場合、車両1は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40でGPF41を昇温させる第2保温制御を実施する。 When the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is large, the running time (EV running time Ts) with the internal combustion engine 10 stopped becomes relatively long. That is, when the battery SOC of the battery 8 becomes a predetermined amount or more, the amount of electric power supplied to the electric heating catalyst 40 in order to keep the downstream side catalyst 42 warm with the secondary air increases. In that case, the vehicle 1 implements a second heat retention control in which the temperature of the GPF 41 is raised by the electric heating catalyst 40 until the exhaust fine particles deposited on the GPF 41 start to burn.
 これにより、車両1は、排気微粒子の燃焼による熱で下流側触媒42を保温することができる。 As a result, the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
 なお、第2実施例においても、車両1は、GPF41の再生のために内燃機関10を回転させるエネルギーを必要としない。そのため、車両1は、内燃機関10のエネルギー消費を抑制しつつGPF41の再生を行うことができる。 Also in the second embodiment, the vehicle 1 does not require the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
 また、第2実施例においても、車両1は、GPF41の温度によらずGPF41に堆積した排気微粒子の燃焼を利用して下流側触媒42を保温することができるため、内燃機関10始動時における排気浄化性能の低下を抑制できる。 Further, also in the second embodiment, since the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41, the exhaust gas at the time of starting the internal combustion engine 10 It is possible to suppress the deterioration of purification performance.
 図9は、第2実施例における車両1の制御の流れの一例を示すフローチャートである。本ルーチンは、車両1の走行中に、コントロールユニット51により所定時間毎(例えば、10ms毎)に繰り返し実行される。 FIG. 9 is a flowchart showing an example of the control flow of the vehicle 1 in the second embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
 ステップS21では、車両走行中に停止している内燃機関10を始動する条件が成立したか否かを判定する。ステップS21にて内燃機関10を始動しない場合は、ステップS22へ進む。ステップS21にて内燃機関10を始動する場合は、ステップS32へ進む。 In step S21, it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S21, the process proceeds to step S22. When starting the internal combustion engine 10 in step S21, the process proceeds to step S32.
 ステップS22では、内燃機関10が停止中であるか否かを判定する。内燃機関10が停止中である場合は、ステップS22からステップS23へ進む。内燃機関10が停止中でない場合は、今回のルーチンを終了する。 In step S22, it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S22 to step S23. If the internal combustion engine 10 is not stopped, the current routine is terminated.
 ステップS23では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施していない場合は、ステップS23からステップS24へ進む。保温制御を実施している場合は、今回のルーチンを終了する。 In step S23, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S23 to step S24. If heat retention control is being implemented, this routine ends.
 ステップS24では、第1保温制御実施時の消費電力特性を算出する。第1保温制御実施時の消費電力特性とは、第1保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Aと同義である。 In step S24, the power consumption characteristic when the first heat retention control is executed is calculated. The power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
 ステップS25では、第2保温制御実施時の消費電力特性を算出する。第2保温制御実施時の消費電力特性とは、第2保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Bと同義である。 In step S25, the power consumption characteristic when the second heat retention control is executed is calculated. The power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
 ステップS26では、時間T1を算出する。時間T1は、第1、第2保温制御の開始から特性線Aと特性線Bとが交差するまでの経過時間である。 In step S26, the time T1 is calculated. The time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
 ステップS27では、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCを検出する。 In step S27, the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is detected.
 ステップS28では、バッテリSOCを用いてEV走行時間Tsを算出する。EV走行時間Tsは、内燃機関10を始動することなくバッテリ8のバッテリSOCで走行可能な時間である。 In step S28, the EV travel time Ts is calculated using the battery SOC. The EV travel time Ts is a time during which the EV travel time Ts can be traveled by the battery SOC of the battery 8 without starting the internal combustion engine 10.
 ステップS29では、EV走行時間Tsが時間T1よりも小さいか否かを判定する。EV走行時間Tsが時間T1よりも小さい場合は、ステップS30へ進み、第1保温制御を実施して今回のルーチンを終了する。EV走行時間Tsが時間T1以上の場合は、ステップS31へ進み、第2保温制御を実施して今回のルーチンを終了する。 In step S29, it is determined whether or not the EV travel time Ts is smaller than the time T1. If the EV travel time Ts is smaller than the time T1, the process proceeds to step S30, the first heat retention control is performed, and the current routine is completed. If the EV travel time Ts is time T1 or more, the process proceeds to step S31, the second heat retention control is performed, and the current routine is completed.
 ステップS32では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施している場合は、ステップS33へ進み、保温制御を終了して今回のルーチンを終了する。保温制御を実施していない場合は、今回のルーチンを終了する。 In step S32, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. When the heat retention control is performed, the process proceeds to step S33, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
 第2実施例において、第2保温制御を実施している際に、GPF41に捕集された全ての排気微粒子が燃焼し終えた場合には、第2保温制御を終了する。つまり、第2実施例においては、内燃機関10の停止中に第2保温制御を開始した場合、内燃機関10の始動前に排気微粒子が燃え尽きると第2保温制御は終了する。 In the second embodiment, when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the second embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
 なお、第2実施例においては、第2保温制御の実施中にGPF41に捕集された排気微粒子が燃え尽きた場合、内燃機関10が再始動するまで電気加熱触媒40に通電して、第1保温制御のように二次空気で下流側触媒42を保温するようにしてもよい。 In the second embodiment, when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention. The downstream catalyst 42 may be kept warm with secondary air as in the control.
 本発明の第3実施例について説明する。第3実施例の車両1は、上述した第1実施例の車両1と略同一構成となっている。第3実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sと、電気加熱触媒40に電力を供給するバッテリ8の充電状態(バッテリSOC)と、の関係に応じて電気加熱触媒40の通電を制御する。すなわち、第3実施例のコントロールユニット51は、排気微粒子の堆積量Sと、バッテリ8の充電状態と、関係に応じて第1保温制御と第2保温制御とのいずれかを選択する。 The third embodiment of the present invention will be described. The vehicle 1 of the third embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above. The control unit 51 of the third embodiment is charged according to the relationship between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40. The energization of the heating catalyst 40 is controlled. That is, the control unit 51 of the third embodiment selects either the first heat retention control or the second heat retention control according to the relationship between the accumulated amount S of exhaust fine particles and the charge state of the battery 8.
 第3実施例における内燃機関10のシステム構成は、上述した第1実施例と同一である。 The system configuration of the internal combustion engine 10 in the third embodiment is the same as that in the first embodiment described above.
 バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T1よりも長く、かつGPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T1よりも長い場合は、第2保温制御を実施する。 When the EV travel time Ts corresponding to the battery SOC of the battery 8 is longer than the time T1 and the combustion time Tp corresponding to the accumulated amount S of the exhaust particles collected in the GPF 41 is longer than the time T1, the second heat retention is performed. Enforce control.
 つまり、バッテリ8のバッテリSOCが所定量よりも多く、かつ排気微粒子の堆積量Sが所定量よりも多い場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。 That is, when the battery SOC of the battery 8 is larger than the predetermined amount and the accumulated amount S of the exhaust particles is larger than the predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated on the GPF 41 start to burn. The temperature of GPF 41 is raised.
 バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T1以下の長さ、あるいはGPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T1以下の長さの場合は、第1保温制御を実施する。 When the EV travel time Ts corresponding to the battery SOC of the battery 8 is a length of time T1 or less, or the combustion time Tp corresponding to the accumulated amount S of exhaust particles collected in GPF 41 is a length of time T1 or less, The first heat retention control is carried out.
 つまり、バッテリ8のバッテリSOCが所定量以下の場合や、排気微粒子の堆積量Sが所定量以下の場合には、電気加熱触媒40の熱で昇温させた二次空気を用いて下流側触媒42を保温する。 That is, when the battery SOC of the battery 8 is a predetermined amount or less, or when the accumulated amount S of the exhaust fine particles is a predetermined amount or less, the downstream catalyst uses the secondary air heated by the heat of the electric heating catalyst 40. Keep 42 warm.
 すなわち、第3実施例におけるコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sと、電気加熱触媒40に電力を供給するバッテリ8の充電状態と、に応じて電気加熱触媒40の通電を制御する第3触媒制御部に相当する。 That is, the control unit 51 in the third embodiment has the electric heating catalyst 40 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state of the battery 8 that supplies electric power to the electric heating catalyst 40. It corresponds to the third catalyst control unit that controls energization.
 車両1は、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCと、GPF41に捕集された排気微粒子の堆積量Sと、に応じて内燃機関停止中の三元触媒の保温方法を変更することで、電気加熱触媒40で消費する電力量を抑制しつつ、内燃機関始動時における排気浄化性能の低下を抑制できる。 The vehicle 1 changes the heat retention method of the three-way catalyst while the internal combustion engine is stopped according to the battery SOC of the battery 8 that supplies power to the electric heating catalyst 40 and the accumulated amount S of the exhaust fine particles collected in the GPF 41. By doing so, it is possible to suppress the deterioration of the exhaust purification performance at the time of starting the internal combustion engine while suppressing the amount of electric power consumed by the electric heating catalyst 40.
 車両1は、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCが所定量よりも多く、GPF41に捕集された排気微粒子の堆積量Sが所定量より多い場合は、排気微粒子フィルタに堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40で排気微粒子フィルタを昇温させる。つまり、この場合の電気加熱触媒40には、GPF41の昇温を目的とした通電を行う。これにより、車両1は、排気微粒子の燃焼による熱で下流側触媒42を保温することができる。 In the vehicle 1, when the battery SOC of the battery 8 that supplies power to the electric heating catalyst 40 is larger than the predetermined amount and the accumulated amount S of the exhaust particles collected in the GPF 41 is larger than the predetermined amount, the vehicle 1 is deposited on the exhaust particle filter. The temperature of the exhaust particle filter is raised by the electric heating catalyst 40 until the exhaust particles start to burn. That is, the electric heating catalyst 40 in this case is energized for the purpose of raising the temperature of the GPF 41. As a result, the vehicle 1 can keep the downstream catalyst 42 warm by the heat generated by the combustion of the exhaust fine particles.
 車両1は、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCが所定量以下、あるいはGPF41に捕集された排気微粒子の堆積量Sが所定量以下の場合は、電気加熱触媒40の熱で昇温させた二次空気を用いて下流側触媒42を保温することで、三元触媒の温度低下が抑制され、内燃機関始動時における排気浄化性能の低下を抑制することができる。 In the vehicle 1, when the battery SOC of the battery 8 that supplies power to the electric heating catalyst 40 is a predetermined amount or less, or the accumulated amount S of exhaust fine particles collected in the GPF 41 is a predetermined amount or less, the heat of the electric heating catalyst 40 By keeping the downstream side catalyst 42 warm using the secondary air heated in 1), the temperature decrease of the three-way catalyst can be suppressed, and the decrease of the exhaust gas purification performance at the time of starting the internal combustion engine can be suppressed.
 なお、第3実施例においても、車両1は、GPF41の再生のために内燃機関10を回転させるエネルギーを必要としない。そのため、車両1は、内燃機関10のエネルギー消費を抑制しつつGPF41の再生を行うことができる。 Also in the third embodiment, the vehicle 1 does not require the energy to rotate the internal combustion engine 10 for the regeneration of the GPF 41. Therefore, the vehicle 1 can regenerate the GPF 41 while suppressing the energy consumption of the internal combustion engine 10.
 また、第3実施例においても、車両1は、GPF41の温度によらずGPF41に堆積した排気微粒子の燃焼を利用して下流側触媒42を保温することができるため、内燃機関10始動時における排気浄化性能の低下を抑制できる。 Further, also in the third embodiment, since the vehicle 1 can keep the downstream catalyst 42 warm by utilizing the combustion of the exhaust fine particles deposited on the GPF 41 regardless of the temperature of the GPF 41, the exhaust gas at the time of starting the internal combustion engine 10 It is possible to suppress the deterioration of purification performance.
 図10は、第3実施例における車両1の制御の流れの一例を示すフローチャートである。本ルーチンは、車両1の走行中に、コントロールユニット51により所定時間毎(例えば、10ms毎)に繰り返し実行される。 FIG. 10 is a flowchart showing an example of the control flow of the vehicle 1 in the third embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
 ステップS41では、車両走行中に停止している内燃機関10を始動する条件が成立したか否かを判定する。ステップS41にて内燃機関10を始動しない場合は、ステップS42へ進む。ステップS41にて内燃機関10を始動する場合は、ステップS55へ進む。 In step S41, it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S41, the process proceeds to step S42. When starting the internal combustion engine 10 in step S41, the process proceeds to step S55.
 ステップS42では、内燃機関10が停止中であるか否かを判定する。内燃機関10が停止中である場合は、ステップS42からステップS43へ進む。内燃機関10が停止中でない場合は、今回のルーチンを終了する。 In step S42, it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S42 to step S43. If the internal combustion engine 10 is not stopped, the current routine is terminated.
 ステップS43では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施していない場合は、ステップS43からステップS44へ進む。保温制御を実施している場合は、今回のルーチンを終了する。 In step S43, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S43 to step S44. If heat retention control is being implemented, this routine ends.
 ステップS44では、第1保温制御実施時の消費電力特性を算出する。第1保温制御実施時の消費電力特性とは、第1保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Aと同義である。 In step S44, the power consumption characteristic when the first heat retention control is executed is calculated. The power consumption characteristic when the first heat retention control is carried out is synonymous with the characteristic line A which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the first heat retention control is carried out.
 ステップS45では、第2保温制御実施時の消費電力特性を算出する。第2保温制御実施時の消費電力特性とは、第2保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線Bと同義である。 In step S45, the power consumption characteristic when the second heat retention control is executed is calculated. The power consumption characteristic when the second heat retention control is carried out is synonymous with the characteristic line B which indicates the change in the integrated value of the power consumption of the electric heating catalyst 40 when the second heat retention control is carried out.
