WO2020246387A1 - Heat storage material composition and heat storage system for air conditioning of building - Google Patents

Heat storage material composition and heat storage system for air conditioning of building Download PDF

Info

Publication number
WO2020246387A1
WO2020246387A1 PCT/JP2020/021352 JP2020021352W WO2020246387A1 WO 2020246387 A1 WO2020246387 A1 WO 2020246387A1 JP 2020021352 W JP2020021352 W JP 2020021352W WO 2020246387 A1 WO2020246387 A1 WO 2020246387A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage material
mass
material composition
content
Prior art date
Application number
PCT/JP2020/021352
Other languages
French (fr)
Japanese (ja)
Inventor
重和 宮下
相培 李
崇 桃井
努 篭橋
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2020246387A1 publication Critical patent/WO2020246387A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a heat storage material composition and a heat storage system for heating and cooling of a building, and more particularly to a heat storage material composition suitable for a heat storage system for heating and cooling of a building and a heat storage system for heating and cooling of a building including the heat storage material composition.
  • a latent heat storage material composition utilizing latent heat generated or absorbed at the time of a phase change from a liquid to a solid or a phase change from a solid to a liquid is known.
  • the latent heat storage material composition is used, for example, in a heat storage system for heating and cooling a building.
  • Latent heat storage material compositions generally have a large amount of heat storage, a melting point within a predetermined temperature range, long-term stability, low cost, non-toxicity, and tactile property. Characteristics such as absence are required.
  • the latent heat storage material composition of the heat storage system for heating and cooling of buildings in addition to the entire latent heat of fusion H T to mean either be accumulated how much more heat per unit weight, absorption heat in a narrow temperature range It is required to dissipate heat.
  • the entire latent heat of fusion H T is large, preferable because sufficient heat storage can be achieved with less amount. It is preferable that heat can be absorbed and dissipated in a narrow range because the latent heat of the material can be used in the target temperature range of the system without causing unnecessary heat absorption and heat dissipation.
  • a 5 ° C. width melting latent heat H 5 is used as an index representing "characteristics capable of absorbing and radiating heat in a narrow temperature range”.
  • 5 ° C width melting latent heat H 5 means "total amount of melting latent heat in a temperature range of 5 ° C", and when T is changed for the total amount Q 5 of melting latent heat in the temperature range from a certain temperature T to T + 5 ° C. It is defined as the maximum value of Q 5.
  • the total latent heat of fusion H T is calculated from the peak area in the case of integrated by heat flow times measured by a differential scanning calorimeter (DSC).
  • the latent heat of melting at 5 ° C. H 5 became the temperature T 1 + 5 ° C. from a certain moment (time t 1 , temperature T 1 ) in the heat flow measured by the differential scanning calorimeter (DSC).
  • Time integration is performed up to the moment (time t 1 , temperature T 1 + 5), and the maximum value is derived.
  • Figure 1 is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of suitable latent heat storage material composition M A heat storage system for heating and cooling of buildings.
  • Curve in FIG. 1 is a curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings.
  • 2 is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of not suitable for heat storage system for heating and cooling of buildings latent heat storage material composition M B.
  • Curve in FIG. 2 is a curve showing the not suitable in the heat storage system for heating and cooling of buildings latent heat storage material composition M B.
  • the temperature (melting point T m ) at which the latent heat storage material composition starts melting during heating is in the range of more than 15 ° C and less than 20 ° C, which is appropriate.
  • the melting point T m is preferably in the range of 15 to 20 ° C. as shown in FIGS. 1 and 2.
  • the latent heat storage material composition M A the melting point T m, the difference between the temperature (melting upper limit temperature T f) to exit the melt during heating is small, the melting maximum temperature T f is below 26 ° C.
  • heat storage quantity expressed as the hatched area A 1 in FIG. 1, i.e. the heat storage material composition All of the heat storage amount originally possessed by the object can be used as cold heat.
  • the latent heat storage material composition M A is, because it can exert all the heat storage amount inherent the cold, is suitable as a heat storage material composition of the heat storage system for cooling.
  • the latent heat storage material composition M B as shown in FIG. 2, a large difference between the melting point T m and melting the upper limit temperature T f, the melting maximum temperature T f is higher than 26 ° C..
  • the amount of heat stored in the temperature range from 26 ° C. to the upper melting limit temperature T f does not contribute to cooling. That is, in the latent heat storage material composition M B, if the external temperature exceeds 26 ° C., the heat storage amount shown in Fig. 2 as a hatched area A 2, i.e. only a portion of the heat storage amount with the heat storage material composition is originally only cold Cannot be used as.
  • the latent heat storage material composition M B is not preferred as a heat storage material composition of the heat storage system for cooling.
  • the heat storage material composition for a heat storage system for cooling is required to have a property of melting in a range of 15 to 20 ° C. and absorbing a large amount of heat in a narrow temperature range.
  • 5 ° C. width latent heat of fusion H 5 as an index representing the "property of the heat absorbing large amounts of heat in a narrow temperature range" will be described with reference to FIGS.
  • FIG. 3 is a diagram illustrating a 5 ° C. width melting latent heat H 5 of a latent heat storage material composition suitable for a heat storage system for heating and cooling of a building. Curve in FIG. 3 is a curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings.
  • Figure 4 is a diagram for explaining a 5 ° C. width latent heat of fusion H 5 of the latent heat storage material composition is not suitable for heat storage system for heating and cooling of buildings.
  • Curve in FIG. 4 is a curve showing the not suitable in the heat storage system for heating and cooling of buildings latent heat storage material composition M B.
  • the 5 ° C. width latent heat of melting H 5 means "the total amount of latent heat of melting in the temperature range of 5 ° C.”
  • T is changed for the total amount of latent heat of melting Q 5 in the temperature range from a certain temperature T to T + 5 ° C. It is defined as the maximum value of Q 5 when allowed to.
  • the lower limit of the temperature at that time is defined as 5 ° C. width lower limit temperature T 5L
  • the upper limit value is defined as 5 ° C. width lower limit temperature T 5H .
  • the sum of the hatched areas A 1 in the latent heat storage material composition M A 3 is 5 ° C. width latent heat of fusion H 5. Since the peak of the sharp heat storage amount is present in the latent heat storage material composition M A in a narrow temperature range, resulting in 5 ° C. width latent heat of fusion H 5 indicates a large value. Similarly the sum of the shaded area A 2 in FIG. 4 also in the latent heat storage material composition M B is 5 ° C. width latent heat of fusion H 5. However, since the latent heat is gentle heat storage material composition M peak shape in B, 5 ° C. width latent heat of fusion H 5 indicates a small value.
  • More heat storage material absorbs a large amount of heat at such a narrow temperature range, from 5 ° C. width latent heat of fusion H 5 to a larger value, 5 ° C. width latent heat of fusion H 5 absorbs the large amount of heat in the "narrow temperature range It can be used as an index of the characteristic of "doing".
  • the phase change temperature of sodium sulfate decahydrate is about 32 ° C.
  • the heat storage material composition of Patent Document 1 has a problem that the amount of heat storage is small.
  • the latent heat of melting in a narrow temperature region is small because the latent heat generation region increases when water is added.
  • An object of the present invention is to provide a heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a large latent heat of melting in a narrow temperature range, and a heat storage system for heating and cooling of a building.
  • the heat storage material composition according to the first aspect of the present invention is composed of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate.
  • the melting point is in the range of 20 to 22.5 ° C., and the latent heat of melting in the 5 ° C. width is 160 J / g or more.
  • the heat storage material composition according to the second aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 4.5 to 5.
  • the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate.
  • the content of the Japanese product is defined as X mass%
  • the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%
  • the content of the sodium carbonate decahydrate is defined as Z mass%
  • X, Y and Z satisfy the following formulas (1-1) to (1-4).
  • the content of the disodium phosphate dodecahydrate in the main agent is 7.0 to 8.
  • the content of the Japanese product is defined as X mass%
  • the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%
  • the content of the sodium carbonate decahydrate is defined as Z mass%
  • X, Y and Z satisfy the following formulas (2-1) to (2-4).
  • the heat storage material composition according to the fourth aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 9.5 to 10.
  • the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate.
  • the content of the Japanese product is defined as X mass%
  • the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%
  • the content of the sodium carbonate decahydrate is defined as Z mass%
  • X, Y and Z satisfy the following formulas (3-1) to (3-4).
  • the heat storage material composition according to the fifth aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 14.5 to 15.
  • the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate.
  • the content of the Japanese product is defined as X mass%
  • the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%
  • the content of the sodium carbonate decahydrate is defined as Z mass%
  • X, Y and Z satisfy the following formulas (4-1) to (4-4).
  • the content of the sodium sulfate decahydrate in 100% by mass of the main agent is X% by mass.
  • the content of disodium hydrogen phosphate dodecahydrate is Y mass%
  • the content of sodium carbonate decahydrate is Z mass%
  • the content of trisodium phosphate dodecahydrate is W mass%.
  • X, Y, Z, and W satisfy the following formulas (5-1) to (5-7).
  • the heat storage material composition according to the seventh aspect of the present invention is an organic unsaturated carboxylic acid, an organic unsaturated sulfonic acid, and an organic unsaturated phosphoric acid in the heat storage material composition according to any one of the first to sixth aspects.
  • the heat storage material composition according to the eighth aspect of the present invention is, in the heat storage material composition according to any one of the first to seventh aspects, sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, odor. It further comprises at least one melting point lowering agent selected from the group consisting of ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea.
  • Heat storage material composition according to the ninth aspect of the present invention is the heat storage material composition according to any of embodiments of the first to eighth, borax Na 2 B 4 O 5 (OH ) 4 ⁇ 8H 2 O, Calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkyl sulfate, alkyl It further comprises at least one overcooling inhibitor selected from the group consisting of sodium phosphate, potassium alkyl sulfate, and potassium alkyl phosphate.
  • the heat storage material composition according to the tenth aspect of the present invention is, in the heat storage material composition according to any one of the first to ninth aspects, sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, poly. Carboxylate polyether polymer, sodium acrylate / maleic acid copolymer, sodium acrylate / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl methacrylate dimethylsulfate copolymer, acrylamide / sodium acrylate copolymer , Polyethylene Glycol, Polypropylene Glycol, Highly Absorbent Resin (SAP), Carboxymethyl Cellulose (CMC), CMC Derivatives, Carrageenan, Caraginan Derivatives, Xanthan Gum, Xantan Gum Derivatives, Pectin, Pectin Derivatives, Steel, Steel Derivatives It further comprises at least one phase separation inhibitor selected from the group consisting of agar
  • the heat storage system for heating and cooling a building according to the eleventh aspect of the present invention includes a heat storage material module using the heat storage material composition according to any one of the first to tenth aspects.
  • the heat storage material composition according to the present embodiment contains a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate.
  • a mixture consisting of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate decahydrate in the main agent is also referred to as a three-kind composition.
  • the main agent contains a predetermined amount of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate.
  • the heat storage material composition according to the present embodiment may consist only of the main agent, but may further contain excess water if necessary.
  • the heat storage material composition containing excess water in addition to this main agent will be described later.
  • X, Y, and Z are the following formulas (1-1) to (1-4), (2-1) depending on the content of the trisodium phosphate dodecahydrate in the main agent. )-(2-4), (3-1)-(3-4), or (4-1)-(4-4) are preferably satisfied.
  • X, Y, and Z are X mass% of the content of sodium sulfate decahydrate and Y mass% of the content of disodium hydrogen phosphate dodecahydrate in 100% by mass of the three kinds of compositions.
  • the value when the content of sodium carbonate decahydrate is defined as Z mass%.
  • X, Y, and Z are sodium sulfate pentahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 in the three compositions obtained by removing trisodium phosphate dodecahydrate from the main agent.
  • the content (% by mass) of each substance of hydrate is shown.
  • FIG. 5 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate.
  • NS is 100% sodium sulfate decahydrate
  • NH is 100% disodium hydrogen phosphate dodecahydrate
  • NC 100% sodium carbonate decahydrate.
  • Rectangle R 1 and therein shown in FIG. 5 is a range satisfying the above formula (1-1) to (1-4).
  • FIG. 6 shows sodium sulfate tetrahydrate and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass.
  • NS, NH, and NC in FIG. 6 are the same as those in FIG.
  • the rectangle R 2 shown in FIG. 6 and the inside thereof are in a range satisfying the above equations (2-1) to (2-4).
  • FIG. 7 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. NS, NH, and NC in FIG. 7 are the same as those in FIG. Rectangular R 3 and inside 7 is a range satisfying the above formula (3-1) to (3-4).
  • FIG. 8 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. NS, NH, and NC in FIG. 8 are the same as those in FIG. The rectangle R 4 shown in FIG. 8 and the inside thereof are in a range satisfying the above equations (4-1) to (4-4).
  • X, Y, Z, and W satisfy the following formulas (5-1) to (5-7).
  • the content of sodium sulfate decahydrate in 100% by mass of the main agent is X% by mass
  • the content of disodium hydrogen phosphate dodecahydrate is Y% by mass
  • It is a value when the content of sodium carbonate decahydrate is defined as Z mass%.
  • W is a value when the content of trisodium phosphate dodecahydrate in 100% by mass of the main agent is defined as W% by mass.
  • the melting point of the heat storage material composition is in the range of 20 to 22.5 ° C.
  • Latent heat for melting at 5 ° C. tends to be 160 J / g or more.
  • FIG. 9 is a quaternary composition diagram of the contents of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate in the main agent.
  • FIG. 9 is a diagram showing a three-dimensional region Q satisfying equations (5-1) to (5-7).
  • the three-dimensional region Q is a region satisfying equations (5-1) to (5-7).
  • NS, NH, and NC are the same as in FIG. 5, and NP indicates that trisodium phosphate dodecahydrate is 100%.
  • FIG. 10 is an enlarged view of the region Q in FIG.
  • the region Q is a pentagonal columnar region, and has a shape in which a pentagonal plane FBCON and a plane EADPM arranged opposite to each other are surrounded by a plane ABCD, a plane DCOP, a plane MNOP, a plane EFNM, and a plane ABFE.
  • the plane EFGH and the plane IJKL shown in FIG. 10 are both parallel to the plane ABCD and the plane MNOP.
  • Planar ABCDs are sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate tetrahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a plane in which a ternary composition diagram of the content of is present.
  • Plane EFGH refers to sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 water when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass. It is a plane in which a ternary composition diagram of the content of Japanese products exists.
  • Plane IJKL is a sodium sulfate tetrahydrate, a disodium hydrogen phosphate dodecahydrate, and a sodium carbonate decahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a plane in which a ternary composition diagram of the content of is present.
  • Planar MNOPs are sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate tetrahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a plane in which a ternary composition diagram of the content of is present.
  • FIG. 11 is a diagram showing only the plots on substantially the same plane as the plane ABCD of FIG. 10 among all the plots of FIG. Specifically, FIG. 11 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane ABCD of FIG. 10 among all the plots shown in FIG.
  • FIG. 12 is a diagram showing only plots that are substantially on the same plane as the plane EFGH of FIG. 10 among all the plots of FIG. Specifically, FIG. 12 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane EFGH of FIG. 10 among all the plots shown in FIG.
  • FIG. 13 is a diagram showing only the plots that are substantially on the same plane as the plane IJKL of FIG. 10 among all the plots of FIG. Specifically, FIG. 13 is a diagram when the area Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane IJKL of FIG. 10 among all the plots shown in FIG.
  • FIG. 14 is a diagram showing only the plots that are substantially on the same plane as the plane MNOP of FIG. 10 among all the plots of FIG. Specifically, FIG. 14 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane MNOP of FIG. 10 among all the plots shown in FIG.
  • the heat storage material composition according to the present embodiment may further contain excess water, if necessary.
  • a mixture consisting of a main agent and excess water is defined as a main agent mixture.
  • excess water is usually contained in an amount of 9 parts by mass or less, preferably 3 parts by mass or less, based on 100 parts by mass of the main agent.
  • the melting point of the heat storage material composition tends to be in the range of 20 to 22.5 ° C., and the latent heat of melting in a width of 5 ° C. is 160J. It tends to be / g or more. If the content of excess water in the heat storage material composition according to the present embodiment exceeds 9 parts by mass, the heat storage amount of the heat storage material composition may decrease.
  • the heat storage material composition according to the present embodiment further contains a specific moisturizer because the main agent is stored under moisturizer.
  • a specific moisturizer is obtained by polymerizing a specific monomer and a polyfunctional monomer.
  • Specific monomers include organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphates, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylic acids, and organic unsaturated sulfonic acids. And at least one monomer selected from the group consisting of organic unsaturated phosphates is used.
  • organic unsaturated carboxylic acid for example, one or more unsaturated carboxylic acids selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid are used, and acrylic acid is preferably used.
  • the organic unsaturated sulfonic acid is, for example, one or more selected from the group consisting of 2-acrylamide-2-methylpropanesulfonic acid, p-styrenesulfonic acid, sulfoethylmethacrylate, allylsulfonic acid and metaallylsulfonic acid.
  • Organic unsaturated sulfonic acid is used.
  • organic unsaturated carboxylic acid salt for example, an alkali metal salt or an ammonium salt of the above unsaturated carboxylic acid is used.
  • alkali metal salt of the unsaturated carboxylic acid for example, the sodium salt of the unsaturated carboxylic acid is used.
  • sodium salt of the unsaturated carboxylic acid sodium acrylate and sodium methacrylate are preferably used.
  • organic unsaturated sulfonic acid salt for example, an alkali metal salt or an ammonium salt of the above organic unsaturated sulfonic acid is used.
  • alkali metal salt of the organic unsaturated sulfonic acid for example, the sodium salt of the organic unsaturated sulfonic acid is used.
  • the polyfunctional monomer crosslinks a polymer obtained by polymerizing a specific monomer.
  • the polyfunctional monomer include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-dimethylenebisacrylamide, N, N'-dimethylenebismethacrylate. Is used, preferably N, N'-methylenebisacrylamide or N, N'-methylenebismethacrylamide is used.
  • the heat storage material composition according to the present embodiment further contains a specific melting point lowering agent because the melting point of the main agent is lowered.
  • a specific melting point lowering agent for example, at least one melting point selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea.
  • a lowering agent is used.
  • the heat storage material composition according to the present embodiment further contains a specific supercooling inhibitor because the supercooling of the main agent is suppressed.
  • the supercooling inhibitor for example, borax Na 2 B 4 O 5 (OH ) 4 ⁇ 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, Silicon, sodium dodecyl phosphate, sodium dodecyl sulfate, sodium carboxymethyl cellulose, lignin sulfonic acid, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkylsulfate, sodium alkylphosphate, At least one supercooling inhibitor selected from the group consisting of potassium alkyl sulfate and potassium alkyl phosphate is used.
  • the heat storage material composition according to the present embodiment further contains a specific phase separation inhibitor because the phase separation of the main agent is suppressed.
  • the phase separation inhibitor include sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, acrylic acid / maleic acid copolymer sodium, and acrylic acid / sulfonic acid-based monomer.
  • a phase separation inhibitor is used.
  • the heat storage material composition according to the present embodiment has a melting point in the range of 20 to 22.5 ° C., and melting and solidification occur in a temperature range slightly lower than the general set temperature for heating and cooling of buildings. Further, the heat storage material composition according to the present embodiment has a latent heat of melting at a width of 5 ° C. of 160 J / g or more, and the latent heat of melting in a narrow temperature region is large. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.
  • the heat storage material composition according to the present embodiment has a 5 ° C. width melting latent heat of 160 J / g or more, preferably 170 to 220 J / g, more preferably 180 to 220 J / g, still more preferably 190 to 220 J / g, and particularly preferably. Is 200 to 220 J / g. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.
  • a heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more can be obtained.
  • the heat storage system for heating and cooling a building according to the present embodiment includes a heat storage material module using the heat storage material composition according to the present embodiment.
  • the heat storage material module is composed of, for example, a heat storage material pack in which the heat storage material composition is filled in a container having sufficient sealing property, and one or more of the heat storage material packs are laminated and an appropriate flow path is provided. Modular ones are used. Examples of the container used for the heat storage material pack include an aluminum pack formed by heat-welding an aluminum pack sheet formed by laminating a resin sheet on an aluminum sheet.
  • the heat storage module is installed on at least a part of the floor, wall surface, and ceiling surface that divides the space in the building.
  • the heat storage material module installed in this way is stored (cold) by heat exchange between the module surface and the atmosphere that ventilates the module surface, solar heat by solar radiation, and an air conditioning system that uses nighttime power.
  • the heat storage material composition in the heat storage material module is melted by the heat obtained from the space in the building, and the enthalpy corresponding to the heat is retained inside the heat storage material composition.
  • the melted heat storage material composition solidifies and releases heat to the space inside the building.
  • the heat storage material module is installed in the building in this way, the energy load for heating and cooling can be reduced by the action of melting and solidifying the heat storage material composition.
  • heat storage material system According to the heat storage material system according to the present embodiment, heat is stored (cooled) by heat exchange between the module surface and the atmosphere in which the module surface is ventilated, solar heat by solar radiation, an air conditioning system using nighttime power, and the like.
  • the energy load for can be reduced.
  • Example 1 (When the content of trisodium phosphate dodecahydrate is approximately 5% by mass) (Preparation of heat storage material composition) First, Na 2 SO 4 ⁇ 10H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), Na 2 HPO 4 ⁇ 12H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), and Na 2 CO 3 ⁇ 10H 2 O (Kishida) Made by Chemical Co., Ltd., special grade) was prepared. Further, Na 3 PO 4 ⁇ 12H 2 O ( Kishida Chemical Co., Ltd., special grade) were also prepared.
  • Heat storage material composition the content of Na 3 PO 4 ⁇ 12H 2 O in the main agent was prepared so as to be approximately 5% by weight.
  • a heat storage material composition was obtained (Sample No. A6).
  • Table 1 also shows the calculation results of the left sides of the following formulas (5-2) to (5-7) and the satisfiability of the following formulas (5-1) to (5-7).
  • sample No. A6 satisfies the following equation (5-1).
  • Table 1 the case where the data satisfies the following equations (5-1) to (5-7) is indicated by ⁇ , and the case where the data is not satisfied is indicated by ⁇ .
  • Examples 2 to 15, Comparative Examples 1 to 5 when the content of trisodium phosphate dodecahydrate is approximately 5% by mass
  • a heat storage material composition was obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 1 (Sample Nos. A1 to A5 (Comparison). Examples 1 to 5), A7 to A20 (Examples 2 to 15)).
  • Heat storage material composition, the content of Na 3 PO 4 ⁇ 12H 2 O in the main agent was prepared so as to be approximately 5% by weight.
  • FIG. 5 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate.
  • Sample No. of Example 1. Sample No. including A6. The compositions of the three compositions constituting the main component of the heat storage material compositions A1 to A20 are plotted in FIG. In FIG. 5, the sample No. The plots of the heat storage material compositions of A6 to A20 are indicated by symbols ⁇ . In addition, sample No.
  • the plots of the heat storage material compositions of A1 to A5 are indicated by the symbol x.
  • the rectangular region R 1 is a region satisfying the above equations (1-1) to (1-4).
  • A6 ⁇ A20 are present within a rectangular region R 1.
  • Examples 16 to 33, Comparative Examples 6 to 12 (when the content of trisodium phosphate dodecahydrate is approximately 7.5% by mass) Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 2 (Sample Nos. B1 to B7 (Comparison). Examples 6 to 12), No. B8 to B25 (Examples 16 to 33)). Heat storage material composition, the content of Na 3 PO 4 ⁇ 12H 2 O in the main agent was prepared so as to be approximately 7.5 wt%.
  • Table 2 also shows the calculation results of the left sides of the above formulas (5-2) to (5-7) and the sufficiency of the above formulas (5-1) to (5-7).
  • sample No. B1 to B25 satisfy the above formula (5-1).
  • Table 2 the case where the data satisfies the above equations (5-1) to (5-7) is indicated by ⁇ , and the case where the data is not satisfied is indicated by ⁇ .
  • FIG. 6 shows sodium sulfate tetrahydrate and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass.
  • a ternary composition diagram of the content of sodium carbonate decahydrate Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions of B1 to B25 are plotted in FIG. In FIG. 6, sample No. The plots of the heat storage material compositions of B8 to B25 are indicated by symbols ⁇ . In addition, sample No. The plots of the heat storage material compositions of B1 to B7 are indicated by the symbol x.
  • the rectangular region R 2 is a region satisfying the above equations (2-1) to (2-4). Sample No. indicated by the symbol ⁇ . B8 ⁇ B25 is present in a rectangular region R 2.
  • Examples 34 to 55 Comparative Examples 13 to 23 (when the content of trisodium phosphate dodecahydrate is approximately 10% by mass)
  • a heat storage material composition was obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the compositions shown in Tables 3 and 4 (Sample Nos. C1 to C1).
  • C11 Comparative Examples 13 to 23
  • Sample Nos. C12 to C33 Examples 34 to 55
  • Heat storage material composition the content of Na 3 PO 4 ⁇ 12H 2 O in the main agent was prepared so as to be approximately 10 wt%.
  • Tables 3 and 4 also show the calculation results of the left sides of the above formulas (5-2) to (5-7) and the satisfiability of the above formulas (5-1) to (5-7). ..
  • sample No. C1 to C33 satisfy the above formula (5-1).
  • Tables 3 and 4 the cases where the data satisfy the above equations (5-1) to (5-7) are indicated by ⁇ , and the cases where the data are not satisfied are indicated by ⁇ .
  • FIG. 7 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate.
  • Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions of C1 to C33 are plotted in FIG. In FIG. 7, the sample No.
  • the plots of the heat storage material compositions of C12 to C33 are indicated by symbols ⁇ .
  • the plots of the heat storage material compositions of C1 to C11 are indicated by the symbol x. 7, the rectangular area R 3 is an area that satisfies the above formula (3-1) to (3-4). Sample No. indicated by the symbol ⁇ . C12 ⁇ C33 are present within a rectangular area R 3.
  • Table 3 samples there from Table 4 and FIG. 7, the outer region R 3 in FIG. 7 No. It was found that at least one of the melting point and the latent heat of melting at 5 ° C. was not good for C1 to C11.
  • Examples 56 to 62, Comparative Examples 24 to 33 (when the content of trisodium phosphate dodecahydrate is approximately 15% by mass) Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 5 (Sample Nos. D1 to D10 (Comparison). Examples 24 to 33), Sample Nos. D11 to D17 (Examples 56 to 62)). Heat storage material composition, the content of Na 3 PO 4 ⁇ 12H 2 O in the main agent was prepared so as to be approximately 15 wt%.
  • Table 5 also shows the calculation results of the left sides of the above formulas (5-2) to (5-7) and the satisfiability of the above formulas (5-1) to (5-7).
  • sample No. D1 to D17 satisfy the above formula (5-1).
  • Table 5 the case where the data satisfies the above equations (5-1) to (5-7) is indicated by ⁇ , and the case where the data is not satisfied is indicated by ⁇ .
  • FIG. 8 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate.
  • Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions D1 to D17 are plotted in FIG. In FIG. 8, the sample No. The plots of the heat storage material compositions of D11 to D17 are indicated by symbols ⁇ . In addition, sample No. The plots of the heat storage material compositions of D1 to D10 are indicated by the symbol x. 8, a rectangular area R 4 is a region that satisfies the above formula (4-1) to (4-4). Sample No. indicated by the symbol ⁇ . D11 ⁇ D17 are present in the rectangular area R 4.
  • the sample in the region R 4 in FIG. 8 No. It was found that D11 to D17 had good melting points and latent heat of melting at a width of 5 ° C. Specifically, the sample No. It was found that the heat storage material compositions of D11 to D17 had a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more.
  • FIG. 9 is a quaternary composition diagram of the contents of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate in the main agent.
  • FIG. 9 shows the sample No.
  • the compositions of sodium sulfate decahydrate, trisodium phosphate dodecahydrate, etc. in the main agent are shown in the quaternary composition diagram. is there.
  • NS, NH, and NC are the same as in FIG.
  • NP indicates that trisodium phosphate dodecahydrate is 100%. Further, in Tables 1 to 5, the sample having the “symbol in the figure” of ⁇ was plotted as ⁇ in FIG. 11, and the sample having the “symbol in the figure” of ⁇ in Tables 1 to 5 was plotted as ⁇ in FIG.
  • the three-dimensional region substantially satisfying the equations (5-1) to (5-7) is shown as Q.
  • the three-dimensional region Q is a region that substantially satisfies the equations (5-1) to (5-7).
  • Sample No. It can be seen that among A1 to A20, B1 to B25, C1 to C33, and D1 to D17, the samples plotted with ⁇ exist within the range of region Q. Specifically, it can be seen that Examples 1 to 62 exist within the range of region Q.
  • FIG. 10 is an enlarged view of the region Q in FIG.
  • the region Q is a pentagonal columnar region, and has a shape in which a pentagonal plane FBCON and a plane EADPM arranged opposite to each other are surrounded by a plane ABCD, a plane DCOP, a plane MNOP, a plane EFNM, and a plane ABFE.
  • the plane EFGH and the plane IJKL shown in FIG. 10 are both parallel to the plane ABCD and the plane MNOP.
  • the plane ABCD is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 5% by mass, in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
  • the plane EFGH is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 7.5% by mass, from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane observed when viewed in the vertical direction.
  • the plane IJKL is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 10% by mass in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
  • the plane MNOP is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 15% by mass in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
  • Examples 1 to 62 exist within the range of the region Q shown in FIGS. 9 and 10.
  • FIG. 11 is a diagram showing only the plots in substantially the same plane as the plane ABCD of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of A1 to A20.
  • the plane ABCD in FIG. 11 corresponds to the plane ABCD in FIG. Region R 5 in the plane ABCD in FIG. 11 is a region satisfying the equation (1-1) to (1-4). Sample No. Samples plotted in ⁇ Of A1 ⁇ A20 are included in the region R 5.
  • FIG. 12 is a diagram showing only the plots in substantially the same plane as the plane EFGH of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of B1 to B25.
  • the plane EFGH in FIG. 12 corresponds to the plane EFGH in FIG.
  • the region R 6 in the plane EFGH in FIG. 12 is a region satisfying equations (2-1) to (2-4). Sample No. Samples plotted in ⁇ Among B1 ⁇ B25 are included in the region R 6.
  • FIG. 13 is a diagram showing only the plots in substantially the same plane as the plane IJKL of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of C1 to C33.
  • the plane IJKL in FIG. 13 corresponds to the plane IJKL in FIG.
  • the region R 7 in the plane IJKL in FIG. 13 is a region satisfying equations (3-1) to (3-4). Sample No. Samples plotted in ⁇ Of C1 ⁇ C33 are included in the region R 7.
  • FIG. 14 is a diagram showing only plots that are substantially in the same plane as the plane MNOP of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of D1 to D17.
  • the plane MNOP in FIG. 14 corresponds to the plane MNOP in FIG.
  • the region R 8 in the plane MNOP in FIG. 14 is a region satisfying equations (4-1) to (4-4). Sample No. Samples plotted in ⁇ among D1 ⁇ D17 are included in the region R 8.
  • the heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a large latent heat of melting in a narrow temperature range and a heat storage system for heating and cooling of a building. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Central Heating Systems (AREA)

