WO2020248280A1 - 无线通信方法、网络设备和终端设备 - Google Patents

无线通信方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2020248280A1
WO2020248280A1 PCT/CN2019/091403 CN2019091403W WO2020248280A1 WO 2020248280 A1 WO2020248280 A1 WO 2020248280A1 CN 2019091403 W CN2019091403 W CN 2019091403W WO 2020248280 A1 WO2020248280 A1 WO 2020248280A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
dynamic signaling
downlink dynamic
terminal device
configuration
Prior art date
Application number
PCT/CN2019/091403
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/091403 priority Critical patent/WO2020248280A1/zh
Priority to CN201980074300.5A priority patent/CN113016209A/zh
Publication of WO2020248280A1 publication Critical patent/WO2020248280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and specifically relate to a wireless communication method, network equipment, and terminal equipment.
  • 5G New Radio has further increased the system bandwidth on the basis of 4G. Similar to the Long Term Evolution (LTE) system, 5G NR also supports Carrier Aggregation (CA) technology. By configuring multiple serving cells for the terminal in the network, the terminal can simultaneously send and receive data on these multiple serving cells, thereby increasing the data transmission rate.
  • CA Carrier Aggregation
  • the network device can configure one or more bandwidth parts (BandWidth Part, BWP) for the terminal on the serving cell. How to implement handover between BWPs is an urgent problem to be solved.
  • BWP BandWidth Part
  • the embodiments of the present application provide a wireless communication method, network equipment, and terminal equipment, which can implement flexible switching of BWP.
  • a wireless communication method including: receiving downlink dynamic signaling;
  • the terminal device switches the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, or from the second BWP to the first BWP.
  • a wireless communication method comprising: adjusting the configuration of the BWP of at least one or at least one group of secondary cells; the configuration before adjustment and the configuration after adjustment are at least in the following aspects One difference: the number of MIMO layers used when transmitting data on the BWP, whether the time interval between the control channel sent on the BWP and the data channel scheduled by the control channel is greater than or equal to a threshold, Whether to search for the PDCCH on the BWP; communicate with the network device on the BWP with the configuration parameters adjusted.
  • a wireless communication method including: sending downlink dynamic signaling to a terminal device, the downlink dynamic signaling instructing the terminal device to switch the BWP of at least one secondary cell group or multiple secondary cells from a first BWP To the second BWP, or switch from the second BWP to the first BWP.
  • a wireless communication method comprising: adjusting the configuration of the BWP of at least one or at least one group of secondary cells; the configuration before the adjustment and the configuration after the adjustment are at least in the following aspects One difference: the number of MIMO layers used when transmitting data on the BWP, whether the time interval between the control channel sent on the BWP and the data channel scheduled by the control channel is greater than or equal to a threshold, Whether to search for PDCCH on the BWP; communicate with the terminal device on the BWP with the configuration parameters adjusted.
  • a communication device for executing the method in any one of the first to fourth aspects.
  • the communication device includes a functional module for executing the method of any one of the first to fourth aspects.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method of any one of the first to fourth aspects.
  • a chip is provided for implementing the method in any one of the first to fourth aspects.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the fourth aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in any one of the first to fourth aspects.
  • a computer program product including computer program instructions that cause a computer to execute the method in any one of the first to fourth aspects.
  • a computer program which, when run on a computer, causes the computer to execute the method in any one of the first to fourth aspects.
  • the terminal device in response to the indication of the downlink dynamic signaling, can switch the BWP of at least one secondary cell group or multiple secondary cells, which can adjust the BWP flexibly, and after receiving the downlink dynamic signaling, The BWP of at least one secondary cell group or multiple secondary cells is switched, which can save signaling overhead.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a BWP handover provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a BWP handover provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a BWP handover provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a BWP handover provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches,
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • 5G NR further increases the system bandwidth on the basis of 4G.
  • the maximum bandwidth supported by a single carrier is 100MHz; for frequency bands above 6GHz, the maximum bandwidth supported by a single carrier is 400MHz.
  • 5G NR also supports Carrier Aggregation (CA) technology.
  • CA Carrier Aggregation
  • the network device configures multiple serving cells for the terminal device, and the terminal device can simultaneously send and receive data on the multiple serving cells, thereby increasing the data transmission rate.
  • BWP BandWidth Part
  • the network device can configure one or more BWPs for the terminal device on the serving cell through (Radio Resource Control, RRC), and the maximum number of configurable BWPs can optionally be 4.
  • RRC Radio Resource Control
  • the terminal device can only have one activated downlink (DL) BWP and one activated uplink (Uplink, UL) BWP on this serving cell, and the terminal device can only be on the activated BWP Send and receive data.
  • the terminal device can learn the downlink or uplink scheduling information by receiving the Physical Downlink Control Channel (PDCCH) sent by the network device, thereby further completing the reception and transmission of service data.
  • the time when the network device schedules the terminal device is not fixed. Since there is no relevant signaling to inform the terminal whether the network sends the PDCCH to the terminal, the terminal device needs to blindly check the PDCCH. In order to reduce the complexity of blind detection of terminal equipment, it is necessary to limit the set of blind detection PDCCH. Therefore, a search space can be introduced, that is, a set of PDCCH resources that the terminal needs to blindly detect.
  • the network device may configure one or more PDCCH search spaces for each BWP of the terminal, and each PDCCH search space corresponds to one PDCCH monitoring period.
  • the terminal device can only monitor the PDCCH on the currently activated BWP and perform data transmission and reception.
  • the terminal device can blindly detect the primary cell (Primary Cell, PCell) and the secondary cell (Secondary Cell, SCell)
  • Primary Cell Primary Cell
  • SCell Secondary Cell
  • the PDCCH on all serving cells within this will increase the PDCCH blind detection overhead of the terminal equipment, which is not conducive to the power saving of the terminal equipment.
  • the following methods can be used to reduce the PDCCH blind detection overhead on the SCell:
  • the SCell is mainly used to offload a large amount of data when the business volume is large, one way is that if the network device determines that the data volume is reduced, the network device can activate some SCells in advance.
  • the disadvantage of this method is that the arrival of the traffic volume is random, and the reactivation of the SCell requires a relatively long delay (such as 40 ms), which will affect the throughput required by the business.
  • WUS wake-up signalling
  • DRX onduration DRX onduration
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 includes at least part of the following content.
  • the network device sends downlink dynamic signaling to the terminal device.
  • the downlink dynamic signaling instructs the terminal device to switch the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, or from the first BWP.
  • the second BWP switches to the first BWP.
  • the downlink dynamic signaling mentioned in the embodiments of the present application may be layer 1 (L1) signaling or layer 2 (L2) signaling.
  • the downlink dynamic signaling mentioned in the embodiment of this application may be Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the DCI may be obtained by blind detection of the PDCCH by the terminal device.
  • the PDCCH may be obtained through the Cell Radio Network Temporary Identity (Cell Radio Network).
  • Cell Radio Network Cell Radio Network Temporary Identity
  • Termorary Identity, C-RNTI) scrambling can also be scrambled through Configured Scheduling (CS)-RNTI (CS-RNTI), or scrambled through a new RNTI, for example, PS-RNTI .
  • the secondary cell group mentioned in the embodiment of the present application may include one or more secondary cells.
  • the grouping of the secondary cell may be configured by RRC signaling.
  • the downlink dynamic signaling may be sent through the primary cell or the primary and secondary cell (PSCell).
  • the downlink dynamic signaling may also be sent through the secondary cell.
  • the secondary cell may belong to the aforementioned at least one secondary cell group or multiple secondary cells.
  • the downlink dynamic signaling is used to indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP. That is to say, the downlink dynamic signaling can have an information field, which can indicate which secondary cell groups or secondary cells may need to perform BWP handover. It is indicated that the BWP needs to be switched to the secondary cell group, and all secondary cells in the secondary cell group may perform BWP handover.
  • the downlink dynamic signaling does not indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP; the at least one secondary cell group or multiple secondary cells includes all The secondary cell of the first BWP.
  • the downlink dynamic signaling may not indicate which secondary cell groups or secondary cells need to perform BWP handover, and the terminal device can configure a specific BWP (first BWP or second BWP) according to which secondary cells or secondary cell groups, Thus, the BWP is switched to these secondary cells or secondary cell groups.
  • the terminal device may decide whether to switch the BWP to the secondary cell or the secondary cell group according to whether the BWP before the handover of the secondary cell or the secondary cell group is a specific BWP.
  • the terminal device may decide whether to perform BWP handover to these secondary cells or secondary cells according to whether the secondary cell or secondary cell group is configured with the BWP to be handed over.
  • the downlink dynamic signaling may indicate which BWP is the BWP before handover, and the current BWP is the BWP indicated by the downlink dynamic signaling for the secondary cell or secondary cell group for BWP handover.
  • the downlink dynamic signaling may indicate which BWPs are the BWPs after the handover, and the secondary cell or secondary cell group may handover the BWP to the indicated BWP.
  • the downlink dynamic signaling can indicate the BWP before the handover and the BWP after the handover.
  • the BWP mentioned in the embodiment of this application may be a downlink BWP or an uplink BWP.
  • the downlink dynamic signaling is a downlink dynamic signaling that is detected during the DRX Active Time (DRX Active Time) of discontinuous reception.
  • the downlink dynamic signaling is detected before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling of whether to start the DRX duration timer can be borrowed to instruct the BWP switching, thereby saving signaling overhead.