 ステップS46では、時間T1を算出する。時間T1は、第1、第2保温制御の開始から特性線Aと特性線Bとが交差するまでの経過時間である。 In step S46, the time T1 is calculated. The time T1 is the elapsed time from the start of the first and second heat retention controls until the characteristic line A and the characteristic line B intersect.
 ステップS47では、GPF41に捕集された排気微粒子の堆積量Sを算出する。 In step S47, the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
 ステップS48では、電気加熱触媒40に電力を供給するバッテリ8のバッテリSOCを検出する。 In step S48, the battery SOC of the battery 8 that supplies electric power to the electric heating catalyst 40 is detected.
 ステップS49では、堆積量Sを用いて排気微粒子の燃焼時間Tpを算出する。燃焼時間Tpは、GPF41に捕集された排気微粒子が所定の一定条件で全て燃焼するまでの時間である。 In step S49, the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S. The combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
 ステップS50では、バッテリSOCを用いてEV走行時間Tsを算出する。EV走行時間Tsは、内燃機関10を始動することなくバッテリ8のバッテリSOCで走行可能な時間である。 In step S50, the EV travel time Ts is calculated using the battery SOC. The EV travel time Ts is a time during which the EV travel time Ts can be traveled by the battery SOC of the battery 8 without starting the internal combustion engine 10.
 ステップS51では、燃焼時間Tpが時間T1よりも大きいか否かを判定する。燃焼時間Tpが時間T1よりも大きい場合は、ステップS52へ進む。燃焼時間Tpが時間T1以下の場合は、ステップS54へ進み、第1保温制御を実施して今回のルーチンを終了する。 In step S51, it is determined whether or not the burning time Tp is larger than the time T1. If the burning time Tp is larger than the time T1, the process proceeds to step S52. If the combustion time Tp is less than or equal to the time T1, the process proceeds to step S54, the first heat retention control is performed, and the current routine is completed.
 ステップS52では、EV走行時間Tsが時間T1よりも大きいか否かを判定する。EV走行時間Tsが時間T1よりも大きい場合は、ステップS53へ進み、第2保温制御を実施して今回のルーチンを終了する。EV走行時間Tsが時間T1以下の場合は、ステップS54へ進み、第1保温制御を実施して今回のルーチンを終了する。 In step S52, it is determined whether or not the EV travel time Ts is larger than the time T1. If the EV travel time Ts is larger than the time T1, the process proceeds to step S53, the second heat retention control is performed, and the current routine is completed. If the EV travel time Ts is less than or equal to the time T1, the process proceeds to step S54, the first heat retention control is performed, and the current routine is completed.
 ステップS55では、保温制御(第1保温制御あるいは第2保温制御)を実施中であるか否かを判定する。保温制御を実施している場合は、ステップS56へ進み、保温制御を終了して今回のルーチンを終了する。保温制御を実施していない場合は、今回のルーチンを終了する。 In step S55, it is determined whether or not the heat retention control (first heat retention control or second heat retention control) is being implemented. When the heat retention control is performed, the process proceeds to step S56, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
 第3実施例において、第2保温制御を実施している際に、GPF41に捕集された全ての排気微粒子が燃焼し終えた場合には、第2保温制御を終了する。つまり、第3実施例においては、内燃機関10の停止中に第2保温制御を開始した場合、内燃機関10の始動前に排気微粒子が燃え尽きると第2保温制御は終了する。 In the third embodiment, when all the exhaust fine particles collected in the GPF 41 are completely burned while the second heat retention control is being carried out, the second heat retention control is terminated. That is, in the third embodiment, when the second heat retention control is started while the internal combustion engine 10 is stopped, the second heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
 なお、第3実施例においては、第2保温制御の実施中にGPF41に捕集された排気微粒子が燃え尽きた場合、内燃機関10が再始動するまで電気加熱触媒40に通電して、第1保温制御のように二次空気で下流側触媒42を保温するようにしてもよい。 In the third embodiment, when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the second heat retention control, the electric heating catalyst 40 is energized until the internal combustion engine 10 is restarted to keep the first heat retention. The downstream catalyst 42 may be kept warm with secondary air as in the control.
 本発明の第4実施例について説明する。第4実施例の車両1は、上述した第1実施例の車両1と略同一構成となっている。第4実施例における車両1は、第2電気加熱触媒43を備えている。すなわち、図11に示すように、第4実施例における床下触媒33は、GPF41と下流側触媒42との間に第2電気加熱触媒(第2EHC)43を備えている。 The fourth embodiment of the present invention will be described. The vehicle 1 of the fourth embodiment has substantially the same configuration as the vehicle 1 of the first embodiment described above. The vehicle 1 in the fourth embodiment includes a second electric heating catalyst 43. That is, as shown in FIG. 11, the underfloor catalyst 33 in the fourth embodiment includes a second electric heating catalyst (second EHC) 43 between the GPF 41 and the downstream catalyst 42.
 第2電気加熱触媒43は、通電することによって発熱する触媒である。第2電気加熱触媒43への通電は、コントロールユニット51によって制御されている。第2電気加熱触媒43に供給される電力の供給源は、例えば駆動用モータ5に電力を供給するバッテリ8である。なお、第2電気加熱触媒43に供給される電力の供給源は、駆動用モータ5に電力を供給するバッテリ8とは異なるバッテリであってもよい。 The second electric heating catalyst 43 is a catalyst that generates heat when energized. The energization of the second electric heating catalyst 43 is controlled by the control unit 51. The power supply source of the power supplied to the second electric heating catalyst 43 is, for example, the battery 8 that supplies power to the drive motor 5. The power supply source of the electric power supplied to the second electric heating catalyst 43 may be a battery different from the battery 8 that supplies the electric power to the drive motor 5.
 第4実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sに応じて電気加熱触媒40と第2電気加熱触媒43の通電を制御する。 The control unit 51 of the fourth embodiment controls the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41.
 すなわち、第4実施例におけるコントロールユニット51は、排気微粒子の堆積量Sに応じて、第3保温制御と第4保温制御とのいずれかを選択する。第3保温制御は、停止中の内燃機関10が再始動するまで継続する。第4保温制御は、停止中の内燃機関10が再始動するか、GPF41に堆積した排気微粒子の燃焼が終了するまで継続する。 That is, the control unit 51 in the fourth embodiment selects either the third heat retention control or the fourth heat retention control according to the accumulated amount S of the exhaust fine particles. The third heat retention control continues until the stopped internal combustion engine 10 restarts. The fourth heat retention control continues until the stopped internal combustion engine 10 restarts or the combustion of the exhaust fine particles accumulated on the GPF 41 is completed.
 第3保温制御は、第2電気加熱触媒43の熱で昇温させた二次空気で下流側触媒42を保温する。 In the third heat retention control, the downstream side catalyst 42 is kept warm with the secondary air heated by the heat of the second electric heating catalyst 43.
 第3保温制御は、制御中に所定の一定電力を第2電気加熱触媒43に供給し続けるため、制御開始からの経過時間が長くなるほど消費電力(積算値)が多くなる。 In the third heat retention control, since a predetermined constant power is continuously supplied to the second electric heating catalyst 43 during the control, the power consumption (integrated value) increases as the elapsed time from the start of the control increases.
