WO2020246787A1 - Steering control device, steering control method, and steering support system including same - Google Patents

Steering control device, steering control method, and steering support system including same Download PDF

Info

Publication number
WO2020246787A1
WO2020246787A1 PCT/KR2020/007188 KR2020007188W WO2020246787A1 WO 2020246787 A1 WO2020246787 A1 WO 2020246787A1 KR 2020007188 W KR2020007188 W KR 2020007188W WO 2020246787 A1 WO2020246787 A1 WO 2020246787A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
value
steering
reaction force
torque
Prior art date
Application number
PCT/KR2020/007188
Other languages
French (fr)
Korean (ko)
Inventor
홍승규
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to DE112020002748.1T priority Critical patent/DE112020002748T5/en
Priority to CN202080042029.XA priority patent/CN114245781B/en
Priority to US17/616,977 priority patent/US20220242479A1/en
Publication of WO2020246787A1 publication Critical patent/WO2020246787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/307Torque sensors

Definitions

  • the present disclosure relates to a steering control apparatus, a steering control method, and a steering assistance system including the same.
  • the vehicle steering assistance system includes a hydraulic steering assistance system that steers the vehicle by generating hydraulic pressure by turning a pump, and an electric steering assistance system that steers the vehicle by using a motor.
  • this steering feeling may be provided by a reaction force motor connected through a steering wheel and a column.
  • a steer-by-wire system that electrically drives a vehicle wheel without a mechanical connection between the vehicle's steering wheel and the wheel is being applied to a vehicle.
  • the steer-by-wire system performs steering of a vehicle by operating a steering motor connected to a wheel of a vehicle under control of an electronic controller unit that senses a rotation signal of a steering wheel.
  • the present disclosure is intended to provide a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to a driver by calculating an appropriate reaction force torque by reflecting the characteristics of a virtual connection member.
  • an object of the present disclosure is to provide a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to a driver by implementing reaction torque by reflecting not only information related to the connection between a steering wheel and a rack, but also a driving state.
  • the present disclosure provides a rack movement command for instructing the movement of a rack based on steering information by rotation of a steering wheel in a steering control device included in a steering assistance system.
  • a command value calculation unit that calculates a value
  • a difference value calculation unit that calculates the difference between the rack movement command value and the rack movement detection value by receiving the rack movement detection value according to the rack movement when the rack movement is detected, and the difference
  • a reaction force torque calculation unit that calculates a reaction force torque based on a value and one or more preset virtual linkage parameters, wherein the virtual linkage parameter corresponds to the characteristics of the virtual connection member between the mechanically separated steering wheel and the rack. It provides a steering control device, characterized in that.
  • the present disclosure provides a command value calculation step of calculating a rack movement command value instructing the movement of the rack based on steering information caused by the rotation of the steering wheel, and when the movement of the rack is detected, the movement of the rack
  • the difference value calculation step of calculating the difference value between the rack movement command value and the rack movement detection value by receiving the rack movement detection value according to the difference value, and calculating the reaction torque based on the difference value and one or more preset virtual linkage parameters.
  • a reaction force torque calculation step is provided, wherein the virtual linkage parameter corresponds to characteristics of a virtual connection member between a mechanically separated steering wheel and a rack.
  • the present disclosure provides a steering assistance system that is mechanically separated between a steering input device and a steering output device, comprising a steering angle sensor that senses a steering angle generated by rotation of a steering wheel, and a reaction force that applies a reaction force to the steering wheel.
  • a steering control device for controlling the reaction force motor, wherein the steering control device calculates a rack movement command value instructing the movement of the rack based on the steering information, and receives the rack movement detection value from the rack position sensor to move the rack Calculate the difference value between the command value and the detection value of the rack movement, calculate the reaction torque based on the difference value and one or more preset virtual linkage parameters, and transfer the command current corresponding to the calculated reaction torque to the reaction motor.
  • the virtual linkage parameter corresponds to characteristics of a virtual connection member between the steering input device and the steering output device.
  • the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member. I can.
  • the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to the driver by implementing reaction torque by reflecting not only information related to the connection between the steering wheel and the rack, but also the driving state. Can provide.
  • FIG. 1 is a diagram schematically showing a steering assistance system according to the present disclosure.
  • FIG. 2 is a block diagram schematically illustrating a steering control apparatus according to the present disclosure.
  • FIG. 3 is a flowchart for explaining a first embodiment of calculating reaction force torque according to the present disclosure.
  • FIG. 4 is a flowchart for explaining a second embodiment of calculating reaction force torque according to the present disclosure.
  • FIG. 5 is a flowchart illustrating a third embodiment of calculating reaction force torque according to the present disclosure.
  • FIG. 6 is a graph showing a reaction torque for a difference value and a constant virtual linkage parameter.
  • FIG. 7 is a graph showing a reaction torque for a difference value and a variable virtual linkage parameter.
  • FIG. 8 is a flowchart for explaining a fourth embodiment of calculating reaction force torque according to the present disclosure.
  • FIG. 9 is a graph showing a reaction force torque in which gain is reflected and a reaction force torque in which the gain is not reflected.
  • 10 and 11 are graphs showing a first gain according to driver torque.
  • 12 and 13 are graphs showing a second gain according to a driving speed.
  • FIG. 14 is a flowchart illustrating a steering control method according to the present disclosure.
  • FIG. 1 is a diagram schematically showing a steering assistance system 1 according to the present disclosure.
  • the steering assistance system 1 refers to a system that assists a steering force so that a driver can easily steer.
  • the steering assist system 1 includes a hydraulic type (Hydraulic Power Steering; HPS) that provides steering assistance by generating hydraulic pressure by rotating a pump according to a driving method, and an electric type (Electronic Power Steering) that provides steering assistance by driving a motor; EPS), etc.
  • HPS Hydraulic Power Steering
  • EPS Electric Power Steering
  • the force (torque) generated by the driver rotating the steering wheel 11 It may be a mechanical steering assistance system in which the wheel 33 is steered by being transmitted to the actuator of the wheel 33 side through a mechanical power transmission device (for example, a linkage, etc.), and instead of a mechanical power transmission device, a wire or cable It may be a steer-by-wire (SbW) system that transmits and receives power by transmitting and receiving electrical signals through the like.
  • the steering assistance system 1 will be described based on the SbW system, but is not limited thereto.
  • the steering assistance system 1 may include a steering input device 10, a steering control device 20, a steering output device 30, and the like. As described above, when the steering assistance system 1 is an SbW system, the steering input device 10 and the steering output device 30 are mechanically separated.
  • the steering input device 10 may mean a device that is input to steering information intended by a driver.
  • the steering input device 10 may include a steering wheel 11, a steering angle sensor 12, a reaction force motor 13, a driver torque sensor 14, and the like.
  • the steering angle sensor 12 may detect a steering angle generated by rotation of the steering wheel 11. Specifically, when the driver rotates while holding the steering wheel 11, the steering angle sensor 12 detects the rotation angle (steering angle) of the steering wheel 11, and a detection signal (or detection value) indicating the detected steering angle Can be output to the steering control device 20.
  • the reaction force motor 13 may receive a control signal, a command signal, a command current, etc. from the steering control device 20 to apply a reaction force to the steering wheel 11. Specifically, the reaction force motor 13 may receive a command current from the steering control device 20 and drive it at a rotational speed indicated by the command current to output a reaction torque.
  • the driver torque sensor 14 may detect a driver torque through rotation of the steering wheel 11. Specifically, when the driver rotates while holding the steering wheel 11, the driver torque sensor 14 detects the driver torque of the steering wheel 11 and generates a detection signal (or detection value) indicating the detected driver torque. It can be output to the steering control device 20.
  • the driver's torque may mean a torque generated by the driver's manipulation of the steering wheel 11.
  • the steering control device 20 may receive steering information from the steering input device 10, calculate a control value, and output an electrical signal indicating the calculated control value to the steering output device 30.
  • the steering information may mean information including at least one of a steering angle and a driver's torque.
  • the steering control device 20 may calculate a control value by performing feedback on the power information actually output from the steering output device 30.
  • the steering control device 20 may output an electric signal indicating a control value to the steering input device 10 to provide a steering feel (steering feel) to the driver.
  • the steering control device 20 may be implemented as an electronic control device such as an Electronic Controller Unit (ECU) or a microcomputer, and a detailed description of the steering control device 20 will be described later.
  • ECU Electronic Controller Unit
  • microcomputer a microcomputer
  • the steering output device 30 may mean a device that drives an actual vehicle to steer according to a driver's intention.
  • the steering output device 30 may include a steering motor 31, a rack 32, a rack position sensor 34, a wheel 33, a vehicle speed sensor 35, and the like.
  • the steering motor 31 may move the rack 32 in the axial direction. Specifically, the steering motor 31 may receive and drive a command current from the steering control device 20 and cause the rack 32 to move linearly in the axial direction.
  • the rack 32 may perform linear motion by driving the steering motor 31, and the wheel 33 is steered to the left or right through the linear motion of the rack 32.
  • the rack position sensor 34 may detect the position of the rack 32. Specifically, when the rack 32 performs a linear motion and moves from a corresponding position when the steering wheel 11 is in a neutral position, the rack position sensor 34 detects the actual position of the rack 32, A detection signal indicating a position detection value of the rack 32 may be output to the steering control device 20.
  • the rack position sensor 34 may detect the actual moving speed of the rack 32. That is, the rack position sensor 34 detects the position of the rack 32, calculates the moving speed of the rack 32 by differentiating the position of the detected rack 32 with respect to time, and the movement of the rack 32 A detection signal indicating the speed value may be output to the steering control device 20. Accordingly, the rack position sensor 34 may further include a differentiator.
  • the vehicle speed sensor 35 may detect the driving speed of the vehicle. Specifically, the vehicle speed sensor 35 may detect the driving speed of the vehicle and may output a detection signal indicating the driving speed to the steering control device 20.
  • the steering assistance system 1 includes a steering angle sensor that detects a steering angle of a steering column, a pinion gear, and a wheel 33, a yaw rate sensor that detects a heading angle of a vehicle,
  • the steering input unit and the steering output unit may further include a clutch capable of separating or coupling.
  • the steering assistance system 1 is an SbW system
  • the steering input device 10 and the steering output device 30 are electrically connected instead of a mechanical linkage, such a mechanical connection It is necessary to provide a steering feeling to the driver in consideration of the characteristics of the virtual connection member instead of the characteristics of the member.
  • a steering control device 20 capable of providing a feeling of steering to a driver in consideration of the characteristics of the above-described virtual connection member will be described in detail.
  • FIG. 2 is a block diagram schematically illustrating a steering control apparatus 100 according to the present disclosure.
  • the steering control apparatus 100 may include a command value calculation unit 110, a difference value calculation unit 120, a reaction force torque calculation unit 130, and the like.
  • the command value calculation unit 110 may calculate a rack movement command value instructing the movement of the rack 32 based on steering information generated by the rotation of the steering wheel 11.
  • the steering angle sensor 12 detects the steering angle of the steering wheel 11, and the command value calculation unit 110 calculates a rack movement command value indicating the amount of movement of the rack 32 according to the sensed steering angle. do.
  • the rack movement command value may mean a value instructing the rack 32 to move to a specific position spaced from the center position (On-center), and the rack movement command value indicates the position of the rack 32 It may include at least one of a rack position command value and a rack movement speed command value indicating the moving speed of the rack 32.
  • the command value calculation unit 110 calculates a rack position command value indicating the position of the rack 32.
  • the command value calculation unit 110 calculates a rack movement speed command value indicating the movement speed of the rack 32.
  • the command value calculation unit 110 when the command value calculation unit 110 includes a differentiator, the command value calculation unit 110 first calculates the rack position command value, and differentiates the position of the rack 32 with respect to time, Calculate the movement speed command value.