  • the terminal device receives downlink dynamic signaling.
  • the terminal device switches the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, or from the second BWP to the first BWP according to the indication of the downlink dynamic signaling.
  • BWP switching from the first BWP to the second BWP may refer to switching the activated BWP of the terminal device from the first BWP to the second BWP.
  • Switching from the second BWP to the first BWP may refer to switching the activated BWP of the terminal device from the second BWP to the first BWP
  • the terminal device switches the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, or from the second BWP to the first BWP, which means that the terminal device can communicate on the switched BWP, For example, if the BWP is a downlink BWP, the reference signal and/or PDCCH can be detected on the handover BWP. If the BWP is an uplink BWP, a Physical Uplink Shared Channel (PUSCH) and/or a Physical Uplink Control Channel (PUCCH) can be sent on the handover BWP.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • switching the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, or from the second BWP to the first BWP means that the network equipment can switch For example, if the BWP is a downlink BWP, the reference signal and/or PDCCH can be sent on the handover BWP. If the BWP is an uplink BWP, the PUSCH and/or PUCCH can be received in the handover BWP.
  • the terminal device does not blindly check the control channel in the second BWP; and/or the multiple-input multiple-output (MIMO) layer used when the second BWP transmits data
  • MIMO multiple-input multiple-output
  • the number is different from the number of layers of the MIMO layer used when transmitting data on the first BWP; and/or, the time interval between the control channel sent on the second BWP and the data channel scheduled by the control channel is greater than Or equal to the threshold value and the time interval between the control channel sent on the first BWP and the data channel scheduled by the control channel is less than the threshold; and/or, the search space configured on the second BWP The period is smaller than the period of the search space configured on the first BWP.
  • MIMO multiple-input multiple-output
  • the terminal device may not blindly check the control channel on the second BWP (this means that the second BWP is not configured with a search space, or although a search space is configured, it is not correct.
  • the search space performs blind detection), so that the power of the terminal device can be saved.
  • the network device may also not send the control channel to the terminal device on the second BWP.
  • the terminal device can determine whether to send according to the service volume of the terminal device
  • the downlink dynamic signaling indicates that the PDCCH is not to be blindly detected on the second BWP.
  • the second BWP may be called a power saving BWP.
  • the downlink reference signal can be detected on the second BWP.
  • the number of MIMO layers used when transmitting data on the second BWP is different from the number of MIMO layers used when transmitting data on the first BWP, for example,
  • the number of MIMO layers used on the second BWP can be greater than the number of MIMO layers used on the first BWP, or the number of MIMO layers used on the first BWP can be the number of MIMO layers used on the first BWP of the cell (At this time, the second BWP may be called a power saving BWP).
  • the time interval between the control channel sent on the second BWP and the data channel scheduled by the control channel is greater than or equal to a threshold and the time interval between the control channel sent on the first BWP The time interval between the control channel and the data channel scheduled by the control channel is smaller than the threshold.
  • the preset value mentioned here may be preset on the terminal device, or may also be configured by the network device to the terminal device.
  • the network device may configure one or more downlink BWPs (or uplink BWPs) (for example, 5) for each serving cell or serving cell group of the terminal device.
  • a second BWP may be included.
  • one or more first BWPs for example, four
  • one second BWP can be configured.
  • switching from the first BWP to the second BWP may be based on downlink dynamic signaling instructions, and switching from the second BWP to the first BWP or other BWPs may also be based on downlink dynamic signaling instructions .
  • BWP handover for at least one secondary cell group or multiple secondary cells based on the indication of downlink dynamic signaling, but the embodiment of this application is not limited to this. In the embodiment of this application, it can also be based on RRC signaling.
  • the BWP is switched due to timer expiration or random access initialization.
  • the terminal device can start the timer every time after the BWP of multiple secondary cells or at least one secondary cell group is switched, and when the timer expires, the timer can be started again,
  • the duration of the timer that is started each time may be the same or different, and may be related to the current BWP being switched to.
  • the downlink dynamic signaling and the timer can be combined to trigger the handover of the BWP.
  • the terminal device receives the downlink dynamic signaling, and based on the indication of the downlink dynamic signaling, the terminal device switches the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP.
  • the terminal device can start a timer for each secondary cell or secondary cell group (the duration of the timers started by different secondary cells or secondary cell groups can be the same or different), and the function of the timer is to determine The residence time of the terminal device on the second BWP after the handover.
  • the duration of the timer may be configured by RRC signaling, or may be indicated by downlink dynamic signaling.
  • the BWP of the secondary cell or secondary cell group corresponding to the timer can be switched from the second BWP back to the first BWP or to another BWP (for example, the initial BWP or the default BWP).
  • the terminal device can restart the timer.
  • the timer mentioned in the embodiment of the present application may be a DRX inactivity timer (drx-InactivityTimer).
  • the downlink dynamic signaling may be detected in the DRX activator.
  • the terminal device may also blindly detect the PDCCH in the DRX Active Time to obtain the DCI, and the PDCCH is scrambled with the C-RNTI or the CS-RNTI.
  • the PDCCH may instruct the downlink activated BWP on multiple or at least one group of SCells to switch to a power saving (PS) BWP (PS BWP);
  • PS BWP power saving BWP
  • the terminal device When the terminal device receives the PDCCH, it can start or restart the drx-InactivityTimer. During the operation of the drx-InactivityTimer, the terminal device remains on the PS BWP; when the drx-InactivityTimer times out, the terminal device switches to the previously activated BWP, or Is the initial BWP, or the default BWP.
  • each secondary cell group or secondary cell may correspond to one timer, or all secondary cell groups or secondary cells may correspond to one timer.
  • the handover from the first BWP to the second BWP may be based on the downlink dynamic signaling indication.
  • the terminal device may keep the secondary cell or the secondary cell group on the second BWP until the next BWP.
  • the dynamic signaling needs to be detected again. If the downlink dynamic signaling is detected, if the signaling indicates to switch the BWP of at least one secondary cell group or multiple secondary cells to the second BWP, the BWP switch may not be performed, and the terminal equipment It remains on the second BWP.
  • the terminal device can switch the BWP of at least one secondary cell group or multiple secondary cells from the second BWP to the first BWP, or another BWP, for example, the initial BWP or the default BWP.
  • the terminal device detects dynamic signaling, and the dynamic signaling instructs the terminal device to switch to PS BWP, then the terminal remains in the PS BWP ;
  • the terminal equipment stays in the PS BWP until the next DRX cycle; if in a certain period of time before the start of the drx-ondurationTimer of the next DRX cycle, the UE detects dynamic signaling, and the dynamic signaling instructs the terminal equipment to switch to PS BWP, the UE still remains in the PS BWP; if the terminal device does not detect dynamic signaling within a certain period of time before the start of the drx-ondurationTimer of the next DRX terminal device, the terminal device switches to a downlink BWP.
  • the BWP can be the previously activated downlink BWP, or the initial BWP or the default downlink BWP.
  • the terminal device receives a downlink dynamic signaling indicating to switch the BWP of at least one secondary cell group or multiple secondary cells from the first BWP to the second BWP, then the terminal device will at least The BWP of one secondary cell group or multiple secondary cells is switched from the first BWP to the second BWP, and the terminal device again receives a downlink dynamic signaling indicating that the BWP of at least one secondary cell group or multiple secondary cells is transferred from the second BWP Switching back to the first BWP, the terminal device switches the BWP of at least one secondary cell group or multiple secondary cells from the second BWP to the first BWP.
  • the terminal device switches the currently active DL BWP of at least one secondary cell group or multiple secondary cells to the PS BWP based on dynamic signaling
  • the terminal device remains on the PS BWP, and the terminal device remains on the PS BWP until
  • the dynamic signaling instructs the UE to switch to a non-PS BWP
  • the other dynamic signaling can be the same as or different from the dynamic signaling that switches the terminal equipment to the PS BWP
  • the other dynamic signaling can Instruct the terminal device to switch to a non-PS BWP on a certain/group or multiple/group SCells.
  • the non-PS BWP may be indicated by the other dynamic signaling, or may be pre-configured by the network.
  • the UE is configured with three SCells, in which on the secondary cell (SCell) group 1 and the secondary cell (SCell) 2, the network device configures the PS BWP for the UE. On SCell 3, the network device does not configure PS BWP for the UE.
  • the UE receives dynamic indication signaling on the PCell or PSCell, and the UE switches the current downlink active BWP on the secondary cell group 1 and secondary cell group 2 to the pre-configured PS BWP; the UE starts at drx-ondurationTimer
  • the PDCCH not only indicates whether the UE wants to start the drx-ondurationTimer, but also indicates whether the UE wants to switch the currently active downlink BWP on the SCell to the PS BWP.
  • the UE blindly detects the PDCCH before starting the drx-ondurationTimer, the PDCCH instructs the UE to start the drx-ondurationTimer, and the PDCCH also instructs the downlink active BWP on the SCell to switch to PS BWP;
  • the UE starts a timer. During the timer, the UE remains in the PS BWP.
  • the UE can switch to The previously activated downlink BWP can also be switched to the initial or default BWP.
  • the UE can switch to #2BWP or #3BWP when the timer expires. It should be noted that the initial or default BWP index can be different.
  • the UE switches the DL BWP on the secondary cell group 1 and the secondary cell group 2 to PS BWP, and the UE Stay in the PS BWP.
  • the PDCCH can instruct the UE to switch the PS BWP to another BWP on the secondary cell group 1 and the secondary cell group 2.
