WO2020249113A1 - 一种低铬耐蚀高强多晶高温合金及其制备方法 - Google Patents

一种低铬耐蚀高强多晶高温合金及其制备方法 Download PDF

Info

Publication number
WO2020249113A1
WO2020249113A1 PCT/CN2020/095958 CN2020095958W WO2020249113A1 WO 2020249113 A1 WO2020249113 A1 WO 2020249113A1 CN 2020095958 W CN2020095958 W CN 2020095958W WO 2020249113 A1 WO2020249113 A1 WO 2020249113A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
temperature
ingot
corrosion
room temperature
Prior art date
Application number
PCT/CN2020/095958
Other languages
English (en)
French (fr)
Inventor
严靖博
谷月峰
袁勇
杨征
张醒兴
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Priority to EP20821820.6A priority Critical patent/EP3985139A4/en
Publication of WO2020249113A1 publication Critical patent/WO2020249113A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention belongs to the field of high-temperature alloy materials, and specifically relates to a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy and a preparation method thereof.
  • Thermal power generation has been the most important power generation technology in my country for a long time, and improving the steam parameters of the unit is considered the most effective way to solve the above problems.
  • a large number of past practices have shown that the service performance of key component materials is the main reason that restricts the improvement of boiler unit steam parameters.
  • the super/reheater pipe has Service performance puts forward extremely high requirements. The super/reheater will withstand multiple factors such as high temperature creep, thermal fatigue, oxidation and high temperature flue gas corrosion during service.
  • the substantial improvement of the main steam parameters of thermal power units the development of superalloy materials that can meet the performance requirements of the over/reheater tubes of high-parameter units has become an urgent issue in the thermal power industry.
  • the superheater/reheater puts forward extremely high requirements on the durable strength and corrosion resistance of its candidate materials.
  • a series of nickel-based deformed superalloy materials have been developed abroad, such as Inconel 740H developed by Special Metals Corporation of the United States and Haynes 282 developed by Hastelloy , CCA 617 developed by ThyssenKrupp in Germany, Nimonic 263 developed by Rolls-Royce in the UK, FENIX700 developed by Hitachi, TOS1X developed by Toshiba, Japan, LTESR700 developed by Mitsubishi, and other nickel-based deformed superalloys.
  • the current candidate materials often have a lower Al/Ti ratio.
  • the high content of Cr in the alloy also guarantees its anti-oxidation and anti-corrosion properties.
  • the Al element is an important precipitation strengthening promotion element in the alloy, and higher addition of Al element helps to increase the volume fraction of Ni 3 Al in the alloy, thereby enabling the alloy to obtain excellent strength properties.
  • the addition of Al will also promote the formation of Al 2 O 3 , which will greatly improve the high-temperature oxidation and corrosion resistance of the alloy.
  • the addition of Al element can also cause problems such as instability of the alloy structure, especially the higher Al element content has a significant impact on the solidification forming structure of the alloy.
  • the purpose of the present invention is to provide a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy and a preparation method thereof.
  • the Al element is used as the characteristic of Ni 3 Al strengthening and forming element, and combined with its characteristics of improving the corrosion resistance of the alloy, it is added to ensure the alloy During the oxidation/corrosion process, the critical Al content required for Al 2 O 3 can be formed, and the Al content range in the alloy is strictly controlled under the premise of ensuring the stability of the alloy structure to promote the secondary strengthening of a large amount of uniformly dispersed distribution in the alloy. Phase to obtain good strength performance.
  • a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy characterized in that the alloy composition meets the following range requirements in terms of mass percentage: Cr: 15-18%, Co: 15-20%, Ti: 0.5-1.5%, Al: 3.5 to 4.5%, W: 5 to 8.5%, Si: ⁇ 0.5%, Mn: ⁇ 0.5%, Nb: 0.5 to 1.5%, C: 0.03 to 0.08%, and the balance is Ni.
  • a method for preparing a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy includes the following steps:
  • Hot rolling Rolling high-temperature alloy ingots with a total deformation of 50% to 70%, and the deformation of each pass is controlled within the range of 15% to 25%, and the deformation temperature is 1130 to 1170°C;
  • a further improvement of the present invention is that the smelting in step 2) is carried out in a vacuum smelting furnace, and the vacuum degree during smelting is not higher than 1.0 ⁇ 10 -4 MPa.
  • a further improvement of the present invention is that in step 2), before the temperature reaches 900°C during solidification into an ingot, the cooling rate is controlled not to exceed 15°C/min, and after the temperature reaches 900°C during solidification into an ingot, the temperature exceeds 10°C. Cool down to room temperature at a cooling rate of °C/min.
  • a further improvement of the present invention is that, in step 2), the time from the solidification of the alloy mother liquid into an ingot to cooling to room temperature does not exceed 15 minutes.
  • a further improvement of the present invention is that the specific process of step 3) is: take out the ingot, then heat the ingot to 1030 ⁇ 1070°C for half an hour, then continue to heat up to 1170 ⁇ 1200°C in the heat treatment furnace for 20 ⁇ 24 Hours, and finally cooled to room temperature.