  • the command value calculation unit 110 may output a command signal (or command current, etc.) corresponding to the rack movement command value to the steering motor 31 and the difference value calculation unit 120 shown in FIG. 1.
  • the steering motor 31 may cause the rack 32 to perform linear motion in the axial direction according to the rack movement command value.
  • the difference value calculating unit 120 may receive a rack movement detection value according to the movement of the rack 32 and calculate a difference value between the rack movement command value and the rack movement detection value. .
  • the rack movement detection value may mean a value indicated by a detection signal output by the rack position sensor 34 shown in FIG. 1.
  • the rack position sensor 34 detects the actual position of the rack 32 and responds to the rack movement detection value.
  • the detected signal is output to the difference value calculation unit 120, and the difference value calculation unit 120 is a rack movement detection value and a command value calculation unit 110 indicated by a detection signal received from the rack position sensor 34
  • the difference between the rack movement command values indicated by the command signals received from is calculated.
  • the difference value may be a value calculated based on the rack movement command value. However, it is not limited thereto.
  • the difference value calculation unit 120 may output an electrical signal corresponding to the calculated difference value to the reaction torque calculation unit 130.
  • the reaction torque calculation unit 130 may calculate the reaction torque based on a difference value indicated by an electrical signal received from the difference value calculation unit 120 and one or more preset virtual linkage parameters.
  • the virtual linkage parameter is a virtual connection between the steering input device 10 including the steering wheel 11 and the like shown in FIG. 1 and the steering output device 30 including the rack 32, etc. It may be a parameter corresponding to the characteristic of the member.
  • the virtual linkage may mean a connection member for using the characteristics of a mechanical connection member that does not actually exist in the steering assistance system 1.
  • the virtual connection member is a virtual connection member. It may include a torsion bar, a damper, and the like. However, it is not limited thereto.
  • the virtual linkage parameter is a torsion parameter of the virtual torsion bar.
  • the torsion parameter can be replaced with a spring parameter, which is a characteristic of the spring.
  • the virtual linkage parameter may be a spring parameter of a virtual spring.
  • the virtual parameter is not limited to the torsion parameter and the spring parameter, and any elastic parameter due to elasticity may be applicable.
  • the virtual linkage parameter is a damping parameter of a virtual damper.
  • it is not limited thereto.
  • FIG. 3 is a flowchart for explaining a first embodiment of calculating reaction force torque according to the present disclosure.
  • the steering control device 100 uses the position and the elastic parameter of the rack 32 The reaction torque can be calculated.
  • the steering control device 100 calculates a rack position command value (S310), and receives a rack position detection value (S320).
  • the command value calculation unit 110 calculates a rack position command value based on the steering angle of the steering wheel 11 and outputs it to the steering motor 31.
  • the difference value calculation unit 120 receives a rack position detection value from the rack position sensor 34.
  • the steering control device 100 calculates the rack position difference value ( ⁇ x) (S330).
  • the difference value calculation unit 120 receives the rack position command value and the rack position detection value according to the actual position of the rack 32, and the rack position difference value ( ⁇ x) between the rack position command value and the rack position detection value Yields
  • the steering control apparatus 100 reflects the elastic parameter A to the rack position difference value ⁇ x (S340), and calculates the reaction force torque ⁇ (S350).
  • FIG. 4 is a flowchart for explaining a second embodiment of calculating reaction force torque according to the present disclosure.
  • the steering control apparatus 100 may calculate a reaction torque using a moving speed of the rack 32 and a damping parameter.
  • the steering control apparatus 100 calculates a rack movement speed command value (S410), and receives a rack movement speed detection value (S420).
  • the command value calculation unit 110 calculates a rack movement speed command value based on the steering angle of the steering wheel 11.
  • the difference value calculation unit 120 receives a rack movement speed detection value from the rack position sensor 34.
  • the steering control device 100 is the rack movement speed difference value ( ⁇ ) Is calculated (S430).
  • the difference value calculation unit 120 receives the rack movement speed command value and the rack movement speed detection value according to the actual movement speed of the rack 32, and moves the rack movement speed command value and the rack movement speed detection value.
  • the steering control device 100 is the rack movement speed difference value ( ⁇ )
  • the reaction force torque ( ⁇ ) is calculated (S450).
  • FIG. 5 is a flowchart illustrating a third embodiment of calculating reaction force torque according to the present disclosure.
  • the steering control apparatus 100 may calculate a reaction force torque by using a virtual linkage parameter including an elastic parameter and a damping parameter.
  • the steering control apparatus 100 calculates a rack position command value (S510).
  • the steering control device 100 receives the rack position detection value (S521), calculates the first difference value ( ⁇ x) (S522), and reflects the elastic parameter (A) to the first difference value ( ⁇ x). Do (S523).
  • the first difference value ⁇ x may mean the rack position difference value ⁇ x.
  • the steering control apparatus 100 calculates a rack movement speed command value by differentiating the rack position command value (S531), receives a rack movement speed detection value (S532), and a second difference value ( ⁇ ) And the second difference value ( ⁇ ) To reflect the damping parameter (S533).
  • the second difference value ( ⁇ ) Is the difference in rack movement speed ( ⁇ Can mean ).
  • the steering control device 100 reflects the elastic parameter A in the first difference value ⁇ x and the second difference value ⁇ ) To calculate the reaction torque ( ⁇ ) by adding the value reflecting the damping parameter (S540).
  • the difference value calculation unit 120 calculates a first difference value ( ⁇ x) between the rack position detection value and the rack position command value according to the actual position of the rack 32, and the actual moving speed of the rack 32
  • the second difference value between the rack movement speed detection value and the rack movement speed command value ( ⁇ ) Is calculated.
  • the steering control apparatus 100 provides an effect of providing an appropriate steering feeling to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member.
  • the above-described virtual linkage parameter may always be constant for the characteristics of the same virtual connecting member, and may vary according to the virtual connecting members having different characteristics.
  • FIG. 6 is a graph showing a difference value and a reaction force torque for a constant virtual linkage parameter
  • FIG. 7 is a graph showing a difference value and a reaction force torque for a variable virtual linkage parameter.
  • the first slope (1) of the reaction torque calculated by multiplying the difference value ( ⁇ ) and the first virtual linkage parameter is the difference value ( ⁇ ) Is greater than the second slope (2) of the reaction force torque calculated by multiplying the second virtual linkage parameter.
  • reaction force torque may be limitedly increased as the difference value ⁇ increases with the maximum torque set in advance as a limit. This is to provide the driver with an appropriate sense of steering and reaction.
  • reaction torque increases as the difference value increases, but when reaching a preset maximum torque, even if the difference value increases, it may be constant at the same value as the maximum torque.
  • the reaction force torque ⁇ calculated by multiplying the difference value ⁇ and the virtual linkage parameter is nonlinear according to the difference value ⁇ . Will increase as the enemy.
  • the graph (1) of the reaction force torque shows that the increase in the reaction force torque gradually decreases as the difference value ( ⁇ ) increases. It can be a graph.
  • the graph of the reaction force torque (2) is a graph in which the increase in the reaction force torque changes as the difference value ( ⁇ ) increases.
  • reaction torque is calculated according to steering information, driving information, and the like.
  • FIG. 8 is a flowchart for explaining a fourth embodiment of calculating the reaction force torque according to the present disclosure
  • FIG. 9 is a graph showing a reaction force torque in which a gain is reflected and a reaction force torque in which the gain is not reflected.
  • the steering control apparatus 100 calculates a difference value using a rack movement command value and a rack movement detection value (S811), and reflects the virtual linkage parameter to the difference value (S812). ).
  • the steering control apparatus 100 receives at least one of steering information and driving information (S821). Specifically, the steering control device 100 receives at least one of a driver torque and a driving speed. Then, the steering control device 100 calculates a gain based on the received information (S822). That is, the gain may be a value for varying the reaction torque according to the driving speed and the driver torque.
  • the steering control apparatus 100 calculates a reaction torque using a gain and a value reflecting the virtual linkage parameter in the difference value (S830).
  • the reaction torque calculation unit 130 receives steering information including driver torque, calculates a first gain based on the steering information, and calculates a first gain from a value reflecting the virtual linkage parameter in the difference value. Reflected and calculate the reaction torque.
  • the reaction torque calculation unit 130 receives driving information including the driving speed of the vehicle, calculates a second gain based on the driving information, and adds the difference value to a value reflecting the virtual linkage parameter. 2 Calculate the reaction torque by reflecting the gain.
  • the difference value may be at least one of a first difference value and a second difference value
  • the virtual linkage parameter may also be at least one of an elasticity parameter and a damping parameter
  • the reaction force torque calculation unit 130 may calculate the reaction force torque by multiplying the difference value by the virtual linkage parameter and the gain, and may limit the reaction force torque to a maximum torque set in advance.
  • the steering control device 100 calculates the reaction torque by reflecting the gain, so that the reaction torque can be flexibly changed according to the driving situation of the vehicle.
  • the maximum value (1) of the first reaction force torque to which the gain is reflected is greater than the maximum value (2) of the second reaction force torque to which the gain is not reflected.
  • the present invention is not limited thereto, and contrary to that illustrated in FIG. 9, the maximum value of the reaction torque in which the gain is reflected may be smaller than the maximum value of the reaction torque in which the gain is not reflected.
  • FIG 10 and 11 are graphs showing a first gain (Gain 1 ) according to a driver torque.
  • the above-described first gain (Gain 1 ) increases (1) or decreases (3) as the value of the driver torque ( ⁇ sw ) increases, or is constant regardless of the value of the driver torque ( ⁇ sw ). (2) You can. This is because even when the driver operates the steering wheel 11 with a relatively small value of the driver torque ⁇ sw , it is necessary to provide sufficient steering feel or, in some cases, to reduce the degree of steering feel.
  • the first gain Gain 1 is constant regardless of the value of the driver torque ⁇ sw .
  • the first gain Gain 1 may increase or decrease as the value of the driver torque ⁇ sw increases.
  • 12 and 13 are graphs showing the second gain (Gain 2 ) according to the driving speed.
  • the second gain (Gain 2 ) may increase (1) as the value of the driving speed increases, or may be constant (2) regardless of the value of the driving speed (v). This is because, in general, when the driving speed v increases, it is necessary to provide the driver with a greater steering feel than usual.
  • the second gain 2 is constant regardless of the value of the driving speed v, and the driving speed
  • the second gain (Gain 2 ) may increase as the value of the driving speed (v) increases.
  • the steering control apparatus 100 may provide a driver with an appropriate steering feeling by implementing reaction torque by reflecting not only information related to the connection between the steering wheel 11 and the rack, but also a driving state.
  • FIG. 14 is a flowchart illustrating a steering control method according to the present disclosure.
  • the steering control method may include a command value calculation step, a difference value calculation step, and a reaction force torque calculation step.
  • a rack movement command value instructing the movement of the rack is calculated based on steering information caused by the rotation of the steering wheel 11.
  • the difference value calculation step when a rack movement is detected, a rack movement detection value according to the rack movement is received, and a difference value between the rack movement command value and the rack movement detection value is calculated.
  • the reaction force torque is calculated based on the difference value and one or more preset virtual linkage parameters.
  • the virtual linkage parameter may be a parameter corresponding to the characteristics of the virtual connection member as described above.
  • the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member. I can.
  • the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to the driver by implementing reaction torque by reflecting not only information related to the connection between the steering wheel and the rack, but also the driving state. Can provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Disclosed are a steering control device, a steering control method, and a steering support system including same. Particularly, a steering control device according to the disclosure comprises: a command value calculation unit for calculating, on the basis of steering information corresponding to the rotation of a steering wheel, a rack movement command value that commands the movement of a rack; a difference value calculation unit for calculating the difference value between the rack movement command value and the rack movement sensing value by receiving a rack movement sensing value corresponding to the movement of the rack when the movement of the rack is sensed; and a reaction torque calculation unit for calculating reaction torque on the basis of the difference value and one or more preset virtual linkage parameters.