Abstract

A heat storage material composition according to the present invention contains a main component constituted by sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate, and has a melting point in a range of 20–22.5°C and a latent heat of fusion of at least 160 J/g in a 5°C range. A heat storage system according to the present invention is provided with a heat storage material module that uses the heat storage material composition. The heat storage material composition preferably further contains a humectant obtained by polymerizing a polyfunctional monomer and at least one type of monomer selected from the group consisting of organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphoric acids, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylates, organic unsaturated sulfonates, and organic unsaturated phosphates.

Description

蓄熱材組成物及び建築物の冷暖房用の蓄熱システムHeat storage material composition and heat storage system for heating and cooling of buildings
 本発明は、蓄熱材組成物及び建築物の冷暖房用の蓄熱システムに関し、詳しくは、建造物の冷暖房の蓄熱システムに好適な蓄熱材組成物及びこれを含む建築物の冷暖房用の蓄熱システムに関する。 The present invention relates to a heat storage material composition and a heat storage system for heating and cooling of a building, and more particularly to a heat storage material composition suitable for a heat storage system for heating and cooling of a building and a heat storage system for heating and cooling of a building including the heat storage material composition.
 従来、液体から固体への相変化時や固体から液体への相変化時に発生又は吸収する潜熱を利用した潜熱蓄熱材組成物が知られている。潜熱蓄熱材組成物は、例えば、建造物の冷暖房の蓄熱システムに用いられる。 Conventionally, a latent heat storage material composition utilizing latent heat generated or absorbed at the time of a phase change from a liquid to a solid or a phase change from a solid to a liquid is known. The latent heat storage material composition is used, for example, in a heat storage system for heating and cooling a building.
 潜熱蓄熱材組成物には、一般的に、蓄熱量が大きいこと、融点が所定の温度領域内にあること、長期間安定であること、安価であること、毒性がないこと、腐触性がないこと等の特性が要求される。 Latent heat storage material compositions generally have a large amount of heat storage, a melting point within a predetermined temperature range, long-term stability, low cost, non-toxicity, and tactile property. Characteristics such as absence are required.
 建造物の冷暖房用の蓄熱システム用の潜熱蓄熱材組成物には、単位重量当たりにどれだけ多くの熱を貯められるかを意味する全体融解潜熱Hに加えて、狭い温度範囲で熱を吸放熱することが求められる。全体融解潜熱Hが大きいと、少ない量で充分な蓄熱が達成できるため好ましい。狭い範囲で熱を吸放熱できると、無駄な吸放熱を起こすことなく、材料の持つ潜熱をシステムの目的とする温度範囲にて利用できるため好ましい。 The latent heat storage material composition of the heat storage system for heating and cooling of buildings, in addition to the entire latent heat of fusion H T to mean either be accumulated how much more heat per unit weight, absorption heat in a narrow temperature range It is required to dissipate heat. When the entire latent heat of fusion H T is large, preferable because sufficient heat storage can be achieved with less amount. It is preferable that heat can be absorbed and dissipated in a narrow range because the latent heat of the material can be used in the target temperature range of the system without causing unnecessary heat absorption and heat dissipation.
 「狭い温度範囲で熱を吸放熱できる特性」を表す指標として例えば5℃幅融解潜熱Hが用いられる。5℃幅融解潜熱Hとは「5℃の温度幅での融解潜熱の総量」を意味し、ある温度TからT+5℃の温度範囲における融解潜熱の総量Qについて、Tを変化させた際のQの最大値として定義される。 For example, a 5 ° C. width melting latent heat H 5 is used as an index representing "characteristics capable of absorbing and radiating heat in a narrow temperature range". 5 ° C width melting latent heat H 5 means "total amount of melting latent heat in a temperature range of 5 ° C", and when T is changed for the total amount Q 5 of melting latent heat in the temperature range from a certain temperature T to T + 5 ° C. It is defined as the maximum value of Q 5.
 上記全体融解潜熱Hは、示差走査熱量計(DSC)にて測定されるヒートフローを時間で積分した場合のピーク面積から算出される。これに対し、5℃幅融解潜熱Hは、同様に示差走査熱量計(DSC)にて測定されるヒートフローをある瞬間(時間t,温度T)から温度T+5℃となった瞬間(時間t,温度T+5)まで時間積分し、その最大値として導出される。 The total latent heat of fusion H T is calculated from the peak area in the case of integrated by heat flow times measured by a differential scanning calorimeter (DSC). On the other hand, the latent heat of melting at 5 ° C. H 5 became the temperature T 1 + 5 ° C. from a certain moment (time t 1 , temperature T 1 ) in the heat flow measured by the differential scanning calorimeter (DSC). Time integration is performed up to the moment (time t 1 , temperature T 1 + 5), and the maximum value is derived.
 図1は、建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mにおける融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。図1中の曲線は、建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mの示す曲線である。また、図2は、建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mにおける融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。図2中の曲線は、建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mの示す曲線である。 Figure 1 is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of suitable latent heat storage material composition M A heat storage system for heating and cooling of buildings. Curve in FIG. 1 is a curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings. 2 is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of not suitable for heat storage system for heating and cooling of buildings latent heat storage material composition M B. Curve in FIG. 2 is a curve showing the not suitable in the heat storage system for heating and cooling of buildings latent heat storage material composition M B.
 図1及び図2に示す例では、加熱時に潜熱蓄熱材組成物が融解を開始する温度(融点Tm)は、15℃を超え20℃未満の範囲内にあり、適切である。なお、潜熱蓄熱材組成物が建造物の冷暖房の蓄熱システムに用いられる場合、潜熱蓄熱材組成物の融解下限温度が低すぎると蓄熱材を凝固させて、冷熱を貯めることが困難となる。また、潜熱蓄熱材組成物の融解下限温度が高すぎると、外気との熱の交換効率が悪くなる。したがって、潜熱蓄熱材組成物が建造物の冷暖房の蓄熱システムに用いられる場合、図1及び図2に示すように、融点Tmは15~20℃の範囲にあることが好ましい。 In the examples shown in FIGS. 1 and 2, the temperature (melting point T m ) at which the latent heat storage material composition starts melting during heating is in the range of more than 15 ° C and less than 20 ° C, which is appropriate. When the latent heat storage material composition is used in a heat storage system for heating and cooling of a building, if the lower limit temperature of melting of the latent heat storage material composition is too low, the heat storage material is solidified and it becomes difficult to store cold heat. Further, if the lower limit temperature of melting of the latent heat storage material composition is too high, the efficiency of heat exchange with the outside air deteriorates. Therefore, when the latent heat storage material composition is used in a heat storage system for heating and cooling a building, the melting point T m is preferably in the range of 15 to 20 ° C. as shown in FIGS. 1 and 2.
 具体的には、図1に示すように、潜熱蓄熱材組成物Mでは、融点Tmと、加熱時に融解を終了する温度(融解上限温度T)との差が小さく、融解上限温度Tが26℃未満にある。このような場合、外部の雰囲気温度が融解上限温度Tをわずかに上回る温度(例えば26℃)となった場合でも、図1中に斜線領域Aとして表される蓄熱量、すなわち蓄熱材組成物が本来有する蓄熱量の全て、を冷熱として用いることができる。このように潜熱蓄熱材組成物Mは、本来有する蓄熱量の全てを冷熱として発揮できるため、冷房用の蓄熱システム用の蓄熱材組成物として好適である。 Specifically, as shown in FIG. 1, the latent heat storage material composition M A, the melting point T m, the difference between the temperature (melting upper limit temperature T f) to exit the melt during heating is small, the melting maximum temperature T f is below 26 ° C. In this case, even when the external atmospheric temperature becomes melting the upper limit temperature T f slightly greater than the temperature (e.g. 26 ° C.), heat storage quantity, expressed as the hatched area A 1 in FIG. 1, i.e. the heat storage material composition All of the heat storage amount originally possessed by the object can be used as cold heat. Thus the latent heat storage material composition M A is, because it can exert all the heat storage amount inherent the cold, is suitable as a heat storage material composition of the heat storage system for cooling.
 一方、図2に示すように潜熱蓄熱材組成物Mでは、融点Tmと融解上限温度Tとの差異が大きく、融解上限温度Tが26℃を超える。この場合、上述と同様に外部の雰囲気温度が26℃となったとき、26℃から融解上限温度Tまでの温度範囲での蓄熱量は、冷房に寄与しないこととなる。すなわち、潜熱蓄熱材組成物MBでは、外部温度が26℃を超える場合、図2に斜線領域Aとして示される蓄熱量、すなわち蓄熱材組成物が本来有する蓄熱量の一部のみ、しか冷熱として用いることができない。このように潜熱蓄熱材組成物Mは、冷房用の蓄熱システム用の蓄熱材組成物として好ましくない。 On the other hand, the latent heat storage material composition M B as shown in FIG. 2, a large difference between the melting point T m and melting the upper limit temperature T f, the melting maximum temperature T f is higher than 26 ° C.. In this case, when the external ambient temperature reaches 26 ° C. as described above, the amount of heat stored in the temperature range from 26 ° C. to the upper melting limit temperature T f does not contribute to cooling. That is, in the latent heat storage material composition M B, if the external temperature exceeds 26 ° C., the heat storage amount shown in Fig. 2 as a hatched area A 2, i.e. only a portion of the heat storage amount with the heat storage material composition is originally only cold Cannot be used as. Thus the latent heat storage material composition M B is not preferred as a heat storage material composition of the heat storage system for cooling.
 このように冷房用の蓄熱システム用の蓄熱材組成物は、15~20℃の範囲にて融解し、かつ狭い温度範囲で多量の熱を吸熱する特性が求められる。ここで、「狭い温度範囲で多量の熱を吸熱する特性」を表す指標としての5℃幅融解潜熱Hについて、図3及び図4を用いて説明する。図3は、建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物の5℃幅融解潜熱Hを説明する図である。図3中の曲線は、建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mの示す曲線である。図4は、建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物の5℃幅融解潜熱Hを説明する図である。図4中の曲線は、建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mの示す曲線である。 As described above, the heat storage material composition for a heat storage system for cooling is required to have a property of melting in a range of 15 to 20 ° C. and absorbing a large amount of heat in a narrow temperature range. Here, 5 ° C. width latent heat of fusion H 5 as an index representing the "property of the heat absorbing large amounts of heat in a narrow temperature range" will be described with reference to FIGS. FIG. 3 is a diagram illustrating a 5 ° C. width melting latent heat H 5 of a latent heat storage material composition suitable for a heat storage system for heating and cooling of a building. Curve in FIG. 3 is a curve showing the preferred latent heat storage material composition M A heat storage system for heating and cooling of buildings. Figure 4 is a diagram for explaining a 5 ° C. width latent heat of fusion H 5 of the latent heat storage material composition is not suitable for heat storage system for heating and cooling of buildings. Curve in FIG. 4 is a curve showing the not suitable in the heat storage system for heating and cooling of buildings latent heat storage material composition M B.
 5℃幅融解潜熱Hとは前述の通り、「5℃の温度幅での融解潜熱の総量」を意味し、ある温度TからT+5℃の温度範囲における融解潜熱の総量QについてTを変化させた際のQの最大値として定義される。ここで、その際の温度の下限値を5℃幅下限温度T5L、上限値を5℃幅下限温度T5Hと定義する。 As described above, the 5 ° C. width latent heat of melting H 5 means "the total amount of latent heat of melting in the temperature range of 5 ° C.", and T is changed for the total amount of latent heat of melting Q 5 in the temperature range from a certain temperature T to T + 5 ° C. It is defined as the maximum value of Q 5 when allowed to. Here, the lower limit of the temperature at that time is defined as 5 ° C. width lower limit temperature T 5L , and the upper limit value is defined as 5 ° C. width lower limit temperature T 5H .
 潜熱蓄熱材組成物Mでは図3中の斜線領域Aの総和が5℃幅融解潜熱Hとなる。潜熱蓄熱材組成物Mでは狭い温度範囲において鋭い蓄熱量のピークが存在することから、結果として5℃幅融解潜熱Hは大きな値を示す。同様に潜熱蓄熱材組成物Mにおいても図4中の斜線領域Aの総和が5℃幅融解潜熱Hとなる。しかし、潜熱蓄熱材組成物Mではピークの形状が緩やかであるため、5℃幅融解潜熱Hは小さな値を示す。 The sum of the hatched areas A 1 in the latent heat storage material composition M A 3 is 5 ° C. width latent heat of fusion H 5. Since the peak of the sharp heat storage amount is present in the latent heat storage material composition M A in a narrow temperature range, resulting in 5 ° C. width latent heat of fusion H 5 indicates a large value. Similarly the sum of the shaded area A 2 in FIG. 4 also in the latent heat storage material composition M B is 5 ° C. width latent heat of fusion H 5. However, since the latent heat is gentle heat storage material composition M peak shape in B, 5 ° C. width latent heat of fusion H 5 indicates a small value.
 このように狭い温度範囲で多量の熱を吸熱する蓄熱材ほど、5℃幅融解潜熱Hは大きな値を示すことから、5℃幅融解潜熱Hを「狭い温度範囲で多量の熱を吸熱する」特性の指標として用いることができる。 More heat storage material absorbs a large amount of heat at such a narrow temperature range, from 5 ° C. width latent heat of fusion H 5 to a larger value, 5 ° C. width latent heat of fusion H 5 absorbs the large amount of heat in the "narrow temperature range It can be used as an index of the characteristic of "doing".
特開平5-25467号公報Japanese Unexamined Patent Publication No. 5-25467
 しかしながら、硫酸ナトリウム10水和物は、相変化温度が約32℃であるため、特許文献1の蓄熱材組成物では、融点を20~22.5℃の範囲内に調整することが困難であるという問題があった。また、特許文献1の蓄熱材組成物には、蓄熱量が小さいという問題があった。さらに、特許文献1の蓄熱材組成物では、水を加えると、潜熱発生領域が増大するため、狭い温度領域内での融解潜熱が小さいという問題があった。 However, since the phase change temperature of sodium sulfate decahydrate is about 32 ° C., it is difficult to adjust the melting point of the heat storage material composition of Patent Document 1 within the range of 20 to 22.5 ° C. There was a problem. Further, the heat storage material composition of Patent Document 1 has a problem that the amount of heat storage is small. Further, in the heat storage material composition of Patent Document 1, there is a problem that the latent heat of melting in a narrow temperature region is small because the latent heat generation region increases when water is added.
 本発明は、上記課題に鑑みてなされたものである。本発明は、融点が20~22.5℃の範囲内にあり、狭い温度領域内での融解潜熱が大きい蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a large latent heat of melting in a narrow temperature range, and a heat storage system for heating and cooling of a building.
 本発明の第1の態様に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及び、リン酸三ナトリウム12水和物からなる主剤を含み、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上である。 The heat storage material composition according to the first aspect of the present invention is composed of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate. The melting point is in the range of 20 to 22.5 ° C., and the latent heat of melting in the 5 ° C. width is 160 J / g or more.
 本発明の第2の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤中における前記リン酸三ナトリウム12水和物の含有量が4.5~5.5質量%の場合において、前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(1-1)~(1-4)を満たす。
[数1]
   X+Y+Z=100             (1-1)
[数2]
   X+2.00Y-124.21≦0      (1-2)
[数3]
   X+2.00Y-89.47≦0       (1-3)
[数4]
   17.89≦X≦29.47         (1-4)
The heat storage material composition according to the second aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 4.5 to 5. In the case of 5% by mass, the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate. When the content of the Japanese product is defined as X mass%, the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is defined as Z mass%, X, Y and Z satisfy the following formulas (1-1) to (1-4).
[Number 1]
X + Y + Z = 100 (1-1)
[Number 2]
X + 2.00Y-124.21 ≦ 0 (1-2)
[Number 3]
X + 2.00Y-89.47 ≦ 0 (1-3)
[Number 4]
17.89 ≤ X ≤ 29.47 (1-4)
 本発明の第3の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤中における前記リン酸三ナトリウム12水和物の含有量が7.0~8.0質量%の場合において、前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(2-1)~(2-4)を満たす。
[数5]
   X+Y+Z=100             (2-1)
[数6]
   X+2.00Y-124.21≦0      (2-2)
[数7]
   X+2.00Y-89.47≦0       (2-3)
[数8]
   17.89≦X≦29.47         (2-4)
In the heat storage material composition according to the third aspect of the present invention, the content of the disodium phosphate dodecahydrate in the main agent is 7.0 to 8. In the case of 0% by mass, the sodium sulfate 10 water in 100% by mass of the three-kind composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate. When the content of the Japanese product is defined as X mass%, the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is defined as Z mass%, X, Y and Z satisfy the following formulas (2-1) to (2-4).