 第3保温制御中に第2電気加熱触媒43へ供給される単位時間当たりの電力量は、第2電気加熱触媒43を通過する際に加熱された二次空気によって下流側触媒42を保温できるように設定される。第3保温制御では、GPF41の上流側に位置する電気加熱触媒40に通電しない。 The amount of electric energy per unit time supplied to the second electric heating catalyst 43 during the third heat retention control is such that the downstream side catalyst 42 can be kept warm by the secondary air heated when passing through the second electric heating catalyst 43. Is set to. In the third heat retention control, the electric heating catalyst 40 located on the upstream side of the GPF 41 is not energized.
 第4保温制御は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させ、排気微粒子の燃焼による熱で下流側触媒42を保温する。第4保温制御では、GPF41の下流側に位置する第2電気加熱触媒43に通電しない。 In the fourth heat retention control, the electric heating catalyst 40 is energized until the exhaust fine particles deposited on the GPF 41 start to burn to raise the temperature of the GPF 41, and the downstream catalyst 42 is kept warm by the heat generated by the combustion of the exhaust fine particles. In the fourth heat retention control, the second electric heating catalyst 43 located on the downstream side of the GPF 41 is not energized.
 第4保温制御は、制御開始直後に第3保温制御に比べて大きな電力を電気加熱触媒40に一時的に供給し、その後電気加熱触媒40に電力を供給しないため、制御開始からの経過時間に関わらず、消費電力(積算値)が一定となる。 Immediately after the start of the control, the fourth heat retention control temporarily supplies a larger electric power to the electric heating catalyst 40 than the third heat retention control, and then does not supply the electric power to the electric heating catalyst 40. Therefore, the elapsed time from the start of the control Regardless, the power consumption (integrated value) is constant.
 第4保温制御の開始時に一時的に電気加熱触媒40へ供給される単位時間当たりの電力量は、第3保温制御時に電気加熱触媒40へ供給される単位時間当たりの電力量よりも多く、排気微粒子(GPF41に堆積)が燃焼し始める温度までGPF41の温度が上昇するように設定される。 The amount of electric energy per unit time temporarily supplied to the electric heating catalyst 40 at the start of the fourth heat retention control is larger than the amount of electric energy per unit time supplied to the electric heating catalyst 40 at the time of the third heat retention control. The temperature of the GPF 41 is set to rise to a temperature at which the fine particles (deposited on the GPF 41) begin to burn.
 ここで、第3保温制御を実施した場合の消費電力と第4保温制御を実施した場合の消費電力との関係性は、上述した図4と相似形となる。 Here, the relationship between the power consumption when the third heat retention control is carried out and the power consumption when the fourth heat retention control is carried out is similar to that of FIG. 4 described above.
 つまり、第3保温制御を実施した場合の第2電気加熱触媒43の消費電力の積算値の変化を示す特性線は、制御時間が長くなるほど消費電力の積算値が大きくなる一次直線となる。第4保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線は、制御開始時にステップ状(階段状)に立ち上がり、その後は制御時間によらず一定となる。 That is, the characteristic line showing the change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is performed is a linear straight line in which the integrated value of the power consumption increases as the control time becomes longer. The characteristic line indicating the change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is performed rises in a step shape (step shape) at the start of the control, and becomes constant regardless of the control time thereafter.
 第3保温制御を実施した場合の第2電気加熱触媒43の消費電力の積算値の変化を示す特性線と、第4保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線とが交差するときの条件を境に、第3保温制御における消費電力と第4保温制御における消費電力の大小関係は逆転する。 The characteristic line showing the change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is performed, and the change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is performed. The magnitude relationship between the power consumption in the third heat retention control and the power consumption in the fourth heat retention control is reversed with respect to the condition when the characteristic line indicating the above intersects.
 第3、第4保温制御の開始からこれらの特性線同士が交差するまでの経過時間を時間T2とする。 The elapsed time from the start of the third and fourth heat retention controls to the intersection of these characteristic lines is defined as the time T2.
 GPF41に堆積している排気微粒子の燃焼時間Tpが時間T2よりも短い場合は、第3保温制御を実施した方が消費電力を少なくできる。 When the combustion time Tp of the exhaust particles accumulated on the GPF 41 is shorter than the time T2, the power consumption can be reduced by performing the third heat retention control.
 GPF41に堆積している排気微粒子の燃焼時間Tpが時間T2以上の長さの場合は、第4保温制御を実施した方が消費電力を少なくできる。 When the combustion time Tp of the exhaust particles deposited on GPF41 is longer than the time T2, the power consumption can be reduced by performing the fourth heat retention control.
 そこで、この第4実施例においては、上述した第1実施例と同様に、GPF41に捕集された排気微粒子の堆積量Sを算出し、算出された排気微粒子の堆積量Sから排気微粒子の燃焼時間Tpを算出する。 Therefore, in the fourth embodiment, similarly to the first embodiment described above, the accumulated amount S of the exhaust particles collected in the GPF 41 is calculated, and the combustion of the exhaust particles is calculated from the calculated accumulated amount S of the exhaust particles. Calculate the time Tp.
 そして、GPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T2よりも短い場合は、第3保温制御を実施する。つまり、GPF41に捕集されている排気微粒子の堆積量Sが所定量より少ない場合は、第2電気加熱触媒43の熱で昇温させた二次空気を用いて下流側触媒42を保温する。 Then, when the combustion time Tp corresponding to the accumulated amount S of the exhaust fine particles collected in the GPF 41 is shorter than the time T2, the third heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is less than a predetermined amount, the downstream catalyst 42 is kept warm by using the secondary air heated by the heat of the second electric heating catalyst 43.
 GPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T2以上の長さの場合は、第4保温制御を実施する。つまり、GPF41に捕集されている排気微粒子の堆積量Sが所定量以上の場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。 When the combustion time Tp corresponding to the accumulated amount S of the exhaust fine particles collected in the GPF 41 is a length of the time T2 or more, the fourth heat retention control is performed. That is, when the accumulated amount S of the exhaust particles collected in the GPF 41 is equal to or more than a predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated in the GPF 41 start to burn to raise the temperature of the GPF 41.
 つまり、第4実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sに応じて電気加熱触媒40と第2電気加熱触媒43の通電を制御する第4触媒制御部に相当する。 That is, the control unit 51 of the fourth embodiment corresponds to the fourth catalyst control unit that controls the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 according to the accumulated amount S of the exhaust fine particles collected in the GPF 41. To do.
 このような第4実施例の車両1においては、上述した第1実施例と略同様の作用効果を得ることができる。 In such a vehicle 1 of the fourth embodiment, it is possible to obtain substantially the same effect as that of the first embodiment described above.
 また、第4実施例の車両1においては、第3保温制御中に第2電気加熱触媒43へ供給される単位時間当たりの電力量が、上述した第1保温制御中に電気加熱触媒40へ供給される単位時間当たりの電力量よりも少なくなる。これは、第1保温制御では、電気加熱触媒40と下流側触媒42との間に位置するGPF41によって二次空気の熱が奪われるからである。 Further, in the vehicle 1 of the fourth embodiment, the amount of electric energy supplied to the second electric heating catalyst 43 during the third heat retention control is supplied to the electric heating catalyst 40 during the first heat retention control described above. It will be less than the amount of electricity per unit time. This is because in the first heat retention control, the heat of the secondary air is taken away by the GPF 41 located between the electric heating catalyst 40 and the downstream catalyst 42.