Description

조향 제어 장치, 조향 제어 방법 및 이를 포함하는 조향 보조 시스템Steering control device, steering control method, and steering assistance system including same
본 개시는 조향 제어 장치, 조향 제어 방법 및 이를 포함하는 조향 보조 시스템에 관한 것이다.The present disclosure relates to a steering control apparatus, a steering control method, and a steering assistance system including the same.
차량의 조향 보조 시스템은 펌프를 돌려 유압을 발생시켜 차량을 조향하는 유압식 조향 보조 시스템과 모터를 이용하여 차량을 조향하는 전동식 조향 보조 시스템이 있다.The vehicle steering assistance system includes a hydraulic steering assistance system that steers the vehicle by generating hydraulic pressure by turning a pump, and an electric steering assistance system that steers the vehicle by using a motor.
차량의 조향 보조 시스템에서는 운전자가 스티어링 휠을 잡고 회전할 때 스티어링 휠의 회전에 따른 차량의 조향 작동에 대한 조향감을 느끼도록 주행 상황에 따라 적절한 조향감을 운전자에게 제공하는 것이 요구된다. 그리고, 이러한 조향감은 스티어링 휠과 컬럼 등을 통해 연결된 반력 모터에 의해 제공될 수 있다.In the steering assistance system of a vehicle, it is required to provide the driver with an appropriate steering feeling according to the driving situation so that the driver feels a steering feeling for the steering operation of the vehicle according to the rotation of the steering wheel when the driver rotates while holding the steering wheel. And, this steering feeling may be provided by a reaction force motor connected through a steering wheel and a column.
한편, 근래에는 차량의 스티어링 휠과 휠 사이의 기계적 연결 없이 전기적으로 차량의 휠을 구동시키는 스티어 바이 와이어 시스템이 차량에 적용되고 있다. 스티어 바이 와이어 시스템은 스티어링 휠의 회전 신호를 감지한 전자 제어 유닛(Electronic Controller Unit)의 제어에 따라 차량의 휠에 구동 연결된 조향 모터를 작동시켜 차량의 조향을 수행한다.Meanwhile, in recent years, a steer-by-wire system that electrically drives a vehicle wheel without a mechanical connection between the vehicle's steering wheel and the wheel is being applied to a vehicle. The steer-by-wire system performs steering of a vehicle by operating a steering motor connected to a wheel of a vehicle under control of an electronic controller unit that senses a rotation signal of a steering wheel.
이러한 스티어 바이 와이어 시스템은 기계적 연결이 없으므로, 기계적 연결이 존재하는 조향 보조 시스템과 같이 적절한 조향감을 제공하는 기술이 요구되고 있다.Since such a steer-by-wire system does not have a mechanical connection, there is a demand for a technology that provides an appropriate steering feeling, such as a steering assist system in which a mechanical connection exists.
이러한 배경에서, 본 개시는 가상의 연결 부재의 특성을 반영하여 적절한 반력 토크를 산출함으로써 운전자에게 적절한 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공하고자 한다.Against this background, the present disclosure is intended to provide a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to a driver by calculating an appropriate reaction force torque by reflecting the characteristics of a virtual connection member.
또한, 본 개시는 스티어링 휠과 랙 간의 연결과 관련된 정보뿐만 아니라 주행 상태를 반영하여 반력 토크를 구현함으로써 운전자에 최적의 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공하고자 한다.In addition, an object of the present disclosure is to provide a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to a driver by implementing reaction torque by reflecting not only information related to the connection between a steering wheel and a rack, but also a driving state.
전술한 과제를 해결하기 위하여, 일 측면에서, 본 개시는 조향 보조 시스템에 포함된 조향 제어 장치에 있어서, 스티어링 휠의 회전에 의한 조향 정보에 기초하여 랙(rack)의 이동을 지시하는 랙 이동 지령값을 산출하는 지령값 산출부와, 랙의 이동이 감지되면, 랙의 이동에 따른 랙 이동 감지값을 수신하여 랙 이동 지령값과 랙 이동 감지값의 차이값을 산출하는 차이값 산출부 및 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하는 반력 토크 산출부를 포함하되, 버츄얼 링키지 파라미터는, 기계적으로 분리된 스티어링 휠과 랙 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 제어 장치를 제공한다.In order to solve the above-described problem, in one aspect, the present disclosure provides a rack movement command for instructing the movement of a rack based on steering information by rotation of a steering wheel in a steering control device included in a steering assistance system. A command value calculation unit that calculates a value, and a difference value calculation unit that calculates the difference between the rack movement command value and the rack movement detection value by receiving the rack movement detection value according to the rack movement when the rack movement is detected, and the difference Includes a reaction force torque calculation unit that calculates a reaction force torque based on a value and one or more preset virtual linkage parameters, wherein the virtual linkage parameter corresponds to the characteristics of the virtual connection member between the mechanically separated steering wheel and the rack. It provides a steering control device, characterized in that.
다른 측면에서, 본 개시는 스티어링 휠의 회전에 의한 조향 정보에 기초하여 랙(rack)의 이동을 지시하는 랙 이동 지령값을 산출하는 지령값 산출 단계와, 랙의 이동이 감지되면, 랙의 이동에 따른 랙 이동 감지값을 수신하여 랙 이동 지령값과 랙 이동 감지값의 차이값을 산출하는 차이값 산출 단계 및 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하는 반력 토크 산출 단계를 포함하되, 버츄얼 링키지 파라미터는, 기계적으로 분리된 스티어링 휠과 랙 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 제어 방법을 제공한다.In another aspect, the present disclosure provides a command value calculation step of calculating a rack movement command value instructing the movement of the rack based on steering information caused by the rotation of the steering wheel, and when the movement of the rack is detected, the movement of the rack The difference value calculation step of calculating the difference value between the rack movement command value and the rack movement detection value by receiving the rack movement detection value according to the difference value, and calculating the reaction torque based on the difference value and one or more preset virtual linkage parameters. A reaction force torque calculation step is provided, wherein the virtual linkage parameter corresponds to characteristics of a virtual connection member between a mechanically separated steering wheel and a rack.
또 다른 측면에서, 본 개시는 조향 입력 장치와 조향 출력 장치 간의 기계적으로 분리된 조향 보조 시스템에 있어서, 스티어링 휠의 회전에 의해 발생하는 조향각을 감지하는 조향각 센서와, 스티어링 휠에 반력을 부여하는 반력 모터와, 랙을 축방향으로 이동시키는 조향 모터와, 랙의 위치를 감지하는 랙 위치 센서 및 조향 정보에 기초하여 조향 모터를 제어하고, 조향 정보 및 랙 위치 센서로부터 입력받은 랙의 위치 정보에 기초하여 반력 모터를 제어하는 조향 제어 장치를 포함하되, 조향 제어 장치는, 조향 정보에 기초하여 랙의 이동을 지시하는 랙 이동 지령값을 산출하고, 랙 위치 센서로부터 랙 이동 감지값을 수신하여 랙 이동 지령값과 랙 이동 감지값의 차이값을 산출하고, 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하고, 산출된 반력 토크에 대응되는 지령전류를 반력 모터에 출력하고, 버츄얼 링키지 파라미터는, 조향 입력 장치와 조향 출력 장치 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 보조 시스템을 제공한다.In another aspect, the present disclosure provides a steering assistance system that is mechanically separated between a steering input device and a steering output device, comprising a steering angle sensor that senses a steering angle generated by rotation of a steering wheel, and a reaction force that applies a reaction force to the steering wheel. Controls the steering motor based on the motor, the steering motor to move the rack in the axial direction, the rack position sensor to detect the position of the rack, and steering information, and based on the steering information and the rack position information received from the rack position sensor And a steering control device for controlling the reaction force motor, wherein the steering control device calculates a rack movement command value instructing the movement of the rack based on the steering information, and receives the rack movement detection value from the rack position sensor to move the rack Calculate the difference value between the command value and the detection value of the rack movement, calculate the reaction torque based on the difference value and one or more preset virtual linkage parameters, and transfer the command current corresponding to the calculated reaction torque to the reaction motor. And the virtual linkage parameter corresponds to characteristics of a virtual connection member between the steering input device and the steering output device.
이상에서 설명한 바와 같이, 본 개시에 의하면, 본 개시는 가상의 연결 부재의 특성을 반영하여 적절한 반력 토크를 산출함으로써 운전자에게 적절한 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공할 수 있다.As described above, according to the present disclosure, the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member. I can.
또한, 본 개시에 의하면, 본 개시는 스티어링 휠과 랙 간의 연결과 관련된 정보뿐만 아니라 주행 상태를 반영하여 반력 토크를 구현함으로써 운전자에 최적의 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공할 수 있다.In addition, according to the present disclosure, the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to the driver by implementing reaction torque by reflecting not only information related to the connection between the steering wheel and the rack, but also the driving state. Can provide.
도 1은 본 개시에 따른 조향 보조 시스템을 개략적으로 나타낸 도면이다.1 is a diagram schematically showing a steering assistance system according to the present disclosure.
도 2는 본 개시에 따른 조향 제어 장치를 개략적으로 나타낸 블록도이다.2 is a block diagram schematically illustrating a steering control apparatus according to the present disclosure.
도 3은 본 개시에 따라 반력 토크를 산출하는 제1 실시예를 설명하기 위한 흐름도이다.3 is a flowchart for explaining a first embodiment of calculating reaction force torque according to the present disclosure.
도 4는 본 개시에 따라 반력 토크를 산출하는 제2 실시예를 설명하기 위한 흐름도이다.4 is a flowchart for explaining a second embodiment of calculating reaction force torque according to the present disclosure.
도 5는 본 개시에 따라 반력 토크를 산출하는 제3 실시예를 설명하기 위한 흐름도이다.5 is a flowchart illustrating a third embodiment of calculating reaction force torque according to the present disclosure.
도 6은 차이값과 상수인 버츄얼 링키지 파라미터에 대한 반력 토크를 나타낸 그래프이다.6 is a graph showing a reaction torque for a difference value and a constant virtual linkage parameter.
도 7은 차이값과 변수인 버츄얼 링키지 파라미터에 대한 반력 토크를 나타낸 그래프이다.7 is a graph showing a reaction torque for a difference value and a variable virtual linkage parameter.
도 8은 본 개시에 따라 반력 토크를 산출하는 제4 실시예를 설명하기 위한 흐름도이다.8 is a flowchart for explaining a fourth embodiment of calculating reaction force torque according to the present disclosure.
도 9는 게인이 반영된 반력 토크와 게인이 반영되지 않은 반력 토크를 나타낸 그래프이다.9 is a graph showing a reaction force torque in which gain is reflected and a reaction force torque in which the gain is not reflected.
도 10 및 도 11은 운전자 토크에 따른 제1 게인을 나타낸 그래프이다.10 and 11 are graphs showing a first gain according to driver torque.
도 12 및 도 13은 주행 속도에 따른 제2 게인을 나타낸 그래프이다.12 and 13 are graphs showing a second gain according to a driving speed.
도 14는 본 개시에 따른 조향 제어 방법을 설명하기 위한 흐름도이다.14 is a flowchart illustrating a steering control method according to the present disclosure.
이하, 본 개시의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 본 개시의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.Hereinafter, some embodiments of the present disclosure will be described in detail through exemplary drawings. In describing the constituent elements of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected or connected to that other component, but another component between each component It should be understood that elements may be “connected”, “coupled” or “connected”.
도 1은 본 개시에 따른 조향 보조 시스템(1)을 개략적으로 나타낸 도면이다.1 is a diagram schematically showing a steering assistance system 1 according to the present disclosure.
도 1을 참조하면, 본 개시에 따른 조향 보조 시스템(1)은 운전자가 쉽게 조향할 수 있도록 조향력을 보조해주는 시스템을 의미한다. Referring to FIG. 1, the steering assistance system 1 according to the present disclosure refers to a system that assists a steering force so that a driver can easily steer.
이러한 조향 보조 시스템(1)은 구동 방식에 따라 펌프를 돌려 유압을 발생시켜서 조향 보조력을 제공하는 유압식(Hydraulic Power Steering; HPS)과 모터를 구동시켜 조향 보조력을 제공하는 전동식(Electronic Power Steering; EPS) 등이 있을 수 있다. 이하, 본 명세서에서는 편의상 전동식 조향 보조 시스템을 기준으로 본 개시를 설명하지만, 이에 한정되는 것은 아니다.The steering assist system 1 includes a hydraulic type (Hydraulic Power Steering; HPS) that provides steering assistance by generating hydraulic pressure by rotating a pump according to a driving method, and an electric type (Electronic Power Steering) that provides steering assistance by driving a motor; EPS), etc. Hereinafter, in the present specification, for convenience, the present disclosure will be described based on the electric steering assistance system, but the present disclosure is not limited thereto.
한편, 조향 입력 장치(10)와 조향 출력 장치(30) 간의 기계적 연결 부재(또는 링키지(Linkage))로 결합되어 있는지 여부에 따라 운전자가 스티어링 휠(11)을 회전하여 발생된 힘(토크)이 기계적인 동력 전달 장치(예를 들어, 링키지 등)를 통해 바퀴(33) 측의 액츄에이터에 전달되어 바퀴(33)가 조타되는 기계식 조향 보조 시스템일 수 있고, 기계적인 동력 전달 장치 대신에 와이어, 케이블 등을 통해 전기적 신호를 송수신하여 동력을 전달하는 스티어 바이 와이어(Steer-by-Wire; SbW) 시스템일 수 있다. 이하에서는 SbW 시스템을 기준으로 조향 보조 시스템(1)을 설명하지만, 이에 한정되는 것은 아니다.On the other hand, depending on whether the steering input device 10 and the steering output device 30 are coupled with a mechanical connection member (or linkage), the force (torque) generated by the driver rotating the steering wheel 11 It may be a mechanical steering assistance system in which the wheel 33 is steered by being transmitted to the actuator of the wheel 33 side through a mechanical power transmission device (for example, a linkage, etc.), and instead of a mechanical power transmission device, a wire or cable It may be a steer-by-wire (SbW) system that transmits and receives power by transmitting and receiving electrical signals through the like. Hereinafter, the steering assistance system 1 will be described based on the SbW system, but is not limited thereto.
본 개시에 따른 조향 보조 시스템(1)은 조향 입력 장치(10), 조향 제어 장치(20) 및 조향 출력 장치(30) 등을 포함할 수 있다. 전술한 바와 같이, 조향 보조 시스템(1)이 SbW 시스템인 경우, 조향 입력 장치(10)와 조향 출력 장치(30)는 기계적으로 분리되어 있다.The steering assistance system 1 according to the present disclosure may include a steering input device 10, a steering control device 20, a steering output device 30, and the like. As described above, when the steering assistance system 1 is an SbW system, the steering input device 10 and the steering output device 30 are mechanically separated.