[Number 5]
X + Y + Z = 100 (2-1)
[Number 6]
X + 2.00Y-124.21 ≦ 0 (2-2)
[Number 7]
X + 2.00Y-89.47 ≦ 0 (2-3)
[Number 8]
17.89 ≤ X ≤ 29.47 (2-4)
 本発明の第4の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤中における前記リン酸三ナトリウム12水和物の含有量が9.5~10.5質量%の場合において、前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(3-1)~(3-4)を満たす。
[数9]
   X+Y+Z=100             (3-1)
[数10]
   X+2.00Y-118.33≦0      (3-2)
[数11]
   X+2.00Y-89.47≦0       (3-3)
[数12]
   17.89≦X≦29.47         (3-4)
The heat storage material composition according to the fourth aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 9.5 to 10. In the case of 5% by mass, the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate. When the content of the Japanese product is defined as X mass%, the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is defined as Z mass%, X, Y and Z satisfy the following formulas (3-1) to (3-4).
[Number 9]
X + Y + Z = 100 (3-1)
[Number 10]
X + 2.00Y-118.33 ≦ 0 (3-2)
[Number 11]
X + 2.00Y-89.47 ≦ 0 (3-3)
[Number 12]
17.89 ≤ X ≤ 29.47 (3-4)
 本発明の第5の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤中における前記リン酸三ナトリウム12水和物の含有量が14.5~15.5質量%の場合において、前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(4-1)~(4-4)を満たす。
[数13]
   X+Y+Z=100             (4-1)
[数14]
   X+2.00Y-105.74≦0      (4-2)
[数15]
   X+2.00Y-89.47≦0       (4-3)
[数16]
   17.89≦X≦29.47         (4-4)
The heat storage material composition according to the fifth aspect of the present invention has a heat storage material composition according to the first aspect, wherein the content of the disodium phosphate dodecahydrate in the main agent is 14.5 to 15. In the case of 5% by mass, the sodium sulfate 10 water in 100% by mass of the three-kind composition composed of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate. When the content of the Japanese product is defined as X mass%, the content of the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is defined as Z mass%, X, Y and Z satisfy the following formulas (4-1) to (4-4).
[Number 13]
X + Y + Z = 100 (4-1)
[Number 14]
X + 2.00Y-105.74≤0 (4-2)
[Number 15]
X + 2.00Y-89.47 ≦ 0 (4-3)
[Number 16]
17.89 ≤ X ≤ 29.47 (4-4)
 本発明の第7の態様に係る蓄熱材組成物は、第1の態様に係る蓄熱材組成物において、前記主剤100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、前記炭酸ナトリウム10水和物の含有量をZ質量%、及び前記リン酸三ナトリウム12水和物の含有量をW質量%と規定するとき、X、Y、Z、及びWが下記式(5-1)~(5-7)を満たす。
[数17]
   X+Y+Z+W=100               (5-1)
[数18]
   X-3.1304Y+5.1304Z≧0       (5-2)
[数19]
   X-0.2179Y-0.2179Z≧0       (5-3)
[数20]
   X+10.5000Y-8.5000Z≧0      (5-4)
[数21]
   X-0.4179Y-0.4179Z≦0       (5-5)
[数22]
   X+0.5837Y+1.4163Z-83.176≧0(5-6)
[数23]
   4.8≦W≦15.2                (5-7)
In the heat storage material composition according to the first aspect of the present invention, the content of the sodium sulfate decahydrate in 100% by mass of the main agent is X% by mass. The content of disodium hydrogen phosphate dodecahydrate is Y mass%, the content of sodium carbonate decahydrate is Z mass%, and the content of trisodium phosphate dodecahydrate is W mass%. X, Y, Z, and W satisfy the following formulas (5-1) to (5-7).
[Number 17]
X + Y + Z + W = 100 (5-1)
[Number 18]
X-3.1304Y + 5.1304Z ≧ 0 (5-2)
[Number 19]
X-0.2179Y-0.2179Z ≧ 0 (5-3)
[Number 20]
X + 10.5000Y-85000Z ≧ 0 (5-4)
[Number 21]
X-0.4179Y-0.4179Z ≦ 0 (5-5)
[Number 22]
X + 0.5837Y + 1.4163Z-83.176 ≧ 0 (5-6)
[Number 23]
4.8 ≤ W ≤ 15.2 (5-7)
 本発明の第7の態様に係る蓄熱材組成物は、第1~第6のいずれかの態様に係る蓄熱材組成物において、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、多官能性単量体と、を重合させて得られる保湿剤をさらに含む。 The heat storage material composition according to the seventh aspect of the present invention is an organic unsaturated carboxylic acid, an organic unsaturated sulfonic acid, and an organic unsaturated phosphoric acid in the heat storage material composition according to any one of the first to sixth aspects. , Organic unsaturated amide, organic unsaturated alcohol, organic unsaturated carboxylate, organic unsaturated sulfonate, and at least one monomer selected from the group consisting of organic unsaturated phosphate, and polyfunctionality. It further contains a moisturizing agent obtained by polymerizing the sex monomer.
 本発明の第8の態様に係る蓄熱材組成物は、第1~第7のいずれかの態様に係る蓄熱材組成物において、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含む。 The heat storage material composition according to the eighth aspect of the present invention is, in the heat storage material composition according to any one of the first to seventh aspects, sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, odor. It further comprises at least one melting point lowering agent selected from the group consisting of ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea.
 本発明の第9の態様に係る蓄熱材組成物は、第1~第8のいずれかの態様に係る蓄熱材組成物において、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含む。 Heat storage material composition according to the ninth aspect of the present invention is the heat storage material composition according to any of embodiments of the first to eighth, borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, Calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkyl sulfate, alkyl It further comprises at least one overcooling inhibitor selected from the group consisting of sodium phosphate, potassium alkyl sulfate, and potassium alkyl phosphate.
 本発明の第10の態様に係る蓄熱材組成物は、第1~第9のいずれかの態様に係る蓄熱材組成物において、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の相分離抑制剤をさらに含む。 The heat storage material composition according to the tenth aspect of the present invention is, in the heat storage material composition according to any one of the first to ninth aspects, sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, poly. Carboxylate polyether polymer, sodium acrylate / maleic acid copolymer, sodium acrylate / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl methacrylate dimethylsulfate copolymer, acrylamide / sodium acrylate copolymer , Polyethylene Glycol, Polypropylene Glycol, Highly Absorbent Resin (SAP), Carboxymethyl Cellulose (CMC), CMC Derivatives, Carrageenan, Caraginan Derivatives, Xanthan Gum, Xantan Gum Derivatives, Pectin, Pectin Derivatives, Steel, Steel Derivatives It further comprises at least one phase separation inhibitor selected from the group consisting of agar, layered silicates, and copolymers of these substances.
 本発明の第11の態様に係る建築物の冷暖房用の蓄熱システムは、第1~第10のいずれかの態様に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。 The heat storage system for heating and cooling a building according to the eleventh aspect of the present invention includes a heat storage material module using the heat storage material composition according to any one of the first to tenth aspects.
建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物Mにおける融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。It is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of suitable latent heat storage material composition M A heat storage system for heating and cooling of buildings. 建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物Mにおける融解潜熱を発現する温度と蓄熱量との関係の一例を示すグラフである。Is a graph showing an example of the relationship between the temperature and the heat storage amount expressing latent heat of fusion of the latent heat storage material composition M B is not suitable for heat storage system for heating and cooling of buildings. 建造物の冷暖房用の蓄熱システムに好適な潜熱蓄熱材組成物の5℃幅融解潜熱Hを説明する図である。It is a figure explaining 5 degreeC width melting latent heat H5 of the latent heat storage material composition suitable for the heat storage system for heating and cooling of a building. 建造物の冷暖房用の蓄熱システムに好適でない潜熱蓄熱材組成物の5℃幅融解潜熱Hを説明する図である。It is a figure explaining 5 degreeC width melting latent heat H5 of the latent heat storage material composition which is not suitable for the heat storage system for heating and cooling of a building. 主剤におけるリン酸三ナトリウム12水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 water in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a ternary composition diagram of the content of Japanese products. 主剤におけるリン酸三ナトリウム12水和物の含有量が略7.5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass. It is a ternary composition diagram of the content of decahydrate. 主剤におけるリン酸三ナトリウム12水和物の含有量が略10質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 water in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a ternary composition diagram of the content of Japanese products. 主剤におけるリン酸三ナトリウム12水和物の含有量が略15質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。Sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 water in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a ternary composition diagram of the content of Japanese products. 主剤中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びリン酸三ナトリウム12水和物の含有量の四元系組成図の一例である。It is an example of a quaternary composition diagram of the contents of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate in the main agent. .. 図9中の領域Qを拡大した図である。It is an enlarged view of the region Q in FIG. 図9の全プロットのうち、図10の平面ABCDと略同一平面にあるプロットのみを示した図である。Of all the plots of FIG. 9, only the plots that are substantially on the same plane as the plane ABCD of FIG. 10 are shown. 図9の全プロットのうち、図10の平面EFGHと略同一平面にあるプロットのみを示した図である。Of all the plots of FIG. 9, only the plots that are substantially on the same plane as the plane EFGH of FIG. 10 are shown. 図9の全プロットのうち、図10の平面IJKLと略同一平面にあるプロットのみを示した図である。Of all the plots of FIG. 9, only the plots that are substantially on the same plane as the plane IJKL of FIG. 10 are shown. 図9の全プロットのうち、図10の平面MNOPと略同一平面にあるプロットのみを示した図である。Of all the plots of FIG. 9, only the plots that are substantially on the same plane as the plane MNOP of FIG. 10 are shown.
 以下、図面を用いて本発明の実施形態に係る蓄熱材組成物、及び蓄熱システムについて詳細に説明する。 Hereinafter, the heat storage material composition and the heat storage system according to the embodiment of the present invention will be described in detail with reference to the drawings.
[蓄熱材組成物]
 本実施形態に係る蓄熱材組成物は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びリン酸三ナトリウム12水和物からなる主剤を含む。なお、主剤中、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物からなる混合物を、三種組成物ともいう。
[Heat storage material composition]
The heat storage material composition according to the present embodiment contains a main agent composed of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate. A mixture consisting of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate decahydrate in the main agent is also referred to as a three-kind composition.
 (主剤)
 主剤は、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びリン酸三ナトリウム12水和物を所定量含む。
(Main agent)
The main agent contains a predetermined amount of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate.
 なお、本実施形態に係る蓄熱材組成物は、主剤のみからなることができるが、必要により、余剰水をさらに含んでいてもよい。この主剤に加えて余剰水を含む蓄熱材組成物については後述する。 The heat storage material composition according to the present embodiment may consist only of the main agent, but may further contain excess water if necessary. The heat storage material composition containing excess water in addition to this main agent will be described later.
  <三種組成物中の組成>
 蓄熱材組成物では、主剤中における前記リン酸三ナトリウム12水和物の含有量に応じて、X、Y、及びZが下記式(1-1)~(1-4)、(2-1)~(2-4)、(3-1)~(3-4)、又は(4-1)~(4-4)を満たすことが好ましい。ここで、X、Y、及びZは、三種組成物100質量%中の、硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及び炭酸ナトリウム10水和物の含有量をZ質量%と規定するときの値である。すなわち、X、Y、及びZは、主剤からリン酸三ナトリウム12水和物を除いた三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の各物質の含有量(質量%)を示す。
<Composition in three kinds of compositions>
In the heat storage material composition, X, Y, and Z are the following formulas (1-1) to (1-4), (2-1) depending on the content of the trisodium phosphate dodecahydrate in the main agent. )-(2-4), (3-1)-(3-4), or (4-1)-(4-4) are preferably satisfied. Here, X, Y, and Z are X mass% of the content of sodium sulfate decahydrate and Y mass% of the content of disodium hydrogen phosphate dodecahydrate in 100% by mass of the three kinds of compositions. , And the value when the content of sodium carbonate decahydrate is defined as Z mass%. That is, X, Y, and Z are sodium sulfate pentahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 in the three compositions obtained by removing trisodium phosphate dodecahydrate from the main agent. The content (% by mass) of each substance of hydrate is shown.
   [リン酸三ナトリウム12水和物の含有量が4.5~5.5質量%の場合]
 具体的には、主剤中における前記リン酸三ナトリウム12水和物の含有量が4.5~5.5質量%、好ましくは4.8~5.2質量%の場合において、X、Y、及びZが下記式(1-1)~(1-4)を満たすことが好ましい。
[When the content of trisodium phosphate dodecahydrate is 4.5 to 5.5% by mass]
Specifically, when the content of the trisodium phosphate dodecahydrate in the main agent is 4.5 to 5.5% by mass, preferably 4.8 to 5.2% by mass, X, Y, And Z preferably satisfy the following formulas (1-1) to (1-4).
[数24]
   X+Y+Z=100             (1-1)
[数25]
   X+2.00Y-124.21≦0      (1-2)
[数26]
   X+2.00Y-89.47≦0       (1-3)
[数27]
   17.89≦X≦29.47         (1-4)
[Number 24]
X + Y + Z = 100 (1-1)
[Number 25]
X + 2.00Y-124.21 ≦ 0 (1-2)
[Number 26]
X + 2.00Y-89.47 ≦ 0 (1-3)
[Number 27]
17.89 ≤ X ≤ 29.47 (1-4)
 図5は、主剤におけるリン酸三ナトリウム12水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図5中、NSは硫酸ナトリウム10水和物が100%になる点、NHはリン酸水素二ナトリウム12水和物が100%になる点、NCは炭酸ナトリウム10水和物が100%になる点を示す。図5に示す矩形R及びその内部は、上記式(1-1)~(1-4)を満たす範囲である。 FIG. 5 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. In FIG. 5, NS is 100% sodium sulfate decahydrate, NH is 100% disodium hydrogen phosphate dodecahydrate, and NC is 100% sodium carbonate decahydrate. Indicates a point. Rectangle R 1 and therein shown in FIG. 5 is a range satisfying the above formula (1-1) to (1-4).
 リン酸三ナトリウム12水和物の含有量が4.5~5.5質量%の場合に、上記X、Y、及びZが式(1-1)~(1-4)を満たすと、蓄熱材組成物の融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になりやすい。 When the content of trisodium phosphate dodecahydrate is 4.5 to 5.5% by mass and the above X, Y, and Z satisfy the formulas (1-1) to (1-4), heat storage The melting point of the material composition is in the range of 20 to 22.5 ° C., and the latent heat of melting in the 5 ° C. width tends to be 160 J / g or more.
   [リン酸三ナトリウム12水和物の含有量が7.0~8.0質量%の場合]
 具体的には、主剤中における前記リン酸三ナトリウム12水和物の含有量が7.0~8.0質量%、好ましくは7.4~7.7質量%の場合において、X、Y、及びZが下記式(2-1)~(2-4)を満たすことが好ましい。
[When the content of trisodium phosphate dodecahydrate is 7.0 to 8.0% by mass]
Specifically, when the content of the trisodium phosphate dodecahydrate in the main agent is 7.0 to 8.0% by mass, preferably 7.4 to 7.7% by mass, X, Y, And Z preferably satisfy the following formulas (2-1) to (2-4).
[数28]
   X+Y+Z=100             (2-1)
[数29]
   X+2.00Y-124.21≦0      (2-2)
[数30]
   X+2.00Y-89.47≦0       (2-3)
[数31]
   17.89≦X≦29.47         (2-4)
[Number 28]
X + Y + Z = 100 (2-1)
[Number 29]
X + 2.00Y-124.21 ≦ 0 (2-2)
[Number 30]
X + 2.00Y-89.47 ≦ 0 (2-3)
[Number 31]
17.89 ≤ X ≤ 29.47 (2-4)
 図6は、主剤におけるリン酸三ナトリウム12水和物の含有量が略7.5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図6中のNS、NH、及びNCは、図5と同じである。図6に示す矩形R及びその内部は、上記式(2-1)~(2-4)を満たす範囲である。 FIG. 6 shows sodium sulfate tetrahydrate and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass. , And a ternary composition diagram of the content of sodium carbonate decahydrate. NS, NH, and NC in FIG. 6 are the same as those in FIG. The rectangle R 2 shown in FIG. 6 and the inside thereof are in a range satisfying the above equations (2-1) to (2-4).
 リン酸三ナトリウム12水和物の含有量が7.0~8.0質量%の場合に、上記X、Y、及びZが式(2-1)~(2-4)を満たすと、蓄熱材組成物の融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になりやすい。 When the content of trisodium phosphate dodecahydrate is 7.0 to 8.0% by mass and the above X, Y, and Z satisfy the formulas (2-1) to (2-4), heat storage The melting point of the material composition is in the range of 20 to 22.5 ° C., and the latent heat of melting at 5 ° C. tends to be 160 J / g or more.
   [リン酸三ナトリウム12水和物の含有量が9.5~10.5質量%の場合]
 具体的には、主剤中における前記リン酸三ナトリウム12水和物の含有量が9.5~10.5質量%、好ましくは9.9~10.5質量%の場合において、X、Y、及びZが下記式(3-1)~(3-4)を満たすことが好ましい。