 従って、第4実施例の車両1は、GPF41に捕集されている排気微粒子の堆積量Sが所定量より少ない場合に、上述した第1実施例よりも少ない電力量で下流側触媒42を保温することができる。 Therefore, in the vehicle 1 of the fourth embodiment, when the accumulated amount S of the exhaust fine particles collected in the GPF 41 is less than the predetermined amount, the vehicle 1 of the fourth embodiment keeps the downstream catalyst 42 warm with a smaller electric energy than the above-mentioned first embodiment. can do.
 図12は、第4実施例における車両1の制御の流れの一例を示すフローチャートである。本ルーチンは、車両1の走行中に、コントロールユニット51により所定時間毎(例えば、10ms毎)に繰り返し実行される。 FIG. 12 is a flowchart showing an example of the control flow of the vehicle 1 in the fourth embodiment. This routine is repeatedly executed by the control unit 51 at predetermined time intervals (for example, every 10 ms) while the vehicle 1 is traveling.
 ステップS61では、車両走行中に停止している内燃機関10を始動する条件が成立したか否かを判定する。ステップS61にて内燃機関10を始動しない場合は、ステップS62へ進む。ステップS61にて内燃機関10を始動する場合は、ステップS72へ進む。 In step S61, it is determined whether or not the condition for starting the internal combustion engine 10 that is stopped while the vehicle is running is satisfied. If the internal combustion engine 10 is not started in step S61, the process proceeds to step S62. When starting the internal combustion engine 10 in step S61, the process proceeds to step S72.
 ステップS62では、内燃機関10が停止中であるか否かを判定する。内燃機関10が停止中である場合は、ステップS62からステップS63へ進む。内燃機関10が停止中でない場合は、今回のルーチンを終了する。 In step S62, it is determined whether or not the internal combustion engine 10 is stopped. If the internal combustion engine 10 is stopped, the process proceeds from step S62 to step S63. If the internal combustion engine 10 is not stopped, the current routine is terminated.
 ステップS63では、保温制御(第3保温制御あるいは第4保温制御)を実施中であるか否かを判定する。保温制御を実施していない場合は、ステップS63からステップS64へ進む。保温制御を実施している場合は、今回のルーチンを終了する。 In step S63, it is determined whether or not the heat retention control (third heat retention control or fourth heat retention control) is being implemented. If the heat retention control is not performed, the process proceeds from step S63 to step S64. If heat retention control is being implemented, this routine ends.
 ステップS64では、第3保温制御実施時の消費電力特性を算出する。第3保温制御実施時の消費電力特性とは、第3保温制御を実施した場合の第2電気加熱触媒43の消費電力の積算値の変化を示す特性線と同義である。 In step S64, the power consumption characteristic when the third heat retention control is executed is calculated. The power consumption characteristic when the third heat retention control is carried out is synonymous with a characteristic line showing a change in the integrated value of the power consumption of the second electric heating catalyst 43 when the third heat retention control is carried out.
 ステップS65では、第4保温制御実施時の消費電力特性を算出する。第4保温制御実施時の消費電力特性とは、第4保温制御を実施した場合の電気加熱触媒40の消費電力の積算値の変化を示す特性線と同義である。 In step S65, the power consumption characteristic when the fourth heat retention control is executed is calculated. The power consumption characteristic when the fourth heat retention control is carried out is synonymous with a characteristic line showing a change in the integrated value of the power consumption of the electric heating catalyst 40 when the fourth heat retention control is carried out.
 ステップS66では、時間T2を算出する。時間T2は、第3、第4保温制御の開始からこれらの特性線が交差するまでの経過時間である。 In step S66, the time T2 is calculated. The time T2 is the elapsed time from the start of the third and fourth heat retention controls to the intersection of these characteristic lines.
 ステップS67では、GPF41に捕集された排気微粒子の堆積量Sを算出する。 In step S67, the accumulated amount S of the exhaust fine particles collected in the GPF 41 is calculated.
 ステップS68では、堆積量Sを用いて排気微粒子の燃焼時間Tpを算出する。燃焼時間Tpは、GPF41に捕集された排気微粒子が所定の一定条件で全て燃焼するまでの時間である。 In step S68, the combustion time Tp of the exhaust fine particles is calculated using the accumulated amount S. The combustion time Tp is the time until all the exhaust fine particles collected in the GPF 41 are burned under a predetermined constant condition.
 ステップS69では、燃焼時間Tpが時間T2よりも小さいか否かを判定する。燃焼時間Tpが時間T2よりも小さい場合は、ステップS70へ進み、第3保温制御を実施して今回のルーチンを終了する。燃焼時間Tpが時間T2以上の場合は、ステップS71へ進み、第4保温制御を実施して今回のルーチンを終了する。 In step S69, it is determined whether or not the burning time Tp is smaller than the time T2. If the combustion time Tp is smaller than the time T2, the process proceeds to step S70, the third heat retention control is performed, and the current routine is completed. If the combustion time Tp is time T2 or more, the process proceeds to step S71, the fourth heat retention control is performed, and the current routine is completed.
 ステップS72では、保温制御(第3保温制御あるいは第4保温制御)を実施中であるか否かを判定する。保温制御を実施している場合は、ステップS73へ進み、保温制御を終了して今回のルーチンを終了する。保温制御を実施していない場合は、今回のルーチンを終了する。 In step S72, it is determined whether or not the heat retention control (third heat retention control or fourth heat retention control) is being implemented. If the heat retention control is being implemented, the process proceeds to step S73, the heat retention control is finished, and the current routine is finished. If the heat retention control is not implemented, this routine ends.
 第4実施例において、第4保温制御を実施している際に、GPF41に捕集された全ての排気微粒子が燃焼し終えた場合には、第4保温制御を終了する。つまり、第4実施例においては、内燃機関10の停止中に第4保温制御を開始した場合、内燃機関10の始動前に排気微粒子が燃え尽きると第4保温制御は終了する。 In the fourth embodiment, when all the exhaust fine particles collected in the GPF 41 are completely burned while the fourth heat retention control is being carried out, the fourth heat retention control is terminated. That is, in the fourth embodiment, when the fourth heat retention control is started while the internal combustion engine 10 is stopped, the fourth heat retention control ends when the exhaust fine particles burn out before the start of the internal combustion engine 10.
 なお、第4実施例においては、第4保温制御の実施中にGPF41に捕集された排気微粒子が燃え尽きた場合、内燃機関10が再始動するまで第2電気加熱触媒43に通電して、第3保温制御のように二次空気で下流側触媒42を保温するようにしてもよい。 In the fourth embodiment, when the exhaust fine particles collected in the GPF 41 are burned out during the execution of the fourth heat retention control, the second electric heating catalyst 43 is energized until the internal combustion engine 10 is restarted. 3 The downstream catalyst 42 may be kept warm with secondary air as in the heat retention control.