  • the BWP of at least one secondary cell group or multiple secondary cells can be adjusted according to changes in the traffic volume, so that power loss can be avoided.
  • the terminal device in response to the indication of the downlink dynamic signaling, can switch the BWP of at least one secondary cell group or multiple secondary cells, which can adjust the BWP flexibly, and after receiving the downlink dynamic signaling, The BWP of at least one secondary cell group or multiple secondary cells is switched, which can save signaling overhead.
  • FIG. 7 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
  • the method 300 includes at least part of the following content.
  • the network device adjusts the configuration of the BWP of at least one or at least one group of secondary cells
  • the configuration before adjustment is different from the configuration after adjustment in at least one of the following aspects: the number of MIMO layers used when transmitting data on the BWP, and the control sent on the BWP Whether the time interval between the channel and the data channel scheduled by the control channel is greater than or equal to a threshold value, and whether a PDCCH search is performed on the BWP;
  • the terminal device adjusts the configuration of the BWP of at least one or at least one group of secondary cells
  • the configuration before adjustment is different from the configuration after adjustment in at least one of the following aspects: the number of MIMO layers used when transmitting data on the BWP, and the control sent on the BWP Whether the time interval between the channel and the data channel scheduled by the control channel is greater than or equal to a threshold value, and whether a PDCCH search is performed on the BWP;
  • the terminal device adjusts the configuration of the BWP of at least one or at least one group of secondary cells according to the indication of the downlink dynamic signaling.
  • the downlink dynamic signaling mentioned in the embodiments of the present application may be layer 1 (L1) signaling or layer 2 (L2) signaling.
  • the downlink dynamic signaling mentioned in the embodiment of this application can be Downlink Control Information (DCI), which can be obtained by blind detection of the PDCCH by the terminal equipment, and the PDCCH can be scrambled by C-RNTI or It is scrambled by CS-RNTI, or it can be scrambled by a new RNTI, for example, PS-RNTI.
  • DCI Downlink Control Information
  • the secondary cell group mentioned in the embodiment of the present application may include one or more secondary cells.
  • the grouping of the secondary cell may be configured by RRC signaling.
  • the downlink dynamic signaling may be sent through the primary cell or the primary and secondary cell (PSCell).
  • the downlink dynamic signaling may also be sent through the secondary cell.
  • the secondary cell may belong to the aforementioned at least one secondary cell group or multiple secondary cells.
  • the downlink dynamic signaling is used to indicate the at least one secondary cell group or multiple secondary cells that need to adjust the configuration of the BWP. That is to say, the downlink dynamic signaling may have an information field, which may indicate which secondary cell groups or secondary cells may need to adjust the BWP configuration. It is indicated that the BWP configuration of the secondary cell group needs to be adjusted, and all secondary cells in the secondary cell group may adjust the BWP configuration.
  • the downlink dynamic signaling does not indicate the at least one secondary cell group or multiple secondary cells that need to adjust the configuration of the BWP; the at least one secondary cell group or multiple secondary cells includes the configuration The secondary cell of the BWP configured with the adjusted BWP.
  • the downlink dynamic signaling may not indicate which secondary cell groups or secondary cells need to adjust the BWP configuration, and the terminal device can determine which secondary cells or secondary cell groups have specific configurations based on the BWP of the secondary cell groups. Or the secondary cell group adjusts the BWP configuration.
  • the terminal device may decide whether to adjust the BWP configuration of the secondary cell or the secondary cell group according to whether the BWP configuration before the adjustment of the secondary cell or the secondary cell group is a specific BWP configuration.
  • the terminal device may determine whether to adjust the BWP configuration of the secondary cell or secondary cell according to whether the BWP configuration of the secondary cell or secondary cell group is a specific BWP configuration.
  • the BWP mentioned in the embodiment of this application may be a downlink BWP or an uplink BWP.
  • the downlink dynamic signaling is a downlink dynamic signaling that is detected during the DRX Active Time (DRX Active Time) of discontinuous reception.
  • the downlink dynamic signaling is detected before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling of whether to start the DRX duration timer can be borrowed to instruct the adjustment of the BWP configuration, thereby saving signaling overhead.
  • the configuration before adjustment is different from the configuration after adjustment in at least one of the following aspects: the number of MIMO layers used when transmitting data on the BWP, the control channel sent on the BWP and the Whether the time interval between the data channels scheduled by the control channel is greater than or equal to the threshold, and whether the PDCCH search is performed on the BWP.
  • the BWP in the embodiment of the present application may have two configurations.
  • the number of MIMO layers used to transmit data on the BWP is lower than that of the first configuration.
  • the time interval between the control channel sent on the BWP and the data channel scheduled by the control channel is less than the threshold, and in the first configuration, the time interval is greater than the threshold.
  • the first configuration can be called the PS configuration, which can save the power of the terminal device.
  • the adjustment from the first configuration to the second configuration may be based on downlink dynamic signaling instructions, and the adjustment from the second configuration to the first configuration or other configurations may also be based on downlink dynamics. Signaling instructions.
  • the embodiment of this application is not limited to this. In the embodiment of this application, it can also be based on RRC signaling.
  • the BWP configuration is adjusted due to timer expiration or random access initialization.
  • each time the terminal device adjusts the BWP configuration of at least one secondary cell or at least one secondary cell group it can start a timer, and when the timer expires, it can start the timer again.
  • the duration of the timer that is started each time can be the same or different, and it can be related to the currently adjusted configuration.
  • downlink dynamic signaling and timers can be combined to trigger adjustment of BWP.
  • the terminal device receives the downlink dynamic signaling, and based on the indication of the downlink dynamic signaling, the terminal device adjusts the BWP of at least one secondary cell group or multiple secondary cells from the first configuration to the second configuration.
  • the terminal device can start a timer for each secondary cell or secondary cell group (the duration of the timers started by different secondary cells or secondary cell groups can be the same or different), and the function of the timer is to determine The dwell time of the terminal device in the adjusted second configuration.
  • the duration of the timer may be configured by RRC signaling, or may be indicated by downlink dynamic signaling.
  • the configuration of the secondary cell or secondary cell group corresponding to the timer can be switched from the second configuration back to the first configuration or to other configurations (for example, initial configuration or default configuration).
  • the terminal device can restart the timer.
  • the timer mentioned in the embodiment of the present application may be a DRX inactivity timer (drx-InactivityTimer).
  • the downlink dynamic signaling may be detected in the DRX activator.
  • the terminal device may also blindly detect the PDCCH in the DRX Active Time to obtain the DCI, and the PDCCH is scrambled with the C-RNTI or the CS-RNTI.
  • the PDCCH may instruct the downlink activated BWP on multiple or at least one group of SCells to switch to a power saving (PS) BWP (PS BWP);
  • PS BWP power saving BWP
  • the terminal device When the terminal device receives the PDCCH, it can start or restart the drx-InactivityTimer. During the operation of the drx-InactivityTimer, the terminal device remains in the second configuration; when the drx-InactivityTimer times out, the terminal device adjusts to the previous configuration, Either the initial configuration or the default configuration.
  • each secondary cell group or secondary cell may correspond to one timer, or all secondary cell groups or secondary cells may correspond to one timer.
  • the adjustment from the first configuration to the second configuration may be based on a downlink dynamic signaling indication, and the terminal device may keep the BWP of the secondary cell or secondary cell group in the second configuration If the downlink dynamic signaling is detected, if the signaling instructs to adjust the BWP configuration of at least one secondary cell group or secondary cell to the second configuration, it can be omitted. For the adjustment of the BWP configuration, the terminal device still maintains the second configuration. If the terminal device does not detect the downlink dynamic signaling, the terminal device can adjust the configuration of at least one secondary cell group or BWP of the secondary cell from the second configuration back to the first configuration, or another configuration, for example, Initial configuration or default configuration.
  • the terminal device detects dynamic signaling, and the dynamic signaling instructs the terminal device to adjust the configuration of the BWP to the second configuration, then the terminal The second configuration is still maintained; the terminal device maintains the second configuration until the next DRX cycle; if in a certain period of time before the start of the drx-ondurationTimer of the next DRX cycle, the UE detects dynamic signaling and the dynamic The signaling instructs the terminal device to adjust the BWP configuration to the second configuration, and the UE still maintains the second configuration; if the terminal device does not detect it in a certain period of time before the start of the drx-ondurationTimer of the next DRX terminal device For dynamic signaling, the terminal device adjusts the configuration of the BWP to other configurations, and the adjusted configuration may be the previous configuration, or the initial configuration or the default configuration.
  • the terminal device receives a downlink dynamic signaling indicating to switch the configuration of the BWP of at least one secondary cell group or secondary cell from the first configuration to the second configuration, then the terminal device The BWP configuration of at least one secondary cell group or secondary cell is adjusted from the first configuration to the second configuration, and the terminal device again receives a downlink dynamic signaling indicating the configuration of the BWP of at least one secondary cell group or secondary cell Switching from the second configuration back to the first configuration, the terminal device switches the configuration of the BWP of at least one secondary cell group or secondary cell from the second configuration to the first configuration.
  • the configuration of the BWP of the secondary cell or secondary cell group can be adjusted, and the configuration before the adjustment is different from the configuration after the adjustment in at least one of the following aspects:
  • the number of MIMO layers used when transmitting data whether the time interval between the control channel sent on the BWP and the data channel scheduled by the control channel is greater than or equal to the threshold, whether the PDCCH is performed on the BWP
  • the search can realize the flexible adjustment of the number of MIMO layers, the time interval between the control channel and the data channel, and whether to search for PDCCH, and can save the power of the terminal device when necessary.
