WO2020246001A1 - Composite-material molding apparatus and composite-material molding method - Google Patents

Composite-material molding apparatus and composite-material molding method Download PDF

Info

Publication number
WO2020246001A1
WO2020246001A1 PCT/JP2019/022627 JP2019022627W WO2020246001A1 WO 2020246001 A1 WO2020246001 A1 WO 2020246001A1 JP 2019022627 W JP2019022627 W JP 2019022627W WO 2020246001 A1 WO2020246001 A1 WO 2020246001A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
condensed water
pressure vessel
sealing member
internal space
Prior art date
Application number
PCT/JP2019/022627
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 寺坂
祐樹 可児
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2019/022627 priority Critical patent/WO2020246001A1/en
Publication of WO2020246001A1 publication Critical patent/WO2020246001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding

Definitions

  • the present invention relates to a composite material molding apparatus and a composite material molding method.
  • a method of molding a composite material using an autoclave molding apparatus has been widely used as a method of molding a composite material in which a reinforcing fiber base material is laminated.
  • the prepreg containing the uncured matrix resin is covered with a bag film, and the inside of the bag film is depressurized to put the prepreg in a pressurized state. Further, the prepreg is brought into a heated state by filling the space outside the bag film with heated air.
  • Patent Document 1 discloses that the prepreg is bent and molded by covering the prepreg with a silicone rubber bag and heating the prepreg with steam while reducing the pressure in the space where the prepreg is arranged.
  • Patent Document 1 does not provide a specific solution for removing such condensed water.
  • the present invention has been made in view of such circumstances, and is in a state where the composite material is efficiently heated by using water vapor and condensed water in which water vapor is condensed adheres to a sealing member that seals the composite material. It is an object of the present invention to provide a composite material molding apparatus and a composite material molding method capable of preventing the mixture from remaining.
  • the composite material molding apparatus forms a composite material, and is a pressure vessel that can be sealed and a molding surface that is installed in the internal space of the pressure vessel and for arranging the composite material.
  • a molding jig having the above, a sealing member that covers the composite material and is adhered to the molding surface by a sealing material to airtightly seal the composite material, and the pressure vessel with the pressure vessel sealed.
  • a steam supply unit that supplies steam at a predetermined temperature and a predetermined pressure to the internal space to thermally cure the composite material, and condensed water in which the steam supplied to the internal space is condensed and adhered to the sealing member.
  • a condensate water removing unit for injecting and removing a gas toward the sealing member.
  • the steam supply unit supplies steam at a predetermined temperature and a predetermined pressure to the internal space of the pressure vessel. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air. Further, when the composite material airtightly sealed by the sealing member is cooled, the condensed water in which water vapor used as a heating source is condensed adheres to the sealing member, but the gas ejected by the condensed water removing portion causes the condensed water. Will be removed. Therefore, it is possible to efficiently heat the composite material using water vapor and prevent the condensed water in which the water vapor is condensed from remaining attached to the sealing member that seals the composite material.
  • the pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end is closed, and the condensed water is removed.
  • the portion may be configured to include a moving mechanism that is movable between the external space of the pressure vessel and the internal space through the opening. According to the composite material molding apparatus having this configuration, after the composite material is thermoset with steam, the condensed water removing portion is moved from the outer space to the inner space of the pressure vessel by a moving mechanism, so that the composite material adheres to the sealing member. Condensed water can be removed.
  • the composite material molding apparatus having the above configuration includes a control unit that controls the condensed water removing unit, and the control unit is the sealing member when moving the condensed water removing unit from the external space to the internal space.
  • the condensed water removing unit may be controlled so as to inject gas toward. Since gas is injected into the sealing member when the condensed water removing part is moved, it condenses from one end side to the other end side of the pressure vessel as the condensed water removing part moves to the inner part of the internal space. The water moves and eventually the condensed water is removed from the sealing member.