 図13は、第4実施例における車両1で第4保温制御を実施した場合の一例を示すタイミングチャートである。なお、図13に示す例では、GPF41に捕集された排気微粒子が燃え尽きると、内燃機関10が再始動するまで第2電気加熱触媒43に通電している。 FIG. 13 is a timing chart showing an example of the case where the fourth heat retention control is performed on the vehicle 1 in the fourth embodiment. In the example shown in FIG. 13, when the exhaust fine particles collected in the GPF 41 are burned out, the second electric heating catalyst 43 is energized until the internal combustion engine 10 is restarted.
 図13における時刻t1は、車両1の走行中に内燃機関10が停止するタイミングである。図13における時刻t1では、電気加熱触媒40への通電を開始し、かつ二次空気の供給を開始する。 The time t1 in FIG. 13 is the timing at which the internal combustion engine 10 stops while the vehicle 1 is traveling. At time t1 in FIG. 13, the electric heating catalyst 40 is started to be energized and the secondary air is started to be supplied.
 図13における時刻t2は、GPF41に捕集された排気微粒子の燃焼が始まるタイミングである。図13における時刻t2では、電気加熱触媒40への通電を終了する。 The time t2 in FIG. 13 is the timing at which the combustion of the exhaust fine particles collected in the GPF 41 starts. At time t2 in FIG. 13, the energization of the electric heating catalyst 40 is terminated.
 図13における時刻t3は、GPF41に捕集された排気微粒子が燃え尽きるタイミングである。図13における時刻t3では、第2電気加熱触媒43への通電を開始する。このとき第2電気加熱触媒43に供給される電力量は、第3保温制御において第2電気加熱触媒43に供給される電力量と同じである。 The time t3 in FIG. 13 is the timing at which the exhaust fine particles collected in the GPF 41 are burned out. At time t3 in FIG. 13, energization of the second electric heating catalyst 43 is started. At this time, the amount of electric power supplied to the second electric heating catalyst 43 is the same as the amount of electric energy supplied to the second electric heating catalyst 43 in the third heat retention control.
 時刻t3以降は、GPF41の上流側に熱源がないため、GPF41の温度が徐々に低下する。 After time t3, since there is no heat source on the upstream side of GPF41, the temperature of GPF41 gradually decreases.
 図13における時刻t4は、内燃機関10が始動(再始動)するタイミングである。図13における時刻t4では、第2電気加熱触媒43への通電を終了し、かつ二次空気の供給を終了する。 The time t4 in FIG. 13 is the timing at which the internal combustion engine 10 starts (restarts). At time t4 in FIG. 13, the energization of the second electric heating catalyst 43 is terminated, and the supply of secondary air is terminated.
 図13における時刻t1~時刻t4の期間は、内燃機関10を始動することなく車両1を走行させている期間である。 The period from time t1 to time t4 in FIG. 13 is a period in which the vehicle 1 is running without starting the internal combustion engine 10.
 なお、図13中に破線で示す特性線P3、P4は、内燃機関10が停止してから再始動するまでの間に、電気加熱触媒40や第2電気加熱触媒43への通電や、GPF41に捕集された排気微粒子を燃焼させなかった場合のGPF41の温度変化(特性線P3)と、下流側触媒42の温度変化(特性線P4)とを示したものである。 The characteristic lines P3 and P4 shown by the broken lines in FIG. 13 indicate the energization of the electric heating catalyst 40 and the second electric heating catalyst 43 and the GPF 41 between the time when the internal combustion engine 10 is stopped and the time when the internal combustion engine 10 is restarted. The temperature change of the GPF 41 (characteristic line P3) and the temperature change of the downstream catalyst 42 (characteristic line P4) when the collected exhaust fine particles are not burned are shown.
 以上、本発明の具体的な実施例を説明してきたが、本発明は、上述した実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更が可能である。 Although specific examples of the present invention have been described above, the present invention is not limited to the above-mentioned examples, and various modifications can be made without departing from the spirit of the present invention.
 例えば、内燃機関10は、上述した各実施例においてはガソリンエンジンであったが、ディーゼルエンジンであってもよい。この場合には、排気微粒子フィルタとしてGPF41に代えてDPF(Diesel Particulate Filter)を用いればよい。 For example, the internal combustion engine 10 was a gasoline engine in each of the above-described embodiments, but may be a diesel engine. In this case, a DPF (Diesel Particulate Filter) may be used instead of the GPF 41 as the exhaust particulate filter.
 上述した各実施例では、内燃機関10がシリーズハイブリッド車両に搭載されているが、本発明は、シリーズハイブリッド車両への適用に限定されるものではなく、パラレルハイブリッド車両や内燃機関のみを駆動源とする車両(非ハイブリッド車両)に対しても適用可能である。詳述すると、本発明は、走行中にコーストストップやセーリングストップ等により内燃機関を停止する制御を有する車両に対して適用可能である。 In each of the above-described embodiments, the internal combustion engine 10 is mounted on the series hybrid vehicle, but the present invention is not limited to the application to the series hybrid vehicle, and the drive source is only the parallel hybrid vehicle or the internal combustion engine. It is also applicable to vehicles (non-hybrid vehicles). More specifically, the present invention is applicable to a vehicle having a control to stop an internal combustion engine by a coast stop, a sailing stop, or the like while traveling.
 また、第4実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sに代えて、電気加熱触媒40に電力を供給するバッテリ8の充電状態(バッテリSOC)に応じて電気加熱触媒40の通電を制御するようにしてもよい。 Further, the control unit 51 of the fourth embodiment is charged according to the charging state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40 instead of the accumulated amount S of the exhaust fine particles collected in the GPF 41. The energization of the heating catalyst 40 may be controlled.
 この場合、コントロールユニット51は、バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T2よりも短い場合は、第3保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量よりも少ない場合は、第2電気加熱触媒43の熱で昇温させた二次空気を用いて下流側触媒42を保温する。そして、コントロールユニット51は、バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T2以上の長さの場合は、第4保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量以上の場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。 In this case, the control unit 51 performs the third heat retention control when the EV travel time Ts corresponding to the battery SOC of the battery 8 is shorter than the time T2. That is, when the battery SOC of the battery 8 is less than a predetermined amount, the downstream side catalyst 42 is kept warm by using the secondary air heated by the heat of the second electric heating catalyst 43. Then, when the EV travel time Ts corresponding to the battery SOC of the battery 8 is a length of time T2 or more, the control unit 51 performs the fourth heat retention control. That is, when the battery SOC of the battery 8 is a predetermined amount or more, the electric heating catalyst 40 is energized to raise the temperature of the GPF 41 until the exhaust particles accumulated on the GPF 41 start to burn.
 さらに、第4実施例のコントロールユニット51は、GPF41に捕集された排気微粒子の堆積量Sと、電気加熱触媒40に電力を供給するバッテリ8の充電状態(バッテリSOC)と、の関係に応じて電気加熱触媒40の通電を制御するようにしてもよい。 Further, the control unit 51 of the fourth embodiment corresponds to the relationship between the accumulated amount S of the exhaust fine particles collected in the GPF 41 and the charged state (battery SOC) of the battery 8 that supplies electric power to the electric heating catalyst 40. The energization of the electric heating catalyst 40 may be controlled.