  • Fig. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal equipment 400 includes a communication unit 410 for receiving downlink dynamic signaling, and switching the BWP of at least one secondary cell group or multiple secondary cells from a first BWP to a second BWP according to the indication of the downlink dynamic signaling, Or switch from the second BWP to the first BWP.
  • the communication unit does not blindly check the control channel in the second BWP; and/or the number of MIMO layers used when transmitting data in the second BWP and the number of layers in the first BWP
  • the number of MIMO layers used when transmitting data on a BWP is different; and/or, the time interval between the control channel sent on the second BWP and the data channel scheduled by the control channel is greater than or equal to a threshold, and The time interval between the control channel sent on the first BWP and the data channel scheduled by the control channel is less than the threshold.
  • the downlink dynamic signaling is downlink dynamic signaling detected during the DRX activation period of discontinuous reception.
  • the downlink dynamic signaling is detected before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling is used to indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP.
  • the downlink dynamic signaling does not indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP;
  • the at least one secondary cell group or multiple secondary cells include secondary cells configured with the first BWP.
  • the downlink dynamic signaling is received on the primary cell of the terminal device.
  • terminal device 400 may be used to implement the corresponding operations implemented by the terminal device in the method 200, and for the sake of brevity, details are not described herein again.
  • FIG. 9 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes a processing unit 510 for adjusting the configuration of the BWP of at least one or at least one group of secondary cells; the configuration before the adjustment is different from the configuration after the adjustment in at least one of the following aspects: The number of MIMO layers used when transmitting data on the BWP, whether the time interval between the control channel sent on the BWP and the data channel scheduled by the control channel is greater than or equal to a threshold, and whether it is on the BWP Perform PDCCH search; the communication unit 520 is configured to communicate with network equipment on the BWP with the configuration parameters adjusted.
  • the processing unit 510 is further configured to:
  • the configuration of the BWP is adjusted.
  • the downlink dynamic signaling is dynamic signaling detected during the DRX activation period of discontinuous reception.
  • the downlink dynamic signaling is detected before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling further indicates the at least one or at least a group of secondary cells that need to adjust the configuration of the BWP.
  • the downlink dynamic signaling is received on the primary cell of the terminal device.
  • terminal device 500 may be used to implement the corresponding operations implemented by the terminal device in the method 300, and for the sake of brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a network device 600 according to an embodiment of the present application.
  • the network device 600 includes a communication unit 610, configured to send downlink dynamic signaling to a terminal device, the downlink dynamic signaling instructing the terminal device to switch the BWP of at least one secondary cell group or multiple secondary cells from a first BWP to a second BWP BWP, or switch from the second BWP to the first BWP.
  • the communication unit does not send a control channel in the second BWP; and/or the number of MIMO layers used when transmitting data in the second BWP and the number of layers in the first BWP
  • the number of MIMO layers used when transmitting data on the BWP is different; and/or, the time interval between the control channel sent on the second BWP and the data channel scheduled by the control channel is greater than or equal to the threshold and the The time interval between the control channel sent on the first BWP and the data channel scheduled by the control channel is less than the threshold.
  • the downlink dynamic signaling is the downlink dynamic signaling sent during the DRX activation period of discontinuous reception.
  • the downlink dynamic signaling is sent before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling is used to indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP.
  • the downlink dynamic signaling does not indicate the at least one secondary cell group or multiple secondary cells that need to switch BWP;
  • the at least one secondary cell group or multiple secondary cells include secondary cells configured with the first BWP.
  • the downlink dynamic signaling is sent on the primary cell of the terminal device.
  • network device 600 may be used to implement the corresponding operations implemented by the network device in the method 200, and for the sake of brevity, details are not described herein again.
  • FIG. 11 is a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 includes a processing unit 710, configured to adjust the configuration of the BWP of at least one or at least one group of secondary cells;
  • the configuration before adjustment is different from the configuration after adjustment in at least one of the following aspects: the number of MIMO layers used when transmitting data on the BWP, the control channel sent on the BWP and the Whether the time interval between the data channels scheduled by the control channel is greater than or equal to the threshold value, and whether the PDCCH search is performed on the BWP; the communication unit 720 is configured to, on the BWP with the configuration parameters adjusted, and The terminal device communicates.
  • the communication unit 720 is further configured to:
  • the downlink dynamic signaling is a dynamic signaling sent during the DRX activation period of discontinuous reception.
  • the downlink dynamic signaling is sent before the DRX persistence timer is started.