  • a further improvement of the present invention is that in step 3), the heating rate does not exceed 10°C/min when the ingot is heated to 1030-1070°C, and the heating rate does not exceed 5°C/min when the temperature is raised to 1170°C to 1200°C.
  • a further improvement of the present invention is that in step 5), the temperature is raised from room temperature to 1110 ⁇ 1130°C at a heating rate not exceeding 10°C/min, and the temperature is raised from room temperature to 750 ⁇ 770°C at a heating rate not exceeding 10°C/min, and then Raise the temperature to 840 ⁇ 870°C at a heating rate not exceeding 10°C/min.
  • the present invention has the following beneficial effects:
  • the present invention has developed a new type of high-temperature alloy with higher Al and Ti content.
  • the higher Al and Cr element content in the alloy also ensures that it has excellent oxidation resistance and corrosion resistance. .
  • the alloy prepared according to the method of the present invention has excellent strength performance and corrosion resistance, as well as good structure stability.
  • the alloy matrix is austenite with a disordered face-centered structure.
  • the average grain size is less than 100m.
  • the uniformly dispersed fine spherical Ni3Al precipitates are not larger than 50nm in size.
  • the tensile yield strength of the alloy at room temperature and 850°C is higher than 850MPa and 550MPa, respectively, and the alloy has a weight change after 500 hours of corrosion in a high temperature flue gas environment (N 2 -15% CO 2 -3.5% O 2 -0.1% SO 2 ) at 850°C Less than 0.2mg/cm 2 .
  • the alloy has excellent structural stability during heat exposure at 850°C.
  • Figure 1 shows the microstructure of the heat-treated alloy in Example 1
  • Figure 2 shows the microstructure of the alloy in the heat-exposed state (850°C/1000h) of Example 1
  • Figure 3 shows the grain boundary eutectic structure of Comparative Example 1
  • Figure 4 shows the alloy microstructure in the thermally exposed state (850°C/1000h) of Comparative Example 2
  • the precipitation strengthened alloy of the present invention is a nickel-based superalloy material.
  • a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy The alloy composition meets the following requirements in terms of mass percentage: Cr: 15-18%, Co: 15-20%, Ti: 0.5-1.5%, Al: 3.5-4.5%, W: 5 to 8.5%, Si: ⁇ 0.5%, Mn: ⁇ 0.5%, Nb: 0.5 to 1.5%, C: 0.03 to 0.08%, the balance is Ni;
  • a low-chromium, corrosion-resistant, high-strength polycrystalline high-temperature alloy including the following steps:
  • Hot rolling rolling the ingot with a total deformation of 50% to 70%, the deformation of each pass is controlled within the range of 15 to 25%, and the deformation temperature is 1130 to 1170°C;
  • the heat-resistant steel material of this embodiment includes, by mass percentage, Cr: 17%, Co: 20%, Ti: 1.5%, Al: 4.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, Nb: 1.0%, C: 0.04%, the balance is Ni;
  • the ingredients include: Cr: 17%, Co: 20%, Ti: 1.5%, Al: 4.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, Nb: 1.0 %, C: 0.04%, the balance is Ni;
  • Homogenization treatment take out the ingot, then heat the ingot to 1050°C at a rate of 10°C/min and heat it for half an hour, then continue to heat it up to 1200°C in the heat treatment furnace at a rate of 5°C/min for 24 Hours, and finally cooled to room temperature to obtain high-temperature alloy ingots;
  • Hot rolling Roll the ingot with a total deformation of 50% to 70%.
  • the deformation of each pass is controlled within the range of 15% to 25%, and the deformation temperature is 1130-1170°C;
  • Heat treatment heat the rolled alloy to 1120°C at a rate of 10°C/min and keep it for 4 hours for recrystallization. After air cooling, keep it at 760°C for 8 hours, then heat it up to 860°C for 2 hours. Air-cool to room temperature.
  • the yield strength of the alloy prepared in Example 1 is 913 MPa and 590 MPa at room temperature and 850°C, respectively, and the weight change after 500 hours of high temperature flue gas corrosion at 850°C is 0.08 mg/cm 2 .
  • the heat-resistant steel material of this embodiment includes, by mass percentage: Cr: 17%, Co: 20%, Ti: 1.0%, Al: 4.0%, W: 8.5%, Si: 0.5%, Mn: 0.5%, Nb: 1.5%, C: 0.04%, the balance is Ni;
  • the ingredients include: Cr: 17%, Co: 20%, Ti: 1.0%, Al: 4.0%, W: 8.5%, Si: 0.5%, Mn: 0.5%, Nb: 1.5 %, C: 0.04%, the balance is Ni;
  • Homogenization treatment take out the ingot, then heat the ingot to 1050°C at a rate of 10°C/min and heat it for half an hour, then continue to heat it up to 1200°C in the heat treatment furnace at a rate of 5°C/min for 24 Hours, and finally cooled to room temperature to obtain high-temperature alloy ingots;
  • Hot rolling Roll the ingot with a total deformation of 50% to 70%.
  • the deformation of each pass is controlled within the range of 15% to 25%, and the deformation temperature is 1130-1170°C;
  • Heat treatment heat the rolled alloy to 1120°C at a rate of 10°C/min and keep it for 4 hours for recrystallization. After air cooling, keep it at 760°C for 8 hours, then heat it up to 860°C for 2 hours. Air-cool to room temperature.
  • the yield strength of the alloy prepared in Example 2 was 905 MPa and 597 MPa at room temperature and 850°C, respectively, and the weight change after 500 hours of corrosion by high temperature flue gas at 850°C was 0.07 mg/cm 2 .
  • the heat-resistant steel material of this embodiment includes, by mass percentage: Cr: 21%, Co: 20%, Al: 6.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, C: 0.04%, The balance is Ni;
  • the ingredients include: Cr: 21%, Co: 20%, Al: 6.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, C: 0.04%, and the balance by mass percentage Ni;
  • Homogenization treatment take out the ingot, then heat the ingot to 1050°C at a rate of 10°C/min and heat it for half an hour, then continue to heat it up to 1200°C in the heat treatment furnace at a rate of 5°C/min for 24 Hours, and finally cooled to room temperature to obtain high-temperature alloy ingots;
  • Hot rolling Roll the ingot with a total deformation of 50% to 70%.
  • the deformation of each pass is controlled within the range of 15% to 25%, and the deformation temperature is 1130-1170°C;
  • Heat treatment heat the rolled alloy to 1120°C at a rate of 10°C/min and keep it for 4 hours for recrystallization. After air cooling, keep it at 760°C for 8 hours, then heat it up to 860°C for 2 hours. Air-cool to room temperature.
  • the yield strength of the alloy in the comparative example is 692MPa and 352MPa at room temperature and 850°C, respectively, and the weight change after 500 hours of high temperature flue gas corrosion at 850°C is 0.08mg/cm 2 .
  • the heat-resistant steel material of this embodiment includes, by mass percentage, Cr: 21%, Co: 20%, Ti: 2.0%, Al: 4.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, C: 0.04%, the balance is Ni;
  • the ingredients include: Cr: 21%, Co: 20%, Ti: 2.0%, Al: 4.0%, W: 7.0%, Si: 0.5%, Mn: 0.5%, C: 0.04 in mass percentage %, the balance is Ni;
  • Homogenization treatment take out the ingot, then heat the ingot to 1050°C at a rate of 10°C/min and heat it for half an hour, then continue to heat it up to 1200°C in the heat treatment furnace at a rate of 5°C/min for 24 Hours, and finally cooled to room temperature to obtain high-temperature alloy ingots;
  • Hot rolling Roll the ingot with a total deformation of 50% to 70%.
  • the deformation of each pass is controlled within the range of 15% to 25%, and the deformation temperature is 1130-1170°C;
  • Heat treatment heat the rolled alloy to 1120°C at a rate of 10°C/min and keep it for 4 hours for recrystallization. After air cooling, keep it at 760°C for 8 hours, then heat it up to 860°C for 2 hours. Air-cool to room temperature.
  • the yield strength of the alloy in the comparative example is 859 MPa and 567 MPa at room temperature and 850°C, respectively, and the weight change after 500 hours of high temperature flue gas corrosion at 850°C is 1.17 mg/cm 2 .
  • Hot rolling rolling the ingot with a total deformation of 50%, the deformation of each pass is controlled at 15%, and the deformation temperature is 1170°C;
  • Homogenization treatment take out the ingot, then heat the ingot to 1070°C for half an hour, then continue to heat up to 1180°C in a heat treatment furnace for 20 hours, and finally cool to room temperature to obtain a high-temperature alloy ingot;
  • Hot rolling rolling the ingot with a total deformation of 70%, the deformation of each pass is controlled at 25%, and the deformation temperature is 1130°C;
  • the matrix has an FCC structure, the average crystal grain size is about 30-70 microns, and there are fine-sized precipitated phases uniformly dispersed in the crystal grains.
  • the alloy has excellent corrosion resistance and strength properties, and its high temperature yield at room temperature 850°C is not less than 850MPa and 550MPa. In contrast, the weight gain of the alloy after 100 hours in a flue gas corrosive environment at 850°C does not exceed 0.2mg/cm 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种低铬耐蚀高强多晶高温合金及其制备方法,合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni;熔炼后均匀化处理,热轧,最后热处理。本发明的合金室温及850℃拉伸屈服强度分别高于850MPa与550MPa,并且合金经850℃高温烟气环境(N 2-15%CO 2-3.5%O 2-0.1%SO 2)腐蚀500小时后重量变化小于0.2mg/cm 2。此外,合金在850℃热暴露期间具备优异的组织稳定性。

Description

一种低铬耐蚀高强多晶高温合金及其制备方法 技术领域
本发明属高温用合金材料领域,具体涉及一种低铬耐蚀高强多晶高温合金及其制备方法。
背景技术
随着我国用电需求不断增加,能源紧缺及环境污染问题日益凸显,发展高效、节能、环保发电方式的需求越发紧迫。火力发电作为我国长期以来最主要的发电技术,提高机组蒸汽参数被认为是解决上述问题最有效的途径。以往大量实践表明,关键部件材料的服役性能是制约锅炉机组蒸汽参数提高的最主要原因,而作为火电机组锅炉中服役工况最严苛的关键部件之一,过/再热器管道对材料的服役性能提出了极高的要求。过/再热器在服役期间将承受高温蠕变、热疲劳、氧化及高温烟气腐蚀等多重因素的影响。随着火电机组主蒸汽参数的大幅提高,开发出可以满足高参数机组过/再热器管使用性能需求的高温合金材料已成为火力发电行业亟待解决的课题。
过/再热器作为火电机组锅炉中服役工况最严苛的部件,对其候选材料的持久强度及抗腐蚀性能提出了极高的要求。针对高参数火电机组锅炉再热器管对材料使用性能的需求,目前国外已开发出了一系列镍基变形高温合金材料,如美国特殊金属公司开发的Inconel 740H、美国哈氏公司开发的Haynes 282、德国蒂森克虏伯公司开发的CCA 617、英国Rolls-Royce公司开发的Nimonic 263、日本日立公司开发的FENIX700、日本东芝公司开发的TOS1X、日本三菱公司开发的LTESR700等镍基变形高温合金。为确保合金具有优异的持久强度,目前的候选材料中往往具有较低的Al/Ti比。同时,合金中较高的Cr元素含量也使其抗氧化、抗腐蚀性能得到保障。但随着火电机组蒸汽参数的不断升高,对合金性能的考研更加严苛。Al元素是合金中重要的析出强化促进元素,较高的Al元素添加有助于提高合金中Ni 3Al体积分数,进而使合金获得优异的强度性能。同时,Al元素的加入也会促进Al 2O 3的形成,对合金的高 温抗氧化、抗腐蚀能力带来极大改善。然而,Al元素的加入也会造成合金组织不稳定等问题,尤其较高的Al元素含量对合金的凝固成型组织带来显著影响。
发明内容
本发明的目的在于提供一种低铬耐蚀高强多晶高温合金及其制备方法,通过Al元素作为Ni 3Al强化形成元素的特点,并结合其对合金抗腐蚀性能改善的特性,加入确保合金氧化/腐蚀过程中可形成Al 2O 3所需的临界Al含量,并在保障合金组织稳定性的前提下严格控制合金中Al元素的含量范围,促进合金内部析出大量均匀弥散分布的二次强化相以获得良好的强度性能。
为了实现以上发明目的,本发明所采用的技术方案为:
一种低铬耐蚀高强多晶高温合金,其特征在于:该合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni。
一种低铬耐蚀高强多晶高温合金的制备方法,包括以下步骤:
1)配制合金:合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni;
2)熔炼:将配制的合金熔炼成合金母液,然后采用电渣重熔工艺精炼,冷却,合金母液凝固成铸锭后且在凝固成铸锭过程中温度达到900℃前,控制冷却速率不超过15℃/min,在凝固成铸锭过程中温度达到900℃后以超过10℃/min的冷却速度冷却至室温;
3)均匀化处理,得到高温合金铸锭;
4)热轧:将高温合金铸锭进行轧制,总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130~1170℃;
5)热处理:将轧制后的合金在1110~1130℃保温4小时进行再结晶处理,空冷至温室后在750~770℃保温7~9小时,随后升温至840~870℃保温1.5~2.5小时,然后空冷至室温。
本发明进一步的改进在于,步骤2)中熔炼在真空熔炼炉内进行,熔炼时真空度不高于1.0×10 -4MPa。
本发明进一步的改进在于,步骤2)中在凝固成铸锭过程中温度达到900℃前,控制冷却速率不超过15℃/min,在凝固成铸锭过程中温度达到900℃后,以超过10℃/min的冷却速度冷却至室温。
本发明进一步的改进在于,步骤2)中从合金母液凝固成铸锭开始至冷却至室温所用时间不超过15min。
本发明进一步的改进在于,步骤3)的具体过程为:将铸锭取出,随后将铸锭加热至1030~1070℃保温半小时后,继续升温至1170~1200℃的热处理炉内保温20~24小时,最后冷却至室温。
本发明进一步的改进在于,步骤3)中将铸锭加热至1030~1070℃时升温速率不超过10℃/min,升温至1170℃~1200℃时升温速率不高于5℃/min。
本发明进一步的改进在于,步骤5)中自室温以不超过10℃/min的升温速率升温至1110~1130℃,自室温以不超过10℃/min的升温速率升温至750~770℃,再以不超过10℃/min的升温速率升温至840~870℃。
与现有技术相比,本发明具有的有益效果:
本发明基于析出强化的合金设计理念,开发出了一种具有较高Al、Ti含量的新型高温合金,合金中较高的Al、Cr元素含量也保障了其具备优异的抗氧化、抗腐蚀能力。
按本发明所述方法制备的合金具备优异的强度性能与抗腐蚀性能,同时具备良好的组织稳定性。合金基体是无序面心结构的奥氏体,平均晶粒尺寸小于100m,奥氏体晶界存在 呈不连续分布的碳化物(NbC与Cr23C6),体积分数约占5-20%,晶内均匀弥散分布细小球状的Ni3Al析出相,其尺寸不大于50nm。合金室温及850℃拉伸屈服强度分别高于850MPa与550MPa,并且合金经850℃高温烟气环境(N 2-15%CO 2-3.5%O 2-0.1%SO 2)腐蚀500小时后重量变化小于0.2mg/cm 2。此外,合金在850℃热暴露期间具备优异的组织稳定性。
附图说明
图1为实施例1热处理态合金显微组织
图2为实施例1热暴露态(850℃/1000h)合金显微组织
图3为对比例1晶界共晶组织
图4为对比例2热暴露态(850℃/1000h)合金显微组织
具体实施方式
下面结合实施例对本发明作进一步详细说明。
本发明的析出强化型合金为镍基高温合金材料。
一种低铬耐蚀高强多晶高温合金,合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni;
一种低铬耐蚀高强多晶高温合金,包括以下步骤:
1)配制合金:合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni;
2)熔炼:将配制的合金在熔炼成合金母液,然后采用电渣重熔工艺精炼,冷却,合金母液凝固成铸锭后且铸锭温度达到900℃前,控制冷却速率不超过15℃/min,在铸锭温度达到900℃后以超过10℃/min的冷却速度冷却至室温;
3)均匀化处理:将铸锭取出,随后将铸锭加热至1030~1070℃保温半小时后,继续升温至1170~1200℃的热处理炉内保温20~24小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130~1170℃;
5)热处理:将轧制后的合金在1110~1130℃保温4小时进行再结晶处理,空冷至室温后在750~770℃保温7~9小时,随后升温至840~870℃保温1.5~2.5小时,完成后空冷至室温。
实施例1
本实施例的耐热钢材料,按质量百分比计包括:Cr:17%,Co:20%,Ti:1.5%,Al:4.0%,W:7.0%,Si:0.5%,Mn:0.5%,Nb:1.0%,C:0.04%,余量为Ni;
本实施例的制备方法包括以下步骤:
1)原料配制:成分按质量百分比计包括:Cr:17%,Co:20%,Ti:1.5%,Al:4.0%,W:7.0%,Si:0.5%,Mn:0.5%,Nb:1.0%,C:0.04%,余量为Ni;
2)熔炼步骤:将陶瓷坩埚与配制的原料同时置于真空熔炼炉内,采用真空感应炉在真空度不高于1.0×10 -4MPa下,将配制的合金熔炼成合金母液,当合金母液凝固的同时利用电弧在低功率下对陶瓷坩埚进行预热。合金完全凝固成为铸锭后,将其移至预热后的陶瓷坩埚内,避免合金锭与铜坩埚接触而导致其冷却速率过高。
3)均匀化处理:将铸锭取出,随后将铸锭以10℃/min的速率加热至1050℃并保温半小时后,继续以5℃/min的速率升温至1200℃的热处理炉内保温24小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130-1170℃;
5)热处理:将轧制后的合金以10℃/min的速率加热至1120℃并保温4小时进行再结晶处 理,空冷后在760℃保温8小时,随后升温至860℃保温2小时,完成后空冷至室温。
实施例1制备的合金室温及850℃屈服强度分别为913MPa与590MPa,850℃高温烟气腐蚀500小时后重量变化为0.08mg/cm 2
实施例2
本实施例的耐热钢材料,按质量百分比计包括:Cr:17%,Co:20%,Ti:1.0%,Al:4.0%,W:8.5%,Si:0.5%,Mn:0.5%,Nb:1.5%,C:0.04%,余量为Ni;
本实施例的制备方法包括以下步骤:
1)原料配制:成分按质量百分比计包括:Cr:17%,Co:20%,Ti:1.0%,Al:4.0%,W:8.5%,Si:0.5%,Mn:0.5%,Nb:1.5%,C:0.04%,余量为Ni;
2)熔炼步骤:将陶瓷坩埚与配制的原料同时置于真空熔炼炉内,采用真空感应炉在真空度不高于1.0×10 -4MPa下,将配制的合金熔炼成合金母液,当合金母液凝固的同时利用电弧在低功率下对陶瓷坩埚进行预热。合金完全凝固成为铸锭后,将其移至预热后的陶瓷坩埚内,避免合金锭与铜坩埚接触而导致其冷却速率过高。
3)均匀化处理:将铸锭取出,随后将铸锭以10℃/min的速率加热至1050℃并保温半小时后,继续以5℃/min的速率升温至1200℃的热处理炉内保温24小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130-1170℃;
5)热处理:将轧制后的合金以10℃/min的速率加热至1120℃并保温4小时进行再结晶处理,空冷后在760℃保温8小时,随后升温至860℃保温2小时,完成后空冷至室温。
实施例2制备的合金室温及850℃屈服强度分别为905MPa与597MPa,850℃高温烟气腐蚀500小时后重量变化为0.07mg/cm 2
对比例1
本实施例的耐热钢材料,按质量百分比计包括:Cr:21%,Co:20%,Al:6.0%,W:7.0%,Si:0.5%,Mn:0.5%,C:0.04%,余量为Ni;
本实施例的制备方法包括以下步骤:
1)原料配制:成分按质量百分比计包括:Cr:21%,Co:20%,Al:6.0%,W:7.0%,Si:0.5%,Mn:0.5%,C:0.04%,余量为Ni;
2)熔炼步骤:将陶瓷坩埚与配制的原料同时置于真空熔炼炉内,采用真空感应炉在真空度不高于1.0×10 -4MPa下,将配制的合金熔炼成合金母液,当合金母液凝固的同时利用电弧在低功率下对陶瓷坩埚进行预热。合金完全凝固成为铸锭后,将其移至预热后的陶瓷坩埚内,避免合金锭与铜坩埚接触而导致其冷却速率过高。
3)均匀化处理:将铸锭取出,随后将铸锭以10℃/min的速率加热至1050℃并保温半小时后,继续以5℃/min的速率升温至1200℃的热处理炉内保温24小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130-1170℃;
5)热处理:将轧制后的合金以10℃/min的速率加热至1120℃并保温4小时进行再结晶处理,空冷后在760℃保温8小时,随后升温至860℃保温2小时,完成后空冷至室温。
对比例所述合金室温及850℃屈服强度分别为692MPa与352MPa,850℃高温烟气腐蚀500小时后重量变化为0.08mg/cm 2
对比例2
本实施例的耐热钢材料,按质量百分比计包括:Cr:21%,Co:20%,Ti:2.0%,Al:4.0%,W:7.0%,Si:0.5%,Mn:0.5%,C:0.04%,余量为Ni;
本实施例的制备方法包括以下步骤:
1)原料配制:成分按质量百分比计包括:Cr:21%,Co:20%,Ti:2.0%,Al:4.0%,W:7.0%,Si:0.5%,Mn:0.5%,C:0.04%,余量为Ni;
2)熔炼步骤:将陶瓷坩埚与配制的原料同时置于真空熔炼炉内,采用真空感应炉在真空度不高于1.0×10 -4MPa下,将配制的合金熔炼成合金母液,当合金母液凝固的同时利用电弧在低功率下对陶瓷坩埚进行预热。合金完全凝固成为铸锭后,将其移至预热后的陶瓷坩埚内,避免合金锭与铜坩埚接触而导致其冷却速率过高。
3)均匀化处理:将铸锭取出,随后将铸锭以10℃/min的速率加热至1050℃并保温半小时后,继续以5℃/min的速率升温至1200℃的热处理炉内保温24小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130-1170℃;
5)热处理:将轧制后的合金以10℃/min的速率加热至1120℃并保温4小时进行再结晶处理,空冷后在760℃保温8小时,随后升温至860℃保温2小时,完成后空冷至室温。
对比例所述合金室温及850℃屈服强度分别为859MPa与567MPa,850℃高温烟气腐蚀500小时后重量变化为1.17mg/cm 2
参见图1、图2、图3和图4,由实施例1与对比例两种合金的对比可以看出,本发明所述合金在850℃具备优异的组织稳定性,在高温热暴露期间无TCP相析出。
实施例3
1)配制合金:合金成分按质量百分比满足如下范围要求:Cr:15%,Co:15%,Ti:0.5%,Al:3.5%,W:5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5%,C:0.03%,余量为Ni;
2)熔炼:将配制的合金在熔炼成合金母液,然后采用电渣重熔工艺精炼,冷却,合金母 液凝固成铸锭后且铸锭温度达到900℃前,控制冷却速率不超过15℃/min,在铸锭温度达到900℃后以超过10℃/min的冷却速度冷却至室温;
3)均匀化处理:将铸锭取出,随后将铸锭加热至1030℃保温半小时后,继续升温至1170℃的热处理炉内保温23小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为50%,每道次变形量控制在15%,变形温度为1170℃;
5)热处理:将轧制后的合金在1110℃保温4小时进行再结晶处理,空冷至室温后在750℃保温9小时,随后升温至840℃保温2.5小时,完成后空冷至室温。
实施例4
1)配制合金:合金成分按质量百分比满足如下范围要求:Cr:18%,Co:17%,Ti:0.8%,Al:4.5%,W:6%,Si:≤0.5%,Mn:≤0.5%,Nb:0.8%,C:0.08%,余量为Ni;
2)熔炼:将配制的合金在熔炼成合金母液,然后采用电渣重熔工艺精炼,冷却,合金母液凝固成铸锭后且铸锭温度达到900℃前,控制冷却速率不超过15℃/min,在铸锭温度达到900℃后以超过10℃/min的冷却速度冷却至室温;
3)均匀化处理:将铸锭取出,随后将铸锭加热至1070℃保温半小时后,继续升温至1180℃的热处理炉内保温20小时,最后冷却至室温,得到高温合金铸锭;
4)热轧:将铸锭进行轧制,其总变形量为70%,每道次变形量控制在25%,变形温度为1130℃;
5)热处理:将轧制后的合金在1130℃保温4小时进行再结晶处理,空冷至室温后在770℃保温7小时,随后升温至870℃保温1.5小时,完成后空冷至室温。
本发明制备的合金,基体具有FCC结构,平均晶粒尺寸约30-70微米,并有尺寸细小的析出相在晶粒内部均匀弥散分布。合金具备优良的抗腐蚀性能及强度性能,其室温850℃高 温屈服不低于850MPa与550MPa。比外,合金在850℃烟气腐蚀环境下100小时后增重不超过0.2mg/cm 2

Claims (8)

  1. 一种低铬耐蚀高强多晶高温合金,其特征在于:该合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni。
  2. 一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,包括以下步骤:
    1)配制合金:合金成分按质量百分比满足如下范围要求:Cr:15~18%,Co:15~20%,Ti:0.5~1.5%,Al:3.5~4.5%,W:5~8.5%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5~1.5%,C:0.03~0.08%,余量为Ni;
    2)熔炼:将配制的合金熔炼成合金母液,然后采用电渣重熔工艺精炼,冷却,合金母液凝固成铸锭后且在凝固成铸锭过程中温度达到900℃前,控制冷却速率不超过15℃/min,在凝固成铸锭过程中温度达到900℃后以超过10℃/min的冷却速度冷却至室温;
    3)均匀化处理,得到高温合金铸锭;
    4)热轧:将高温合金铸锭进行轧制,总变形量为50~70%,每道次变形量控制在15~25%范围内,变形温度为1130~1170℃;
    5)热处理:将轧制后的合金在1110~1130℃保温4小时进行再结晶处理,空冷至温室后在750~770℃保温7~9小时,随后升温至840~870℃保温1.5~2.5小时,然后空冷至室温。
  3. 根据权利要求2所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤2)中熔炼在真空熔炼炉内进行,熔炼时真空度不高于1.0×10 -4MPa。
  4. 根据权利要求2所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤2)中在凝固成铸锭过程中温度达到900℃前,控制冷却速率不超过15℃/min,在凝固成铸锭过程中温度达到900℃后,以超过10℃/min的冷却速度冷却至室温。
  5. 根据权利要求4所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤2)中从合金母液凝固成铸锭开始至冷却至室温所用时间不超过15min。
  6. 根据权利要求2所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤3)的具体过程为:将铸锭取出,随后将铸锭加热至1030~1070℃保温半小时后,继续升温至1170~1200℃的热处理炉内保温20~24小时,最后冷却至室温。
  7. 根据权利要求6所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤3)中将铸锭加热至1030~1070℃时升温速率不超过10℃/min,升温至1170℃~1200℃时升温速率不高于5℃/min。
  8. 根据权利要求2所述的一种低铬耐蚀高强多晶高温合金的制备方法,其特征在于,步骤5)中自室温以不超过10℃/min的升温速率升温至1110~1130℃,自室温以不超过10℃/min的升温速率升温至750~770℃,再以不超过10℃/min的升温速率升温至840~870℃。
PCT/CN2020/095958 2019-06-14 2020-06-12 一种低铬耐蚀高强多晶高温合金及其制备方法 WO2020249113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20821820.6A EP3985139A4 (en) 2019-06-14 2020-06-12 CORROSION RESISTANT, HIGH STRENGTH, HIGH TEMPERATURE, LOW CHROMIUM, POLYCRYSTALLINE ALLOY AND METHOD OF PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910515309.7A CN110106398B (zh) 2019-06-14 2019-06-14 一种低铬耐蚀高强多晶高温合金及其制备方法
CN201910515309.7 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020249113A1 true WO2020249113A1 (zh) 2020-12-17

Family

ID=67494994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095958 WO2020249113A1 (zh) 2019-06-14 2020-06-12 一种低铬耐蚀高强多晶高温合金及其制备方法

Country Status (3)

Country Link
EP (1) EP3985139A4 (zh)
CN (1) CN110106398B (zh)
WO (1) WO2020249113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106398B (zh) * 2019-06-14 2020-08-18 中国华能集团有限公司 一种低铬耐蚀高强多晶高温合金及其制备方法
CN111411266B (zh) * 2020-05-08 2021-03-16 中国华能集团有限公司 一种镍基高钨多晶高温合金的制备工艺
CN111394621A (zh) * 2020-05-08 2020-07-10 中国华能集团有限公司 一种可形成复合耐蚀层的变形高温合金及其制备工艺
CN111394620B (zh) * 2020-05-08 2021-01-22 华能国际电力股份有限公司 一种高强镍基高温合金棒材的加工成型工艺
CN111471897B (zh) * 2020-05-08 2021-06-29 华能国际电力股份有限公司 一种高强镍基高温合金制备成型工艺
CN111394619A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种高强耐蚀镍基多晶高温合金及其制备方法
CN112458339A (zh) * 2020-10-26 2021-03-09 江苏新核合金科技有限公司 一种高温风机用耐蚀合金及其制备方法
CN113667907B (zh) * 2021-08-27 2022-05-24 华能国际电力股份有限公司 一种650℃级火电机组用高强耐蚀合金及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270427A (zh) * 2008-05-23 2008-09-24 北京科技大学 由富铬析出相强化的高铬镍基高温合金及其制备方法
CN102146537A (zh) * 2010-02-05 2011-08-10 株式会社日立制作所 镍基锻造合金和使用其的汽轮机设备用部件
EP2050830B1 (en) * 2007-10-19 2015-03-11 Mitsubishi Hitachi Power Systems, Ltd. Nickel based alloy for forging
CN110106398A (zh) * 2019-06-14 2019-08-09 中国华能集团有限公司 一种低铬耐蚀高强多晶高温合金及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769087A (en) * 1986-06-02 1988-09-06 United Technologies Corporation Nickel base superalloy articles and method for making
US5882586A (en) * 1994-10-31 1999-03-16 Mitsubishi Steel Mfg. Co., Ltd. Heat-resistant nickel-based alloy excellent in weldability
EP2754529A1 (de) * 2013-01-11 2014-07-16 Siemens Aktiengesellschaft Borfreies Lot mit Mangan und Germanium, Pulver und Reparaturverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050830B1 (en) * 2007-10-19 2015-03-11 Mitsubishi Hitachi Power Systems, Ltd. Nickel based alloy for forging
CN101270427A (zh) * 2008-05-23 2008-09-24 北京科技大学 由富铬析出相强化的高铬镍基高温合金及其制备方法
CN102146537A (zh) * 2010-02-05 2011-08-10 株式会社日立制作所 镍基锻造合金和使用其的汽轮机设备用部件
CN110106398A (zh) * 2019-06-14 2019-08-09 中国华能集团有限公司 一种低铬耐蚀高强多晶高温合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985139A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法
CN115846403B (zh) * 2022-09-23 2023-08-15 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Also Published As

Publication number Publication date
EP3985139A4 (en) 2023-07-26
CN110106398A (zh) 2019-08-09
CN110106398B (zh) 2020-08-18
EP3985139A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
WO2020249113A1 (zh) 一种低铬耐蚀高强多晶高温合金及其制备方法
WO2020249115A1 (zh) 一种复合强化型耐蚀高温合金及其制备工艺
WO2020249107A1 (zh) 一种析出强化型镍基高铬高温合金及其制备方法
WO2015123918A1 (zh) 700℃等级超超临界燃煤电站用镍基高温合金及其制备
WO2021223759A1 (zh) 一种高强耐蚀镍基多晶高温合金及其制备方法
WO2021121185A1 (zh) 一种高强高韧抗氧化铁镍基高温合金及其制备方法
WO2021223758A1 (zh) 一种可形成复合耐蚀层的变形高温合金及其制备工艺
CN111471897B (zh) 一种高强镍基高温合金制备成型工艺
CN110157993B (zh) 一种高强耐蚀铁镍基高温合金及其制备方法
WO2021223760A1 (zh) 一种火电机组用高强高温合金及其加工工艺
CN105821250A (zh) 一种高强度镍基高温合金及其制造方法
CN111394620B (zh) 一种高强镍基高温合金棒材的加工成型工艺
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN108893648A (zh) 一种钇基重稀土铜镍合金的制备方法
CN111378874B (zh) 一种析出强化型变形高温合金及其制备工艺
CN108866389A (zh) 一种低成本高强抗热腐蚀镍基高温合金及其制备工艺和应用
WO2023246465A1 (zh) 一种用于630℃以上的马氏体耐热钢及其制备方法
CN107937739A (zh) 一种Ni‑Fe基高温合金材料的制备方法
CN113969380B (zh) 一种核级镍基合金高性能棒材的制造方法、棒材及应用
CN111519069A (zh) 一种高强镍钴基高温合金及其制备工艺
CN111534718B (zh) 一种高铝、钛变形高温合金的制备工艺
CN116024481B (zh) 一种低铬镍铁基高温合金及其制备方法
CN116162845B (zh) 一种改善高硅奥氏体不锈钢热塑性的方法
CN117778852A (zh) 一种耐高温耐腐蚀镍基合金热轧钢板及其制备方法
CN114293068A (zh) 一种焦炭反应器用镍基变形高温合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020821820

Country of ref document: EP

Effective date: 20220114