 この場合、コントロールユニット51は、バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T2よりも長く、かつGPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T2よりも長い場合は、第4保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量よりも多く、かつ排気微粒子の堆積量Sが所定量よりも多い場合は、GPF41に堆積している排気微粒子が燃焼し始めるまで電気加熱触媒40に通電してGPF41を昇温させる。そして、コントロールユニット51は、バッテリ8のバッテリSOCに対応するEV走行時間Tsが時間T2以下の長さ、あるいはGPF41に捕集された排気微粒子の堆積量Sに対応する燃焼時間Tpが時間T2以下の長さの場合は、第3保温制御を実施する。つまり、バッテリ8のバッテリSOCが所定量以下の場合や、排気微粒子の堆積量Sが所定量以下の場合には、第2電気加熱触媒43の熱で昇温させた二次空気を用いて下流側触媒42を保温する。 In this case, the control unit 51 has an EV travel time Ts corresponding to the battery SOC of the battery 8 longer than the time T2, and a combustion time Tp corresponding to the accumulated amount S of exhaust fine particles collected in the GPF 41 is longer than the time T2. If it is too long, the fourth heat retention control is carried out. That is, when the battery SOC of the battery 8 is larger than the predetermined amount and the accumulated amount S of the exhaust particles is larger than the predetermined amount, the electric heating catalyst 40 is energized until the exhaust particles accumulated on the GPF 41 start to burn. The temperature of GPF 41 is raised. The control unit 51 has a length in which the EV travel time Ts corresponding to the battery SOC of the battery 8 is time T2 or less, or a combustion time Tp corresponding to the accumulated amount S of exhaust particles collected in the GPF 41 is time T2 or less. In the case of the length of, the third heat retention control is carried out. That is, when the battery SOC of the battery 8 is a predetermined amount or less, or when the accumulated amount S of the exhaust fine particles is a predetermined amount or less, the secondary air heated by the heat of the second electric heating catalyst 43 is used downstream. The side catalyst 42 is kept warm.
 なお、GPF41等の排気微粒子フィルタに供給される二次空気の供給量は、例えば、いわゆるフューエルカットやモータリングの際に流れる空気量よりも少ない量となる。 The amount of secondary air supplied to the exhaust particulate filter such as GPF41 is smaller than the amount of air flowing during so-called fuel cutting or motoring, for example.
 上述した各実施例は、車両の制御方法及び車両に関するものである。 Each of the above-described embodiments relates to a vehicle control method and a vehicle.

Claims (14)

  1.  内燃機関と、当該内燃機関の排気通路に設けられた排気浄化装置と、を有する車両の制御方法において、
     上記排気浄化装置は、通電することによって発熱する電気加熱触媒と、当該電気加熱触媒の下流側に位置して排気中の排気微粒子を捕集可能な排気微粒子フィルタと、当該排気微粒子フィルタの下流側に位置する三元触媒と、を備え、
     走行中で上記内燃機関が停止している際に、上記電気加熱触媒に通電することで上記三元触媒を保温する車両の制御方法。
    In a vehicle control method having an internal combustion engine and an exhaust purification device provided in an exhaust passage of the internal combustion engine.
    The exhaust gas purification device includes an electric heating catalyst that generates heat when energized, an exhaust fine particle filter that is located on the downstream side of the electric heating catalyst and can collect exhaust fine particles in the exhaust, and a downstream side of the exhaust fine particle filter. With a three-way catalyst located in,
    A method for controlling a vehicle that keeps the three-way catalyst warm by energizing the electric heating catalyst while the internal combustion engine is stopped while driving.
  2.  上記電気加熱触媒の上流側に二次空気が供給可能となっている請求項1に記載の車両の制御方法。 The vehicle control method according to claim 1, wherein secondary air can be supplied to the upstream side of the electric heating catalyst.
  3.  上記排気微粒子フィルタに捕集された排気微粒子の堆積量に応じて上記電気加熱触媒の通電を制御する請求項1または2に記載の車両の制御方法。 The vehicle control method according to claim 1 or 2, wherein the energization of the electric heating catalyst is controlled according to the accumulated amount of the exhaust particulates collected in the exhaust particulate filter.
  4.  上記排気微粒子フィルタに捕集された排気微粒子の堆積量が所定量より少ない場合は、上記電気加熱触媒に通電し、当該電気加熱触媒の熱で昇温させた二次空気を用いて上記三元触媒を保温する請求項3に記載の車両の制御方法。 When the accumulated amount of exhaust fine particles collected by the exhaust fine particle filter is less than a predetermined amount, the electric heating catalyst is energized and the secondary air heated by the heat of the electric heating catalyst is used to generate the three elements. The vehicle control method according to claim 3, wherein the catalyst is kept warm.
  5.  上記排気微粒子フィルタに捕集された排気微粒子の堆積量が所定量以上の場合は、上記排気微粒子フィルタに堆積している排気微粒子が燃焼し始めるまで上記電気加熱触媒に通電して上記排気微粒子フィルタを昇温させる請求項3または4に記載の車両の制御方法。 When the accumulated amount of the exhaust particulates collected in the exhaust particulate filter is equal to or more than a predetermined amount, the electric heating catalyst is energized until the exhaust particulates accumulated in the exhaust particulate filter start to burn, and the exhaust particulate filter is used. The vehicle control method according to claim 3 or 4, wherein the temperature is raised.
  6.  上記電気加熱触媒に電力を供給するバッテリの充電状態に応じて上記電気加熱触媒の通電を制御する請求項1または2に記載の車両の制御方法。 The vehicle control method according to claim 1 or 2, wherein the energization of the electric heating catalyst is controlled according to the charging state of the battery that supplies electric power to the electric heating catalyst.
  7.  上記電気加熱触媒に電力を供給する上記バッテリのバッテリSOCが所定量よりも少ない場合、上記電気加熱触媒に通電し、当該電気加熱触媒の熱で昇温させた二次空気を用いて上記三元触媒を保温する請求項6に記載の車両の制御方法。 When the battery SOC of the battery that supplies electric power to the electric heating catalyst is less than a predetermined amount, the electric heating catalyst is energized and the secondary air heated by the heat of the electric heating catalyst is used to generate the three elements. The vehicle control method according to claim 6, wherein the catalyst is kept warm.
  8.  上記電気加熱触媒に電力を供給する上記バッテリのバッテリSOCが所定量以上の場合、上記排気微粒子フィルタに堆積している排気微粒子が燃焼し始めるまで上記電気加熱触媒に通電して上記排気微粒子フィルタを昇温させる請求項6または7に記載の車両の制御方法。 When the battery SOC of the battery that supplies power to the electric heating catalyst is a predetermined amount or more, the electric heating catalyst is energized until the exhaust fine particles accumulated on the exhaust fine particle filter start to burn, and the exhaust fine particle filter is operated. The vehicle control method according to claim 6 or 7, wherein the temperature is raised.