  • the downlink dynamic signaling is also used to indicate whether the terminal device needs to start the DRX persistence timer.
  • the downlink dynamic signaling further indicates the at least one or at least a group of secondary cells that need to adjust the configuration of the BWP.
  • the downlink dynamic signaling is sent on the primary cell of the terminal device.
  • network device 700 may be used to implement the corresponding operations implemented by the network device in the method 300. For the sake of brevity, details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 12 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device in an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 800 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. For simplicity , I won’t repeat it here.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1000 shown in FIG. 13 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法、网络设备和终端设备,可以实现BWP的灵活切换。该方法包括:接收下行动态信令;根据所述下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。

Description

无线通信方法、网络设备和终端设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种无线通信方法、网络设备和终端设备。
背景技术
为了能够提供更大的数据传输速率,提升用户体验,5G新无线(New Radio,NR)在4G基础上进一步增大了***带宽。与长期演进(Long Term Evolution,LTE)***相同,5G NR也支持载波聚合(Carrier Aggregation,CA)技术。网络通过为终端配置多个服务小区,终端可以同时在这多个服务小区上进行数据的发送和接收,从而提升数据传输速率。
对于终端的每个服务小区,网络设备可以为终端在这个服务小区上配置一个或者多个带宽部分(BandWidth Part,BWP),如何实现BWP之间的切换是一项亟待解决的问题。
发明内容
本申请实施例提供一种无线通信方法、网络设备和终端设备,可以实现BWP的灵活切换。
第一方面,提供了一种无线通信方法,包括:接收下行动态信令;
根据所述下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
第二方面,提供了一种无线通信方法,所述方法包括:调整至少一个或至少一组辅小区的BWP的配置;调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;在调整了所述配置参数的所述BWP上,与网络设备进行通信。
第三方面,提供了一种无线通信方法,包括:向终端设备发送下行动态信令,所述下行动态信令指示终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
第四方面,提供了一种无线通信方法,所述方法包括:调整至少一个或至少一组辅小区的BWP的配置;调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;在调整了所述配置参数的所述BWP上,与终端设备进行通信。
第五方面,提供了一种通信设备,用于执行上述第一至第四方面中任一方面的方法。
具体地,该通信设备包括用于执行上述第一至第四方面中任一方面的方法的功能模块。
第六方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一至第四方面中任一方面的方法。
第七方面,提供了一种芯片,用于实现上述第一至第四方面中任一方面的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第四方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序 使得计算机执行上述第一至第四方面中任一方面的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一至第四方面中任一方面的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一至第四方面中任一方面的方法。
因此,在本申请实施例中,响应于下行动态信令的指示,终端设备可以切换至少一个辅小区组或多个辅小区的BWP,可以实现灵活调整BWP,并且收到下行动态信令之后,切换的为至少一个辅小区组或多个辅小区的BWP,可以节省信令开销。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是本申请实施例提供的一种无线通信方法的示意性图。
图3是本申请实施例提供的一种BWP切换的示意性图。
图4是本申请实施例提供的一种BWP切换的示意性图。
图5是本申请实施例提供的一种BWP切换的示意性图。
图6是本申请实施例提供的一种BWP切换的示意性图。
图7是本申请实施例提供的一种无线通信方法的示意性图。
图8是本申请实施例提供的一种终端设备的示意性框图。
图9是本申请实施例提供的一种终端设备的示意性框图。
图10是本申请实施例提供的一种网络设备的示意性框图。
图11是本申请实施例提供的一种网络设备的示意性框图。
图12是本申请实施例提供的一种通信设备的示意性框图。
图13是本申请实施例提供的一种通信装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land  Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够提供更大的数据传输速率,提升用户体验,5G NR在4G基础上进一步增大了***带宽。在5G NR中,对于6GHz以下频段,单载波可以支持的最大带宽为100MHz;对于6GHz以上频段,单载波可以支持的最大带宽为400MHz。
与LTE***相同,5G NR也支持载波聚合(Carrier Aggregation,CA)技术。网络设备通过为终端设备配置多个服务小区,终端设备可以同时在这多个服务小区上进行数据的发送和接收,从而提升数据传输速率。
从另一方面来看,对于一个大的载波带宽,比如100HMz,终端设备需要使用的带宽往往非常有限,如果让终端设备始终在整个带宽上进行检测和测量,对终端设备功耗将带来极大的挑战,不利于终端设备的省电。因此,在5G NR中引入了带宽部分(BandWidth Part,BWP)的概念,即在整个大带宽的载波内划分出一部分连续的带宽给 终端设备进行数据收发。终端设备可与只需要在网络设备配置的这部分带宽内进行相关操作,从而起到终端设备节能的效果。
对于终端设备的每个服务小区,网络设备可以通过(Radio Resource Control,RRC)可以为终端设备在这个服务小区上配置一个或者多个BWP,可配置的最大BWP数目可选地可以为4。在每个时刻,终端设备可以在这个服务小区上只能有1个激活的下行(Downlink,DL)BWP和1个激活的上行(Uplink,UL)BWP,终端设备可以只能在激活的BWP上进行数据收发。
终端设备可以通过接收网络设备发送的物理下行控制信道(Physical Downlink Control Channel,PDCCH)来获知下行或上行调度信息,从而可以进一步完成业务数据的接收和发送。网络设备调度终端设备的时刻是不固定的,由于没有相关信令告知终端网络是否给该终端发送了PDCCH,终端设备需要盲检PDCCH。为了降低终端设备盲检的复杂度,需要限制盲检测PDCCH的集合。因此,可以引入搜索空间,即终端需要盲检的PDCCH资源集合。网络设备可以为终端的每个BWP配置一个或者多个PDCCH搜索空间,每个PDCCH搜索空间对应一个PDCCH监听周期。终端设备可以只在当前激活的BWP上监听PDCCH并进行数据收发。
在CA配置中,如果终端设备处于DRX激活期(非连续接收(Discontinuous Reception,DRX)Active Time),那么终端设备可以盲检包括主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell)在内的所有服务小区上的PDCCH,这会导致终端设备的PDCCH盲检开销增大,不利于终端设备省电。可以采用以下几种方式可以减少SCell上的PDCCH盲检开销:
由于SCell主要是在业务量大的时候用于offload大数据量,一种方式是,网络设备如果判断到数据量降低,网络设备可以利用提前激活一些SCell。但是,这种方式的缺点是,业务量的到达是随机的,重新激活SCell需要比较长的时延(比如40ms),这样会对业务要求的吞吐量有影响。
另外一种方式是,可以采用唤醒信令(wake-up signalling,WUS)来指示在下一个DRX持续期(DRX onduration)期间,终端设备可以在哪些SCell上不需要盲检PDCCH,这种方式能灵活的控制终端设备在SCell上盲检行为,但是当业务量比较低的时候,会要求网络频繁的发送信令使得终端设备不去盲检SCell上的PDCCH。
图2是根据本申请实施例的无线通信方法200的示意性流程图。该方法200包括以下内容中的至少部分内容。
在210中,网络设备向终端设备发送下行动态信令,所述下行动态信令指示终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
本申请实施例提到的下行动态信令可以是层1(L1)信令,也可以是层2(L2)信令。
本申请实施例提到的下行动态信令可以是下行控制信息(Downlink Control Information,DCI),该DCI可以是终端设备盲检PDCCH得到的,该PDCCH可以是通过小区无线网络临时标识(Cell Radio Network Termorary Identity,C-RNTI)加扰的,也可以是通过配置调度(Configured Scheduling,CS)-RNTI(CS-RNTI)加扰的,也可以是通过一个新的RNTI加扰,例如,PS-RNTI。
本申请实施例提到的辅小区组包括可以一个或多个辅小区。本申请实施例中,辅小区的分组可以是RRC信令配置。
本申请实施例中,下行动态信令可以是通过主小区或主辅小区(PSCell)发送的。或者,在本申请实施例中,下行动态信令也可以是通过辅小区发送的。该辅小区可以属于上述至少一个辅小区组或多个辅小区。
可选地,在本申请实施例中,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。也就是说下行动态信令可以具有信息域,该信息域可以指 示哪些辅小区组或辅小区可以需要进行BWP的切换。指示辅小区组需要切换BWP,则可以是该辅小区组内的所有辅小区均进行BWP的切换。
或者,在本申请实施例中,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;所述至少一个辅小区组或多个辅小区包括配置了所述第一BWP的辅小区。
也就是说,下行动态信令可以未指示哪些辅小区组或辅小区需要进行BWP切换,则终端设备可以根据哪些辅小区或辅小区组配置了特定的BWP(第一BWP或第二BWP),从而对这些辅小区或辅小区组进行BWP的切换。
在本申请实施例中,终端设备可以根据辅小区或辅小区组的切换前的BWP是否是特定的BWP,而决定是否对这些辅小区或辅小区组进行BWP的切换。
或者,在本申请实施例中,终端设备可以根据辅小区或辅小区组是否配置了需要切换到的BWP,而决定是否对这些辅小区或辅小区进行BWP的切换。
可选地,在本申请实施例中,下行动态信令可以指示切换前的BWP是哪个BWP,则当前具有的BWP是下行动态信令指示的BWP的辅小区或辅小区组进行BWP的切换。
可选地,在本申请实施例中,下行动态信令可以指示切换后的BWP是哪些BWP,则辅小区或辅小区组可以将BWP切换到该指示的BWP。
当然,在本申请实施例中,下行动态信令即可以指示切换前的BWP,又可以指示切换后的BWP。
本申请实施例提到的BWP可以是下行BWP,也可以是上行BWP。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期(DRX Active Time)内检测的下行动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前检测的。其中,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。可以借用是否启动DRX持续定时器的下行动态信令来指示进行BWP的切换,从而可以节省信令开销。
在220中,终端设备接收下行动态信令。
在230中,终端设备根据所述下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。在本申请实施例中,从第一BWP切换到第二BWP可以是指将终端设备的激活BWP从第一BWP切换为第二BWP。从第二BWP切换到第一BWP可以是指将终端设备的激活BWP从第二BWP切换为第一BWP
终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP,意味着终端设备可以在切换后的BWP上进行通信,例如,如果BWP是下行BWP,则可以切换后的BWP上检测参考信号和/或PDCCH。如果BWP是上行BWP,则可以在切换后的BWP上发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和/或物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
而对于网络设备而言,也将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP,意味着网络设备可以在切换后的BWP上进行通信,例如,如果BWP是下行BWP,则可以在切换后的BWP上发送参考信号和/或PDCCH。如果BWP是上行BWP,则可以在切换后的BWP接收PUSCH和/或PUCCH。
可选地,在本申请实施例中,所述终端设备在第二BWP不盲检控制信道;和/或,在所述第二BWP传输数据时采用的多入多出(MIMO)层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值;和/或, 第二BWP上配置的搜索空间的周期小于第一BWP上配置的搜索空间的周期。
具体地,终端设备在接收到下行动态信令之后,可以在第二BWP上不盲检控制信道(此处意味着该第二BWP未配置有搜索空间,或者虽配置有搜索空间,但并不对该搜索空间进行盲检),从而可以节省终端设备的电量,则网络设备也可以在第二BWP上不针对终端设备发送控制信道,其中,终端设备可以根据终端设备的业务量,来确定是否发送下行动态信令,指示在第二BWP上不盲检PDCCH,此时第二BWP可以称为省电BWP。在本申请实施例中,在第二BWP上不盲检PDCCH的情况下,可以在第二BWP上检测下行参考信号。
可选地,在本申请实施例中,在所述第二BWP传输数据时采用的MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同,例如,在第二BWP上采用的MIMO层的层数可以大于在第一BWP上采用的MIMO的层数,或者,在第一BWP上采用的MIMO层的层数可以小区第一BWP上采用的MIMO层数(此时,第二BWP可以是称为省电BWP)。
可选地,在本申请实施例中,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。此处提到的预设值可以是预设在终端设备上,或者,也可以是由网络设备配置给终端设备的。
可选地,在本申请实施例中,网络设备可以为终端设备的每个服务小区或服务小区组配置一个或多个下行BWP(也可以是上行BWP)(例如,5个),在配置的BWP中,可以包括一个第二BWP。或者,可以配置一个或多个第一BWP(例如,可以为4个),以及一个第二BWP。
在本申请实施例中,从第一BWP切换到第二BWP可以是基于下行动态信令指示的,以及从第二BWP切换到第一BWP或其他的BWP也可以是基于下行动态信令指示的。
以上提到了可以基于下行动态信令的指示,对至少一个辅小区组或多个辅小区进行BWP的切换,但是本申请实施例并不限于此,在本申请实施例,还可以基于RRC信令的指示、由于定时器超时或者随机接入初始化引起BWP的切换。
作为示例性地,在本申请实施例中,每次终端设备在切换完多个辅小区或至少一个辅小区组的BWP之后,可以启动定时器,在定时器超时时,可以再次启动定时器,每次启动的定时器的时长可以相同,也可以不相同,可以与当前被切换到的BWP有关。
作为示例性地,下行动态信令和定时器可以结合用于触发BWP的切换。终端设备接收到下行动态信令,基于下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP。并且,终端设备可以针对每个辅小区或辅小区组均启动定时器(不同的辅小区或辅小区组启动的定时器的时长可以相同,也可以不相同),该定时器的作用是在确定终端设备在切换后的第二BWP上的停留时间。其中,该定时器的时长可以是RRC信令配置的,也可以是下行动态信令指示的。
当存在定时器超时时,可以将该定时器对应的辅小区或辅小区组的BWP从第二BWP切换回第一BWP或切换到其他的BWP(例如,初始BWP或默认BWP)。
如果在定时器的运行期间,再次收到下行动态信令,该下行动态信令指示将下行BWP切换到第二BWP,则终端设备可以重新启动定时器。
可选地,本申请实施例提到的定时器可以是DRX非激活定时器(drx-InactivityTimer)。
此时,下行动态信令可以是在DRX激活器内检测到的。
具体地,终端设备也可以在DRX Active Time盲检PDCCH从而获得该DCI,该PDCCH用C-RNTI或者CS-RNTI加扰。该PDCCH可以指示多个或者至少一个组SCell上的下行激活BWP切换到省电(Power Saving,PS)BWP(PS BWP);
终端设备收到该PDCCH,可以启动或者重新启动drx-InactivityTimer终端设备在该 drx-InactivityTimer运行期间,终端设备保持在PS BWP上;当drx-InactivityTimer超时时,终端设备切换到之前激活的BWP,或者是初始BWP,或者是默认BWP。
应理解,在本申请实施例,每个辅小区组或辅小区可以分别对应于一个定时器,也可以是所有的辅小区组或辅小区对应于一个定时器。
可选地,在本申请实施例中,从第一BWP切换到第二BWP可以是基于下行动态信令指示的,终端设备可以将辅小区或辅小区组保持在第二BWP上,一直到下次需要再次检测动态信令,如果检测到下行动态信令,如果该信令指示将至少一个辅小区组或多个辅小区的BWP切换到第二BWP,则可以不进行BWP的切换,终端设备仍然保持在该第二BWP上。如果终端设备没有检测到下行动态信令,则终端设备可以将至少一个辅小区组或多个辅小区的BWP从第二BWP切换到第一BWP,或者另一个BWP,例如,可以初始BWP或者默认BWP。
具体地,终端设备在DRX周期的drx-ondurationTimer启动之前的某一个时间段内,终端设备检测到动态信令,且该动态信令指示终端设备切换到PS BWP,则终端仍然保持在该PS BWP;终端设备保持在该PS BWP直到下一个DRX周期;如果在下一个DRX周期的drx-ondurationTimer启动之前的某一个时间段内,UE检测到动态信令,且该动态信令指示终端设备切换到PS BWP,则UE仍然保持在该PS BWP;如果在下一个DRX终端设备的drx-ondurationTimer启动之前的某一个时间段内,终端设备没有检测到动态信令,则终端设备切换到一个下行BWP,该下行BWP可以是之前激活的下行BWP,也可以是初始BWP或者默认下行BWP。
可选地,在本申请实施例中,终端设备接收到一个下行动态信令,指示将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,则终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,终端设备再次接收到一个下行动态信令,指示将至少一个辅小区组或多个辅小区的BWP从第二BWP切换回第一BWP,则终端设备将至少一个辅小区组或多个辅小区的BWP从第二BWP切换到第一BWP。
具体地,终端设备基于动态信令,将至少一个辅小区组或多个辅小区的当前激活DL BWP切换到PS BWP后,终端设备保持在该PS BWP上,终端设备保持在该PS BWP,直到收到另外一个动态信令,该动态信令指示UE切换到非PS BWP;该另外一个动态信令可以与切换终端设备到PS BWP的动态信令相同,也可以不同;另外一个动态信令可以指示终端设备在某一个/组或者多个/组SCell上切换到一个非PS BWP。该非PS BWP可以由该另外一个动态信令指示,也可以是网络预先配置。
为了更加清楚地理解本申请,以下结合图3-6对本申请实施例进行说明。
如图3所示,UE被配置了三个SCell,其中在辅小区(SCell)组1和辅小区(SCell)2上,网络设备给UE配置了PS BWP。在SCell 3上网络设备没有给UE配置PS BWP。
在一种方案中,UE在PCell或者PSCell上收到动态指示信令,UE将辅小区组1和辅小区组2上的当前下行激活BWP切换到预先配置的PS BWP;UE在drx-ondurationTimer启动之前盲检PDCCH,该PDCCH既指示UE是否要启动drx-ondurationTimer,同时还可以指示UE是否要将SCell上当前激活的下行BWP切换到PS BWP。如图4所示,在第一个DRX周期,UE启动drx-ondurationTimer之前盲检PDCCH,该PDCCH指示UE启动drx-ondurationTimer,同时该PDCCH也指示SCell上的下行激活BWP切换到PS BWP;如图5所示,在辅小区组1或者辅小区组2上,当UE切换到PS BWP,UE启动一个定时器,在该定时器期间,UE保持在PS BWP,当定时器超时,UE可以切换到之前激活的下行BWP,也可以切换到初始或者默认BWP。假设PS BWP的索引为1,之前激活的DL BWP索引为2,初始或者默认BWP为#3,则UE在定时器超时时,可以切换到#2BWP,也可以到#3BWP。需要注意的是,初始或者默认BWP的索引可以不同。
在另一种方案中,如图6所示,在辅小区组1或者辅小区组2上,根据PDCCH指示,UE把辅小区组1和辅小区组2上的DL BWP切换到PS BWP,UE保持在该PS BWP。当收到PDCCH时,该PDCCH可以指示UE在辅小区组1和辅小区组2上将PS BWP切换至另外一个BWP。
可选地,在本申请实施例中,可以根据业务量的变化,调整至少一个辅小区组或多个辅小区的BWP,从而可以避免功率损耗。
因此,在本申请实施例中,响应于下行动态信令的指示,终端设备可以切换至少一个辅小区组或多个辅小区的BWP,可以实现灵活调整BWP,并且收到下行动态信令之后,切换的为至少一个辅小区组或多个辅小区的BWP,可以节省信令开销。
图7是根据本申请实施例的无线通信方法300的示意性流程图。该方法300包括以下内容中的至少部分内容。
在310中,网络设备调整至少一个或至少一组辅小区的BWP的配置;
可选地,调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
在320中,终端设备调整至少一个或至少一组辅小区的BWP的配置;
可选地,调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
在330中,在调整了所述配置参数的所述BWP上,网络设备与终端设备之间进行通信。
可选地,在本申请实施例,根据下行动态信令的指示,终端设备调整至少一个或至少一组辅小区的BWP的配置。
本申请实施例提到的下行动态信令可以是层1(L1)信令,也可以是层2(L2)信令。
本申请实施例提到的下行动态信令可以是下行控制信息(Downlink Control Information,DCI),该DCI可以是终端设备盲检PDCCH得到的,该PDCCH可以是通过C-RNTI加扰的,也可以是通过CS-RNTI加扰的,也可以是通过一个新的RNTI加扰,例如,PS-RNTI。
本申请实施例提到的辅小区组包括可以一个或多个辅小区。本申请实施例中,辅小区的分组可以是RRC信令配置。
本申请实施例中,下行动态信令可以是通过主小区或主辅小区(PSCell)发送的。或者,在本申请实施例中,下行动态信令也可以是通过辅小区发送的。该辅小区可以属于上述至少一个辅小区组或多个辅小区。
可选地,在本申请实施例中,所述下行动态信令用于指示需要调整BWP的配置的所述至少一个辅小区组或多个辅小区。也就是说下行动态信令可以具有信息域,该信息域可以指示哪些辅小区组或辅小区可以需要进行BWP的配置的调整。指示辅小区组需要调整BWP的配置,则可以是该辅小区组内的所有辅小区均进行BWP的配置的调整。
或者,在本申请实施例中,所述下行动态信令未指示需要调整BWP的配置的所述至少一个辅小区组或多个辅小区;所述至少一个辅小区组或多个辅小区包括配置了调整后的BWP配置的BWP的辅小区。
也就是说,下行动态信令可以未指示哪些辅小区组或辅小区需要进行BWP的配置的调整,则终端设备可以根据哪些辅小区或辅小区组的BWP具有特定的配置,从而对这些辅小区或辅小区组进行BWP的配置的调整。
在本申请实施例中,终端设备可以根据辅小区或辅小区组的调整前的BWP配置是否 是特定的BWP配置,而决定是否对这些辅小区或辅小区组进行BWP的配置的调整。
或者,在本申请实施例中,终端设备可以根据辅小区或辅小区组的BWP配置是否是特定的BWP配置,而决定是否对这些辅小区或辅小区进行BWP的配置的调整。
本申请实施例提到的BWP可以是下行BWP,也可以是上行BWP。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期(DRX Active Time)内检测的下行动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前检测的。其中,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。可以借用是否启动DRX持续定时器的下行动态信令来指示进行BWP的配置的调整,从而可以节省信令开销。
调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索。
可选地,在本申请实施例BWP可以具有两种配置,在第二种配置下,在所述BWP上传输数据所采用的MIMO层的层数低于第一种配置。
在第二种配置下,所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于门限值,在第一种配置下,该时间间隔则大于门限值。
在第二种配置下,不在BWP上进行PDCCH的搜索。在第一种配置,在BWP下进行PDCCH的搜索。
第一种配置可以称为PS配置,可以节省终端设备的电量。
在本申请实施例中,从第一种配置调整到第二种配置可以是基于下行动态信令指示的,以及从第二种配置调整到第一种配置或其他的配置也可以是基于下行动态信令指示的。
以上提到了可以基于下行动态信令的指示,对至少一个辅小区组或辅小区进行BWP的配置的调整,但是本申请实施例并不限于此,在本申请实施例,还可以基于RRC信令的指示、由于定时器超时或者随机接入初始化引起BWP的配置的调整。
作为示例性地,在本申请实施例中,每次终端设备在调整完至少一个辅小区或至少一个辅小区组的BWP的配置之后,可以启动定时器,在定时器超时时,可以再次启动定时器,每次启动的定时器的时长可以相同,也可以不相同,可以与当前被调整到的配置有关。
作为示例性地,下行动态信令和定时器可以结合用于触发BWP的调整。终端设备接收到下行动态信令,基于下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的BWP从第一种配置调整到第二种配置。并且,终端设备可以针对每个辅小区或辅小区组均启动定时器(不同的辅小区或辅小区组启动的定时器的时长可以相同,也可以不相同),该定时器的作用是在确定终端设备在调整后的第二种配置上的停留时间。其中,该定时器的时长可以是RRC信令配置的,也可以是下行动态信令指示的。
当存在定时器超时时,可以将该定时器对应的辅小区或辅小区组的配置从第二种配置切换回第一种配置或到其他的配置(例如,初始配置或默认配置)。
如果在定时器的运行期间,再次收到下行动态信令,该下行动态信令指示将下行BWP的配置切换到第二种配置,则终端设备可以重新启动定时器。
可选地,本申请实施例提到的定时器可以是DRX非激活定时器(drx-InactivityTimer)。
此时,下行动态信令可以是在DRX激活器内检测到的。
具体地,终端设备也可以在DRX Active Time盲检PDCCH从而获得该DCI,该PDCCH用C-RNTI或者CS-RNTI加扰。该PDCCH可以指示多个或者至少一个组SCell 上的下行激活BWP切换到省电(PS)BWP(PS BWP);
终端设备收到该PDCCH,可以启动或者重新启动drx-InactivityTimer终端设备在该drx-InactivityTimer运行期间,终端设备保持在第二种配置上;当drx-InactivityTimer超时时,终端设备调整到之前的配置,或者是初始配置,或者是默认配置。
应理解,在本申请实施例,每个辅小区组或辅小区可以分别对应于一个定时器,也可以是所有的辅小区组或辅小区对应于一个定时器。
可选地,在本申请实施例中,从第一种配置调整到第二种配置可以是基于下行动态信令指示的,终端设备可以将辅小区或辅小区组的BWP保持在第二种配置上,一直到下次需要再次检测动态信令,如果检测到下行动态信令,如果该信令指示将至少一个辅小区组或辅小区的BWP的配置调整到第二种配置,则可以不进行BWP的配置的调整,终端设备仍然保持该第二种配置。如果终端设备没有检测到下行动态信令,则终端设备可以将至少一个辅小区组或辅小区的BWP的配置从第二种配置调整回第一种配置,或者另一种配置,例如,可以为初始配置或者默认配置。
具体地,终端设备在DRX周期的drx-ondurationTimer启动之前的某一个时间段内,终端设备检测到动态信令,且该动态信令指示终端设备将BWP的配置调整到第二种配置,则终端仍然保持该第二种配置;终端设备保持该第二种配置直到下一个DRX周期;如果在下一个DRX周期的drx-ondurationTimer启动之前的某一个时间段内,UE检测到动态信令,且该动态信令指示终端设备将BWP的配置调整到第二种配置,则UE仍然保持该第二种配置;如果在下一个DRX终端设备的drx-ondurationTimer启动之前的某一个时间段内,终端设备没有检测到动态信令,则终端设备将BWP的配置调整为其他的配置,调整后的配置可以是之前的配置,也可以是初始配置或者默认配置。
可选地,在本申请实施例中,终端设备接收到一个下行动态信令,指示将至少一个辅小区组或辅小区的BWP的配置从第一种配置切换到第二种配置,则终端设备将至少一个辅小区组或辅小区的BWP的配置从第一种配置调整到第二种配置,终端设备再次接收到一个下行动态信令,指示将至少一个辅小区组或辅小区的BWP的配置从第二种配置切换回第一种配置,则终端设备将至少一个辅小区组或辅小区的BWP的配置从第二种配置切换到第一种配置。
因此,在本申请实施例中,可以调整辅小区或辅小区组的BWP的配置,并且调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索,可以实现对MIMO层的层数,控制信道与数据信道的时间间隔以及是否进行PDCCH的搜索进行灵活调整,必要时可以节省终端设备的电量。
图8是根据本申请实施例的终端设备的示意性框图。该终端设备400包括通信单元410,用于接收下行动态信令,根据所述下行动态信令的指示,将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
可选地,在本申请实施例中,所述通信单元在第二BWP不盲检控制信道;和/或,在所述第二BWP传输数据时采用的MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期内检测的下行动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前检测的。
可选地,在本申请实施例中,所述下行动态信令还用于指示所述终端设备是否需要 启动所述DRX持续定时器。
可选地,在本申请实施例中,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。
可选地,在本申请实施例中,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
所述至少一个辅小区组或多个辅小区包括配置了所述第一BWP的辅小区。
可选地,在本申请实施例中,所述下行动态信令是在所述终端设备的主小区上接收的。
应理解,该终端设备400可以用于实现方法200中由终端设备实现的相应操作,为了简洁,在此不再赘述。
图9是根据本申请实施例的终端设备500的示意性框图。该终端设备500包括处理单元510,用于调整至少一个或至少一组辅小区的BWP的配置;调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;通信单元520,用于在调整了所述配置参数的所述BWP上,与网络设备进行通信。
可选地,在本申请实施例中,所述处理单元510进一步用于:
根据下行动态信令的指示,调整所述BWP的配置。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期内检测的动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前检测的。
可选地,在本申请实施例中,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
可选地,在本申请实施例中,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
可选地,在本申请实施例中,所述下行动态信令是在所述终端设备的主小区上接收的。
应理解,该终端设备500可以用于实现方法300中由终端设备实现的相应操作,为了简洁,在此不再赘述。
图10是根据本申请实施例的网络设备600的示意性框图。该网络设备600包括通信单元610,用于向终端设备发送下行动态信令,所述下行动态信令指示终端设备将至少一个辅小区组或多个辅小区的BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
可选地,在本申请实施例中,所述通信单元在第二BWP不发送控制信道;和/或,在所述第二BWP传输数据时采用的MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期内发送的下行动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前发送的。
可选地,在本申请实施例中,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
可选地,在本申请实施例中,所述下行动态信令用于指示需要切换BWP的所述至少 一个辅小区组或多个辅小区。
可选地,在本申请实施例中,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
所述至少一个辅小区组或多个辅小区包括配置了所述第一BWP的辅小区。
可选地,在本申请实施例中,所述下行动态信令是在所述终端设备的主小区上发送的。
应理解,该网络设备600可以用于实现方法200中由网络设备实现的相应操作,为了简洁,在此不再赘述。
图11是根据本申请实施例的网络设备700的示意性框图。该网络设备700包括处理单元710,用于调整至少一个或至少一组辅小区的BWP的配置;
调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;通信单元720,用于在调整了所述配置参数的所述BWP上,与终端设备进行通信。
可选地,在本申请实施例中,所述通信单元720进一步用于:
向所述终端设备发送下行动态信令,所述下行动态信令用于指示调整所述BWP的配置。
可选地,在本申请实施例中,所述下行动态信令为在非连续接收DRX激活期内发送的动态信令。
可选地,在本申请实施例中,所述下行动态信令为在DRX持续定时器开启之前发送的。
可选地,在本申请实施例中,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
可选地,在本申请实施例中,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
可选地,在本申请实施例中,所述下行动态信令是在所述终端设备的主小区上发送的。
应理解,该网络设备700可以用于实现方法300中由网络设备实现的相应操作,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备800示意性结构图。图12所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图12所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信 设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于 这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种无线通信方法,其特征在于,包括:
    接收下行动态信令;
    根据所述下行动态信令的指示,终端设备将至少一个辅小区组或多个辅小区的带宽部分BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端设备在第二BWP不盲检控制信道;和/或,在所述第二BWP传输数据时采用的多入多出MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述下行动态信令为在非连续接收DRX激活期内检测的下行动态信令。
  4. 根据权利要求1或2所述的方法,其特征在于,所述下行动态信令为在DRX持续定时器开启之前检测的。
  5. 根据权利要求4所述的方法,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
    所述至少一个辅小区组或多个辅小区包括配置了所述第一BWP的辅小区。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述下行动态信令是在所述终端设备的主小区上接收的。
  9. 一种无线通信方法,其特征在于,所述方法包括:
    调整至少一个或至少一组辅小区的BWP的配置;
    调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
    在调整了所述配置参数的所述BWP上,与网络设备进行通信。
  10. 根据权利要求9所述的方法,其特征在于,所述调整至少一个或至少一组辅小区的BWP的配置,包括:
    根据下行动态信令的指示,调整所述BWP的配置。
  11. 根据权利要求10所述的方法,其特征在于,所述下行动态信令为在非连续接收DRX激活期内检测的动态信令。
  12. 根据权利要求10所述的方法,其特征在于,所述下行动态信令为在DRX持续定时器开启之前检测的。
  13. 根据权利要求12所述的方法,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述下行动态信令是在所述终端设备的主小区上接收的。
  16. 一种无线通信方法,其特征在于,包括:
    向终端设备发送下行动态信令,所述下行动态信令指示终端设备将至少一个辅小区 组或多个辅小区的带宽部分BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
  17. 根据权利要求16所述的方法,其特征在于,
    所述网络设备在第二BWP不发送控制信道;和/或,在所述第二BWP传输数据时采用的多入多出MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。
  18. 根据权利要求16或17所述的方法,其特征在于,所述下行动态信令为在非连续接收DRX激活期内发送的下行动态信令。
  19. 根据权利要求16或17所述的方法,其特征在于,所述下行动态信令为在DRX持续定时器开启之前发送的。
  20. 根据权利要求19所述的方法,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。
  22. 根据权利要求16至20中任一项所述的方法,其特征在于,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
    所述至少一个辅小区组或多个辅小区包括配置了所述第二BWP的辅小区。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述下行动态信令是在所述终端设备的主小区上发送的。
  24. 一种无线通信方法,其特征在于,所述方法包括:
    调整至少一个或至少一组辅小区的带宽部分BWP的配置;
    调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的多入多出MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
    在调整了所述配置参数的所述BWP上,与终端设备进行通信。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送下行动态信令,所述下行动态信令用于指示调整所述BWP的配置。
  26. 根据权利要求25所述的方法,其特征在于,所述下行动态信令为在非连续接收DRX激活期内发送的动态信令。
  27. 根据权利要求25所述的方法,其特征在于,所述下行动态信令为在DRX持续定时器开启之前发送的。
  28. 根据权利要求27所述的方法,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  29. 根据权利要求25至28中任一项所述的方法,其特征在于,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
  30. 根据权利要求25至29中任一项所述的方法,其特征在于,所述下行动态信令是在所述终端设备的主小区上发送的。
  31. 一种终端设备,其特征在于,包括:
    通信单元,用于接收下行动态信令,根据所述下行动态信令的指示,将至少一个辅小区组或多个辅小区的带宽部分BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
  32. 根据权利要求31所述的设备,其特征在于,
    所述通信单元在第二BWP不盲检控制信道;和/或,在所述第二BWP传输数据时采用的多入多出MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔小于所述门限值。
  33. 根据权利要求31或32所述的设备,其特征在于,所述下行动态信令为在非连续接收DRX激活期内检测的下行动态信令。
  34. 根据权利要求31或32所述的设备,其特征在于,所述下行动态信令为在DRX持续定时器开启之前检测的。
  35. 根据权利要求34所述的设备,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  36. 根据权利要求31至35中任一项所述的设备,其特征在于,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。
  37. 根据权利要求31至35中任一项所述的设备,其特征在于,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
    所述至少一个辅小区组或多个辅小区包括配置了所述第二BWP的辅小区。
  38. 根据权利要求31至37中任一项所述的设备,其特征在于,所述下行动态信令是在所述终端设备的主小区上接收的。
  39. 一种终端设备,其特征在于,包括:
    处理单元,用于调整至少一个或至少一组辅小区的带宽部分BWP的配置;
    调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的多入多出MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
    通信单元,用于在调整了所述配置参数的所述BWP上,与网络设备进行通信。
  40. 根据权利要求39所述的设备,其特征在于,所述处理单元进一步用于:
    根据下行动态信令的指示,调整所述BWP的配置。
  41. 根据权利要求40所述的设备,其特征在于,所述下行动态信令为在非连续接收DRX激活期内检测的动态信令。
  42. 根据权利要求40所述的设备,其特征在于,所述下行动态信令为在DRX持续定时器开启之前检测的。
  43. 根据权利要求42所述的设备,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  44. 根据权利要求40至43中任一项所述的设备,其特征在于,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
  45. 根据权利要求40至44中任一项所述的设备,其特征在于,所述下行动态信令是在所述终端设备的主小区上接收的。
  46. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送下行动态信令,所述下行动态信令指示终端设备将至少一个辅小区组或多个辅小区的带宽部分BWP从第一BWP切换到第二BWP,或从第二BWP切换到第一BWP。
  47. 根据权利要求46所述的设备,其特征在于,
    所述通信单元在第二BWP不发送控制信道;和/或,在所述第二BWP传输数据时采用的多入多出MIMO层的层数和在所述第一BWP上传输数据时采用的MIMO层的层数不同;和/或,所述第二BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔大于或等于门限值以及所述第一BWP上发送的控制信道与所述控制信道调度 的数据信道之间的时间间隔小于所述门限值。
  48. 根据权利要求46或47所述的设备,其特征在于,所述下行动态信令为在非连续接收DRX激活期内发送的下行动态信令。
  49. 根据权利要求46或47所述的设备,其特征在于,所述下行动态信令为在DRX持续定时器开启之前发送的。
  50. 根据权利要求49所述的设备,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  51. 根据权利要求46至50中任一项所述的设备,其特征在于,所述下行动态信令用于指示需要切换BWP的所述至少一个辅小区组或多个辅小区。
  52. 根据权利要求46至50中任一项所述的设备,其特征在于,所述下行动态信令未指示需要切换BWP的所述至少一个辅小区组或多个辅小区;
    所述至少一个辅小区组或多个辅小区包括配置了所述第二BWP的辅小区。
  53. 根据权利要求46至52中任一项所述的设备,其特征在于,所述下行动态信令是在所述终端设备的主小区上发送的。
  54. 一种网络设备,其特征在于,包括:
    处理单元,用于调整至少一个或至少一组辅小区的带宽部分BWP的配置;
    调整前的所述配置与调整后的所述配置在以下方面中的至少一种不同:在所述BWP上传输数据时采用的多入多出MIMO层的层数、所述BWP上发送的控制信道与所述控制信道调度的数据信道之间的时间间隔是否大于或等于门限值、是否在所述BWP上进行PDCCH的搜索;
    通信单元,用于在调整了所述配置参数的所述BWP上,与终端设备进行通信。
  55. 根据权利要求54所述的设备,其特征在于,所述通信单元进一步用于:
    向所述终端设备发送下行动态信令,所述下行动态信令用于指示调整所述BWP的配置。
  56. 根据权利要求55所述的设备,其特征在于,所述下行动态信令为在非连续接收DRX激活期内发送的动态信令。
  57. 根据权利要求55所述的设备,其特征在于,所述下行动态信令为在DRX持续定时器开启之前发送的。
  58. 根据权利要求57所述的设备,其特征在于,所述下行动态信令还用于指示所述终端设备是否需要启动所述DRX持续定时器。
  59. 根据权利要求55至58中任一项所述的设备,其特征在于,所述下行动态信令还指示需要调整BWP的配置的所述至少一个或至少一组辅小区。
  60. 根据权利要求55至59中任一项所述的设备,其特征在于,所述下行动态信令是在所述终端设备的主小区上发送的。
  61. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  62. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2019/091403 2019-06-14 2019-06-14 无线通信方法、网络设备和终端设备 WO2020248280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/091403 WO2020248280A1 (zh) 2019-06-14 2019-06-14 无线通信方法、网络设备和终端设备
CN201980074300.5A CN113016209A (zh) 2019-06-14 2019-06-14 无线通信方法、网络设备和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091403 WO2020248280A1 (zh) 2019-06-14 2019-06-14 无线通信方法、网络设备和终端设备

Publications (1)

Publication Number Publication Date
WO2020248280A1 true WO2020248280A1 (zh) 2020-12-17

Family

ID=73780930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091403 WO2020248280A1 (zh) 2019-06-14 2019-06-14 无线通信方法、网络设备和终端设备

Country Status (2)

Country Link
CN (1) CN113016209A (zh)
WO (1) WO2020248280A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057524A1 (en) * 2008-09-05 2012-03-08 Dong-Sheng Yu Multi-carrier operation for wireless systems
CN105101307A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 异质网中邻小区传输参数的配置方法、***及相关设备
CN108259401A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
CN108809366A (zh) * 2017-04-29 2018-11-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741584B (zh) * 2017-06-15 2022-06-07 Lg 电子株式会社 在无线通信***中用于发送和接收确认的方法及装置
CN109699054B (zh) * 2017-10-24 2020-11-06 华为技术有限公司 一种检测下行控制信息的方法、终端设备和网络设备
US10887073B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
CN109788559B (zh) * 2017-11-14 2021-01-08 维沃移动通信有限公司 非对称频谱的带宽部分bwp切换方法、终端及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057524A1 (en) * 2008-09-05 2012-03-08 Dong-Sheng Yu Multi-carrier operation for wireless systems
CN105101307A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 异质网中邻小区传输参数的配置方法、***及相关设备
CN108259401A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
CN108809366A (zh) * 2017-04-29 2018-11-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Also Published As

Publication number Publication date
CN113016209A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
KR102601532B1 (ko) 채널 모니터링 방법 및 장치, 단말 장비, 네트워크 장비
US20220006599A1 (en) Method and device for managing band width part
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
WO2021217351A1 (zh) 一种信道监听方法、电子设备及存储介质
WO2021196227A1 (zh) 一种监听控制方法、终端设备、网络设备
WO2020019756A1 (zh) 一种传输资源确定方法及装置、终端设备
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
WO2020258157A1 (zh) 资源集合监听方法、设备及存储介质
WO2021081838A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2020001123A1 (zh) 一种下行控制信道的检测方法及装置、终端设备
US20220182940A1 (en) Discontinuous reception processing method, and terminal device
JP2022553586A (ja) 測定管理方法及び装置、通信デバイス
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
JP2023113863A (ja) 時間周波数リソース決定方法、装置、チップ及びコンピュータプログラム
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020061804A1 (zh) 一种载波处理方法、终端、网络设备和存储介质
CN113316959A (zh) 通信方法、终端设备和网络设备
WO2020248280A1 (zh) 无线通信方法、网络设备和终端设备
WO2021128210A1 (zh) 一种测量方法、电子设备及存储介质
CN115150872B (zh) 一种信道传输方法及设备
WO2020253422A1 (zh) 一种控制通信状态的方法及装置、终端、网络设备
EP4093097A1 (en) Data transmission method and apparatus, parameter adjustment method and apparatus, and terminal device
WO2021114047A1 (zh) 一种非连续接收持续定时器控制方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932804

Country of ref document: EP

Kind code of ref document: A1