조향 입력 장치(10)는 운전자가 의도하는 조향 정보에 입력되는 장치를 의미할 수 있다. 이러한 조향 입력 장치(10)는 스티어링 휠(11), 조향각 센서(12), 반력 모터(13), 운전자 토크 센서(14) 등을 포함할 수 있다.The steering input device 10 may mean a device that is input to steering information intended by a driver. The steering input device 10 may include a steering wheel 11, a steering angle sensor 12, a reaction force motor 13, a driver torque sensor 14, and the like.
조향각 센서(12)는 스티어링 휠(11)의 회전에 의해 발생하는 조향각을 감지할 수 있다. 구체적으로, 운전자가 스티어링 휠(11)을 잡고 회전하는 경우, 조향각 센서(12)는 스티어링 휠(11)의 회전각도(조향각)을 감지하고, 감지된 조향각을 지시하는 감지신호(또는 감지값)를 조향 제어 장치(20)에 출력할 수 있다.The steering angle sensor 12 may detect a steering angle generated by rotation of the steering wheel 11. Specifically, when the driver rotates while holding the steering wheel 11, the steering angle sensor 12 detects the rotation angle (steering angle) of the steering wheel 11, and a detection signal (or detection value) indicating the detected steering angle Can be output to the steering control device 20.
반력 모터(13)는 조향 제어 장치(20)로부터 제어신호, 지령신호, 지령전류 등을 입력받아 스티어링 휠(11)에 반력을 부여할 수 있다. 구체적으로, 반력 모터(13)는 조향 제어 장치(20)로부터 지령전류를 입력 받아 지령전류에 의해 지시되는 회전속도로 구동하여 반력 토크를 출력할 수 있다.The reaction force motor 13 may receive a control signal, a command signal, a command current, etc. from the steering control device 20 to apply a reaction force to the steering wheel 11. Specifically, the reaction force motor 13 may receive a command current from the steering control device 20 and drive it at a rotational speed indicated by the command current to output a reaction torque.
운전자 토크 센서(14)는 스티어링 휠(11)의 회전을 통해 운전자 토크를 감지할 수 있다. 구체적으로, 운전자가 스티어링 휠(11)을 잡고 회전하는 경우, 운전자 토크 센서(14)는 스티어링 휠(11)의 운전자 토크를 감지하고, 감지된 운전자 토크를 지시하는 감지신호(또는 감지값)를 조향 제어 장치(20)에 출력할 수 있다. 여기서, 운전자 토크는 운전자의 스티어링 휠(11) 조작에 의해 발생하는 토크를 의미할 수 있다.The driver torque sensor 14 may detect a driver torque through rotation of the steering wheel 11. Specifically, when the driver rotates while holding the steering wheel 11, the driver torque sensor 14 detects the driver torque of the steering wheel 11 and generates a detection signal (or detection value) indicating the detected driver torque. It can be output to the steering control device 20. Here, the driver's torque may mean a torque generated by the driver's manipulation of the steering wheel 11.
조향 제어 장치(20)는 조향 입력 장치(10)로부터 조향 정보를 입력받아 제어값을 산출하고, 산출한 제어값을 지시하는 전기적 신호를 조향 출력 장치(30)에 출력할 수 있다. 여기서, 조향 정보는 조향각 및 운전자 토크 중 적어도 하나를 포함하는 정보를 의미할 수 있다.The steering control device 20 may receive steering information from the steering input device 10, calculate a control value, and output an electrical signal indicating the calculated control value to the steering output device 30. Here, the steering information may mean information including at least one of a steering angle and a driver's torque.
한편, 조향 제어 장치(20)는 조향 출력 장치(30)에서 실제 출력된 동력 정보에 대해 피드백을 수행하여 제어값을 산출할 수 있다. 그리고, 조향 제어 장치(20)는 제어값을 지시하는 전기적 신호를 조향 입력 장치(10)에 출력하여, 운전자에게 조향감(조타감)을 제공할 수 있다.Meanwhile, the steering control device 20 may calculate a control value by performing feedback on the power information actually output from the steering output device 30. In addition, the steering control device 20 may output an electric signal indicating a control value to the steering input device 10 to provide a steering feel (steering feel) to the driver.
이러한 조향 제어 장치(20)는 전자 제어 유닛(Electronic Controller Unit; ECU), 마이컴 등과 같은 전자 제어 장치로 구현될 수 있으며, 조향 제어 장치(20)에 대한 구체적인 설명은 후술하도록 한다.The steering control device 20 may be implemented as an electronic control device such as an Electronic Controller Unit (ECU) or a microcomputer, and a detailed description of the steering control device 20 will be described later.
조향 출력 장치(30)는 운전자의 의도대로 실제 차량이 조향하도록 구동하는 장치를 의미할 수 있다. 이러한 조향 출력 장치(30)는 조향 모터(31), 랙(32), 랙 위치 센서(34), 바퀴(33), 차속 센서(35) 등을 포함할 수 있다.The steering output device 30 may mean a device that drives an actual vehicle to steer according to a driver's intention. The steering output device 30 may include a steering motor 31, a rack 32, a rack position sensor 34, a wheel 33, a vehicle speed sensor 35, and the like.
조향 모터(31)는 랙(32)을 축방향으로 이동시킬 수 있다. 구체적으로, 조향 모터(31)는 조향 제어 장치(20)로부터 지령전류를 입력받아 구동하고, 랙(32)을 축방향으로 직선 운동하게 할 수 있다.The steering motor 31 may move the rack 32 in the axial direction. Specifically, the steering motor 31 may receive and drive a command current from the steering control device 20 and cause the rack 32 to move linearly in the axial direction.
랙(32)은 조향 모터(31)의 구동에 의해 직선 운동을 수행할 수 있으며, 랙(32)의 직선 운동을 통해 바퀴(33)는 좌 또는 우로 조타된다.The rack 32 may perform linear motion by driving the steering motor 31, and the wheel 33 is steered to the left or right through the linear motion of the rack 32.
랙 위치 센서(34)는 랙(32)의 위치를 감지할 수 있다. 구체적으로, 랙(32)이 직선 운동을 수행하여 스티어링 휠(11)이 중립 위치에 있을 때에 대응되는 위치로부터 이동하는 경우, 랙 위치 센서(34)는 랙(32)의 실제 위치를 감지하고, 랙(32)의 위치 감지값을 지시하는 감지신호를 조향 제어 장치(20)에 출력할 수 있다.The rack position sensor 34 may detect the position of the rack 32. Specifically, when the rack 32 performs a linear motion and moves from a corresponding position when the steering wheel 11 is in a neutral position, the rack position sensor 34 detects the actual position of the rack 32, A detection signal indicating a position detection value of the rack 32 may be output to the steering control device 20.
여기서, 랙 위치 센서(34)는 랙(32)의 실제 이동 속도를 감지할 수 있다. 즉, 랙 위치 센서(34)는 랙(32)의 위치를 감지하고, 감지된 랙(32)의 위치를 시간에 대하여 미분하여 랙(32)의 이동 속도를 계산하며, 랙(32)의 이동 속도값을 지시하는 감지신호를 조향 제어 장치(20)에 출력할 수 있다. 따라서, 랙 위치 센서(34)는 미분기를 더 포함할 수 있다.Here, the rack position sensor 34 may detect the actual moving speed of the rack 32. That is, the rack position sensor 34 detects the position of the rack 32, calculates the moving speed of the rack 32 by differentiating the position of the detected rack 32 with respect to time, and the movement of the rack 32 A detection signal indicating the speed value may be output to the steering control device 20. Accordingly, the rack position sensor 34 may further include a differentiator.
차속 센서(35)는 차량의 주행 속도를 감지할 수 있다. 구체적으로, 차속 센서(35)는 차량의 주행 속도를 감지하고, 주행 속도를 지시하는 감지신호를 조향 제어 장치(20)에 출력할 수 있다.The vehicle speed sensor 35 may detect the driving speed of the vehicle. Specifically, the vehicle speed sensor 35 may detect the driving speed of the vehicle and may output a detection signal indicating the driving speed to the steering control device 20.
도시하지 않았지만, 본 개시에 따른 조향 보조 시스템(1)은 조향 컬럼, 피니언 기어, 바퀴(33)의 조타각을 감지하는 조타각 센서, 차량의 헤딩각(Heading angle)을 감지하는 요레이트 센서, 조향 입력부와 조향 출력부를 분리하거나 결합 가능한 클러치(Clutch) 등을 더 포함할 수 있다.Although not shown, the steering assistance system 1 according to the present disclosure includes a steering angle sensor that detects a steering angle of a steering column, a pinion gear, and a wheel 33, a yaw rate sensor that detects a heading angle of a vehicle, The steering input unit and the steering output unit may further include a clutch capable of separating or coupling.
한편, 본 개시에 따른 조향 보조 시스템(1)이 SbW 시스템인 경우, 조향 입력 장치(10)와 조향 출력 장치(30)가 기계적 연결 부재(Mechanical linkage) 대신 전기적으로 연결되어 있기 때문에, 이러한 기계적 연결 부재의 특성을 대신하는 가상의 연결 부재의 특성을 고려하여 운전자에게 조향 필링(Steering feeling)을 제공하는 것이 필요하다.Meanwhile, when the steering assistance system 1 according to the present disclosure is an SbW system, since the steering input device 10 and the steering output device 30 are electrically connected instead of a mechanical linkage, such a mechanical connection It is necessary to provide a steering feeling to the driver in consideration of the characteristics of the virtual connection member instead of the characteristics of the member.
이하에서는 전술한 가상의 연결 부재의 특성을 고려하여 운전자에게 조타감을 제공할 수 있는 조향 제어 장치(20)를 구체적으로 설명한다.Hereinafter, a steering control device 20 capable of providing a feeling of steering to a driver in consideration of the characteristics of the above-described virtual connection member will be described in detail.
도 2는 본 개시에 따른 조향 제어 장치(100)를 개략적으로 나타낸 블록도이다.2 is a block diagram schematically illustrating a steering control apparatus 100 according to the present disclosure.
도 2를 참조하면, 본 개시에 따른 조향 제어 장치(100)는 지령값 산출부(110)와, 차이값 산출부(120) 및 반력 토크 산출부(130) 등을 포함할 수 있다.Referring to FIG. 2, the steering control apparatus 100 according to the present disclosure may include a command value calculation unit 110, a difference value calculation unit 120, a reaction force torque calculation unit 130, and the like.
지령값 산출부(110)는 스티어링 휠(11)의 회전에 의해 생성되는 조향 정보에 기초하여 랙(32)의 이동을 지시하는 랙 이동 지령값을 산출할 수 있다. 구체적인 예를 들면, 조향각 센서(12)가 스티어링 휠(11)의 조향각을 감지하고, 지령값 산출부(110)는 감지된 조향각에 따른 랙(32)의 이동량을 지시하는 랙 이동 지령값을 산출한다.The command value calculation unit 110 may calculate a rack movement command value instructing the movement of the rack 32 based on steering information generated by the rotation of the steering wheel 11. For a specific example, the steering angle sensor 12 detects the steering angle of the steering wheel 11, and the command value calculation unit 110 calculates a rack movement command value indicating the amount of movement of the rack 32 according to the sensed steering angle. do.
여기서, 랙 이동 지령값은 랙(32)이 중앙 위치(On-center)부터 이격된 특정 위치로 이동하도록 지시하는 값을 의미할 수 있으며, 랙 이동 지령값은 랙(32)의 위치를 지시하는 랙 위치 지령값과 랙(32)의 이동 속도를 지시하는 랙 이동 속도 지령값 중 적어도 하나를 포함할 수 있다.Here, the rack movement command value may mean a value instructing the rack 32 to move to a specific position spaced from the center position (On-center), and the rack movement command value indicates the position of the rack 32 It may include at least one of a rack position command value and a rack movement speed command value indicating the moving speed of the rack 32.
예를 들면, 지령값 산출부(110)는 랙(32)의 위치를 지시하는 랙 위치 지령값을 산출한다.For example, the command value calculation unit 110 calculates a rack position command value indicating the position of the rack 32.
다른 예를 들면, 지령값 산출부(110)는 랙(32)의 이동 속도를 지시하는 랙 이동 속도 지령값을 산출한다. For another example, the command value calculation unit 110 calculates a rack movement speed command value indicating the movement speed of the rack 32.
또 다른 예를 들면, 지령값 산출부(110)가 미분기를 포함하는 경우, 지령값 산출부(110)는 랙 위치 지령값을 먼저 산출하고, 랙(32)의 위치를 시간에 대하여 미분하여 랙 이동 속도 지령값을 산출한다.For another example, when the command value calculation unit 110 includes a differentiator, the command value calculation unit 110 first calculates the rack position command value, and differentiates the position of the rack 32 with respect to time, Calculate the movement speed command value.
한편, 지령값 산출부(110)는 랙 이동 지령값에 대응되는 지령신호(또는 지령전류 등)을 도 1에 도시된 조향 모터(31)와 차이값 산출부(120)에 출력할 수 있다. 이때, 조향 모터(31)는 랙 이동 지령값에 따라 랙(32)을 축방향으로 직선 운동을 수행하게 할 수 있다.Meanwhile, the command value calculation unit 110 may output a command signal (or command current, etc.) corresponding to the rack movement command value to the steering motor 31 and the difference value calculation unit 120 shown in FIG. 1. At this time, the steering motor 31 may cause the rack 32 to perform linear motion in the axial direction according to the rack movement command value.
차이값 산출부(120)는 랙(32)의 이동이 감지되면, 랙(32)의 이동에 따른 랙 이동 감지값을 수신하여 랙 이동 지령값과 랙 이동 감지값의 차이값을 산출할 수 있다.When the movement of the rack 32 is detected, the difference value calculating unit 120 may receive a rack movement detection value according to the movement of the rack 32 and calculate a difference value between the rack movement command value and the rack movement detection value. .
여기서, 랙 이동 감지값은 도 1에 도시된 랙 위치 센서(34)에 의해 출력되는 감지신호에 의해 지시되는 값을 의미할 수 있다.Here, the rack movement detection value may mean a value indicated by a detection signal output by the rack position sensor 34 shown in FIG. 1.
구체적인 예를 들면, 조향 모터(31)가 구동하여 랙(32)이 축방향으로 직선 운동을 수행하면, 랙 위치 센서(34)는 랙(32)의 실제 위치를 감지하여 랙 이동 감지값에 대응되는 감지신호를 차이값 산출부(120)에 출력하고, 차이값 산출부(120)는 랙 위치 센서(34)로부터 수신한 감지신호에 의해 지시되는 랙 이동 감지값과 지령값 산출부(110)로부터 수신한 지령신호에 의해 지시되는 랙 이동 지령값 간의 차이값을 산출한다.For a specific example, when the steering motor 31 is driven and the rack 32 performs a linear motion in the axial direction, the rack position sensor 34 detects the actual position of the rack 32 and responds to the rack movement detection value. The detected signal is output to the difference value calculation unit 120, and the difference value calculation unit 120 is a rack movement detection value and a command value calculation unit 110 indicated by a detection signal received from the rack position sensor 34 The difference between the rack movement command values indicated by the command signals received from is calculated.
여기서, 차이값은 랙 이동 지령값을 기준으로 계산되는 값일 수 있다. 하지만, 이에 한정되는 것은 아니다.Here, the difference value may be a value calculated based on the rack movement command value. However, it is not limited thereto.
한편, 차이값 산출부(120)는 계산한 차이값에 대응되는 전기적 신호를 반력 토크 산출부(130)에 출력할 수 있다.Meanwhile, the difference value calculation unit 120 may output an electrical signal corresponding to the calculated difference value to the reaction torque calculation unit 130.
반력 토크 산출부(130)는 차이값 산출부(120)로부터 수신한 전기적 신호에 의해 지시되는 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출할 수 있다.The reaction torque calculation unit 130 may calculate the reaction torque based on a difference value indicated by an electrical signal received from the difference value calculation unit 120 and one or more preset virtual linkage parameters.
여기서, 버츄얼 링키지 파라미터(Virtual linkage parameter)는 도 1에 도시된 스티어링 휠(11) 등을 포함하는 조향 입력 장치(10)와 랙(32) 등을 포함하는 조향 출력 장치(30) 간의 가상의 연결 부재의 특성에 대응되는 파라미터일 수 있다. Here, the virtual linkage parameter is a virtual connection between the steering input device 10 including the steering wheel 11 and the like shown in FIG. 1 and the steering output device 30 including the rack 32, etc. It may be a parameter corresponding to the characteristic of the member.