  9.  上記排気微粒子フィルタに捕集された排気微粒子の堆積量と、上記電気加熱触媒に電力を供給するバッテリの充電状態と、の関係に応じて上記電気加熱触媒の通電を制御する請求項1または2に記載の車両の制御方法。 Claim 1 or 2 that controls energization of the electric heating catalyst according to the relationship between the accumulated amount of exhaust fine particles collected by the exhaust fine particle filter and the state of charge of the battery that supplies electric power to the electric heating catalyst. The vehicle control method described in.
  10.  上記電気加熱触媒に電力を供給する上記バッテリのバッテリSOCが所定量よりも多く、上記排気微粒子フィルタに捕集された排気微粒子の堆積量が所定量より少ない場合は、上記電気加熱触媒に通電し、当該電気加熱触媒の熱で昇温させた二次空気を用いて上記三元触媒を保温する請求項9に記載の車両の制御方法。 When the battery SOC of the battery that supplies power to the electric heating catalyst is more than a predetermined amount and the accumulated amount of exhaust fine particles collected by the exhaust fine particle filter is less than a predetermined amount, the electric heating catalyst is energized. The vehicle control method according to claim 9, wherein the three-way catalyst is kept warm by using secondary air heated by the heat of the electric heating catalyst.
  11.  上記電気加熱触媒に電力を供給する上記バッテリのバッテリSOCが所定量以下、あるいは上記排気微粒子フィルタに捕集された排気微粒子の堆積量が所定量以上の場合は、上記排気微粒子フィルタに堆積している排気微粒子が燃焼し始めるまで上記電気加熱触媒に通電して上記排気微粒子フィルタを昇温させる請求項9または10に記載の車両の制御方法。 If the battery SOC of the battery that supplies power to the electric heating catalyst is less than or equal to a predetermined amount, or if the amount of accumulated exhaust particles collected by the exhaust particulate filter is greater than or equal to the predetermined amount, they are deposited on the exhaust particulate filter. The vehicle control method according to claim 9 or 10, wherein the electric heating catalyst is energized to raise the temperature of the exhaust particulate filter until the exhaust particulates start to burn.
  12.  上記排気浄化装置は、上記排気微粒子フィルタと上記三元触媒との間に第2電気加熱触媒を備え、上記排気微粒子フィルタに捕集された排気微粒子の堆積量が所定量よりも少ない場合は、上記第2電気加熱触媒に通電し、当該第2電気加熱触媒の熱で昇温させた二次空気を用いて上記三元触媒を保温する請求項1~11のいずれかに記載の車両の制御方法。 The exhaust gas purification device includes a second electric heating catalyst between the exhaust fine particle filter and the three-way catalyst, and when the accumulated amount of exhaust fine particles collected by the exhaust fine particle filter is less than a predetermined amount, The vehicle control according to any one of claims 1 to 11, wherein the second electric heating catalyst is energized and the ternary catalyst is kept warm by using the secondary air heated by the heat of the second electric heating catalyst. Method.
  13.  内燃機関と、
     上記内燃機関の排気通路に設けられ、通電することによって発熱する電気加熱触媒と、当該電気加熱触媒の下流側に位置して排気中の排気微粒子を捕集可能な排気微粒子フィルタと、当該排気微粒子フィルタの下流側に位置する三元触媒と、を備えた排気浄化装置と、
     上記電気加熱触媒に対して酸素を供給することが可能な酸素供給部と、を有する車両。
    With an internal combustion engine
    An electric heating catalyst provided in the exhaust passage of the internal combustion engine and generating heat when energized, an exhaust fine particle filter located downstream of the electric heating catalyst and capable of collecting exhaust fine particles in the exhaust, and the exhaust fine particles. An exhaust gas purification device equipped with a three-way catalyst located on the downstream side of the filter,
    A vehicle having an oxygen supply unit capable of supplying oxygen to the electric heating catalyst.
  14.  走行中で上記内燃機関が停止している際に、上記電気加熱触媒に通電することで上記三元触媒を保温する制御部を有する請求項13に記載の車両。 The vehicle according to claim 13, further comprising a control unit that keeps the three-way catalyst warm by energizing the electric heating catalyst while the internal combustion engine is stopped while traveling.
PCT/IB2019/000594 2019-06-13 2019-06-13 Vehicle control method and vehicle WO2020249991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000594 WO2020249991A1 (en) 2019-06-13 2019-06-13 Vehicle control method and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000594 WO2020249991A1 (en) 2019-06-13 2019-06-13 Vehicle control method and vehicle

Publications (1)

Publication Number Publication Date
WO2020249991A1 true WO2020249991A1 (en) 2020-12-17

Family

ID=73780937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000594 WO2020249991A1 (en) 2019-06-13 2019-06-13 Vehicle control method and vehicle

Country Status (1)

Country Link
WO (1) WO2020249991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847122A (en) * 2021-09-22 2021-12-28 奇瑞汽车股份有限公司 GPF regeneration control method and device for automobile and computer storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617644A (en) * 1992-07-03 1994-01-25 Mazda Motor Corp Exhaust gas purifying device for engine
JP2005273546A (en) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system
JP2008121571A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2015224551A (en) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 Internal combustion engine exhaust emission control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617644A (en) * 1992-07-03 1994-01-25 Mazda Motor Corp Exhaust gas purifying device for engine
JP2005273546A (en) * 2004-03-25 2005-10-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system
JP2008121571A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2015224551A (en) * 2014-05-26 2015-12-14 トヨタ自動車株式会社 Internal combustion engine exhaust emission control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847122A (en) * 2021-09-22 2021-12-28 奇瑞汽车股份有限公司 GPF regeneration control method and device for automobile and computer storage medium

Similar Documents

Publication Publication Date Title
CN108223063B (en) Hybrid vehicle
CN108688647B (en) Automobile, automobile control device, and automobile control method
US10480381B2 (en) Vehicle and control method for vehicle
US9988042B2 (en) Hybrid vehicle
US20070246272A1 (en) Control device for a hybrid electric vehicle
JP2015202832A (en) hybrid vehicle
JP2015140150A (en) hybrid vehicle
CN107914702B (en) Hybrid electric vehicle and control method for hybrid electric vehicle
WO2009139283A1 (en) Device and method for controlling vehicle
JP2018159296A (en) Automobile
JP2007246009A (en) Controller for hybrid electric car
JP6149510B2 (en) Hybrid vehicle and control method thereof
JP2020111164A (en) Hybrid vehicle
WO2020249991A1 (en) Vehicle control method and vehicle
JP7188587B2 (en) Vehicle control method and vehicle control device
JP7103171B2 (en) Hybrid car
WO2020208389A1 (en) Method and device for controlling hybrid vehicle
JP3722769B2 (en) Post-processing controller for hybrid engine system
JP7124883B2 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP2024068940A (en) Hybrid Vehicles
JP2020111080A (en) Hybrid vehicle
JP2020111165A (en) Hybrid vehicle
JP2023169937A (en) Driving force control device of hybrid vehicle
JP2022166400A (en) hybrid vehicle
JP2022050791A (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP