WO2020248320A1 - 一种膨胀型地质聚合物注浆材料及其制备方法 - Google Patents

一种膨胀型地质聚合物注浆材料及其制备方法 Download PDF

Info

Publication number
WO2020248320A1
WO2020248320A1 PCT/CN2019/095469 CN2019095469W WO2020248320A1 WO 2020248320 A1 WO2020248320 A1 WO 2020248320A1 CN 2019095469 W CN2019095469 W CN 2019095469W WO 2020248320 A1 WO2020248320 A1 WO 2020248320A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
component
grouting material
isocyanate
geopolymer
Prior art date
Application number
PCT/CN2019/095469
Other languages
English (en)
French (fr)
Inventor
施伟斌
曹巍巍
雷涛
朱伟
Original Assignee
英达热再生有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英达热再生有限公司 filed Critical 英达热再生有限公司
Publication of WO2020248320A1 publication Critical patent/WO2020248320A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention belongs to the technical field of road maintenance, and relates to an expansion geopolymer grouting material and a preparation method thereof.
  • Geopolymer materials have attracted widespread attention in the road maintenance field because of their unique physical and chemical properties. It mainly uses materials such as industrial waste residues, mineral active ingredients, and alkali stimulators to form an inorganic high-performance polymer cement with a gel structure. And it can penetrate into the interface of the reinforced soil and the roadbed of the road base or the interface of a certain active mineral material (such as sand, stone), and chemically react with the mineral activity in the interface to quickly form strength and be closely connected to the solid One.
  • CN105819719 Chinese Patent Document discloses a high-strength geopolymer grouting material, which is characterized by using phosphate and or polyphosphate, metakaolin, fly ash, water glass, alkaline compounds, water, etc.
  • the grouting material Because there are many tiny gaps in the pavement base layer or roadbed, it is required that the grouting material can penetrate into these gaps on the one hand, and on the other hand, it has a certain degree of expansion, which plays a role of filling and compacting during the curing of the material. If the expansion compensator is not added to the material, it is easy to cause shrinkage and cracking in the later stage of the grouting material. Especially in the treatment of cement slab voids, it is easy to be filled and not densely, causing secondary voids. At present, the expansion performance of geopolymer grouting materials used in engineering is obviously insufficient. Even if an expansion agent is added, there is extremely weak expansion, but at the expense of the late strength of the material.
  • the invention proposes an expanded geopolymer grouting material and its preparation method. Its purpose is to solve the shortcomings of the geopolymer grouting material in the application, and to ensure the good fluidity of the geopolymer grouting material. Under the premise of its own advantages such as strong permeability, it gives rigid materials excellent expandability without reducing the overall strength of the material.
  • An swelling geopolymer grouting material whose raw materials, in parts by mass, include:
  • Component A 30 to 70 parts of fly ash, 0 to 20 parts of metakaolin, 30 to 80 parts of slag, 0.5 to 1.5 parts of retarder, 5 to 30 parts of isocyanate, 0.1 to 0.5 of foam stabilizer, 0 to 1 of catalyst Parts, 1-5 parts of anti-cracking fiber, 40-100 parts of water.
  • Component B 20-80 parts of alkali stimulator.
  • the total amount of SiO 2 and Al 2 O 3 in fly ash shall not be less than 80%, and the particle size shall not exceed 800 mesh; metakaolin is obtained from kaolin through high temperature calcination and activation, and the particle size shall not exceed 400 mesh; No more than 800 mesh, CaO content no less than 30%.
  • the retarder can be at least one of tartaric acid, citric acid and phosphate.
  • the retarder is sodium polyphosphate, which not only retards the setting, but also helps to improve the strength of the grouting material.
  • the isocyanate can be an alkyl monoisocyanate, a phenyl monoisocyanate or a polyisocyanate.
  • the isocyanate is diphenylmethane diisocyanate or polyphenylmethane polyisocyanate, which facilitates the formation of a polymer network structure and ensures the strength of the material.
  • the foam stabilizer is one or more of silicone oil, palm oil, oleic acid, and castor oil.
  • the catalyst is one or more of triethylamine, triethylenediamine, N-methylmorpholine and N,N-dimethylbenzylamine.
  • the catalyst is triethylamine, which is conducive to the reaction of isocyanate and water with a mild speed.
  • the crack-resistant fiber is polypropylene crack-resistant fiber or carbon fiber, with an equivalent diameter of 18 to 48 ⁇ m and a length of 2 to 30 mm.
  • the anti-cracking fiber is a polypropylene fiber with an equivalent diameter of 30 ⁇ m and a length of 10 mm, which helps to enhance the anti-cracking performance of the material.
  • the alkali activator uses industrial water glass with a modulus of 3.0-3.4 as raw material, and adjusts the modulus of the water glass to 1.2-2.0 by adding sodium hydroxide, potassium hydroxide or sodium carbonate.
  • the modulus of the alkali activator is 1.6, which is beneficial to the storage stability of the water glass.
  • the component A and the component B are uniformly mixed to form a slurry, and the test piece is prepared for curing and molding to obtain the expansion geopolymer grouting material.
  • the method for preparing the expansion geopolymer grouting material specifically includes the following steps:
  • the isocyanate in the expanded geopolymer slurry of the present invention can first react with water to produce a large amount of carbon dioxide and polyurea. Carbon dioxide expands the volume of the organic polymer polyurea through foaming, and the geopolymer slurry is filled in the pores of the polyurea to form an organic-inorganic blend. While obtaining the expanded geopolymer grouting material, it also guarantees The strength of the grouting material.
  • the geopolymer product obtained by the formulation and preparation method of the present invention such as high fluidity, strong permeability, fast curing reaction rate, and volume after curing
  • the expansion rate is as high as 20-50%, excellent mechanical properties are maintained, and the compressive strength is as high as 30MPa or more, which meets the performance requirements of grouting materials required for the treatment of road base and roadbed diseases.
  • the preparation method of the expanded geopolymer in the present invention also has the advantages of simple preparation process, energy saving, easy operation and the like.
  • An swelling geopolymer grouting material whose raw materials, in parts by mass, include:
  • the preparation method of the above-mentioned expanded geopolymer specifically includes the following steps:
  • step (3) to obtain the fluidity and bleeding rate of the slurry, and inject the slurry obtained in step (3) into the mold, and place it in a curing box for curing. Test the expansion rate and compressive strength after 7 days. .
  • An swelling geopolymer grouting material whose raw materials, in parts by mass, include:
  • the method for preparing the expansion geopolymer grouting material specifically includes the following steps:
  • step (3) to obtain the fluidity and bleeding rate of the slurry, and inject the slurry obtained in step (3) into the mold, and place it in a curing box for curing. Test the expansion rate and compressive strength after 7 days. .
  • An swelling geopolymer grouting material whose raw materials, in parts by mass, include:
  • the method for preparing the expansion geopolymer grouting material specifically includes the following steps:
  • step (3) to obtain the fluidity and bleeding rate of the slurry, and inject the slurry obtained in step (3) into the mold, and place it in a curing box for curing. Test the expansion rate and compressive strength after 7 days. .
  • An swelling geopolymer grouting material whose raw materials, in parts by mass, include:
  • the method for preparing the expansion geopolymer grouting material specifically includes the following steps:
  • step (3) to obtain the fluidity and bleeding rate of the slurry, and inject the slurry obtained in step (3) into the mold, and place it in a curing box for curing. Test the expansion rate and compressive strength after 7 days. .
  • Table 1 lists the expansion rate and compressive strength of the test pieces prepared in Examples 1 to 4.
  • Table 1 The fluidity, bleeding rate, swelling rate and compressive strength values of the specimens prepared in Examples 1 to 4
  • Example Liquidity Bleeding rate Expansion rate Compressive strength One 15.35 ⁇ 0.4 45.7% 31.25 two 13.87 ⁇ 0.4 35.5% 33.60 three 12.70 ⁇ 0.4 23.9% 38.82 four 13.58 ⁇ 0.4 29.4% 40.77 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种膨胀型地质聚物注浆材料及其制备方法,该型地聚物注浆材料主要由A、B两种组分按比例混合制备而成。所述组分A原料包括:粉煤灰、偏高岭土、矿渣、缓凝剂、异氰酸酯、匀泡剂、催化剂、抗裂纤维和水;所述组分B主要成分是碱激发剂。该膨胀型地质聚合物材料制备工艺简单、膨胀性好、不开裂、渗透性好、抗压强度高、耐久性好等优点,有效解决常规注浆材料膨胀性差,填充不密实,收缩开裂,易发二次病害等问题。可用于水泥板块脱空、路面基层和路基病害的快速治理,并可满足相关建筑领域应用。

Description

一种膨胀型地质聚合物注浆材料及其制备方法 技术领域
本发明属于道路养护技术领域,涉及一种膨胀型地质聚合物注浆材料及其制备方法。
应用背景
道路在行车荷载和复杂自然环境综合作用下,会出现基层冲刷脱空、路基湿软沉陷、局部强度不足等病害。传统的养护措施需要封闭交通,进行“开膛破肚”式维修。此类处治方案资金投入多,保养周期长,严重影响市民的日常出行。采取注浆非开挖的道路深层病害快速处治技术是解决上述问题的有效途径。
地质聚合物材料因其独特的理化性能引起道路养护领域广泛关注。其主要利用工业废渣矿物活性成分等材料,通过碱激发剂形成胶凝体结构的无机高性能高分子胶结料。并且能渗透到被加固土体及路面基层路基或具有一定活性矿物材料(如砂、石)的界面内,并与界面内的矿物活性进行化学反应,快速形成强度,与被加固体紧密连成一体。CN105819719号中国专利文献公开了一种高强度地聚物注浆材料,其特点在于,以磷酸盐和或多聚磷酸盐、偏高岭土、粉煤灰、水玻璃、碱性化合物、水等为原料,利用磷酸盐或多聚磷酸盐水解产生H +,促进原料水解反应,其自身生成复盐,均匀分布在地聚物中,增强地聚物力学性能。CN1439451A号中国专利文献公开了一种粉煤灰基地聚物注浆材料,制备的材料具有良好的流动性和工作性,早期强度高等特点。
由于路面基层或路基中存在许多微小的缝隙,这就要求注浆材料一方面能够渗入这些空隙,另一方面具有一定的膨胀性,在材料固化过程中起到填充挤密作用。如果材料中没有添加膨胀补偿剂,容易导致灌浆料后期出现收缩开裂的问题。特别是治理水泥板块脱空,易填充不密实,造成二次脱空。目前,工程中应用的地聚物注浆材料膨胀性能明显不足,即使添加膨胀剂,有极其微弱的膨胀性,也以牺牲材料后期强度为代价。
发明内容
本发明提出的一种膨胀型地质聚合物注浆材料及其制备方法,其目的旨在解决上述地聚物注浆材料在应用中存在的不足,在保障地聚物注浆材料流动性好,渗透性强等自身优势的前提下,赋予刚性材料优异的膨胀性,同时不降低材料的整体强度。
本发明为解决上述提出的问题所采用的技术方案为:
一种膨胀型地质聚合物注浆材料,其原料按质量份数计包括:
组分A:粉煤灰30~70份,偏高岭土0~20份,矿渣30~80份,缓凝剂0.5~1.5份,异氰酸酯 5~30份,匀泡剂0.1~0.5,催化剂0~1份,抗裂纤维1~5份,水40~100份。
组分B:碱激发剂添加量20~80份。
按上述方案,粉煤灰中SiO 2和Al 2O 3总量不低于80%,粒径不超过800目;偏高岭土由高岭土通过高温煅烧活化得到,粒径不超过400目;矿渣粒径不超过800目,CaO含量不低于30%。
按上述方案,缓凝剂可为酒石酸、柠檬酸、磷酸盐中的至少一种。优选地,所述缓凝剂为多聚磷酸钠,不仅起缓凝作用,还有助于提高注浆材料强度。
按上述方案,异氰酸酯可为烷基单异氰酸酯、苯基单异氰酸酯或多异氰酸酯。优选地,所述异氰酸酯为二苯基甲烷二异氰酸酯或多苯基甲烷多异氰酸酯,有利于形成高分子网络结构,保证材料强度。
按上述方案,匀泡剂为有机硅油、棕榈油、油酸、蓖麻油中的一种或多种。
按上述方案,催化剂为三乙胺、三乙烯二胺、N-甲基***啉和N,N—二甲基苄胺中的一种或多种。优选地,所述催化剂为三乙胺,有利于异氰酸酯与水发生反应,速度温和。
按上述方案,抗裂纤维为聚丙烯抗裂纤维或碳纤维,当量直径18~48μm,长度2~30mm。优选地,所述抗裂纤维为聚丙烯纤维,当量直径30μm,长度为10mm,有助于增强材料的抗裂性能。
按上述方案,碱激发剂以模数3.0~3.4的工业水玻璃作原料,通过添加氢氧化钠、氢氧化钾或碳酸钠调节水玻璃模数至1.2~2.0。优选地,所述碱激发剂模数为1.6,有利于水玻璃存储稳定性。
上述膨胀型地质聚合物注浆材料的制备方法,将组分A与组分B混合均匀制成浆液,并制备试件养护成型,即可得到膨胀型地聚物注浆材料。
上述膨胀型地质聚合物注浆材料的制备方法,具体包括如下步骤:
(1)按质量份数计,分别称取下列原料:粉煤灰30~70份,偏高岭土0~20份,矿渣30~80份,缓凝剂0.5~1.5份,异氰酸酯5~30份,匀泡剂0.1~0.5,抗裂纤维1~5份,水40~100份,将上述原料搅拌均匀制成组分A。
(2)向市售3.0~3.4模数的水玻璃中,添加一定量氢氧化钠或氢氧化钾固体,调节水玻璃模数至1.2~2.0,并静置24小时,得到组分B碱激发剂。
(3)将20~80份的组分B添加到组分A中,搅拌2~5min,即得到膨胀型地聚物注浆材料。
与现有技术相比,本发明的有益效果是:
1)本发明所述膨胀型地质聚合物浆液中的异氰酸酯遇水可先发生反应,产生大量的二氧化碳和聚脲。二氧化碳通过发泡的方式使得有机聚合物聚脲发生体积膨胀,地聚物浆液填充在聚脲气孔中,形成有机-无机共混物,在得到膨胀型地聚物注浆材料的同时,也保障了注浆材料的强度。
2)为了解决浆液膨胀或受力应变带来的开裂问题,本发明所述膨胀型地质聚合物浆液中添加了高性能抗裂纤维,保证了材料的强度和耐久性。
3)本发明所述的配方和制备方法得到的地质聚合物产品,除具有地聚物注浆材料固有的特性之外,如流动度高,渗透性强,固化反应速率快,且固化后体积膨胀率高达20~50%,保持优异的力学性能,抗压强度高达30MPa以上,满足路面基层、路基病害处治所需注浆材料性能要求。本发明中的膨胀型地聚物制备方法与其它注浆材料相比,还具有制备工艺简单、节约能源、易于操作等优点。
具体实施
为了更好理解本发明,结合实施例阐明本发明内容,但本发明不局限于下面实施例。
实施例1:
一种膨胀型地质聚合物注浆材料,其原料按质量份数计包括:
800目粉煤灰30份,400目偏高岭土10份,800目矿渣40份,多聚磷酸钠0.5份,正丁基异氰酸酯30份,有机硅油0.2份,聚丙烯纤维1份,水40份;组分B碱激发剂20份。
上述膨胀型地质聚合物的制备方法,具体包括如下步骤:
(1)按质量份数计,准备原料800目粉煤灰30份,400目偏高岭土10份,800目矿渣40份,多聚磷酸钠0.5份,正丁基异氰酸酯30份,有机硅油0.2份,聚丙烯纤维,当量直径20μm,长度10mm,水40份,将上述原料混合均匀制成组分A;
(2)准备原料模数3.28的水玻璃,向其中添加氢氧化钠,配置成模数1.6的组分B—碱激发剂。
(3)取20份步骤(2)制备的组分B添加到步骤(1)制备的组分A中,通过机械搅拌混合均匀。
(4)测试步骤(3)制得浆液的流动度、泌水率,并将步骤(3)所得的浆液注入模具中,放在养护箱中养护,分别测7天后的膨胀率和抗压强度。
实施例2:
一种膨胀型地质聚合物注浆材料,其原料按质量份数计包括:
1000目粉煤灰50份,600目偏高岭土0份,800目矿渣80份,酒石酸0.7份,正苯基异氰 酸酯20份,催化剂三乙胺0.5份,棕榈油0.5份,聚丙烯纤维5份,水60份;组分B碱激发剂40份。
上述膨胀型地质聚合物注浆材料的制备方法,具体包括如下步骤:
(1)按质量份数计,准备原料1000目粉煤灰50份,600目偏高岭土0份,800目矿渣80份,酒石酸0.7份,正苯基异氰酸酯20份,棕榈油0.5份,聚丙烯纤维,当量直径30μm,长度15mm,水60份,将上述原料混合均匀制成组分A;
(2)准备原料模数3.10的水玻璃,向其中添加氢氧化钾,配置成模数2.0的组分B—碱激发剂。
(3)取40份步骤(2)制备的组分B添加到步骤(1)制备的组分A中,通过机械搅拌混合均匀。
(4)测试步骤(3)制得浆液的流动度、泌水率,并将步骤(3)所得的浆液注入模具中,放在养护箱中养护,分别测7天后的膨胀率和抗压强度。
实施例3:
一种膨胀型地质聚合物注浆材料,其原料按质量份数计包括:
1000目粉煤灰70份,800目偏高岭土20份,1500目矿渣30份,柠檬酸1.5份,正苯基异氰酸酯5份,催化剂N,N—二甲基苄胺1份,油酸0.3份,碳纤维3份,水100份;组分B碱激发剂80份。
上述膨胀型地质聚合物注浆材料的制备方法,具体包括如下步骤:
(1)按质量份数计,准备原料1000目粉煤灰70份,800目偏高岭土20份,1500目矿渣30份,柠檬酸1.5份,正苯基异氰酸酯20份,棕榈油0.5份,碳纤维,当量直径48μm,长度30mm,水100份,将上述原料混合均匀制成组分A;
(2)准备原料模数3.40的水玻璃,向其中添加氢氧化钠,配置成模数1.2的组分B—碱激发剂。
(3)取80份步骤(2)制备的组分B添加到步骤(1)制备的组分A中,通过机械搅拌混合均匀。
(4)测试步骤(3)制得浆液的流动度、泌水率,并将步骤(3)所得的浆液注入模具中,放在养护箱中养护,分别测7天后的膨胀率和抗压强度。
实施例4:
一种膨胀型地质聚合物注浆材料,其原料按质量份数计包括:
1340目粉煤灰50份,1000目偏高岭土20份,800目矿渣80份,多聚磷酸钠1.0份,多苯 基甲烷多异氰酸酯15份,催化剂三乙烯二胺0.3份,N-甲基***啉0.5份,蓖麻油0.1份,聚丙烯纤维2份,水80份;组分B碱激发剂60份。
上述膨胀型地质聚合物注浆材料的制备方法,具体包括如下步骤:
(1)按质量份数计,准备原料1340目粉煤灰50份,1000目偏高岭土20份,800目矿渣80份,多聚磷酸钠1.0份,多苯基甲烷多异氰酸酯15份,蓖麻油0.1份,聚丙烯纤维,当量直径18μm,长度2mm,水80份,将上述原料混合均匀制成组分A;
(2)准备原料模数3.0的水玻璃,向其中添加氢氧化钠,配置成模数1.4的组分B—碱激发剂。
(3)取60份步骤(2)制备的组分B添加到步骤(1)制备的组分A中,通过机械搅拌混合均匀。
(4)测试步骤(3)制得浆液的流动度、泌水率,并将步骤(3)所得的浆液注入模具中,放在养护箱中养护,分别测7天后的膨胀率和抗压强度。
经测试,表1列出实施例1~4所制备试件的膨胀率和抗压强度。
表1实施例1~4制备试件流动度、泌水率、膨胀率和抗压强度值
实施例 流动度 泌水率 膨胀率 抗压强度
15.35 ≤0.4 45.7% 31.25
13.87 ≤0.4 35.5% 33.60
12.70 ≤0.4 23.9% 38.82
13.58 ≤0.4 29.4% 40.77

Claims (10)

  1. 一种膨胀型地质聚合物注浆材料,其特征在于,由组分A和组分B混合制备;
    所述组分A包含以下成分(质量份):
    粉煤灰30~70份,偏高岭土0~20份,矿渣30~80份,缓凝剂0.5~1.5份,异氰酸酯5~30份,匀泡剂0.1~0.5份,催化剂0~1份,抗裂纤维1~5份,水40~100份;
    所述组分B为碱激发剂,添加量(质量份)20~80份。
  2. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于:所述粉煤灰为Ⅰ级或Ⅱ级,SiO 2和Al 2O 3总含量不低于质量百分比80%;偏高岭土由高岭土通过高温煅烧活化得到,粒径不超过400目;矿渣粒径不超过800目,CaO含量不低于质量百分比30%。
  3. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于:所述缓凝剂为酒石酸、柠檬酸、磷酸盐中的至少一种。
  4. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于:所述异氰酸酯为异氰酸酯、苯基单异氰酸酯、多异氰酸酯中的一种或多种;
    所述烷基单异氰酸酯为甲基异氰酸酯、正丁基异氰酸酯或叔丁基异氰酸酯;
    所述苯基单异氰酸酯为苯基异氰酸酯、对氯苯基异氰酸酯、3-氯苯基异氰酸酯、3,4-二氯苯基异氰酸酯或3,5-二氯苯基异氰酸酯;
    所述多异氰酸酯为异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、二苯基甲烷二异氰酸酯、对苯二异氰酸酯、三苯基甲烷三异氰酸酯或多苯基甲烷多异氰酸酯。
  5. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于,所述匀泡剂为有机硅油、棕榈油、油酸、蓖麻油中的一种或多种。
  6. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于,所述催化剂为三乙胺、三乙烯二胺、N-甲基***啉和N,N—二甲基苄胺中的一种或多种。
  7. 根据权利要求1所述的一种膨胀型地聚物注浆材料,其特征在于,所述抗裂纤维为聚丙烯抗裂纤维或碳纤维,当量直径18~48μm,长度2~30mm。
  8. 根据权利要求1所述的一种膨胀型地质聚合物注浆材料,其特征在于:所述碱激发剂由模数3.0~3.4的工业水玻璃作原料,通过添加氢氧化钠、氢氧化钾或碳酸钠调节水玻璃模数至1.2~2.0制得。
  9. 将所述组分A和组分B搅拌,浆液制备成型,制得膨胀型地质聚合物。
  10. 根据权利要求1-8中的任意一项所述的一种膨胀型地质聚合物注浆材料的制备方法,包括以下步骤:
    步骤1.按质量份数计,分别称取下列原料:粉煤灰30~70份,偏高岭土0~20份,矿渣 30~80份,缓凝剂0.5~1.5份,异氰酸酯5~30份,匀泡剂0.1~0.5,抗裂纤维1~5份,水40~100份,将上述原料搅拌均匀制成组分A;
    步骤2.向3.0~3.4模数的水玻璃中,添加氢氧化钠或氢氧化钾固体,调节水玻璃模数至1.2~2.0,并静置24小时,得到组分B碱激发剂;
    步骤3.将质量份20~80份的组分B添加到组分A中,搅拌2~5min,即得到膨胀型地聚物注浆材料。
PCT/CN2019/095469 2019-06-10 2019-07-10 一种膨胀型地质聚合物注浆材料及其制备方法 WO2020248320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910495091.3 2019-06-10
CN201910495091.3A CN110092618A (zh) 2019-06-10 2019-06-10 一种膨胀型地质聚合物注浆材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020248320A1 true WO2020248320A1 (zh) 2020-12-17

Family

ID=67450543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095469 WO2020248320A1 (zh) 2019-06-10 2019-07-10 一种膨胀型地质聚合物注浆材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110092618A (zh)
WO (1) WO2020248320A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939550A (zh) * 2021-04-13 2021-06-11 山东科技大学 一种高延性水泥基复合材料
CN113391056A (zh) * 2021-06-02 2021-09-14 中国电建集团西北勘测设计研究院有限公司 一种水泥基灌浆材料收缩开裂性能的改善方法
CN113929362A (zh) * 2021-09-16 2022-01-14 哈尔滨工业大学(深圳) 一种地聚物路面基层材料及其制备方法和应用
CN115057663A (zh) * 2022-08-19 2022-09-16 河北工业大学 基于矿渣-粉煤灰基地聚物的风积沙路基材料及制备方法
CN115650677A (zh) * 2022-11-09 2023-01-31 武汉大学 一种用于注浆加固的地聚合物胶凝材料及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892344B (zh) * 2020-07-22 2022-05-13 广西大学 一种用于沥青面层加固抗流动变形的复合地聚合物注浆材料及注浆方法
CN113250031A (zh) * 2021-06-02 2021-08-13 英达热再生有限公司 一种沥青路面半刚性基层病害现场快速再生修复方法
CN114477867A (zh) * 2022-01-10 2022-05-13 同济大学 一种基于地质聚合物的新型注浆材料及其制备方法
CN115057660A (zh) * 2022-05-24 2022-09-16 武汉工程大学 多孔沥青混合料灌注用兑水快硬型偏高岭土基地聚物材料及其制备方法
CN116003029A (zh) * 2022-12-20 2023-04-25 福州大学 一种石墨相氮化碳防火涂料及其应用和应用方法
CN116283171B (zh) * 2023-03-03 2024-04-16 湖北工业大学 一种安全适应性强的低碳泡沫充填材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327614A (zh) * 2014-10-20 2015-02-04 芜湖县双宝建材有限公司 一种高性能水性膨胀型防火涂料
KR101607394B1 (ko) * 2014-10-06 2016-03-30 현대건설주식회사 순환유동층 보일러 애쉬를 이용한 고로수쇄 슬래그 기반의 지오폴리머 및 그 제조방법
CN105683120A (zh) * 2013-10-31 2016-06-15 建筑研究和技术有限公司 用于不燃的、吸声的、绝热的地质聚合物泡沫元件的地质聚合物泡沫制剂
CN106220101A (zh) * 2016-08-12 2016-12-14 卓达新材料科技集团威海股份有限公司 一种粉煤灰基地聚物灌浆料及其制备方法
CN107352873A (zh) * 2017-08-02 2017-11-17 广东中澳高科新技术服务中心有限公司 地聚物灌浆料及其制备方法
CN108298837A (zh) * 2017-11-23 2018-07-20 柳州市柳晶科技股份有限公司 一种利用工业固废制备的地质聚合物及其制备方法和使用方法
CN108516739A (zh) * 2018-04-23 2018-09-11 长安大学 一种快凝早强型地质聚合物注浆材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880363B (zh) * 2014-02-20 2016-02-24 广西交通科学研究院 一种地质聚合物/废橡胶粉复合材料及其制备方法
CN106396523A (zh) * 2016-08-31 2017-02-15 浙江大学自贡创新中心 地聚合物基自流平地面材料的使用方法
CN106495585A (zh) * 2016-10-26 2017-03-15 中国地质大学(武汉) 地质聚合物基重载路面铺装材料及其制备方法
CN106588107A (zh) * 2016-10-26 2017-04-26 马鞍山十七冶工程科技有限责任公司 一种地质聚合物基泡沫混凝土及制备方法
CN107244844B (zh) * 2017-07-26 2019-11-29 盐城爱乐科网络科技股份有限公司 一种绿色地质聚合物保温材料及其制备方法
CN107601988B (zh) * 2017-10-11 2020-04-21 上海力阳道路加固科技股份有限公司 一种微膨胀抗裂超早强双组份地聚合物注浆材料
CN108546016B (zh) * 2018-05-15 2020-12-08 上海力阳道路加固科技股份有限公司 一种道路注浆加固用的加气膨胀型地聚合物
CN108424063B (zh) * 2018-05-31 2021-07-27 广东联城住工装备信息科技有限公司 一种粉煤灰基地聚合物高强灌浆料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683120A (zh) * 2013-10-31 2016-06-15 建筑研究和技术有限公司 用于不燃的、吸声的、绝热的地质聚合物泡沫元件的地质聚合物泡沫制剂
KR101607394B1 (ko) * 2014-10-06 2016-03-30 현대건설주식회사 순환유동층 보일러 애쉬를 이용한 고로수쇄 슬래그 기반의 지오폴리머 및 그 제조방법
CN104327614A (zh) * 2014-10-20 2015-02-04 芜湖县双宝建材有限公司 一种高性能水性膨胀型防火涂料
CN106220101A (zh) * 2016-08-12 2016-12-14 卓达新材料科技集团威海股份有限公司 一种粉煤灰基地聚物灌浆料及其制备方法
CN107352873A (zh) * 2017-08-02 2017-11-17 广东中澳高科新技术服务中心有限公司 地聚物灌浆料及其制备方法
CN108298837A (zh) * 2017-11-23 2018-07-20 柳州市柳晶科技股份有限公司 一种利用工业固废制备的地质聚合物及其制备方法和使用方法
CN108516739A (zh) * 2018-04-23 2018-09-11 长安大学 一种快凝早强型地质聚合物注浆材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939550A (zh) * 2021-04-13 2021-06-11 山东科技大学 一种高延性水泥基复合材料
CN113391056A (zh) * 2021-06-02 2021-09-14 中国电建集团西北勘测设计研究院有限公司 一种水泥基灌浆材料收缩开裂性能的改善方法
CN113929362A (zh) * 2021-09-16 2022-01-14 哈尔滨工业大学(深圳) 一种地聚物路面基层材料及其制备方法和应用
CN115057663A (zh) * 2022-08-19 2022-09-16 河北工业大学 基于矿渣-粉煤灰基地聚物的风积沙路基材料及制备方法
CN115650677A (zh) * 2022-11-09 2023-01-31 武汉大学 一种用于注浆加固的地聚合物胶凝材料及其制备方法

Also Published As

Publication number Publication date
CN110092618A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020248320A1 (zh) 一种膨胀型地质聚合物注浆材料及其制备方法
Xiaochun et al. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis
US20220144700A1 (en) High strength coral concrete and preparation method thereof
CN112694299A (zh) 一种高原环境用高抗裂混凝土及制备方法
CN108264276A (zh) 基于秸秆和固体废弃物的轻钢龙骨复合墙体填充用地聚合物基泡沫混凝土
CN103145365A (zh) 一种混凝土抗裂修复剂及应用其的混凝土
CN112679190B (zh) 一种用于混凝土底部空腔填充的补强防水砂浆
CN114956681A (zh) 一种高温养护的低碳高强度地聚物混凝土材料及其制备方法
CN113024189A (zh) 高韧高粘结性c250超高强混杂纤维混凝土及制备方法
CN104724968B (zh) 高流态水泥基胶凝材料抗沉降用塑性膨胀剂及其制备方法
KR102481335B1 (ko) 탄산화 및 염해 저항성이 향상된 균열 자기치유 보수 모르타르의 제조 방법
CN110041025A (zh) 一种改良性大体积混凝土及其制备方法
CN108774033A (zh) 一种自流高强微收缩公路裂缝压浆砂浆及公路养护方法
WO2024108868A1 (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
CN112174554A (zh) 一种单组份改性地聚合物及其应用
CN113024182A (zh) 一种高韧高粘结性c80强度的纤维混凝土及其制备方法
CN111908884A (zh) 一种碱激发矿渣基水泥混合物灌浆材料及其制备方法
CN110317006A (zh) 一种建筑物施工用混凝土及其制备方法
CN106007442A (zh) 用于蒸养水泥基材料裂缝自愈合的矿物外加剂及其制备
Du et al. Effect of microcapsules on the self-repairing ability of limestone calcined clay cement (LC3) mortar at different temperatures
Jinchuan et al. Influence of MgO and hybrid fiber on the bonding strength between reactive powder concrete and old concrete
CN115304326A (zh) 一种补偿收缩自密实混凝土及其制备方法
CN110304860B (zh) 一种混凝土柔性剂及混凝土
CN113185211A (zh) 高韧高粘结性c120强度的高强纤维混凝土及制备方法
CN106517856A (zh) 适用于自密实混凝土的whdf‑n型粘度改性剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932357

Country of ref document: EP

Kind code of ref document: A1