이때, 가상의 연결 부재(Virtual Linkage)는 실제로 조향 보조 시스템(1)에 존재하지 않는 기계적 연결 부재의 특성을 이용하기 위한 연결 부재를 의미할 수 있으며, 예를 들어, 가상의 연결 부재는 가상의 토션바, 댐퍼(Damper) 등을 포함할 수 있다. 하지만, 이에 한정되는 것은 아니다.In this case, the virtual linkage may mean a connection member for using the characteristics of a mechanical connection member that does not actually exist in the steering assistance system 1. For example, the virtual connection member is a virtual connection member. It may include a torsion bar, a damper, and the like. However, it is not limited thereto.
일 예로, 가상의 연결 부재가 가상의 토션바인 경우, 버츄얼 링키지 파라미터는 가상의 토션바의 비틀림 파라미터이다.For example, when the virtual connection member is a virtual torsion bar, the virtual linkage parameter is a torsion parameter of the virtual torsion bar.
이때, 토션바는 탄성이 우수한 부재이므로, 비틀림 파라미터는 스프링의 특성인 스프링 파라미터로도 대체할 수 있다. 따라서, 다른 예시로, 버츄얼 링키지 파라미터는 가상의 스프링의 스프링 파라미터일 수 있다.At this time, since the torsion bar is a member having excellent elasticity, the torsion parameter can be replaced with a spring parameter, which is a characteristic of the spring. Thus, as another example, the virtual linkage parameter may be a spring parameter of a virtual spring.
비틀림 파라미터, 스프링 파라미터는 토션바, 스프링의 탄성에 기인한 것이므로, 버츄얼 파라미터는 비틀림 파라미터, 스프링 파라미터에 한정되는 것은 아니고, 탄성에 기인한 탄성 파라미터라면 모두 해당될 수 있다.Since the torsion parameter and the spring parameter are due to the elasticity of the torsion bar and the spring, the virtual parameter is not limited to the torsion parameter and the spring parameter, and any elastic parameter due to elasticity may be applicable.
한편, 또 다른 예로, 버츄얼 링키지 파라미터는 가상의 댐퍼의 댐핑 파라미터이다. 하지만, 이에 한정되는 것은 아니다.Meanwhile, as another example, the virtual linkage parameter is a damping parameter of a virtual damper. However, it is not limited thereto.
이하에서는 반력 토크를 산출하는 실시예들을 구체적으로 설명한다.Hereinafter, embodiments for calculating the reaction force torque will be described in detail.
도 3은 본 개시에 따라 반력 토크를 산출하는 제1 실시예를 설명하기 위한 흐름도이다.3 is a flowchart for explaining a first embodiment of calculating reaction force torque according to the present disclosure.
버츄얼 링키지 파라미터가 가상의 토션바의 비틀림 파라미터 및 가상의 스프링의 스프링 파라미터 중 어느 하나의 탄성 파라미터인 경우, 본 개시에 따른 조향 제어 장치(100)는 랙(32)의 위치와 탄성 파라미터를 이용하여 반력 토크를 산출할 수 있다. When the virtual linkage parameter is one of the torsion parameter of the virtual torsion bar and the spring parameter of the virtual spring, the steering control device 100 according to the present disclosure uses the position and the elastic parameter of the rack 32 The reaction torque can be calculated.
도 3을 참조하면, 조향 제어 장치(100)는 랙 위치 지령값을 산출하고(S310), 랙 위치 감지값을 수신한다(S320). 예를 들면, 지령값 산출부(110)는 스티어링 휠(11)의 조향각에 기초하여 랙 위치 지령값을 산출 및 조향 모터(31)에 출력한다. 그리고, 차이값 산출부(120)는 랙 위치 센서(34)로부터 랙 위치 감지값을 수신한다.3, the steering control device 100 calculates a rack position command value (S310), and receives a rack position detection value (S320). For example, the command value calculation unit 110 calculates a rack position command value based on the steering angle of the steering wheel 11 and outputs it to the steering motor 31. In addition, the difference value calculation unit 120 receives a rack position detection value from the rack position sensor 34.
그 다음, 조향 제어 장치(100)는 랙 위치 차이값(Δx)을 산출한다(S330). 예를 들면, 차이값 산출부(120)는 랙 위치 지령값 및 랙(32)의 실제 위치에 따른 랙 위치 감지값을 수신하여 랙 위치 지령값과 랙 위치 감지값의 랙 위치 차이값(Δx)을 산출한다.Then, the steering control device 100 calculates the rack position difference value (Δx) (S330). For example, the difference value calculation unit 120 receives the rack position command value and the rack position detection value according to the actual position of the rack 32, and the rack position difference value (Δx) between the rack position command value and the rack position detection value Yields
그 다음, 조향 제어 장치(100)는 랙 위치 차이값(Δx)에 탄성 파라미터(A)를 반영하여(S340), 반력 토크(τ)를 산출한다(S350). 예를 들면, 반력 토크 산출부(130)는 랙 위치 차이값(Δx)에 탄성 파라미터(A)를 곱하여 반력 토크(τ= A*Δx)를 산출한다.Then, the steering control apparatus 100 reflects the elastic parameter A to the rack position difference value Δx (S340), and calculates the reaction force torque τ (S350). For example, the reaction force torque calculation unit 130 calculates the reaction force torque (τ=A*Δx) by multiplying the rack position difference value (Δx) by the elastic parameter (A).
도 4는 본 개시에 따라 반력 토크를 산출하는 제2 실시예를 설명하기 위한 흐름도이다.4 is a flowchart for explaining a second embodiment of calculating reaction force torque according to the present disclosure.
버츄얼 링키지 파라미터가 가상의 댐퍼의 댐핑 파라미터인 경우, 본 개시에 따른 조향 제어 장치(100)는 랙(32)의 이동 속도와 댐핑 파라미터를 이용하여 반력 토크를 산출할 수 있다. When the virtual linkage parameter is a damping parameter of a virtual damper, the steering control apparatus 100 according to the present disclosure may calculate a reaction torque using a moving speed of the rack 32 and a damping parameter.
도 4를 참조하면, 조향 제어 장치(100)는 랙 이동 속도 지령값을 산출하고(S410), 랙 이동 속도 감지값을 수신한다(S420). 예를 들면, 지령값 산출부(110)는 스티어링 휠(11)의 조향각에 기초하여 랙 이동 속도 지령값을 산출한다. 차이값 산출부(120)는 랙 위치 센서(34)로부터 랙 이동 속도 감지값을 수신한다.4, the steering control apparatus 100 calculates a rack movement speed command value (S410), and receives a rack movement speed detection value (S420). For example, the command value calculation unit 110 calculates a rack movement speed command value based on the steering angle of the steering wheel 11. The difference value calculation unit 120 receives a rack movement speed detection value from the rack position sensor 34.
그 다음, 조향 제어 장치(100)는 랙 이동 속도 차이값(Δ
Figure PCTKR2020007188-appb-I000001
)을 산출한다(S430). 예를 들면, 차이값 산출부(120)는 랙 이동 속도 지령값 및 랙(32)의 실제 이동 속도에 따른 랙 이동 속도 감지값을 수신하여 랙 이동 속도 지령값과 랙 이동 속도 감지값의 랙 이동 속도 차이값(Δ
Figure PCTKR2020007188-appb-I000002
)을 산출한다.
Then, the steering control device 100 is the rack movement speed difference value (Δ
Figure PCTKR2020007188-appb-I000001
) Is calculated (S430). For example, the difference value calculation unit 120 receives the rack movement speed command value and the rack movement speed detection value according to the actual movement speed of the rack 32, and moves the rack movement speed command value and the rack movement speed detection value. Speed difference value (Δ
Figure PCTKR2020007188-appb-I000002
) Is calculated.
그 다음, 조향 제어 장치(100)는 랙 이동 속도 차이값(Δ
Figure PCTKR2020007188-appb-I000003
)에 댐핑 파라미터(B)를 반영하여(S440), 반력 토크(τ)를 산출한다(S450). 예를 들면, 반력 토크 산출부(130)는 랙 이동 속도 차이값(Δ
Figure PCTKR2020007188-appb-I000004
)에 댐핑 파라미터(B)를 곱하여 반력 토크(τ=B*Δ
Figure PCTKR2020007188-appb-I000005
)를 산출한다.
Then, the steering control device 100 is the rack movement speed difference value (Δ
Figure PCTKR2020007188-appb-I000003
) By reflecting the damping parameter (B) (S440), the reaction force torque (τ) is calculated (S450). For example, the reaction force torque calculation unit 130 is a rack movement speed difference value (Δ
Figure PCTKR2020007188-appb-I000004
) Multiplied by the damping parameter (B) to obtain the reaction torque (τ=B*Δ
Figure PCTKR2020007188-appb-I000005
) Is calculated.
도 5는 본 개시에 따라 반력 토크를 산출하는 제3 실시예를 설명하기 위한 흐름도이다.5 is a flowchart illustrating a third embodiment of calculating reaction force torque according to the present disclosure.
본 개시에 따른 조향 제어 장치(100)는 탄성 파라미터와 댐핑 파라미터를 포함하는 버츄얼 링키지 파라미터를 이용하여 반력 토크를 산출할 수도 있다.The steering control apparatus 100 according to the present disclosure may calculate a reaction force torque by using a virtual linkage parameter including an elastic parameter and a damping parameter.
도 5를 참조하면, 조향 제어 장치(100)는 랙 위치 지령값을 산출한다(S510).5, the steering control apparatus 100 calculates a rack position command value (S510).
그 다음, 조향 제어 장치(100)는 랙 위치 감지값을 수신하고(S521), 제1 차이값(Δx)을 산출하며(S522), 제1 차이값(Δx)에 탄성 파라미터(A)를 반영한다(S523). 여기서, 제1 차이값(Δx)은 랙 위치 차이값(Δx)을 의미할 수 있다.Then, the steering control device 100 receives the rack position detection value (S521), calculates the first difference value (Δx) (S522), and reflects the elastic parameter (A) to the first difference value (Δx). Do (S523). Here, the first difference value Δx may mean the rack position difference value Δx.
한편, 조향 제어 장치(100)는 랙 위치 지령값을 미분하여 랙 이동 속도 지령값을 산출하고(S531), 랙 이동 속도 감지값을 수신하고(S532), 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000006
)을 산출하며, 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000007
)에 댐핑 파라미터를 반영한다(S533). 여기서, 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000008
)은 랙 이동 속도 차이값(Δ
Figure PCTKR2020007188-appb-I000009
)을 의미할 수 있다.
Meanwhile, the steering control apparatus 100 calculates a rack movement speed command value by differentiating the rack position command value (S531), receives a rack movement speed detection value (S532), and a second difference value (Δ
Figure PCTKR2020007188-appb-I000006
) And the second difference value (Δ
Figure PCTKR2020007188-appb-I000007
) To reflect the damping parameter (S533). Here, the second difference value (Δ
Figure PCTKR2020007188-appb-I000008
) Is the difference in rack movement speed (Δ
Figure PCTKR2020007188-appb-I000009
Can mean ).
그 다음, 조향 제어 장치(100)는 제1 차이값(Δx)에 탄성 파라미터(A)를 반영한 값과 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000010
)에 댐핑 파라미터를 반영한 값을 합하여 반력 토크(τ)를 산출한다(S540).
Then, the steering control device 100 reflects the elastic parameter A in the first difference value Δx and the second difference value Δ
Figure PCTKR2020007188-appb-I000010
) To calculate the reaction torque (τ) by adding the value reflecting the damping parameter (S540).
예를 들면, 차이값 산출부(120)는 랙(32)의 실제 위치에 따른 랙 위치 감지값과 랙 위치 지령값의 제1 차이값(Δx)을 산출하고, 랙(32)의 실제 이동 속도에 따른 랙 이동 속도 감지값과 랙 이동 속도 지령값의 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000011
)을 산출한다.
For example, the difference value calculation unit 120 calculates a first difference value (Δx) between the rack position detection value and the rack position command value according to the actual position of the rack 32, and the actual moving speed of the rack 32 The second difference value between the rack movement speed detection value and the rack movement speed command value (Δ
Figure PCTKR2020007188-appb-I000011
) Is calculated.
그리고, 반력 토크 산출부(130)는 제1 차이값(Δx)에 탄성 파라미터(A)를 곱한 값(A*Δx)과, 제2 차이값(Δ
Figure PCTKR2020007188-appb-I000012
)에 댐핑 파라미터(B)를 곱한 값(B*Δ
Figure PCTKR2020007188-appb-I000013
)을 합하여 반력 토크(τ= A*Δx + B*Δ
Figure PCTKR2020007188-appb-I000014
)를 산출한다.
In addition, the reaction torque calculation unit 130 has a value (A*Δx) obtained by multiplying the first difference value (Δx) by the elastic parameter (A) and a second difference value (Δ
Figure PCTKR2020007188-appb-I000012
) Multiplied by the damping parameter (B) (B*Δ
Figure PCTKR2020007188-appb-I000013
) And the reaction torque (τ= A*Δx + B*Δ
Figure PCTKR2020007188-appb-I000014
) Is calculated.
전술한 바에 의하면, 본 개시에 따른 조향 제어 장치(100)는 가상의 연결 부재의 특성을 반영하여 적절한 반력 토크를 산출함으로써 운전자에게 적절한 조향감을 제공하는 효과를 제공한다.As described above, the steering control apparatus 100 according to the present disclosure provides an effect of providing an appropriate steering feeling to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member.
한편, 전술한 버츄얼 링키지 파라미터는 동일한 가상의 연결 부재의 특성에 대해 항상 일정할 수 있고, 특성이 서로 다른 가상의 연결 부재에 따라 변동될 수도 있다.Meanwhile, the above-described virtual linkage parameter may always be constant for the characteristics of the same virtual connecting member, and may vary according to the virtual connecting members having different characteristics.
이하에서는 그래프를 이용하여 버츄얼 링키지 파라미터에 따라 결정되는 반력 토크를 설명한다.Hereinafter, a reaction force torque determined according to a virtual linkage parameter will be described using a graph.
도 6은 차이값과 상수인 버츄얼 링키지 파라미터에 대한 반력 토크를 나타낸 그래프이고, 도 7은 차이값과 변수인 버츄얼 링키지 파라미터에 대한 반력 토크를 나타낸 그래프이다.6 is a graph showing a difference value and a reaction force torque for a constant virtual linkage parameter, and FIG. 7 is a graph showing a difference value and a reaction force torque for a variable virtual linkage parameter.
도 6을 참조하면, 버츄얼 링키지 파라미터가 차이값(Δ)과 무관한 상수인 경우, 도 3 내지 도 5를 참조하여 전술한 바와 같이, 차이값(Δ)과 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크(τ)는 차이값(Δ)에 따라 선형적으로 증가하게 된다.Referring to FIG. 6, when the virtual linkage parameter is a constant independent of the difference value Δ, as described above with reference to FIGS. 3 to 5, the reaction force torque calculated by multiplying the difference value Δ and the virtual linkage parameter (τ) increases linearly with the difference value (Δ).
이때, 버츄얼 링키지 파라미터의 값이 증가할수록, 반력 토크(τ)의 기울기는 증가하게 된다.At this time, as the value of the virtual linkage parameter increases, the slope of the reaction torque τ increases.
예를 들면, 제1 버츄얼 링키지 파라미터의 값이 제2 버츄얼 링키지 파라미터보다 큰 경우, 차이값(Δ)과 제1 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크의 제1 기울기(①)는 차이값(Δ)과 제2 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크의 제2 기울기(②)보다 크다.For example, when the value of the first virtual linkage parameter is greater than the second virtual linkage parameter, the first slope (①) of the reaction torque calculated by multiplying the difference value (Δ) and the first virtual linkage parameter is the difference value (Δ ) Is greater than the second slope (②) of the reaction force torque calculated by multiplying the second virtual linkage parameter.
한편, 반력 토크는 미리 설정된 최대 토크를 한도로 차이값(Δ)의 증가함에 따라 제한적으로 증가할 수 있다. 이는 운전자에게 적절한 조향감, 반력감을 제공하기 위함이다.Meanwhile, the reaction force torque may be limitedly increased as the difference value Δ increases with the maximum torque set in advance as a limit. This is to provide the driver with an appropriate sense of steering and reaction.
즉, 반력 토크는 차이값이 증가할수록 증가하되, 미리 설정된 최대 토크에 도달하면, 차이값이 증가하더라도 최대 토크와 동일한 값으로 일정할 수 있다.That is, the reaction torque increases as the difference value increases, but when reaching a preset maximum torque, even if the difference value increases, it may be constant at the same value as the maximum torque.
한편, 도 7을 참조하면, 버츄얼 링키지 파라미터가 차이값에 기초하여 매핑되는 변수인 경우, 차이값(Δ)과 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크(τ)는 차이값(Δ)에 따라 비선형적으로 증가하게 된다.Meanwhile, referring to FIG. 7, when the virtual linkage parameter is a variable mapped based on the difference value, the reaction force torque τ calculated by multiplying the difference value Δ and the virtual linkage parameter is nonlinear according to the difference value Δ. Will increase as the enemy.
여기서, 반력 토크의 비선형적인 그래프는 다양하게 존재할 수 있다. 일 예로, 차이값(Δ)과 제3 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크의 경우, 그 반력 토크에 대한 그래프(①)는 차이값(Δ)이 증가함에 따라 반력 토크의 증가량이 점점 감소되는 그래프일 수 있다. 다른 예로, 차이값(Δ)과 제4 버츄얼 링키지 파라미터를 곱하여 산출된 반력 토크의 경우, 그 반력 토크에 대한 그래프(②)는 차이값(Δ)이 증가함에 따라 반력 토크의 증가량이 변동되는 그래프일 수 있다. 하지만, 이에 한정되는 것은 아니다.Here, there may be various nonlinear graphs of reaction torque. For example, in the case of the reaction torque calculated by multiplying the difference value (Δ) and the third virtual linkage parameter, the graph (①) of the reaction force torque shows that the increase in the reaction force torque gradually decreases as the difference value (Δ) increases. It can be a graph. As another example, in the case of the reaction torque calculated by multiplying the difference value (Δ) and the fourth virtual linkage parameter, the graph of the reaction force torque (②) is a graph in which the increase in the reaction force torque changes as the difference value (Δ) increases. Can be However, it is not limited thereto.
한편, 차량이 주행 중인 경우, 주행 상황은 다양하게 존재하고, 예측하기 어려우므로, 주행 상황에 따라 운전자에게 적절한 조향감을 제공하기 위해서는 전술한 최대 토크를 조절할 필요가 있다.On the other hand, when the vehicle is running, various driving conditions exist and it is difficult to predict. Therefore, it is necessary to adjust the above-described maximum torque in order to provide an appropriate steering feeling to the driver according to the driving situation.
이하에서는 조향 정보, 주행 정보 등에 따라 반력 토크를 산출하는 실시예를 설명한다.Hereinafter, an embodiment in which reaction torque is calculated according to steering information, driving information, and the like will be described.
도 8은 본 개시에 따라 반력 토크를 산출하는 제4 실시예를 설명하기 위한 흐름도이고, 도 9는 게인이 반영된 반력 토크와 게인이 반영되지 않은 반력 토크를 나타낸 그래프이다.8 is a flowchart for explaining a fourth embodiment of calculating the reaction force torque according to the present disclosure, and FIG. 9 is a graph showing a reaction force torque in which a gain is reflected and a reaction force torque in which the gain is not reflected.
도 8을 참조하면, 전술한 바와 동일하게 조향 제어 장치(100)는 랙 이동 지령값과 랙 이동 감지값을 이용하여 차이값을 산출하고(S811), 차이값에 버츄얼 링키지 파라미터를 반영한다(S812).Referring to FIG. 8, as described above, the steering control apparatus 100 calculates a difference value using a rack movement command value and a rack movement detection value (S811), and reflects the virtual linkage parameter to the difference value (S812). ).
한편, 조향 제어 장치(100)는 조향 정보 및 주행 정보 중 적어도 하나를 수신한다(S821). 구체적으로, 조향 제어 장치(100)는 운전자 토크 및 주행 속도 중 적어도 하나를 수신한다. 그 다음, 조향 제어 장치(100)는 수신한 정보에 기초하여 게인을 산출한다(S822). 즉, 게인은 주행 속도 및 운전자 토크에 의해 반력 토크를 가변시키는 값일 수 있다.Meanwhile, the steering control apparatus 100 receives at least one of steering information and driving information (S821). Specifically, the steering control device 100 receives at least one of a driver torque and a driving speed. Then, the steering control device 100 calculates a gain based on the received information (S822). That is, the gain may be a value for varying the reaction torque according to the driving speed and the driver torque.
그 다음, 조향 제어 장치(100)는 차이값에 버츄얼 링키지 파라미터를 반영한 값과 게인을 이용하여 반력 토크를 산출한다(S830).Then, the steering control apparatus 100 calculates a reaction torque using a gain and a value reflecting the virtual linkage parameter in the difference value (S830).
구체적인 예를 들면, 반력 토크 산출부(130)는 운전자 토크를 포함하는 조향 정보를 수신하고, 조향 정보에 기초하여 제1 게인을 산출하고, 차이값에 버츄얼 링키지 파라미터를 반영한 값에서 제1 게인을 반영하여 반력 토크를 산출한다.For a specific example, the reaction torque calculation unit 130 receives steering information including driver torque, calculates a first gain based on the steering information, and calculates a first gain from a value reflecting the virtual linkage parameter in the difference value. Reflected and calculate the reaction torque.
구체적인 다른 예를 들면, 반력 토크 산출부(130)는 차량의 주행 속도를 포함하는 주행 정보를 수신하고, 주행 정보에 기초하여 제2 게인을 산출하고, 차이값에 버츄얼 링키지 파라미터를 반영한 값에 제2 게인을 반영하여 반력 토크를 산출한다.As another specific example, the reaction torque calculation unit 130 receives driving information including the driving speed of the vehicle, calculates a second gain based on the driving information, and adds the difference value to a value reflecting the virtual linkage parameter. 2 Calculate the reaction torque by reflecting the gain.
이때, 도 3 내지 도 5를 참조하여 전술한 바와 같이, 차이값은 제1 차이값, 제2 차이값 중 적어도 하나일 수 있고, 버츄얼 링키지 파라미터도 탄성 파라미터 및 댐핑 파라미터 중 적어도 하나일 수 있고, 반력 토크 산출부(130)는 차이값에 버츄얼 링키지 파라미터 및 게인을 곱하여 반력 토크를 산출할 수 있으며, 미리 설정된 최대 토크를 한도로 반력 토크를 제한할 수도 있다.At this time, as described above with reference to FIGS. 3 to 5, the difference value may be at least one of a first difference value and a second difference value, and the virtual linkage parameter may also be at least one of an elasticity parameter and a damping parameter, The reaction force torque calculation unit 130 may calculate the reaction force torque by multiplying the difference value by the virtual linkage parameter and the gain, and may limit the reaction force torque to a maximum torque set in advance.
전술한 바와 같이, 조향 제어 장치(100)가 게인을 반영하여 반력 토크를 산출함으로써 차량의 주행 상황에 따라 반력 토크를 유동적으로 변경할 수 있다.As described above, the steering control device 100 calculates the reaction torque by reflecting the gain, so that the reaction torque can be flexibly changed according to the driving situation of the vehicle.
도 9를 참조하여 예를 들면, 버츄얼 링키지 파라미터가 동일한 조건에서, 게인이 반영된 제1 반력 토크의 최댓값(①)가 게인이 반영되지 않은 제2 반력 토크의 최댓값(②)보다 크다. 하지만, 이에 한정되는 것은 아니며, 도 9에 도시된 것과 반대로, 게인이 반영된 반력 토크의 최댓값이 게인이 반영되지 않은 반력 토크의 최댓값보다 작을 수도 있다.Referring to FIG. 9, for example, under a condition in which the virtual linkage parameter is the same, the maximum value (1) of the first reaction force torque to which the gain is reflected is greater than the maximum value (②) of the second reaction force torque to which the gain is not reflected. However, the present invention is not limited thereto, and contrary to that illustrated in FIG. 9, the maximum value of the reaction torque in which the gain is reflected may be smaller than the maximum value of the reaction torque in which the gain is not reflected.
도 10 및 도 11은 운전자 토크에 따른 제1 게인(Gain1)을 나타낸 그래프이다.10 and 11 are graphs showing a first gain (Gain 1 ) according to a driver torque.
도 10을 참조하면, 전술한 제1 게인(Gain1)은 운전자 토크(τsw)의 값이 증가할수록 증가(①) 또는 감소(③)하거나, 운전자 토크(τsw)의 값과 무관하게 일정(②)할 수 있다. 이는 운전자가 상대적으로 작은 값의 운전자 토크(τsw)로 스티어링 휠(11)을 조작하는 경우에도 충분한 조향 필링을 제공하거나, 경우에 따라 조향 필링의 정도를 감소시킬 필요가 있기 때문이다.Referring to FIG. 10, the above-described first gain (Gain 1 ) increases (①) or decreases (③) as the value of the driver torque (τ sw ) increases, or is constant regardless of the value of the driver torque (τ sw ). (②) You can. This is because even when the driver operates the steering wheel 11 with a relatively small value of the driver torque τ sw , it is necessary to provide sufficient steering feel or, in some cases, to reduce the degree of steering feel.
한편, 도 11을 참조하면, 운전자 토크(τsw)의 값이 미리 설정된 임계값(τth) 이하인 경우, 제1 게인(Gain1)은 운전자 토크(τsw)의 값과 무관하게 일정하고, 운전자 토크(τsw)의 값이 임계값(τth)보다 큰 경우, 제1 게인(Gain1)은 운전자 토크(τsw)의 값이 증가할수록 증가하거나 감소할 수 있다.Meanwhile, referring to FIG. 11, when the value of the driver torque τ sw is less than or equal to the preset threshold value τ th , the first gain Gain 1 is constant regardless of the value of the driver torque τ sw , When the value of the driver torque τ sw is greater than the threshold value τ th , the first gain Gain 1 may increase or decrease as the value of the driver torque τ sw increases.
도 12 및 도 13은 주행 속도에 따른 제2 게인(Gain2)을 나타낸 그래프이다.12 and 13 are graphs showing the second gain (Gain 2 ) according to the driving speed.
도 12를 참조하면, 제2 게인(Gain2)은 주행 속도의 값이 증가할수록 증가(①)하거나 주행 속도(v)의 값과 무관하게 일정(②)할 수 있다. 이는 일반적으로 주행 속도(v)가 증가하면, 운전자에게 평소보다 더 큰 조향 필링을 제공해야 할 필요가 있기 때문이다.Referring to FIG. 12, the second gain (Gain 2 ) may increase (①) as the value of the driving speed increases, or may be constant (②) regardless of the value of the driving speed (v). This is because, in general, when the driving speed v increases, it is necessary to provide the driver with a greater steering feel than usual.
한편, 도 13을 참조하면, 주행 속도(v)의 값이 미리 설정된 임계값(vth) 이하인 경우, 제2 게인(Gain2)은 주행 속도(v)의 값과 무관하게 일정하고, 주행 속도(v)의 값이 임계값(vth)보다 큰 경우, 제2 게인(Gain2)은 주행 속도(v)의 값이 증가할수록 증가할 수 있다.Meanwhile, referring to FIG. 13, when the value of the driving speed v is less than or equal to a preset threshold value v th , the second gain 2 is constant regardless of the value of the driving speed v, and the driving speed When the value of (v) is greater than the threshold value (v th ), the second gain (Gain 2 ) may increase as the value of the driving speed (v) increases.
전술한 바에 의하면, 본 개시에 따른 조향 제어 장치(100)는 스티어링 휠(11)과 랙 간의 연결과 관련된 정보뿐만 아니라 주행 상태를 반영하여 반력 토크를 구현함으로써 운전자에 적절한 조향감을 제공할 수 있다.As described above, the steering control apparatus 100 according to the present disclosure may provide a driver with an appropriate steering feeling by implementing reaction torque by reflecting not only information related to the connection between the steering wheel 11 and the rack, but also a driving state.
이하에서는 전술한 본 개시를 모두 수행할 수 있는 조향 제어 방법을 설명한다.Hereinafter, a steering control method capable of performing all of the above-described present disclosure will be described.
도 14는 본 개시에 따른 조향 제어 방법을 설명하기 위한 흐름도이다.14 is a flowchart illustrating a steering control method according to the present disclosure.
도 14를 참조하면, 본 개시에 다른 조향 제어 방법은 지령값 산출 단계와, 차이값 산출 단계 및 반력 토크 산출 단계 등을 포함할 수 있다.Referring to FIG. 14, the steering control method according to the present disclosure may include a command value calculation step, a difference value calculation step, and a reaction force torque calculation step.
지령값 산출 단계는 스티어링 휠(11)의 회전에 의한 조향 정보에 기초하여 랙(rack)의 이동을 지시하는 랙 이동 지령값을 산출한다.In the command value calculation step, a rack movement command value instructing the movement of the rack is calculated based on steering information caused by the rotation of the steering wheel 11.
차이값 산출 단계는 랙의 이동이 감지되면, 랙의 이동에 따른 랙 이동 감지값을 수신하여 랙 이동 지령값과 랙 이동 감지값의 차이값을 산출한다.In the difference value calculation step, when a rack movement is detected, a rack movement detection value according to the rack movement is received, and a difference value between the rack movement command value and the rack movement detection value is calculated.
반력 토크 산출 단계는 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출한다.In the step of calculating the reaction force torque, the reaction force torque is calculated based on the difference value and one or more preset virtual linkage parameters.
여기서, 버츄얼 링키지 파라미터는 전술한 바와 같이 가상의 연결 부재의 특성에 대응되는 파라미터일 수 있다.Here, the virtual linkage parameter may be a parameter corresponding to the characteristics of the virtual connection member as described above.
이상에서 설명한 바와 같이, 본 개시에 의하면, 본 개시는 가상의 연결 부재의 특성을 반영하여 적절한 반력 토크를 산출함으로써 운전자에게 적절한 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공할 수 있다.As described above, according to the present disclosure, the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an appropriate steering feel to the driver by calculating an appropriate reaction force torque by reflecting the characteristics of the virtual connection member. I can.
또한, 본 개시에 의하면, 본 개시는 스티어링 휠과 랙 간의 연결과 관련된 정보뿐만 아니라 주행 상태를 반영하여 반력 토크를 구현함으로써 운전자에 최적의 조향감을 제공하는 조향 제어 장치, 조향 제어 방법 및 조향 보조 시스템을 제공할 수 있다.In addition, according to the present disclosure, the present disclosure provides a steering control device, a steering control method, and a steering assistance system that provide an optimal steering feel to the driver by implementing reaction torque by reflecting not only information related to the connection between the steering wheel and the rack, but also the driving state. Can provide.
이상에서의 설명 및 첨부된 도면은 본 개시의 기술 사상을 예시적으로 나타낸 것에 불과한 것으로서, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 구성의 결합, 분리, 치환 및 변경 등의 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 개시에 개시된 실시예들은 본 개시의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 개시의 기술 사상의 범위가 한정되는 것은 아니다. 즉, 본 개시의 과제 해결 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The description above and the accompanying drawings are merely illustrative of the technical idea of the present disclosure, and those of ordinary skill in the technical field to which the present disclosure pertains, combinations of configurations without departing from the essential characteristics of the present disclosure Various modifications and variations, such as separation, substitution, and alteration, will be possible. Accordingly, the embodiments disclosed in the present disclosure are not intended to limit the technical idea of the present disclosure, but to describe, and the scope of the technical idea of the present disclosure is not limited by these embodiments. That is, as long as it is within the scope of the problem solving of the present disclosure, one or more of the components may be selectively combined and operated. The scope of protection of the present disclosure should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present disclosure.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2019년 06월 07일 한국에 출원한 특허출원번호 제 10-2019-0067515호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority in accordance with Article 119(a) of the U.S. Patent Law (35 USC § 119(a)) with respect to Patent Application No. 10-2019-0067515 filed in Korea on June 07, 2019. All contents are incorporated into this patent application by reference. In addition, if this patent application claims priority for countries other than the United States for the same reason as above, all the contents are incorporated into this patent application as references.

Claims (20)

  1. 조향 보조 시스템에 포함된 조향 제어 장치에 있어서,In the steering control device included in the steering assistance system,
    스티어링 휠의 회전에 의한 조향 정보에 기초하여 랙(rack)의 이동을 지시하는 랙 이동 지령값을 산출하는 지령값 산출부;A command value calculation unit that calculates a rack movement command value indicating movement of a rack based on steering information caused by rotation of the steering wheel;
    상기 랙의 이동이 감지되면, 상기 랙의 이동에 따른 랙 이동 감지값을 수신하여 상기 랙 이동 지령값과 상기 랙 이동 감지값의 차이값을 산출하는 차이값 산출부; 및A difference value calculator configured to receive a rack movement detection value according to the movement of the rack and calculate a difference value between the rack movement command value and the rack movement detection value when movement of the rack is detected; And
    상기 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하는 반력 토크 산출부를 포함하되,Including a reaction force torque calculation unit for calculating the reaction force torque based on the difference value and one or more preset virtual linkage (Virtual linkage) parameters,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    기계적으로 분리된 상기 스티어링 휠과 상기 랙 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 제어 장치.The steering control device, characterized in that corresponding to the characteristics of the virtual connection member between the mechanically separated steering wheel and the rack.
  2. 제1항에 있어서,The method of claim 1,
    상기 지령값 산출부는,The command value calculation unit,
    상기 랙의 위치를 지시하는 랙 위치 지령값과 상기 랙의 이동 속도를 지시하는 랙 이동 속도 지령값 중 적어도 하나를 포함하는 상기 랙 이동 지령값을 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating the rack movement command value including at least one of a rack position command value indicating the position of the rack and a rack movement speed command value indicating the moving speed of the rack.
  3. 제1항에 있어서,The method of claim 1,
    상기 랙 이동 지령값은,The rack movement command value is,
    상기 랙의 위치를 지시하는 랙 위치 지령값을 포함하고,Includes a rack position command value indicating the position of the rack,
    상기 차이값 산출부는,The difference value calculation unit,
    상기 랙의 실제 위치에 따른 랙 위치 감지값을 수신하여 상기 랙 위치 지령값과 상기 랙 위치 감지값의 차이값을 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating a difference value between the rack position command value and the rack position detection value by receiving a rack position detection value according to an actual position of the rack.
  4. 제3항에 있어서,The method of claim 3,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    가상의 토션바의 비틀림 파라미터 및 가상의 스프링의 스프링 파라미터 중 어느 하나의 탄성 파라미터이고,It is an elastic parameter of any one of a torsion parameter of a virtual torsion bar and a spring parameter of a virtual spring,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    상기 차이값에 상기 탄성 파라미터를 곱하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating the reaction force torque by multiplying the difference value by the elastic parameter.
  5. 제1항에 있어서,The method of claim 1,
    상기 랙 이동 지령값은,The rack movement command value is,
    상기 랙의 이동 속도를 지시하는 랙 이동 속도 지령값을 포함하고,Includes a rack movement speed command value indicating the movement speed of the rack,
    상기 차이값 산출부는,The difference value calculation unit,
    상기 랙의 실제 이동 속도에 따른 랙 이동 속도 감지값을 수신하여 상기 랙 이동 속도 지령값과 상기 랙 이동 속도 감지값의 차이값을 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating a difference value between the rack movement speed command value and the rack movement speed detection value by receiving a rack movement speed detection value according to an actual movement speed of the rack.
  6. 제5항에 있어서,The method of claim 5,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    가상의 댐퍼의 댐핑 파라미터이고,Is the damping parameter of the virtual damper,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    상기 차이값에 상기 댐핑 파라미터를 곱하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating the reaction torque by multiplying the difference value by the damping parameter.
  7. 제1항에 있어서,The method of claim 1,
    상기 랙 이동 지령값은,The rack movement command value is,
    랙 위치 지령값과 랙 이동 속도 지령값을 포함하고,Including the rack position command value and the rack movement speed command value,
    상기 차이값 산출부는,The difference value calculation unit,
    상기 랙의 실제 위치에 따른 랙 위치 감지값과 상기 랙 위치 지령값의 제1 차이값을 산출하고,Calculate a first difference value between the rack position detection value and the rack position command value according to the actual position of the rack,
    상기 랙의 실제 이동 속도에 따른 랙 이동 속도 감지값과 상기 랙 이동 속도 지령값의 제2 차이값을 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating a second difference value between the rack movement speed detection value and the rack movement speed command value according to the actual movement speed of the rack.
  8. 제7항에 있어서,The method of claim 7,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    가상의 토션바의 비틀림 파라미터 및 가상의 스프링의 스프링 파라미터 중 어느 하나의 탄성 파라미터와, 가상의 댐퍼의 댐핑 파라미터를 포함하고,A torsion parameter of a virtual torsion bar and a spring parameter of a virtual spring, and a damping parameter of a virtual damper,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    상기 제1 차이값에 상기 탄성 파라미터를 곱한 값과, 상기 제2 차이값에 상기 댐핑 파라미터를 곱한 값을 합하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating the reaction force torque by adding a value obtained by multiplying the first difference value by the elastic parameter and a value obtained by multiplying the second difference value by the damping parameter.
  9. 제1항에 있어서,The method of claim 1,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    상기 차이값과 무관한 상수이거나, 상기 차이값에 기초하여 매핑되는 변수인 것을 특징으로 하는 조향 제어 장치.A steering control device, characterized in that it is a constant independent of the difference value or a variable mapped based on the difference value.
  10. 제9항에 있어서,The method of claim 9,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    상기 차이값에 상기 버츄얼 링키지 파라미터를 곱하여 상기 반력 토크를 산출하고,The reaction force torque is calculated by multiplying the difference value by the virtual linkage parameter,
    상기 반력 토크는,The reaction torque is,
    상기 차이값이 증가할수록 증가하되, 미리 설정된 최대 토크에 도달하면, 상기 차이값이 증가하더라도 상기 최대 토크와 동일한 값으로 일정한 것을 특징으로 하는 조향 제어 장치.The steering control device, characterized in that the difference increases as the difference value increases, but when a preset maximum torque is reached, even if the difference value increases, it is constant at the same value as the maximum torque.
  11. 제1항에 있어서,The method of claim 1,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    상기 조향 정보에 기초하여 제1 게인을 산출하고, 상기 차이값에 상기 버츄얼 링키지 파라미터를 반영한 값에서 상기 제1 게인을 반영하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 제어 장치.And calculating the reaction force torque by calculating a first gain based on the steering information, and reflecting the first gain from a value in which the virtual linkage parameter is reflected in the difference value.
  12. 제11항에 있어서,The method of claim 11,
    상기 조향 정보는,The steering information,
    운전자의 상기 스티어링 휠 조작에 의해 발생하는 운전자 토크를 포함하고,A driver torque generated by a driver's manipulation of the steering wheel,
    상기 제1 게인은,The first gain is,
    상기 운전자 토크의 값이 증가할수록 증가 또는 감소하거나, 상기 운전자 토크의 값과 무관하게 일정한 것을 특징으로 하는 조향 제어 장치.Steering control device, characterized in that the increase or decrease as the value of the driver torque increases, or constant regardless of the value of the driver torque.
  13. 제11항에 있어서, The method of claim 11,
    상기 조향 정보는,The steering information,
    운전자의 상기 스티어링 휠 조작에 의해 발생하는 운전자 토크를 포함하고,A driver torque generated by a driver's manipulation of the steering wheel,
    상기 제1 게인은,The first gain is,
    상기 운전자 토크의 값이 미리 설정된 임계값 이하인 경우, 상기 운전자 토크의 값과 무관하게 일정하고,When the value of the driver torque is less than or equal to a preset threshold, it is constant regardless of the value of the driver torque,
    상기 운전자 토크의 값이 상기 임계값보다 큰 경우, 상기 운전자 토크의 값이 증가할수록 증가하거나 감소하는 것을 특징으로 하는 조향 제어 장치.When the value of the driver's torque is greater than the threshold value, the steering control device, characterized in that it increases or decreases as the value of the driver's torque increases.
  14. 제1항에 있어서, The method of claim 1,
    상기 반력 토크 산출부는,The reaction force torque calculation unit,
    차량의 주행 정보를 더 수신하고, 상기 주행 정보에 기초하여 제2 게인을 산출하고, 상기 차이값에 상기 버츄얼 링키지 파라미터를 반영한 값에 상기 제2 게인을 반영하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 제어 장치.The reaction force torque is calculated by further receiving driving information of the vehicle, calculating a second gain based on the driving information, and reflecting the second gain to a value reflecting the virtual linkage parameter in the difference value. Steering control device.
  15. 제14항에 있어서,The method of claim 14,
    상기 주행 정보는,The driving information,
    상기 차량의 주행 속도를 포함하고,Including the driving speed of the vehicle,
    상기 제2 게인은,The second gain is,
    상기 주행 속도의 값이 증가할수록 증가하거나 상기 주행 속도의 값과 무관하게 일정한 것을 특징으로 하는 조향 제어 장치.The steering control device, characterized in that as the value of the driving speed increases, it increases or is constant regardless of the value of the driving speed.
  16. 제14항에 있어서,The method of claim 14,
    상기 주행 정보는,The driving information,
    상기 차량의 주행 속도 정보를 포함하고,Includes driving speed information of the vehicle,
    상기 제2 게인은,The second gain is,
    상기 주행 속도의 값이 미리 설정된 임계값 이하인 경우, 상기 주행 속도의 값과 무관하게 일정하고,When the value of the driving speed is less than or equal to a preset threshold value, it is constant regardless of the value of the driving speed,
    상기 주행 속도의 값이 상기 임계값보다 큰 경우, 상기 주행 속도의 값이 증가할수록 증가하는 것을 특징으로 하는 조향 제어 장치.When the value of the driving speed is greater than the threshold value, the steering control device, characterized in that it increases as the value of the driving speed increases.
  17. 스티어링 휠의 회전에 의한 조향 정보에 기초하여 랙(rack)의 이동을 지시하는 랙 이동 지령값을 산출하는 지령값 산출 단계;A command value calculation step of calculating a rack movement command value indicating movement of a rack based on steering information caused by rotation of the steering wheel;
    상기 랙의 이동이 감지되면, 상기 랙의 이동에 따른 랙 이동 감지값을 수신하여 상기 랙 이동 지령값과 상기 랙 이동 감지값의 차이값을 산출하는 차이값 산출 단계; 및A difference value calculating step of calculating a difference value between the rack movement command value and the rack movement detection value by receiving a rack movement detection value according to the movement of the rack when movement of the rack is detected; And
    상기 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하는 반력 토크 산출 단계를 포함하되,Comprising a reaction force torque calculation step of calculating a reaction force torque based on the difference value and one or more preset virtual linkage (Virtual linkage) parameters,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    기계적으로 분리된 상기 스티어링 휠과 상기 랙 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 제어 방법.The steering control method, characterized in that corresponding to the characteristics of the virtual connection member between the mechanically separated steering wheel and the rack.
  18. 조향 입력 장치와 조향 출력 장치 간의 기계적으로 분리된 조향 보조 시스템에 있어서,In the mechanically separated steering assistance system between the steering input device and the steering output device,
    스티어링 휠의 회전에 의해 발생하는 조향각을 감지하는 조향각 센서;A steering angle sensor that senses a steering angle generated by rotation of the steering wheel;
    상기 스티어링 휠에 반력을 부여하는 반력 모터;A reaction force motor that applies reaction force to the steering wheel;
    랙을 축방향으로 이동시키는 조향 모터;A steering motor for moving the rack in the axial direction;
    상기 랙의 위치를 감지하는 랙 위치 센서; 및A rack position sensor detecting the position of the rack; And
    상기 조향 정보에 기초하여 상기 조향 모터를 제어하고, 상기 조향 정보 및 상기 랙 위치 센서로부터 입력받은 상기 랙의 위치 정보에 기초하여 상기 반력 모터를 제어하는 조향 제어 장치를 포함하되,And a steering control device configured to control the steering motor based on the steering information, and to control the reaction force motor based on the steering information and position information of the rack received from the rack position sensor,
    상기 조향 제어 장치는,The steering control device,
    상기 조향 정보에 기초하여 상기 랙의 이동을 지시하는 랙 이동 지령값을 산출하고,Calculate a rack movement command value instructing the movement of the rack based on the steering information,
    상기 랙 위치 센서로부터 랙 이동 감지값을 수신하여 상기 랙 이동 지령값과 상기 랙 이동 감지값의 차이값을 산출하고,Receive a rack movement detection value from the rack position sensor to calculate a difference value between the rack movement command value and the rack movement detection value,
    상기 차이값과 미리 설정된 하나 이상의 버츄얼 링키지(Virtual linkage) 파라미터에 기초하여 반력 토크를 산출하고, 산출된 상기 반력 토크에 대응되는 지령전류를 상기 반력 모터에 출력하고,A reaction force torque is calculated based on the difference value and one or more preset virtual linkage parameters, and a command current corresponding to the calculated reaction force torque is output to the reaction force motor,
    상기 버츄얼 링키지 파라미터는,The virtual linkage parameter,
    상기 조향 입력 장치와 상기 조향 출력 장치 간의 가상의 연결 부재의 특성에 대응되는 것을 특징으로 하는 조향 보조 시스템.A steering assistance system, characterized in that corresponding to a characteristic of a virtual connection member between the steering input device and the steering output device.
  19. 제18항에 있어서,The method of claim 18,
    상기 스티어링 휠의 회전을 통해 운전자 토크를 감지하는 운전자 토크 센서를 더 포함하고, Further comprising a driver torque sensor for detecting a driver torque through rotation of the steering wheel,
    상기 조향 제어 장치는,The steering control device,
    상기 운전자 토크에 기초하여 제1 게인을 산출하고, 상기 차이값에 상기 버츄얼 링키지 파라미터를 반영한 값에서 상기 제1 게인을 반영하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 보조 시스템.And calculating the reaction force torque by calculating a first gain based on the driver torque, and reflecting the first gain from a value in which the virtual linkage parameter is reflected in the difference value.
  20. 제18항에 있어서,The method of claim 18,
    차량의 주행 속도를 감지하는 차속 센서를 더 포함하고,Further comprising a vehicle speed sensor for detecting the driving speed of the vehicle,
    상기 조향 제어 장치는,The steering control device,
    상기 주행 속도에 기초하여 제2 게인을 산출하고, 상기 차이값에 상기 버츄얼 링키지 파라미터를 반영한 값에 상기 제2 게인을 반영하여 상기 반력 토크를 산출하는 것을 특징으로 하는 조향 보조 시스템.And calculating the reaction force torque by calculating a second gain based on the traveling speed, and reflecting the second gain to a value reflecting the virtual linkage parameter in the difference value.
PCT/KR2020/007188 2019-06-07 2020-06-03 Steering control device, steering control method, and steering support system including same WO2020246787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020002748.1T DE112020002748T5 (en) 2019-06-07 2020-06-03 STEERING CONTROL DEVICE, STEERING CONTROL METHOD AND STEERING ASSISTANT SYSTEM INCLUDING THESE
CN202080042029.XA CN114245781B (en) 2019-06-07 2020-06-03 Steering control device, steering control method, and steering support system
US17/616,977 US20220242479A1 (en) 2019-06-07 2020-06-03 Steering control device, steering control method, and steering support system including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0067515 2019-06-07
KR1020190067515A KR102666079B1 (en) 2019-06-07 2019-06-07 Apparatus and Method for controlling steering, and system for assisting steering comprising the same

Publications (1)

Publication Number Publication Date
WO2020246787A1 true WO2020246787A1 (en) 2020-12-10

Family

ID=73653257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007188 WO2020246787A1 (en) 2019-06-07 2020-06-03 Steering control device, steering control method, and steering support system including same

Country Status (5)

Country Link
US (1) US20220242479A1 (en)
KR (1) KR102666079B1 (en)
CN (1) CN114245781B (en)
DE (1) DE112020002748T5 (en)
WO (1) WO2020246787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210229739A1 (en) * 2020-01-28 2021-07-29 Jtekt Corporation Control apparatus for steering system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211657A1 (en) * 2020-09-17 2022-03-17 Ford Global Technologies, Llc Steering system and method of operating a steering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079942B2 (en) * 2014-08-22 2017-02-15 日本精工株式会社 Electric power steering device
KR20170090444A (en) * 2014-12-02 2017-08-07 티알더블유 오토모티브 게엠베하 Steering device and method of controlling a steering device
KR20180007393A (en) * 2016-07-12 2018-01-23 현대모비스 주식회사 Apparatus for controlling steering in steer-by-wire system and method thereof
US20180346021A1 (en) * 2017-05-31 2018-12-06 Ford Global Technologies, Llc Methods and apparatus for virtual torsion bar steering controls
KR20190037507A (en) * 2017-09-29 2019-04-08 주식회사 만도 Methods for generating steering wheel reaction in Steer-by-wire system and apparatuses thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517863B2 (en) * 1997-02-07 2004-04-12 トヨタ自動車株式会社 Steering control device
JP4294389B2 (en) * 2003-06-18 2009-07-08 本田技研工業株式会社 Vehicle steering system
JP2008222115A (en) * 2007-03-14 2008-09-25 Honda Motor Co Ltd Electric power steering device
DE102012008230A1 (en) * 2012-03-02 2012-11-08 Daimler Ag Method for operating electro-mechanical power steering with steering torque controller for vehicle, involves controlling or regulating steering torque or steering power assistance by torque sensor of electro-mechanical power steering
JP5925640B2 (en) * 2012-08-31 2016-05-25 Ntn株式会社 Steer-by-wire steering reaction force control device
WO2016017234A1 (en) * 2014-07-31 2016-02-04 日本精工株式会社 Electric power steering device
KR102494676B1 (en) * 2016-01-06 2023-02-02 에이치엘만도 주식회사 Steering control apparatus
JP6565847B2 (en) * 2016-09-16 2019-08-28 日本精工株式会社 Electric power steering device
DE102017122169B4 (en) * 2016-09-28 2024-03-21 Steering Solutions Ip Holding Corporation Estimating a payload using electric power steering signals
CN108082275B (en) * 2016-11-23 2021-08-24 操纵技术Ip控股公司 Electric power steering system
US10889320B2 (en) * 2017-08-07 2021-01-12 Mando Corporation Electric power-assisted steering apparatus and method of controlling the same
US11046359B2 (en) * 2017-09-25 2021-06-29 Mando Corporation Steer-by-wire system and control method thereof
KR102005351B1 (en) 2017-12-07 2019-07-31 삼성전자주식회사 Fan-out sensor package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079942B2 (en) * 2014-08-22 2017-02-15 日本精工株式会社 Electric power steering device
KR20170090444A (en) * 2014-12-02 2017-08-07 티알더블유 오토모티브 게엠베하 Steering device and method of controlling a steering device
KR20180007393A (en) * 2016-07-12 2018-01-23 현대모비스 주식회사 Apparatus for controlling steering in steer-by-wire system and method thereof
US20180346021A1 (en) * 2017-05-31 2018-12-06 Ford Global Technologies, Llc Methods and apparatus for virtual torsion bar steering controls
KR20190037507A (en) * 2017-09-29 2019-04-08 주식회사 만도 Methods for generating steering wheel reaction in Steer-by-wire system and apparatuses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210229739A1 (en) * 2020-01-28 2021-07-29 Jtekt Corporation Control apparatus for steering system
US11794806B2 (en) * 2020-01-28 2023-10-24 Jtekt Corporation Control apparatus for steering system

Also Published As

Publication number Publication date
DE112020002748T5 (en) 2022-03-03
KR102666079B1 (en) 2024-05-16
CN114245781B (en) 2024-05-10
CN114245781A (en) 2022-03-25
US20220242479A1 (en) 2022-08-04
KR20200140627A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2020246787A1 (en) Steering control device, steering control method, and steering support system including same
WO2020256338A1 (en) Steering control device and steering assist system including same
CN107207043B (en) Electric power steering apparatus
US6442462B1 (en) Motor vehicle steering system
US6389342B1 (en) Steering apparatus for vehicle
EP2279927B1 (en) Electric power steering system
EP3196096B1 (en) Electric power steering device
CN107207044A (en) Electric power-assisted steering apparatus
CN112074450A (en) Steering device
JPS6189170A (en) Electromotive power steering device
US6904346B2 (en) Steering system for motor vehicle
JP2836766B2 (en) Electric power steering control apparatus and method
JP5321043B2 (en) Vehicle steering control device and vehicle steering control method
WO2020184883A1 (en) Steer-by-wire steering apparatus
WO2020159311A1 (en) Power assist control apparatus and power assist control method
JP4728128B2 (en) Multi-axis motor position detection signal transmission device
EP1415891B1 (en) Electric power steering device and method for controlling the same
JP2008132920A (en) Control device of electric power steering device
JP5139700B2 (en) Vehicle steering system
WO2020138823A1 (en) Steering control device and method for controlling same
US20240253696A1 (en) Apparatus and method for controlling steering of host vehicle
JPH0378643B2 (en)
KR100892362B1 (en) Controlling method for steering motor of sbw system
JP2007283926A (en) Steering device for vehicle
JPH08150946A (en) Control device of motor-driven power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819003

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819003

Country of ref document: EP

Kind code of ref document: A1