[When the content of trisodium phosphate dodecahydrate is 9.5 to 10.5% by mass]
Specifically, when the content of the trisodium phosphate dodecahydrate in the main agent is 9.5 to 10.5% by mass, preferably 9.9 to 10.5% by mass, X, Y, And Z preferably satisfy the following formulas (3-1) to (3-4).
[数32]
   X+Y+Z=100             (3-1)
[数33]
   X+2.00Y-118.33≦0      (3-2)
[数34]
   X+2.00Y-89.47≦0       (3-3)
[数35]
   17.89≦X≦29.47         (3-4)
[Number 32]
X + Y + Z = 100 (3-1)
[Number 33]
X + 2.00Y-118.33 ≦ 0 (3-2)
[Number 34]
X + 2.00Y-89.47 ≦ 0 (3-3)
[Number 35]
17.89 ≤ X ≤ 29.47 (3-4)
 図7は、主剤におけるリン酸三ナトリウム12水和物の含有量が略10質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図7中のNS、NH、及びNCは、図5と同じである。図7に示す矩形R及びその内部は、上記式(3-1)~(3-4)を満たす範囲である。 FIG. 7 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. NS, NH, and NC in FIG. 7 are the same as those in FIG. Rectangular R 3 and inside 7 is a range satisfying the above formula (3-1) to (3-4).
 リン酸三ナトリウム12水和物の含有量が9.5~10.5質量%の場合に、上記X、Y、及びZが式(3-1)~(3-4)を満たすと、蓄熱材組成物の融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になりやすい。 When the content of trisodium phosphate dodecahydrate is 9.5 to 10.5% by mass and the above X, Y, and Z satisfy the formulas (3-1) to (3-4), heat storage The melting point of the material composition is in the range of 20 to 22.5 ° C., and the latent heat of melting at 5 ° C. tends to be 160 J / g or more.
   [リン酸三ナトリウム12水和物の含有量が14.5~15.5質量%の場合]
 具体的には、主剤中における前記リン酸三ナトリウム12水和物の含有量が14.5~15.5質量%、好ましくは14.7~15.1質量%の場合において、X、Y、及びZが下記式(4-1)~(4-4)を満たすことが好ましい。
[When the content of trisodium phosphate dodecahydrate is 14.5 to 15.5% by mass]
Specifically, when the content of the trisodium phosphate dodecahydrate in the main agent is 14.5 to 15.5% by mass, preferably 14.7 to 15.1% by mass, X, Y, And Z preferably satisfy the following formulas (4-1) to (4-4).
[数36]
   X+Y+Z=100             (4-1)
[数37]
   X+2.00Y-105.74≦0      (4-2)
[数38]
   X+2.00Y-89.47≦0       (4-3)
[数39]
   17.89≦X≦29.47         (4-4)
[Number 36]
X + Y + Z = 100 (4-1)
[Number 37]
X + 2.00Y-105.74≤0 (4-2)
[Number 38]
X + 2.00Y-89.47 ≦ 0 (4-3)
[Number 39]
17.89 ≤ X ≤ 29.47 (4-4)
 図8は、主剤におけるリン酸三ナトリウム12水和物の含有量が略15質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。図8中のNS、NH、及びNCは、図5と同じである。図8に示す矩形R及びその内部は、上記式(4-1)~(4-4)を満たす範囲である。 FIG. 8 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. NS, NH, and NC in FIG. 8 are the same as those in FIG. The rectangle R 4 shown in FIG. 8 and the inside thereof are in a range satisfying the above equations (4-1) to (4-4).
 リン酸三ナトリウム12水和物の含有量が14.5~15.5質量%の場合に、上記X、Y、及びZが式(4-1)~(4-4)を満たすと、蓄熱材組成物の融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になりやすい。 When the content of trisodium phosphate dodecahydrate is 14.5 to 15.5% by mass and the above X, Y, and Z satisfy the formulas (4-1) to (4-4), heat storage The melting point of the material composition is in the range of 20 to 22.5 ° C., and the latent heat of melting at 5 ° C. tends to be 160 J / g or more.
  <主剤中の組成>
 蓄熱材組成物では、X、Y、Z、及びWが下記式(5-1)~(5-7)を満たすことが好ましい。ここで、X、Y、及びZは、主剤100質量%中の、硫酸ナトリウム10水和物の含有量をX質量%、リン酸水素二ナトリウム12水和物の含有量をY質量%、及び炭酸ナトリウム10水和物の含有量をZ質量%と規定するときの値である。また、Wは、主剤100質量%中の、リン酸三ナトリウム12水和物の含有量をW質量%と規定するときの値である。
<Composition in the main agent>
In the heat storage material composition, it is preferable that X, Y, Z, and W satisfy the following formulas (5-1) to (5-7). Here, for X, Y, and Z, the content of sodium sulfate decahydrate in 100% by mass of the main agent is X% by mass, the content of disodium hydrogen phosphate dodecahydrate is Y% by mass, and It is a value when the content of sodium carbonate decahydrate is defined as Z mass%. Further, W is a value when the content of trisodium phosphate dodecahydrate in 100% by mass of the main agent is defined as W% by mass.
[数40]
   X+Y+Z+W=100               (5-1)
[数41]
   X-3.1304Y+5.1304Z≧0       (5-2)
[数42]
   X-0.2179Y-0.2179Z≧0       (5-3)
[数43]
   X+10.5000Y-8.5000Z≧0      (5-4)
[数44]
   X-0.4179Y-0.4179Z≦0       (5-5)
[数45]
   X+0.5837Y+1.4163Z-83.176≧0(5-6)
[数46]
   4.8≦W≦15.2                (5-7)
[Number 40]
X + Y + Z + W = 100 (5-1)
[Number 41]
X-3.1304Y + 5.1304Z ≧ 0 (5-2)
[Number 42]
X-0.2179Y-0.2179Z ≧ 0 (5-3)
[Number 43]
X + 10.5000Y-85000Z ≧ 0 (5-4)
[Number 44]
X-0.4179Y-0.4179Z ≦ 0 (5-5)
[Number 45]
X + 0.5837Y + 1.4163Z-83.176 ≧ 0 (5-6)
[Number 46]
4.8 ≤ W ≤ 15.2 (5-7)
 蓄熱材組成物は、X、Y、Z、及びWが式(5-1)~(5-7)を満たすと、蓄熱材組成物の融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になりやすい。 In the heat storage material composition, when X, Y, Z, and W satisfy the formulas (5-1) to (5-7), the melting point of the heat storage material composition is in the range of 20 to 22.5 ° C. Latent heat for melting at 5 ° C. tends to be 160 J / g or more.
 図9は、主剤中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びリン酸三ナトリウム12水和物の含有量の四元系組成図の一例である。具体的には、図9は、式(5-1)~(5-7)を満たす三次元領域Qを示す図である。図9において、三次元領域Q内が、式(5-1)~(5-7)を満たす領域である。なお、図9中、NS、NH、及びNCは図5と同じであり、NPはリン酸三ナトリウム12水和物が100%になる点を示す。 FIG. 9 is a quaternary composition diagram of the contents of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate in the main agent. This is an example. Specifically, FIG. 9 is a diagram showing a three-dimensional region Q satisfying equations (5-1) to (5-7). In FIG. 9, the three-dimensional region Q is a region satisfying equations (5-1) to (5-7). In FIG. 9, NS, NH, and NC are the same as in FIG. 5, and NP indicates that trisodium phosphate dodecahydrate is 100%.
 三次元領域をQについて、詳細に説明する。図10は、図9中の領域Qを拡大した図である。領域Qは、五角柱状の領域であり、対向して配置された五角形の平面FBCONと平面EADPMとの間を、平面ABCD、平面DCOP、平面MNOP、平面EFNM及び平面ABFEで囲んだ形状になっている。なお、図10に示す平面EFGH及び平面IJKLは、共に、平面ABCD及び平面MNOPと平行な面になっている。 The three-dimensional area will be explained in detail about Q. FIG. 10 is an enlarged view of the region Q in FIG. The region Q is a pentagonal columnar region, and has a shape in which a pentagonal plane FBCON and a plane EADPM arranged opposite to each other are surrounded by a plane ABCD, a plane DCOP, a plane MNOP, a plane EFNM, and a plane ABFE. There is. The plane EFGH and the plane IJKL shown in FIG. 10 are both parallel to the plane ABCD and the plane MNOP.
 平面ABCDは、主剤におけるリン酸三ナトリウム12水和物の含有量が略5質量%のときの、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図、が存在する平面である。 Planar ABCDs are sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate tetrahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a plane in which a ternary composition diagram of the content of is present.
 平面EFGHは、主剤におけるリン酸三ナトリウム12水和物の含有量が略7.5質量%のときの、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図、が存在する平面である。 Plane EFGH refers to sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate 10 water when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass. It is a plane in which a ternary composition diagram of the content of Japanese products exists.
 平面IJKLは、主剤におけるリン酸三ナトリウム12水和物の含有量が略10質量%のときの、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図、が存在する平面である。 Plane IJKL is a sodium sulfate tetrahydrate, a disodium hydrogen phosphate dodecahydrate, and a sodium carbonate decahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a plane in which a ternary composition diagram of the content of is present.
 平面MNOPは、主剤におけるリン酸三ナトリウム12水和物の含有量が略15質量%のときの、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図、が存在する平面である。 Planar MNOPs are sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, and sodium carbonate tetrahydrate when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a plane in which a ternary composition diagram of the content of is present.
 図11は、図9の全プロットのうち、図10の平面ABCDと略同一平面にあるプロットのみを示した図である。具体的には、図11は、図9に示す全プロットのうち図10の平面ABCDと略同一平面にあるプロットのみを、図9の点NPから領域Qを見たときの図である。 FIG. 11 is a diagram showing only the plots on substantially the same plane as the plane ABCD of FIG. 10 among all the plots of FIG. Specifically, FIG. 11 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane ABCD of FIG. 10 among all the plots shown in FIG.
 図12は、図9の全プロットのうち、図10の平面EFGHと略同一平面にあるプロットのみを示した図である。具体的には、図12は、図9に示す全プロットのうち図10の平面EFGHと略同一平面にあるプロットのみを、図9の点NPから領域Qを見たときの図である。 FIG. 12 is a diagram showing only plots that are substantially on the same plane as the plane EFGH of FIG. 10 among all the plots of FIG. Specifically, FIG. 12 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane EFGH of FIG. 10 among all the plots shown in FIG.
 図13は、図9の全プロットのうち、図10の平面IJKLと略同一平面にあるプロットのみを示した図である。具体的には、図13は、図9に示す全プロットのうち図10の平面IJKLと略同一平面にあるプロットのみを、図9の点NPから領域Qを見たときの図である。 FIG. 13 is a diagram showing only the plots that are substantially on the same plane as the plane IJKL of FIG. 10 among all the plots of FIG. Specifically, FIG. 13 is a diagram when the area Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane IJKL of FIG. 10 among all the plots shown in FIG.
 図14は、図9の全プロットのうち、図10の平面MNOPと略同一平面にあるプロットのみを示した図である。具体的には、図14は、図9に示す全プロットのうち図10の平面MNOPと略同一平面にあるプロットのみを、図9の点NPから領域Qを見たときの図である。 FIG. 14 is a diagram showing only the plots that are substantially on the same plane as the plane MNOP of FIG. 10 among all the plots of FIG. Specifically, FIG. 14 is a diagram when the region Q is viewed from the point NP of FIG. 9 only for the plots that are substantially on the same plane as the plane MNOP of FIG. 10 among all the plots shown in FIG.
 (余剰水)
 本実施形態に係る蓄熱材組成物は、必要により余剰水をさらに含んでいてもよい。本明細書では、主剤と余剰水とからなる混合物を主剤混合物と定義する。本実施形態に係る蓄熱材組成物において、余剰水は、主剤100質量部に対して、通常9質量部以下、好ましくは3質量部以下含まれる。
(Surplus water)
The heat storage material composition according to the present embodiment may further contain excess water, if necessary. In the present specification, a mixture consisting of a main agent and excess water is defined as a main agent mixture. In the heat storage material composition according to the present embodiment, excess water is usually contained in an amount of 9 parts by mass or less, preferably 3 parts by mass or less, based on 100 parts by mass of the main agent.
 本実施形態に係る蓄熱材組成物における余剰水の含有量が上記範囲内にあると、蓄熱材組成物の融点が20~22.5℃の範囲内になりやすく、5℃幅融解潜熱が160J/g以上になりやすい。本実施形態に係る蓄熱材組成物における余剰水の含有量が9質量部を超えると、蓄熱材組成物の蓄熱量が小さくなるおそれがある。 When the content of excess water in the heat storage material composition according to the present embodiment is within the above range, the melting point of the heat storage material composition tends to be in the range of 20 to 22.5 ° C., and the latent heat of melting in a width of 5 ° C. is 160J. It tends to be / g or more. If the content of excess water in the heat storage material composition according to the present embodiment exceeds 9 parts by mass, the heat storage amount of the heat storage material composition may decrease.
 (保湿剤)
 本実施形態に係る蓄熱材組成物は、特定の保湿剤をさらに含むと、主剤が保湿下で保存されるため好ましい。特定の保湿剤は、特定の単量体と、多官能性単量体と、を重合させて得られる。
(Moisturizer)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific moisturizer because the main agent is stored under moisturizer. A specific moisturizer is obtained by polymerizing a specific monomer and a polyfunctional monomer.
  <単量体>
 特定の単量体としては、有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体が用いられる。
<Monomer>
Specific monomers include organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphates, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylic acids, and organic unsaturated sulfonic acids. And at least one monomer selected from the group consisting of organic unsaturated phosphates is used.
 有機不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸及びイタコン酸からなる群より選択される1種以上の不飽和カルボン酸が用いられ、好ましくはアクリル酸が用いられる。 As the organic unsaturated carboxylic acid, for example, one or more unsaturated carboxylic acids selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid are used, and acrylic acid is preferably used.
 有機不飽和スルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸、p-スチレンスルホン酸、スルホエチルメタクリレート、アリルスルホン酸及びメタアリルスルホン酸からなる群より選択される1種以上の有機不飽和スルホン酸が用いられる。 The organic unsaturated sulfonic acid is, for example, one or more selected from the group consisting of 2-acrylamide-2-methylpropanesulfonic acid, p-styrenesulfonic acid, sulfoethylmethacrylate, allylsulfonic acid and metaallylsulfonic acid. Organic unsaturated sulfonic acid is used.
 有機不飽和カルボン酸塩としては、例えば上記不飽和カルボン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記不飽和カルボン酸のアルカリ金属塩としては、例えば、上記不飽和カルボン酸のナトリウム塩が用いられる。上記不飽和カルボン酸のナトリウム塩としては、好ましくは、アクリル酸ナトリウム、メタクリル酸ナトリウムが用いられる。 As the organic unsaturated carboxylic acid salt, for example, an alkali metal salt or an ammonium salt of the above unsaturated carboxylic acid is used. As the alkali metal salt of the unsaturated carboxylic acid, for example, the sodium salt of the unsaturated carboxylic acid is used. As the sodium salt of the unsaturated carboxylic acid, sodium acrylate and sodium methacrylate are preferably used.
 有機不飽和スルホン酸塩としては、例えば、上記有機不飽和スルホン酸のアルカリ金属塩やアンモニウム塩が用いられる。上記有機不飽和スルホン酸のアルカリ金属塩としては、例えば、上記有機不飽和スルホン酸のナトリウム塩が用いられる。 As the organic unsaturated sulfonic acid salt, for example, an alkali metal salt or an ammonium salt of the above organic unsaturated sulfonic acid is used. As the alkali metal salt of the organic unsaturated sulfonic acid, for example, the sodium salt of the organic unsaturated sulfonic acid is used.
 上記特定の単量体は、そのまま重合すると特定の単量体が重合した重合体を形成する。 When the above-mentioned specific monomer is polymerized as it is, a polymer in which the specific monomer is polymerized is formed.
  <多官能性単量体>
 多官能性単量体は、特定の単量体が重合した重合体を架橋させるものである。多官能性単量体としては、例えば、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’-ジメチレンビスアクリルアミド、N,N’-ジメチレンビスメタクリルアミドが用いられ、好ましくはN,N’-メチレンビスアクリルアミド又はN,N’-メチレンビスメタクリルアミドが用いられる。
<Polyfunctional monomer>
The polyfunctional monomer crosslinks a polymer obtained by polymerizing a specific monomer. Examples of the polyfunctional monomer include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-dimethylenebisacrylamide, N, N'-dimethylenebismethacrylate. Is used, preferably N, N'-methylenebisacrylamide or N, N'-methylenebismethacrylamide is used.
 (融点降下剤)
 本実施形態に係る蓄熱材組成物は、特定の融点降下剤をさらに含むと、主剤の融点が降下するため好ましい。融点降下剤としては、例えば、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤が用いられる。
(Melting point lowering agent)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific melting point lowering agent because the melting point of the main agent is lowered. As the melting point lowering agent, for example, at least one melting point selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. A lowering agent is used.
 (過冷却抑制剤)
 本実施形態に係る蓄熱材組成物は、特定の過冷却抑制剤をさらに含むと、主剤の過冷却が抑制されるため好ましい。過冷却抑制剤としては、例えば、ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、二酸化ケイ素、リン酸ドデシルナトリウム、ドデシル硫酸ナトリウム、カルボキシメチルセルロースナトリウム、リグニンスルホン酸、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤が用いられる。
(Supercooling inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific supercooling inhibitor because the supercooling of the main agent is suppressed. The supercooling inhibitor, for example, borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, Silicon, sodium dodecyl phosphate, sodium dodecyl sulfate, sodium carboxymethyl cellulose, lignin sulfonic acid, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkylsulfate, sodium alkylphosphate, At least one supercooling inhibitor selected from the group consisting of potassium alkyl sulfate and potassium alkyl phosphate is used.
 (相分離抑制剤)
 本実施形態に係る蓄熱材組成物は、特定の相分離抑制剤をさらに含むと、主剤の相分離が抑制されるため好ましい。相分離抑制剤としては、例えば、ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及び上記物質の複合物質からなる群より選択される少なくとも1種の相分離抑制剤が用いられる。
(Phase separation inhibitor)
It is preferable that the heat storage material composition according to the present embodiment further contains a specific phase separation inhibitor because the phase separation of the main agent is suppressed. Examples of the phase separation inhibitor include sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, acrylic acid / maleic acid copolymer sodium, and acrylic acid / sulfonic acid-based monomer. Polymer sodium, acrylamide / dimethylaminoethyl methacrylate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, high water absorption resin (SAP), carboxymethyl cellulose (CMC), derivative of CMC, At least one selected from the group consisting of carrageenan, carrageenan derivatives, xanthan gum, xanthan gum derivatives, pectin, pectin derivatives, starch, starch derivatives, konjak, agar, layered silicates, and composites of the above substances. A phase separation inhibitor is used.
 (特性)
 本実施形態に係る蓄熱材組成物は、融点が20~22.5℃の範囲内にあり、建造物の冷暖房の一般的な設定温度よりやや低めの温度領域で融解・凝固が生じる。また、本実施形態に係る蓄熱材組成物は、5℃幅融解潜熱が160J/g以上であり、狭い温度領域内での融解潜熱が大きい。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。
(Characteristic)
The heat storage material composition according to the present embodiment has a melting point in the range of 20 to 22.5 ° C., and melting and solidification occur in a temperature range slightly lower than the general set temperature for heating and cooling of buildings. Further, the heat storage material composition according to the present embodiment has a latent heat of melting at a width of 5 ° C. of 160 J / g or more, and the latent heat of melting in a narrow temperature region is large. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.
 本実施形態に係る蓄熱材組成物は、5℃幅融解潜熱が160J/g以上、好ましくは170~220J/g、より好ましくは180~220J/g、さらに好ましくは190~220J/g、特に好ましくは200~220J/gである。このため、本実施形態に係る蓄熱材組成物は、建造物の冷暖房用の蓄熱システムの潜熱蓄熱材組成物として好適である。 The heat storage material composition according to the present embodiment has a 5 ° C. width melting latent heat of 160 J / g or more, preferably 170 to 220 J / g, more preferably 180 to 220 J / g, still more preferably 190 to 220 J / g, and particularly preferably. Is 200 to 220 J / g. Therefore, the heat storage material composition according to the present embodiment is suitable as a latent heat storage material composition for a heat storage system for heating and cooling a building.
 (発明の効果)
 本実施形態に係る蓄熱材組成物によれば、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上である蓄熱材組成物が得られる。
(The invention's effect)
According to the heat storage material composition according to the present embodiment, a heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more can be obtained.
[建築物の冷暖房用の蓄熱システム]
 本実施形態に係る建築物の冷暖房用の蓄熱システムは、上記本実施形態に係る蓄熱材組成物を用いた蓄熱材モジュールを具備する。
[Heat storage system for heating and cooling of buildings]
The heat storage system for heating and cooling a building according to the present embodiment includes a heat storage material module using the heat storage material composition according to the present embodiment.
 (蓄熱材モジュール)
 蓄熱材モジュールとしては、例えば、前記蓄熱材組成物を十分な密封性を有する容器に充填させた蓄熱材パックからなり、この蓄熱材パックを単数ないしは複数積層させるとともに、適切な流路を設け、モジュール化したものが用いられる。蓄熱材パックに用いる容器としては、例えば、アルミシートに樹脂製シートを積層して形成されたアルミパックシートを熱溶着することで形成されたアルミパック等が挙げられる。蓄熱材モジュールは、建造物中の空間を区切る床面、壁面、天井面の少なくとも一部に設置される。
(Heat storage material module)
The heat storage material module is composed of, for example, a heat storage material pack in which the heat storage material composition is filled in a container having sufficient sealing property, and one or more of the heat storage material packs are laminated and an appropriate flow path is provided. Modular ones are used. Examples of the container used for the heat storage material pack include an aluminum pack formed by heat-welding an aluminum pack sheet formed by laminating a resin sheet on an aluminum sheet. The heat storage module is installed on at least a part of the floor, wall surface, and ceiling surface that divides the space in the building.
 このように設置された蓄熱材モジュールは、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)される。例えば、昼間においては、蓄熱材モジュール中の蓄熱材組成物は、建造物中の空間から得た熱によって融解し、その分のエンタルピーを蓄熱材組成物の内部に保留する。その後、夜間に外気温度が下がってくると、融解していた蓄熱材組成物は凝固し、建造物中の空間へ熱を放出する。このように、蓄熱材モジュールを建物内に設置すると、蓄熱材組成物の融解・凝固の作用により、冷暖房のためのエネルギー負荷を低減することができる。 The heat storage material module installed in this way is stored (cold) by heat exchange between the module surface and the atmosphere that ventilates the module surface, solar heat by solar radiation, and an air conditioning system that uses nighttime power. For example, in the daytime, the heat storage material composition in the heat storage material module is melted by the heat obtained from the space in the building, and the enthalpy corresponding to the heat is retained inside the heat storage material composition. After that, when the outside air temperature drops at night, the melted heat storage material composition solidifies and releases heat to the space inside the building. When the heat storage material module is installed in the building in this way, the energy load for heating and cooling can be reduced by the action of melting and solidifying the heat storage material composition.
 (発明の効果)
 本実施形態に係る蓄熱材システムによれば、モジュール表面とこのモジュール表面を通気した雰囲気との熱交換、日射による日射熱、夜間電力を利用した空調システム等によって蓄熱(蓄冷)されるため、冷暖房のためのエネルギー負荷を低減することができる。
(The invention's effect)
According to the heat storage material system according to the present embodiment, heat is stored (cooled) by heat exchange between the module surface and the atmosphere in which the module surface is ventilated, solar heat by solar radiation, an air conditioning system using nighttime power, and the like. The energy load for can be reduced.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[実施例1](リン酸三ナトリウム12水和物の含有量が略5質量%の場合)
 (蓄熱材組成物の作製)
 はじめに、NaSO・10HO(キシダ化学株式会社製、特級)と、NaHPO・12HO(キシダ化学株式会社製、特級)と、NaCO・10HO(キシダ化学株式会社製、特級)とを用意した。また、NaPO・12HO(キシダ化学株式会社製、特級)も用意した。
 次に、20mlのガラス製サンプル瓶に、NaSO・10HOと、NaHPO・12HOと、NaCO・10HOと、NaPO・12HOと、純水とを、合計約5gになるように所定量混合した。
 なお、NaSO・10HO、NaHPO・12HO、NaCO・10HO、NaPO・12HO及び純水の量は、得られる蓄熱材組成物の組成が表1に示す組成になるような量で配合した。蓄熱材組成物は、主剤中のNaPO・12HOの含有量が略5質量%になるように調製した。
 また、三種組成物100質量%中のNaSO・10HOの含有量X質量%、NaHPO・12HOの含有量Y質量%、及びNaCO・10HOの含有量Z質量%は、表1に示すとおりであった。
 得られた混合物を50℃以上で湯煎したところ、蓄熱材組成物が得られた(試料No.A6)。
[Example 1] (When the content of trisodium phosphate dodecahydrate is approximately 5% by mass)
(Preparation of heat storage material composition)
First, Na 2 SO 4・ 10H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), Na 2 HPO 4・ 12H 2 O (manufactured by Kishida Chemical Co., Ltd., special grade), and Na 2 CO 3・ 10H 2 O (Kishida) Made by Chemical Co., Ltd., special grade) was prepared. Further, Na 3 PO 4 · 12H 2 O ( Kishida Chemical Co., Ltd., special grade) were also prepared.
Next, in a 20 ml glass sample bottle, Na 2 SO 4・ 10H 2 O, Na 2 HPO 4・ 12H 2 O, Na 2 CO 3・ 10H 2 O, and Na 3 PO 4・ 12H 2 O , Pure water and a predetermined amount were mixed so as to have a total of about 5 g.
The amounts of Na 2 SO 4・ 10H 2 O, Na 2 HPO 4・ 12H 2 O, Na 2 CO 3・ 10H 2 O, Na 3 PO 4・ 12H 2 O and pure water are the amounts of the obtained heat storage composition. Was blended in an amount such that the composition of was as shown in Table 1. Heat storage material composition, the content of Na 3 PO 4 · 12H 2 O in the main agent was prepared so as to be approximately 5% by weight.
The content of Na 2 SO 4 · 10H 2 O in three kinds composition 100 wt% X mass%, Na 2 HPO 4 · 12H 2 O content of Y weight percent, and Na 2 CO 3 · 10H 2 O in The content Z mass% was as shown in Table 1.
When the obtained mixture was boiled in hot water at 50 ° C. or higher, a heat storage material composition was obtained (Sample No. A6).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (融点及び5℃幅融解潜熱の測定)
 蓄熱材組成物から約20mg試料を採取し、DSC(示差走査熱量計)を行い、蓄熱材組成物の融解下限温度T及び融解上限温度Tを測定した。得られた融解下限温度Tを融点とした。
 また、DSCの吸熱ピークを用い、ある温度T℃からT+5℃における蓄熱量の総量を算出した。そして、Tの値を変化させた場合の蓄熱量の総量の変化を求め、その場合の蓄熱量の総量が最大となる値を5℃幅融解潜熱とした。
 融点及び5℃幅融解潜熱の結果を表1に示す。
(Measurement of melting point and latent heat of melting at 5 ° C)
Were taken about 20mg sample from the heat storage material composition, performs DSC (differential scanning calorimetry) was measured melting lower limit temperature T s and the melting maximum temperature T f of the heat storage material composition. The obtained lower limit melting temperature T s was used as the melting point.
In addition, the total amount of heat storage at a certain temperature T 1 ° C. to T 1 + 5 ° C. was calculated using the endothermic peak of DSC. Then, the change in the total amount of heat storage when the value of T 1 was changed was obtained, and the value at which the total amount of heat storage in that case was maximized was defined as the latent heat of melting at 5 ° C.
Table 1 shows the results of melting point and latent heat of melting at 5 ° C.
 (式(5-1)~(5-7)の充足性)
 また、表1には、下記式(5-2)~(5-7)の各左辺の計算結果及び、下記式(5-1)~(5-7)の充足性についても示す。なお、試料No.A6は、下記式(5-1)を充足している。表1では、データが下記式(5-1)~(5-7)を充足する場合を○、充足しない場合を×で示す。
(Satisfiability of equations (5-1) to (5-7))
Table 1 also shows the calculation results of the left sides of the following formulas (5-2) to (5-7) and the satisfiability of the following formulas (5-1) to (5-7). In addition, sample No. A6 satisfies the following equation (5-1). In Table 1, the case where the data satisfies the following equations (5-1) to (5-7) is indicated by ◯, and the case where the data is not satisfied is indicated by ×.
[数47]
   X+Y+Z+W=100               (5-1)
[数48]
   X-3.1304Y+5.1304Z≧0       (5-2)
[数49]
   X-0.2179Y-0.2179Z≧0       (5-3)
[数50]
   X+10.5000Y-8.5000Z≧0      (5-4)
[数51]
   X-0.4179Y-0.4179Z≦0       (5-5)
[数52]
   X+0.5837Y+1.4163Z-83.176≧0(5-6)
[数53]
   4.8≦W≦15.2                (5-7)
[Number 47]
X + Y + Z + W = 100 (5-1)
[Number 48]
X-3.1304Y + 5.1304Z ≧ 0 (5-2)
[Number 49]
X-0.2179Y-0.2179Z ≧ 0 (5-3)
[Number 50]
X + 10.5000Y-85000Z ≧ 0 (5-4)
[Number 51]
X-0.4179Y-0.4179Z ≦ 0 (5-5)
[Number 52]
X + 0.5837Y + 1.4163Z-83.176 ≧ 0 (5-6)
[Number 53]
4.8 ≤ W ≤ 15.2 (5-7)
[実施例2~15、比較例1~5](リン酸三ナトリウム12水和物の含有量が略5質量%の場合)
 得られる蓄熱材組成物が表1に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.A1~A5(比較例1~5)、A7~A20(実施例2~15))。蓄熱材組成物は、主剤中のNaPO・12HOの含有量が略5質量%になるように調製した。
[Examples 2 to 15, Comparative Examples 1 to 5] (when the content of trisodium phosphate dodecahydrate is approximately 5% by mass)
A heat storage material composition was obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 1 (Sample Nos. A1 to A5 (Comparison). Examples 1 to 5), A7 to A20 (Examples 2 to 15)). Heat storage material composition, the content of Na 3 PO 4 · 12H 2 O in the main agent was prepared so as to be approximately 5% by weight.
 (融点及び5℃幅融解潜熱の測定)
 試料No.A1~A5、A7~A20につき、実施例1と同様にして、融点及び5℃幅融解潜熱を測定した。結果を表1に示す。
(Measurement of melting point and latent heat of melting at 5 ° C)
Sample No. For A1 to A5 and A7 to A20, the melting point and the latent heat of melting in a width of 5 ° C. were measured in the same manner as in Example 1. The results are shown in Table 1.
 (式(5-1)~(5-7)の充足性)
 また、試料No.A1~A5、A7~A20につき、実施例1と同様にして、上記式(5-2)~(5-7)の各左辺の計算結果及び、上記式(5-1)~(5-7)の充足性を調べた。なお、試料No.A1~A5、A7~A20は、下記式(5-1)を充足している。結果を表1に示す。
(Satisfiability of equations (5-1) to (5-7))
In addition, sample No. For A1 to A5 and A7 to A20, the calculation results of the left sides of the above formulas (5-2) to (5-7) and the above formulas (5-1) to (5-7) are the same as in Example 1. ) Satisfiability was investigated. In addition, sample No. A1 to A5 and A7 to A20 satisfy the following formula (5-1). The results are shown in Table 1.
 (三元系組成図)
 図5は、主剤におけるリン酸三ナトリウム12水和物の含有量が略5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。実施例1の試料No.A6を含めた試料No.A1~A20の蓄熱材組成物の主剤を構成する三種組成物の組成を図5にプロットした。
 図5中、試料No.A6~A20の蓄熱材組成物のプロットを記号○で示す。また、試料No.A1~A5の蓄熱材組成物のプロットを記号×で示す。
 図5において、矩形の領域Rは、上記式(1-1)~(1-4)を満たす領域である。記号○で示した試料No.A6~A20は、矩形の領域R内に存在する。
(Three-dimensional composition diagram)
FIG. 5 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 5% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. Sample No. of Example 1. Sample No. including A6. The compositions of the three compositions constituting the main component of the heat storage material compositions A1 to A20 are plotted in FIG.
In FIG. 5, the sample No. The plots of the heat storage material compositions of A6 to A20 are indicated by symbols ◯. In addition, sample No. The plots of the heat storage material compositions of A1 to A5 are indicated by the symbol x.
In FIG. 5, the rectangular region R 1 is a region satisfying the above equations (1-1) to (1-4). Sample No. indicated by the symbol ○. A6 ~ A20 are present within a rectangular region R 1.
 表1及び図5より、図5の領域R内にある試料No.A6~A20は、融点及び5℃幅融解潜熱が良好であることが分かった。具体的には、試料No.A6~A20の蓄熱材組成物は、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になっていることが分かった。 From Table 1 and Figure 5, the sample in the region R 1 of FIG. 5 No. It was found that A6 to A20 had good melting points and latent heat of melting at a width of 5 ° C. Specifically, the sample No. It was found that the heat storage material compositions of A6 to A20 had a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more.
 一方、表1及び図5より、図5の領域R外にある試料No.A1~A5は、融点及び5℃幅融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, from Table 1 and FIG. 5, the sample is outside the region R 1 of FIG. 5 No. It was found that at least one of the melting point and the latent heat of melting at 5 ° C. was not good for A1 to A5.
[実施例16~33、比較例6~12](リン酸三ナトリウム12水和物の含有量が略7.5質量%の場合)
 得られる蓄熱材組成物が表2に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.B1~B7(比較例6~12)、No.B8~B25(実施例16~33))。蓄熱材組成物は、主剤中のNaPO・12HOの含有量が略7.5質量%になるように調製した。
[Examples 16 to 33, Comparative Examples 6 to 12] (when the content of trisodium phosphate dodecahydrate is approximately 7.5% by mass)
Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 2 (Sample Nos. B1 to B7 (Comparison). Examples 6 to 12), No. B8 to B25 (Examples 16 to 33)). Heat storage material composition, the content of Na 3 PO 4 · 12H 2 O in the main agent was prepared so as to be approximately 7.5 wt%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (融点及び5℃幅融解潜熱の測定)
 試料No.B1~B25につき、実施例1と同様にして、融点及び5℃幅融解潜熱を測定した。結果を表2に示す。
(Measurement of melting point and latent heat of melting at 5 ° C)
Sample No. For B1 to B25, the melting point and the latent heat of melting in a width of 5 ° C. were measured in the same manner as in Example 1. The results are shown in Table 2.
 (式(5-1)~(5-7)の充足性)
 また、表2には、上記式(5-2)~(5-7)の各左辺の計算結果及び、上記式(5-1)~(5-7)の充足性についても示す。なお、試料No.B1~B25は、上記式(5-1)を充足している。表2では、データが上記式(5-1)~(5-7)を充足する場合を○、充足しない場合を×で示す。
(Satisfiability of equations (5-1) to (5-7))
Table 2 also shows the calculation results of the left sides of the above formulas (5-2) to (5-7) and the sufficiency of the above formulas (5-1) to (5-7). In addition, sample No. B1 to B25 satisfy the above formula (5-1). In Table 2, the case where the data satisfies the above equations (5-1) to (5-7) is indicated by ◯, and the case where the data is not satisfied is indicated by ×.
 (三元系組成図)
 図6は、主剤におけるリン酸三ナトリウム12水和物の含有量が略7.5質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。試料No.B1~B25の蓄熱材組成物の主剤を構成する三種組成物の組成を図6にプロットした。
 図6中、試料No.B8~B25の蓄熱材組成物のプロットを記号○で示す。また、試料No.B1~B7の蓄熱材組成物のプロットを記号×で示す。
 図6において、矩形の領域Rは、上記式(2-1)~(2-4)を満たす領域である。記号○で示した試料No.B8~B25は、矩形の領域R内に存在する。
(Three-dimensional composition diagram)
FIG. 6 shows sodium sulfate tetrahydrate and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 7.5% by mass. , And a ternary composition diagram of the content of sodium carbonate decahydrate. Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions of B1 to B25 are plotted in FIG.
In FIG. 6, sample No. The plots of the heat storage material compositions of B8 to B25 are indicated by symbols ◯. In addition, sample No. The plots of the heat storage material compositions of B1 to B7 are indicated by the symbol x.
In FIG. 6, the rectangular region R 2 is a region satisfying the above equations (2-1) to (2-4). Sample No. indicated by the symbol ○. B8 ~ B25 is present in a rectangular region R 2.
 表2及び図6より、図6の領域R内にある試料No.B8~B25は、融点及び5℃幅融解潜熱が良好であることが分かった。具体的には、試料No.B8~B25の蓄熱材組成物は、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になっていることが分かった。 From Table 2 and Figure 6, the sample in the region R 2 in FIG. 6 No. It was found that B8 to B25 had good melting points and latent heat of melting at a width of 5 ° C. Specifically, the sample No. It was found that the heat storage material compositions of B8 to B25 had a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more.
 一方、表2及び図6より、図6の領域R外にある試料No.B1~B7は、融点及び5℃幅融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, from Table 2 and Figure 6, the sample is in the region R 2 out of 6 No. It was found that at least one of the melting point and the latent heat of melting at 5 ° C. was not good for B1 to B7.
[実施例34~55、比較例13~23](リン酸三ナトリウム12水和物の含有量が略10質量%の場合)
 得られる蓄熱材組成物が表3及び表4に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.C1~C11(比較例13~23)、試料No.C12~C33(実施例34~55))。蓄熱材組成物は、主剤中のNaPO・12HOの含有量が略10質量%になるように調製した。
[Examples 34 to 55, Comparative Examples 13 to 23] (when the content of trisodium phosphate dodecahydrate is approximately 10% by mass)
A heat storage material composition was obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the compositions shown in Tables 3 and 4 (Sample Nos. C1 to C1). C11 (Comparative Examples 13 to 23), Sample Nos. C12 to C33 (Examples 34 to 55)). Heat storage material composition, the content of Na 3 PO 4 · 12H 2 O in the main agent was prepared so as to be approximately 10 wt%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (融点及び5℃幅融解潜熱の測定)
 試料No.C1~C33につき、実施例1と同様にして、融点及び5℃幅融解潜熱を測定した。結果を表3及び表4に示す。
(Measurement of melting point and latent heat of melting at 5 ° C)
Sample No. For C1 to C33, the melting point and the latent heat of melting at a width of 5 ° C. were measured in the same manner as in Example 1. The results are shown in Tables 3 and 4.
 (式(5-1)~(5-7)の充足性)
 また、表3及び表4には、上記式(5-2)~(5-7)の各左辺の計算結果及び、上記式(5-1)~(5-7)の充足性についても示す。なお、試料No.C1~C33は、上記式(5-1)を充足している。表3及び表4では、データが上記式(5-1)~(5-7)を充足する場合を○、充足しない場合を×で示す。
(Satisfiability of equations (5-1) to (5-7))
In addition, Tables 3 and 4 also show the calculation results of the left sides of the above formulas (5-2) to (5-7) and the satisfiability of the above formulas (5-1) to (5-7). .. In addition, sample No. C1 to C33 satisfy the above formula (5-1). In Tables 3 and 4, the cases where the data satisfy the above equations (5-1) to (5-7) are indicated by ◯, and the cases where the data are not satisfied are indicated by ×.
 (三元系組成図)
 図7は、主剤におけるリン酸三ナトリウム12水和物の含有量が略10質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。試料No.C1~C33の蓄熱材組成物の主剤を構成する三種組成物の組成を図7にプロットした。
 図7中、試料No.C12~C33の蓄熱材組成物のプロットを記号○で示す。また、試料No.C1~C11の蓄熱材組成物のプロットを記号×で示す。
 図7において、矩形の領域Rは、上記式(3-1)~(3-4)を満たす領域である。記号○で示した試料No.C12~C33は、矩形の領域R内に存在する。
(Three-dimensional composition diagram)
FIG. 7 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 10% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions of C1 to C33 are plotted in FIG.
In FIG. 7, the sample No. The plots of the heat storage material compositions of C12 to C33 are indicated by symbols ◯. In addition, sample No. The plots of the heat storage material compositions of C1 to C11 are indicated by the symbol x.
7, the rectangular area R 3 is an area that satisfies the above formula (3-1) to (3-4). Sample No. indicated by the symbol ○. C12 ~ C33 are present within a rectangular area R 3.
 表3、表4及び図7より、図7の領域R内にある試料No.C12~C33は、融点及び5℃幅融解潜熱が良好であることが分かった。具体的には、試料No.C12~C33の蓄熱材組成物は、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になっていることが分かった。 Table 3, from Table 4 and FIG. 7, the sample in the region R 3 in FIG. 7 No. It was found that C12 to C33 had good melting points and latent heat of melting at a width of 5 ° C. Specifically, the sample No. It was found that the heat storage material compositions of C12 to C33 had a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more.
 一方、表3、表4及び図7より、図7の領域R外にある試料No.C1~C11は、融点及び5℃幅融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, Table 3, samples there from Table 4 and FIG. 7, the outer region R 3 in FIG. 7 No. It was found that at least one of the melting point and the latent heat of melting at 5 ° C. was not good for C1 to C11.
[実施例56~62、比較例24~33](リン酸三ナトリウム12水和物の含有量が略15質量%の場合)
 得られる蓄熱材組成物が表5に示す組成になるように、各成分の配合量を変えた以外は実施例1と同様にして蓄熱材組成物を得た(試料No.D1~D10(比較例24~33)、試料No.D11~D17(実施例56~62))。蓄熱材組成物は、主剤中のNaPO・12HOの含有量が略15質量%になるように調製した。
[Examples 56 to 62, Comparative Examples 24 to 33] (when the content of trisodium phosphate dodecahydrate is approximately 15% by mass)
Heat storage material compositions were obtained in the same manner as in Example 1 except that the blending amount of each component was changed so that the obtained heat storage material composition had the composition shown in Table 5 (Sample Nos. D1 to D10 (Comparison). Examples 24 to 33), Sample Nos. D11 to D17 (Examples 56 to 62)). Heat storage material composition, the content of Na 3 PO 4 · 12H 2 O in the main agent was prepared so as to be approximately 15 wt%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (融点及び5℃幅融解潜熱の測定)
 試料No.D1~D17につき、実施例1と同様にして、融点及び5℃幅融解潜熱を測定した。結果を表5に示す。
(Measurement of melting point and latent heat of melting at 5 ° C)
Sample No. For D1 to D17, the melting point and the latent heat of melting in a width of 5 ° C. were measured in the same manner as in Example 1. The results are shown in Table 5.
 (式(5-1)~(5-7)の充足性)
 また、表5には、上記式(5-2)~(5-7)の各左辺の計算結果及び、上記式(5-1)~(5-7)の充足性についても示す。なお、試料No.D1~D17は、上記式(5-1)を充足している。表5では、データが上記式(5-1)~(5-7)を充足する場合を○、充足しない場合を×で示す。
(Satisfiability of equations (5-1) to (5-7))
Table 5 also shows the calculation results of the left sides of the above formulas (5-2) to (5-7) and the satisfiability of the above formulas (5-1) to (5-7). In addition, sample No. D1 to D17 satisfy the above formula (5-1). In Table 5, the case where the data satisfies the above equations (5-1) to (5-7) is indicated by ◯, and the case where the data is not satisfied is indicated by ×.
 (三元系組成図)
 図8は、主剤におけるリン酸三ナトリウム12水和物の含有量が略15質量%のときの、三種組成物中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、及び炭酸ナトリウム10水和物の含有量の三元系組成図である。試料No.D1~D17の蓄熱材組成物の主剤を構成する三種組成物の組成を図8にプロットした。
 図8中、試料No.D11~D17の蓄熱材組成物のプロットを記号○で示す。また、試料No.D1~D10の蓄熱材組成物のプロットを記号×で示す。
 図8において、矩形の領域Rは、上記式(4-1)~(4-4)を満たす領域である。記号○で示した試料No.D11~D17は、矩形の領域R内に存在する。
(Three-dimensional composition diagram)
FIG. 8 shows sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, and disodium hydrogen phosphate dodecahydrate in the three compositions when the content of trisodium phosphate dodecahydrate in the main agent is approximately 15% by mass. It is a ternary composition diagram of the content of sodium carbonate decahydrate. Sample No. The compositions of the three compositions constituting the main component of the heat storage material compositions D1 to D17 are plotted in FIG.
In FIG. 8, the sample No. The plots of the heat storage material compositions of D11 to D17 are indicated by symbols ◯. In addition, sample No. The plots of the heat storage material compositions of D1 to D10 are indicated by the symbol x.
8, a rectangular area R 4 is a region that satisfies the above formula (4-1) to (4-4). Sample No. indicated by the symbol ○. D11 ~ D17 are present in the rectangular area R 4.
 表5及び図8より、図8の領域R内にある試料No.D11~D17は、融点及び5℃幅融解潜熱が良好であることが分かった。具体的には、試料No.D11~D17の蓄熱材組成物は、融点が20~22.5℃の範囲内にあり、5℃幅融解潜熱が160J/g以上になっていることが分かった。 From Table 5 and FIG. 8, the sample in the region R 4 in FIG. 8 No. It was found that D11 to D17 had good melting points and latent heat of melting at a width of 5 ° C. Specifically, the sample No. It was found that the heat storage material compositions of D11 to D17 had a melting point in the range of 20 to 22.5 ° C. and a latent heat of melting in a width of 5 ° C. of 160 J / g or more.
 一方、表5及び図8より、図8の領域R外にある試料No.D1~D10は、融点及び5℃幅融解潜熱の少なくとも一方が良好でないことが分かった。 On the other hand, from Table 5 and FIG. 8, the sample in the region R 4 outside the 8 No. It was found that at least one of the melting point and the latent heat of melting at 5 ° C. was not good for D1 to D10.
 (四元系組成図)
 図9は、主剤中の、硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及びリン酸三ナトリウム12水和物の含有量の四元系組成図の一例である。具体的には、図9は、試料No.A1~A20、B1~B25、C1~C33、及びD1~D17について、主剤中の硫酸ナトリウム10水和物、リン酸三ナトリウム12水和物等の組成を四元系組成図に示したものである。なお、図9中、NS、NH、及びNCは図7と同じであり、NPはリン酸三ナトリウム12水和物が100%になる点を示す。また、表1~5で「図中の記号」が○の試料を図11で○とプロットし、表1~5で「図中の記号」が×の試料を図11で×とプロットした。
(Quaternary composition diagram)
FIG. 9 is a quaternary composition diagram of the contents of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate in the main agent. This is an example. Specifically, FIG. 9 shows the sample No. For A1 to A20, B1 to B25, C1 to C33, and D1 to D17, the compositions of sodium sulfate decahydrate, trisodium phosphate dodecahydrate, etc. in the main agent are shown in the quaternary composition diagram. is there. In FIG. 9, NS, NH, and NC are the same as in FIG. 7, and NP indicates that trisodium phosphate dodecahydrate is 100%. Further, in Tables 1 to 5, the sample having the “symbol in the figure” of ○ was plotted as ○ in FIG. 11, and the sample having the “symbol in the figure” of × in Tables 1 to 5 was plotted as × in FIG.
 図9中、式(5-1)~(5-7)を略満たす三次元領域をQとして示した。図9において、三次元領域Q内が、式(5-1)~(5-7)を略満たす領域になっている。試料No.A1~A20、B1~B25、C1~C33、及びD1~D17のうち、○でプロットされた試料は、領域Qの範囲内に存在することが分かる。具体的には、実施例1~62は、領域Qの範囲内に存在することが分かる。 In FIG. 9, the three-dimensional region substantially satisfying the equations (5-1) to (5-7) is shown as Q. In FIG. 9, the three-dimensional region Q is a region that substantially satisfies the equations (5-1) to (5-7). Sample No. It can be seen that among A1 to A20, B1 to B25, C1 to C33, and D1 to D17, the samples plotted with ◯ exist within the range of region Q. Specifically, it can be seen that Examples 1 to 62 exist within the range of region Q.
 三次元領域をQについて、詳細に説明する。図10は、図9中の領域Qを拡大した図である。領域Qは、五角柱状の領域であり、対向して配置された五角形の平面FBCONと平面EADPMとの間を、平面ABCD、平面DCOP、平面MNOP、平面EFNM及び平面ABFEで囲んだ形状になっている。なお、図10に示す平面EFGH及び平面IJKLは、共に、平面ABCD及び平面MNOPと平行な面になっている。 The three-dimensional area will be explained in detail about Q. FIG. 10 is an enlarged view of the region Q in FIG. The region Q is a pentagonal columnar region, and has a shape in which a pentagonal plane FBCON and a plane EADPM arranged opposite to each other are surrounded by a plane ABCD, a plane DCOP, a plane MNOP, a plane EFNM, and a plane ABFE. There is. The plane EFGH and the plane IJKL shown in FIG. 10 are both parallel to the plane ABCD and the plane MNOP.
 平面ABCDは、主剤におけるリン酸三ナトリウム12水和物の含有量が略5質量%のデータの集合体からなる平面を、図9中の点NPから面NS-NC-NHに対して鉛直方向に見たときに観察される平面である。 The plane ABCD is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 5% by mass, in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
 平面EFGHは、主剤におけるリン酸三ナトリウム12水和物の含有量が略7.5質量%のデータの集合体からなる平面を、図9中の点NPから面NS-NC-NHに対して鉛直方向に見たときに観察される平面である。 The plane EFGH is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 7.5% by mass, from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane observed when viewed in the vertical direction.
 平面IJKLは、主剤におけるリン酸三ナトリウム12水和物の含有量が略10質量%のデータの集合体からなる平面を、図9中の点NPから面NS-NC-NHに対して鉛直方向に見たときに観察される平面である。 The plane IJKL is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 10% by mass in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
 平面MNOPは、主剤におけるリン酸三ナトリウム12水和物の含有量が略15質量%のデータの集合体からなる平面を、図9中の点NPから面NS-NC-NHに対して鉛直方向に見たときに観察される平面である。 The plane MNOP is a plane composed of a collection of data in which the content of trisodium phosphate 12hydrate in the main agent is approximately 15% by mass in the vertical direction from the point NP in FIG. 9 to the plane NS-NC-NH. It is a plane that is observed when viewed from.
 上記のように、試料No.A1~A20、B1~B25、C1~C33、及びD1~D17のうち、実施例1~62は、図9及び図10に示す領域Qの範囲内に存在する。 As mentioned above, sample No. Of A1 to A20, B1 to B25, C1 to C33, and D1 to D17, Examples 1 to 62 exist within the range of the region Q shown in FIGS. 9 and 10.
  <リン酸三ナトリウム12水和物の含有量が略5質量%の場合>
 図11は、図9の全プロットのうち、図10の平面ABCDと略同一平面にあるプロットのみを示した図である。具体的には、試料No.A1~A20をプロットしたものである。
<When the content of trisodium phosphate dodecahydrate is approximately 5% by mass>
FIG. 11 is a diagram showing only the plots in substantially the same plane as the plane ABCD of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of A1 to A20.
 図11中の平面ABCDは、図10中の平面ABCDに相当する。図11中の平面ABCD内の領域Rは、式(1-1)~(1-4)を満たす領域である。試料No.A1~A20のうち○でプロットされた試料は、領域Rに含まれる。 The plane ABCD in FIG. 11 corresponds to the plane ABCD in FIG. Region R 5 in the plane ABCD in FIG. 11 is a region satisfying the equation (1-1) to (1-4). Sample No. Samples plotted in ○ Of A1 ~ A20 are included in the region R 5.
  <リン酸三ナトリウム12水和物の含有量が略7.5質量%の場合>
 図12は、図9の全プロットのうち、図10の平面EFGHと略同一平面にあるプロットのみを示した図である。具体的には、試料No.B1~B25をプロットしたものである。
<When the content of trisodium phosphate dodecahydrate is approximately 7.5% by mass>
FIG. 12 is a diagram showing only the plots in substantially the same plane as the plane EFGH of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of B1 to B25.
 図12中の平面EFGHは、図10中の平面EFGHに相当する。図12中の平面EFGH内の領域Rは、式(2-1)~(2-4)を満たす領域である。試料No.B1~B25のうち○でプロットされた試料は、領域Rに含まれる。 The plane EFGH in FIG. 12 corresponds to the plane EFGH in FIG. The region R 6 in the plane EFGH in FIG. 12 is a region satisfying equations (2-1) to (2-4). Sample No. Samples plotted in ○ Among B1 ~ B25 are included in the region R 6.
  <リン酸三ナトリウム12水和物の含有量が略10質量%の場合>
 図13は、図9の全プロットのうち、図10の平面IJKLと略同一平面にあるプロットのみを示した図である。具体的には、試料No.C1~C33をプロットしたものである。
<When the content of trisodium phosphate dodecahydrate is approximately 10% by mass>
FIG. 13 is a diagram showing only the plots in substantially the same plane as the plane IJKL of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of C1 to C33.
 図13中の平面IJKLは、図10中の平面IJKLに相当する。図13中の平面IJKL内の領域Rは、式(3-1)~(3-4)を満たす領域である。試料No.C1~C33のうち○でプロットされた試料は、領域Rに含まれる。 The plane IJKL in FIG. 13 corresponds to the plane IJKL in FIG. The region R 7 in the plane IJKL in FIG. 13 is a region satisfying equations (3-1) to (3-4). Sample No. Samples plotted in ○ Of C1 ~ C33 are included in the region R 7.
  <リン酸三ナトリウム12水和物の含有量が略15質量%の場合>
 図14は、図9の全プロットのうち、図10の平面MNOPと略同一平面にあるプロットのみを示した図である。具体的には、試料No.D1~D17をプロットしたものである。
<When the content of trisodium phosphate dodecahydrate is approximately 15% by mass>
FIG. 14 is a diagram showing only plots that are substantially in the same plane as the plane MNOP of FIG. 10 among all the plots of FIG. Specifically, the sample No. It is a plot of D1 to D17.
 図14中の平面MNOPは、図10中の平面MNOPに相当する。図14中の平面MNOP内の領域Rは、式(4-1)~(4-4)を満たす領域である。試料No.D1~D17のうち○でプロットされた試料は、領域Rに含まれる。 The plane MNOP in FIG. 14 corresponds to the plane MNOP in FIG. The region R 8 in the plane MNOP in FIG. 14 is a region satisfying equations (4-1) to (4-4). Sample No. Samples plotted in ○ among D1 ~ D17 are included in the region R 8.
 特願2019-103776号(出願日:2019年6月3日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2019-103776 (application date: June 3, 2019) are incorporated here.
 以上、本発明を実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 Although the present invention has been described above by way of examples, the present invention is not limited to these, and various modifications can be made within the scope of the gist of the present invention.
 本実施形態に係る蓄熱材組成物によれば、融点が20~22.5℃の範囲内にあり、狭い温度領域内での融解潜熱が大きい蓄熱材組成物及び建築物の冷暖房用の蓄熱システムを提供することができる。 According to the heat storage material composition according to the present embodiment, the heat storage material composition having a melting point in the range of 20 to 22.5 ° C. and a large latent heat of melting in a narrow temperature range and a heat storage system for heating and cooling of a building. Can be provided.
 融点
 融解上限温度
5L 5℃幅下限温度
5H 5℃幅上限温度
 全体融解潜熱
 5℃幅融解潜熱
T m melting point T f melting the upper limit temperature T 5L 5 ° C. width lower limit temperature T 5H 5 ° C. width maximum temperature H T total latent heat of fusion H 5 5 ° C. width latent heat of fusion

Claims (11)

  1.  硫酸ナトリウム10水和物、リン酸水素二ナトリウム12水和物、炭酸ナトリウム10水和物、及び、リン酸三ナトリウム12水和物からなる主剤を含み、
     融点が20~22.5℃の範囲内にあり、
     5℃幅融解潜熱が160J/g以上であることを特徴とする蓄熱材組成物。
    It contains a main agent consisting of sodium sulfate tetrahydrate, disodium hydrogen phosphate dodecahydrate, sodium carbonate decahydrate, and trisodium phosphate dodecahydrate.
    It has a melting point in the range of 20-22.5 ° C and
    A heat storage material composition having a latent heat of melting at a width of 5 ° C. of 160 J / g or more.
  2.  前記主剤中における前記リン酸三ナトリウム12水和物の含有量が4.5~5.5質量%の場合において、
     前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(1-1)~(1-4)を満たすことを特徴とする請求項1に記載の蓄熱材組成物。
    [数1]
       X+Y+Z=100             (1-1)
    [数2]
       X+2.00Y-124.21≦0      (1-2)
    [数3]
       X+2.00Y-89.47≦0       (1-3)
    [数4]
       17.89≦X≦29.47         (1-4)
    When the content of the trisodium phosphate dodecahydrate in the main agent is 4.5 to 5.5% by mass,
    The content of the sodium sulfate decahydrate in 100% by mass of the three-kind composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate is X. When the content of mass%, the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is Z mass%, X, Y, and Z are the following formulas. The heat storage material composition according to claim 1, wherein the heat storage material composition satisfies (1-1) to (1-4).
    [Number 1]
    X + Y + Z = 100 (1-1)
    [Number 2]
    X + 2.00Y-124.21 ≦ 0 (1-2)
    [Number 3]
    X + 2.00Y-89.47 ≦ 0 (1-3)
    [Number 4]
    17.89 ≤ X ≤ 29.47 (1-4)
  3.  前記主剤中における前記リン酸三ナトリウム12水和物の含有量が7.0~8.0質量%の場合において、
     前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(2-1)~(2-4)を満たすことを特徴とする請求項1に記載の蓄熱材組成物。
    [数5]
       X+Y+Z=100             (2-1)
    [数6]
       X+2.00Y-124.21≦0      (2-2)
    [数7]
       X+2.00Y-89.47≦0       (2-3)
    [数8]
       17.89≦X≦29.47         (2-4)
    When the content of the trisodium phosphate dodecahydrate in the main agent is 7.0 to 8.0% by mass,
    The content of the sodium sulfate decahydrate in 100% by mass of the three-kind composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate is X. When the content of mass%, the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is Z mass%, X, Y, and Z are the following formulas. The heat storage material composition according to claim 1, wherein the heat storage material composition satisfies (2-1) to (2-4).
    [Number 5]
    X + Y + Z = 100 (2-1)
    [Number 6]
    X + 2.00Y-124.21 ≦ 0 (2-2)
    [Number 7]
    X + 2.00Y-89.47 ≦ 0 (2-3)
    [Number 8]
    17.89 ≤ X ≤ 29.47 (2-4)
  4.  前記主剤中における前記リン酸三ナトリウム12水和物の含有量が9.5~10.5質量%の場合において、
     前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(3-1)~(3-4)を満たすことを特徴とする請求項1に記載の蓄熱材組成物。
    [数9]
       X+Y+Z=100             (3-1)
    [数10]
       X+2.00Y-118.33≦0      (3-2)
    [数11]
       X+2.00Y-89.47≦0       (3-3)
    [数12]
       17.89≦X≦29.47         (3-4)
    When the content of the trisodium phosphate dodecahydrate in the main agent is 9.5 to 10.5% by mass,
    The content of the sodium sulfate decahydrate in 100% by mass of the three-kind composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate is X. When the content of mass%, the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is Z mass%, X, Y, and Z are the following formulas. The heat storage material composition according to claim 1, wherein the heat storage material composition satisfies (3-1) to (3-4).
    [Number 9]
    X + Y + Z = 100 (3-1)
    [Number 10]
    X + 2.00Y-118.33 ≦ 0 (3-2)
    [Number 11]
    X + 2.00Y-89.47 ≦ 0 (3-3)
    [Number 12]
    17.89 ≤ X ≤ 29.47 (3-4)
  5.  前記主剤中における前記リン酸三ナトリウム12水和物の含有量が14.5~15.5質量%の場合において、
     前記硫酸ナトリウム10水和物、前記リン酸水素二ナトリウム12水和物、及び前記炭酸ナトリウム10水和物からなる三種組成物100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、及び前記炭酸ナトリウム10水和物の含有量をZ質量%と規定するとき、X、Y、及びZが下記式(4-1)~(4-4)を満たすことを特徴とする請求項1に記載の蓄熱材組成物。
    [数13]
       X+Y+Z=100             (4-1)
    [数14]
       X+2.00Y-105.74≦0      (4-2)
    [数15]
       X+2.00Y-89.47≦0       (4-3)
    [数16]
       17.89≦X≦29.47         (4-4)
    When the content of the trisodium phosphate dodecahydrate in the main agent is 14.5 to 15.5% by mass,
    The content of the sodium sulfate decahydrate in 100% by mass of the three-kind composition consisting of the sodium sulfate decahydrate, the disodium hydrogen phosphate dodecahydrate, and the sodium carbonate decahydrate is X. When the content of mass%, the disodium hydrogen phosphate dodecahydrate is defined as Y mass%, and the content of the sodium carbonate decahydrate is Z mass%, X, Y, and Z are the following formulas. The heat storage material composition according to claim 1, wherein (4-1) to (4-4) are satisfied.
    [Number 13]
    X + Y + Z = 100 (4-1)
    [Number 14]
    X + 2.00Y-105.74≤0 (4-2)
    [Number 15]
    X + 2.00Y-89.47 ≦ 0 (4-3)
    [Number 16]
    17.89 ≤ X ≤ 29.47 (4-4)
  6.  前記主剤100質量%中の、前記硫酸ナトリウム10水和物の含有量をX質量%、前記リン酸水素二ナトリウム12水和物の含有量をY質量%、前記炭酸ナトリウム10水和物の含有量をZ質量%、及び前記リン酸三ナトリウム12水和物の含有量をW質量%と規定するとき、X、Y、Z、及びWが下記式(5-1)~(5-7)を満たすことを特徴とする請求項1に記載の蓄熱材組成物。
    [数17]
       X+Y+Z+W=100           (5-1)
    [数18]
       X-3.1304Y+5.1304Z≧0   (5-2)
    [数19]
       X-0.2179Y-0.2179Z≧0   (5-3)
    [数20]
       X+10.5000Y-8.5000Z≧0  (5-4)
    [数21]
       X-0.4179Y-0.4179Z≦0   (5-5)
    [数22]
       X+0.5837Y+1.4163Z-83.176≧0   (5-6)
    [数23]
       4.8≦W≦15.2            (5-7)
    The content of the sodium sulfate decahydrate in 100% by mass of the main agent is X% by mass, the content of the disodium hydrogen phosphate dodecahydrate is Y% by mass, and the content of the sodium carbonate decahydrate is contained. When the amount is defined as Z mass% and the content of the trisodium phosphate dodecahydrate is defined as W mass%, X, Y, Z, and W are the following formulas (5-1) to (5-7). The heat storage material composition according to claim 1, wherein the heat storage material composition satisfies.
    [Number 17]
    X + Y + Z + W = 100 (5-1)
    [Number 18]
    X-3.1304Y + 5.1304Z ≧ 0 (5-2)
    [Number 19]
    X-0.2179Y-0.2179Z ≧ 0 (5-3)
    [Number 20]
    X + 10.5000Y-85000Z ≧ 0 (5-4)
    [Number 21]
    X-0.4179Y-0.4179Z ≦ 0 (5-5)
    [Number 22]
    X + 0.5837Y + 1.4163Z-83.176 ≧ 0 (5-6)
    [Number 23]
    4.8 ≤ W ≤ 15.2 (5-7)
  7.  有機不飽和カルボン酸、有機不飽和スルホン酸、有機不飽和リン酸、有機不飽和アミド、有機不飽和アルコール、有機不飽和カルボン酸塩、有機不飽和スルホン酸塩、及び有機不飽和リン酸塩からなる群より選択される少なくとも1種の単量体と、
     多官能性単量体と、
     を重合させて得られる保湿剤をさらに含むことを特徴とする請求項1~6のいずれか1項に記載の蓄熱材組成物。
    From organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, organic unsaturated phosphates, organic unsaturated amides, organic unsaturated alcohols, organic unsaturated carboxylic acids, organic unsaturated sulfonic acids, and organic unsaturated phosphates With at least one monomer selected from the group
    With polyfunctional monomers
    The heat storage material composition according to any one of claims 1 to 6, further comprising a moisturizer obtained by polymerizing.
  8.  塩化ナトリウム、塩化カリウム、硝酸ナトリウム、臭化ナトリウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、及び尿素からなる群より選択される少なくとも1種の融点降下剤をさらに含むことを特徴とする請求項1~7のいずれか1項に記載の蓄熱材組成物。 It is characterized by further containing at least one melting point lowering agent selected from the group consisting of sodium chloride, potassium chloride, sodium nitrate, sodium bromide, ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, ammonium phosphate, and urea. The heat storage material composition according to any one of claims 1 to 7.
  9.  ホウ砂Na(OH)・8HO、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化アルミニウム、黒鉛、アルミニウム、二酸化チタン、二酸化ケイ素、リン酸ドデシルナトリウム、ドデシル硫酸ナトリウム、カルボキシメチルセルロースナトリウム、リグニンスルホン酸、ヘクトライト、スメクタイトクレイ、ベントナイト、ラポナイト、プロピレングリコール、エチレングリコール、グリセリン、エチレンジアミン四酢酸、アルキル硫酸ナトリウム、アルキルリン酸ナトリウム、アルキル硫酸カリウム、及びアルキルリン酸カリウムからなる群より選択される少なくとも1種の過冷却抑制剤をさらに含むことを特徴とする請求項1~8のいずれか1項に記載の蓄熱材組成物。 Borax Na 2 B 4 O 5 (OH ) 4 · 8H 2 O, calcium hydroxide, barium hydroxide, strontium hydroxide, aluminum hydroxide, graphite, aluminum, titanium dioxide, silicon dioxide, sodium dodecyl phosphate, dodecyl sulfate Sodium, carboxymethyl cellulose sodium, lignin sulfonic acid, hectrite, smectite clay, bentonite, laponite, propylene glycol, ethylene glycol, glycerin, ethylenediamine tetraacetic acid, sodium alkyl sulfate, sodium alkyl phosphate, potassium alkyl sulfate, and potassium alkyl phosphate. The heat storage material composition according to any one of claims 1 to 8, further comprising at least one supercooling inhibitor selected from the group consisting of.
  10.  ケイ酸ナトリウム、水ガラス、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリカルボキシレートポリエーテルポリマー、アクリル酸・マイレン酸共重合体ナトリウム、アクリル酸・スルホン酸系モノマー共重合体ナトリウム、アクリルアミド・ジメチルアミノエチルメタクリラートジメチル硫酸塩共重合物、アクリルアミド・アクリル酸ソーダ共重合物、ポリエチレングリコール、ポリプロピレングリコール、高吸水樹脂(SAP)、カルボキシメチルセルロース(CMC)、CMCの誘導体、カラギーナン、カラギーナンの誘導体、キサンタンガム、キサンタンガムの誘導体、ペクチン、ペクチンの誘導体、デンプン、デンプンの誘導体、コンニャク、寒天、層状ケイ酸塩、及びこれらの物質の複合物質からなる群より選択される少なくとも1種の相分離抑制剤をさらに含むことを特徴とする請求項1~9のいずれか1項に記載の蓄熱材組成物。 Sodium silicate, water glass, polyacrylic acid, sodium polyacrylate, polycarboxylate polyether polymer, sodium acrylate / myrene copolymer, sodium acrylate / sulfonic acid monomer copolymer, acrylamide / dimethylaminoethyl Methacrate dimethyl sulfate copolymer, acrylamide / sodium acrylate copolymer, polyethylene glycol, polypropylene glycol, high water absorption resin (SAP), carboxymethyl cellulose (CMC), CMC derivative, carrageenan, carrageenan derivative, xanthan gum, xanthan gum Further comprising at least one phase separation inhibitor selected from the group consisting of derivatives of pectin, derivatives of pectin, starch, derivatives of starch, konjak, agar, layered silicates, and composites of these substances. The heat storage material composition according to any one of claims 1 to 9, wherein the heat storage material composition is characterized.
  11.  請求項1~10のいずれか1項に記載の蓄熱材組成物を用いた蓄熱材モジュールを具備することを特徴とする建築物の冷暖房用の蓄熱システム。 A heat storage system for heating and cooling of a building, which comprises a heat storage material module using the heat storage material composition according to any one of claims 1 to 10.
PCT/JP2020/021352 2019-06-03 2020-05-29 Heat storage material composition and heat storage system for air conditioning of building WO2020246387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-103776 2019-06-03
JP2019103776A JP7032355B2 (en) 2019-06-03 2019-06-03 Heat storage material composition and heat storage system for heating and cooling of buildings

Publications (1)

Publication Number Publication Date
WO2020246387A1 true WO2020246387A1 (en) 2020-12-10

Family

ID=73647724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021352 WO2020246387A1 (en) 2019-06-03 2020-05-29 Heat storage material composition and heat storage system for air conditioning of building

Country Status (2)

Country Link
JP (1) JP7032355B2 (en)
WO (1) WO2020246387A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117025180A (en) * 2022-12-20 2023-11-10 中国石油大学(华东) Microcosmic packaging inorganic phase change material for thermal management and thermal runaway inhibition of lithium ion battery and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132180A (en) * 1988-07-01 1990-05-21 Nok Corp Thermal energy storing material
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
CN104479634A (en) * 2014-12-18 2015-04-01 青海大学 Low-temperature phase-change energy storage material
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132180A (en) * 1988-07-01 1990-05-21 Nok Corp Thermal energy storing material
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
CN104479634A (en) * 2014-12-18 2015-04-01 青海大学 Low-temperature phase-change energy storage material
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof

Also Published As

Publication number Publication date
JP2020196815A (en) 2020-12-10
JP7032355B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020246477A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
WO2019172260A1 (en) Heat storage material composition and heat storage system for building air conditioning
JP6814771B2 (en) Heat storage material composition and heat storage system for heating and cooling of buildings
JP2581708B2 (en) Thermal energy storage composition
US20220282146A1 (en) Heat storage material composition, and heat storage system for heating and cooling building
WO2020246387A1 (en) Heat storage material composition and heat storage system for air conditioning of building
JP7405684B2 (en) Heat storage material composition and heat storage system for heating and cooling buildings
WO1991000324A1 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
JP2020196816A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196819A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196818A (en) Heat storage material composition and heat storage system for air conditioning of architecture
JP3471469B2 (en) Latent heat storage material composition
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
WO2023073957A1 (en) Heat storage material composition, and heat storage system for air conditioning of buildings
JP2022188452A (en) Heat storage material composition, and heat storage system for cooling and heating of building
JP2022185304A (en) Heat storage material, and solar heat utilizing heat storage system
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JP2021147509A (en) Heat storage material composition and heat storage system for air-conditioner of building
JP6682712B1 (en) Latent heat storage material composition
EP0029504B1 (en) Hydrated magnesium nitrate reversible phase change compositions and their preparation
AU640154B2 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818966

Country of ref document: EP

Kind code of ref document: A1