  • the condensed water removing unit has a plurality of injection nozzles for injecting gas toward the sealing member along the injection direction, and the plurality of injection nozzles are the pressure vessel. It is arranged at a plurality of places along the first arrangement direction from the one end side to the other end side. Since the plurality of injection nozzles are arranged at a plurality of locations along the first arrangement direction, it is possible to remove the condensed water adhering to the sealing member at each position where the injection nozzles are arranged in the first arrangement direction.
  • the plurality of injection nozzles may be arranged at a plurality of locations in the second arrangement direction orthogonal to the first arrangement direction. Since a plurality of injection nozzles are arranged at a plurality of locations along the second arrangement direction, condensed water adhering to the sealing member is provided at each position where the injection nozzles are arranged in the second arrangement direction in addition to the first arrangement direction. Can be removed.
  • the pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end side is closed, and the condensed water removing portion is described above. It is attached to the pressure vessel in the vicinity of the opening and includes a control unit that controls the condensed water removing unit, and the control unit is sealed when moving the molding jig from the internal space to the external space.
  • the condensed water removing unit may be controlled so as to inject gas toward the stop member.
  • the condensed water removing portion has an injection nozzle that injects gas toward the sealing member along the injection direction, and the injection direction is one end side of the pressure vessel. It may have a directional component from the to the other end side. Since the injection direction for injecting gas toward the sealing member has a directional component from one end side to the other end side of the pressure vessel, the condensed water adhering to the sealing member flows from one end side to the other end side of the pressure vessel. Move towards. Since the condensed water is stored in the closed other end side of the pressure vessel, it is possible to prevent the condensed water from flowing out to the external space from the opening when the door of the pressure vessel is opened.
  • the condensed water removing portion has an injection nozzle that injects gas toward the sealing member along the injection direction, and the injection direction is one end side of the pressure vessel. It may have a directional component toward the central portion of the sealing member in a plane orthogonal to the direction toward the other end side. Since the injection direction for injecting the gas toward the sealing member has a directional component toward the central portion of the sealing member, the gas injected from the injection nozzle is injected into the vicinity of the central portion of the sealing member and sealed. Condensed water adhering to the member can be reliably removed.
  • the pressure vessel may include a drainage mechanism for discharging the condensed water removed from the sealing member by the condensed water removing portion from the internal space. Since the pressure vessel is provided with a drainage mechanism, the condensed water removed from the sealing member by the condensed water removing portion can be discharged from the pressure vessel.
  • the composite material may be a prepreg in which a fiber base material is laminated together with a resin material. Since the prepreg is arranged on the molding surface of the molding jig, the composite material can be easily molded as compared with the method of injecting the resin material into the fiber base material.
  • the composite material molding method is a method for molding a composite material, which is a step of arranging the composite material on a molding surface of a molding tool installed in an internal space of a sealable pressure vessel.
  • a sealing step of covering the composite material with a sealing member and adhering the sealing member and the molding surface with a sealing material to airtightly seal the composite material, and the pressure in a state where the pressure vessel is sealed.
  • a heat curing step of supplying steam of a predetermined temperature and a predetermined pressure to the internal space of the container to thermally cure the composite material, and a heat curing step of heat-curing the composite material, and the water vapor supplied to the internal space is condensed and adhered to the sealing member. It is provided with a condensed water removing step of injecting a gas toward the sealing member to remove the condensed water.
  • the composite material molding method in order to thermally cure the composite material, steam at a predetermined temperature and a predetermined pressure is supplied to the internal space of the pressure vessel in the thermal curing step. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air. Further, when the composite material airtightly sealed by the sealing member is cooled, the condensed water in which water vapor used as a heating source is condensed adheres to the sealing member, but the gas ejected in the condensed water removing step. Is removed by. Therefore, it is possible to efficiently heat the composite material using water vapor and prevent the condensed water in which the water vapor is condensed from remaining attached to the sealing member that seals the composite material.
  • a composite material molding apparatus and a composite material molding method can be provided.
  • FIG. 2 It is a schematic block diagram which shows the composite material molding apparatus which concerns on 1st Embodiment of this invention. It is a vertical sectional view of the composite material molding apparatus shown in FIG. It is a flowchart which shows the composite material molding method which concerns on 1st Embodiment. It is a perspective view of the composite material molding apparatus shown in FIG. 2, and shows the state which the door of a pressure vessel is opened after the thermosetting process is completed. It is a perspective view which shows the condenser removal part provided in the composite material molding apparatus. It is a perspective view which shows the state which the condensed water removal part has entered into the pressure vessel shown in FIG. It is a perspective view which shows the state which the entry of the condensed water removal part into the pressure vessel shown in FIG.
  • FIG. 4 is completed. It is a vertical sectional view of the composite material molding apparatus which attached the condensed water removal part.
  • FIG. 8 is a cross-sectional view taken along the line AA of the condensed water removing portion shown in FIG. It is a perspective view which shows the composite material forming apparatus which concerns on 2nd Embodiment of this invention. It is a vertical cross-sectional view of the composite material molding apparatus shown in FIG. 10, and shows the state in which the cured composite material is arranged in the internal space of a pressure vessel.
  • FIG. 10 is a vertical cross-sectional view of the composite material molding apparatus shown in FIG. 10, showing a state in which the cured composite material is moved from the internal space of the pressure vessel to the external space.
  • FIG. 1 is a schematic configuration diagram showing a composite material molding apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the composite material molding apparatus 100 shown in FIG.
  • the composite material molding apparatus 100 of the present embodiment is an apparatus for molding a fiber-reinforced composite material having a desired shape by thermosetting a prepreg (composite material) P in which a reinforcing fiber base material is laminated together with a resin material.
  • the prepreg is a material containing a reinforcing fiber base material and an uncured matrix resin, which becomes a fiber-reinforced composite material by being thermoset.
  • the reinforcing fiber base material is, for example, carbon fiber, glass fiber, aramid fiber, or the like.
  • the matrix resin is a thermosetting resin, such as epoxy, unsaturated polyester, vinyl ester, bismaleimide, phenol, cyanate, and polyimide.
  • a fiber-reinforced composite is formed by thermosetting one or more prepregs.
  • the composite material molding apparatus 100 of the present embodiment includes a sealable pressure vessel 10, a molding jig 20, a first resin bag 30, and a breather (ventilation member) 40.
  • a second resin bag (sealing member) 50, a condensed water removing unit 60, a vacuum pump (pressure reducing unit) 70, a steam supply unit 80, and a control device 90 are provided.
  • the pressure vessel 10 is a sealable container to which a door that can be opened and closed is attached, and a closed internal space IS is formed by closing the door.
  • the internal space IS of the pressure vessel 10 accommodates the molding jig 20 and the prepreg P arranged in the molding jig 20.
  • an installation table 11 for installing the molding jig 20 is arranged in the internal space IS of the pressure vessel 10.
  • the pressure vessel 10 is a container having an opening 10a on one end side in the horizontal direction and a closed portion 10b closed on the other end side in the horizontal direction.
  • the pressure vessel 10 is formed in a cylindrical shape along an axis X extending in the horizontal direction.
  • the opening 10a is provided with a door 12 that can be opened and closed.
  • a drain pipe (drainage mechanism) 13 for draining the condensed water W from the drain hole 10c is provided at the lower end of the pressure vessel 10 and on the side close to the closing portion 10b.
  • the position where the drain hole 10c is provided is the lowermost position in the lower end of the pressure vessel 10. Therefore, the condensed water W guided to the lower end of the pressure vessel 10 is guided to the drain hole 10c and drained to the outside from the drain pipe 13.
  • the molding jig 20 is a plate-shaped member that is installed in the internal space IS of the pressure vessel 10 and has a molding surface 21 for arranging the prepreg P.
  • the molding jig 20 is arranged on an installation table 11 provided in the internal space IS of the pressure vessel 10.
  • the molding surface 21 of the molding jig 20 is a surface extending in the horizontal direction shown in FIG. 2, and the prepreg P is arranged on the molding surface 21.
  • the molding jig 20 is formed of, for example, a heat-resistant metal material such as an aluminum alloy or iron.
  • the first resin bag 30 is a sheet-like member arranged so as to cover the entire surface of the prepreg P.
  • the first resin bag 30 is a member for preventing the shape of the breather 40 from being transferred to the surface of the prepreg P when the decompression space S1 described later is decompressed.
  • the first resin bag 30 is formed of a releasable resin film that can be easily peeled off without sticking to the composite material obtained by curing the prepreg P.
  • the first resin bag 30 is formed of, for example, a resin film containing a fluororesin material such as FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) as a main component.
  • FEP fluororesin material
  • the breather 40 is arranged so as to cover the entire surface of the first resin bag 30, and is capable of allowing gas to pass between the first resin bag 30 and the second resin bag 50. It is a member for securing a space.
  • the breather 40 is, for example, a polyester mat formed of fibrous polyester.
  • the second resin bag 50 is a sheet-like member that covers the entire surface of the breather 40 and is adhered to the molding surface 21 by the sealing material Se to airtightly seal the breather 40 and the prepreg P.
  • the second resin bag 50 is formed of a steam-resistant resin film in order to protect the prepreg P from water vapor when water vapor is supplied to the internal space IS.
  • the second resin bag 50 is formed of, for example, a resin film containing a fluororesin material such as FEP as a main component.
  • the condensed water removing unit 60 is a device that removes condensed water adhering to the surface of the second resin bag 50 by injecting compressed air toward the second resin bag 50.
  • the condensed water removing unit 60 includes a compressed air supply unit 64 and an injection unit 62 to which compressed air is supplied from the compressed air supply unit 64.
  • the compressed air supply unit 64 is connected to the pipe 65a via an on-off valve 65.
  • the compressed air supply unit 64 and the on-off valve 65 are each controlled by a control signal transmitted from the control device 90 via a control signal line (broken line shown in FIG. 1).
  • the control device 90 supplies the compressed air to the pipe 65a by operating the compressed air supply unit 64 and opening the on-off valve 65.
  • the vacuum pump 70 is a device that depressurizes the decompression space S1 sealed by the second resin bag 50. As shown in FIG. 1, the vacuum pump 70 is connected to the pipe 71a via an on-off valve 71. As shown in FIG. 2, the pipe 71a is connected to the vacuum port 71b attached to the second resin bag 50.
  • the vacuum pump 70 and the on-off valve 71 are each controlled by a control signal transmitted from the control device 90 via a control signal line (broken line shown in FIG. 1).
  • a control signal line (broken line shown in FIG. 1).
  • the control device 90 sucks the air in the decompression space S1 through the vacuum port 71b and decompresses the decompression space S1 to the vacuum state.
  • the steam supply unit 80 is a device for thermosetting the prepreg P by supplying steam of a predetermined temperature and a predetermined pressure to the internal space IS of the pressure vessel 10 in a state where the pressure vessel 10 is sealed. As shown in FIG. 1, the steam supply unit 80 is connected to the pipe 81a via an on-off valve 81. As shown in FIG. 2, the pipe 81a communicates with the internal space IS of the pressure vessel 10.
  • the steam supply unit 80 and the on-off valve 81 are controlled by a control signal transmitted from the control device 90 via the control signal line.
  • the control device 90 supplies steam to the internal space IS via the pipe 81a by operating the steam supply unit 80 and opening the on-off valve 81.
  • the steam supply unit 80 generates, for example, saturated steam as steam to be supplied to the internal space IS of the pressure vessel 10.
  • the control device 90 is a device that controls the composite material molding device 100.
  • the control device 90 controls the compressed air supply unit 64, the on-off valve 65, the vacuum pump 70, the on-off valve 71, the steam supply unit 80, and the on-off valve 81 via the control signal line shown by the broken line in FIG.
  • FIG. 3 is a flowchart showing a composite material molding method according to the present embodiment.
  • step S301 arrangement step
  • the prepreg P is arranged on the forming surface 21 of the forming jig 20.
  • the operator operates a transport device (not shown) to arrange the prepreg P on the molding surface 21.
  • step S302 the first resin bag 30 is arranged on the prepreg P so as to cover the entire surface of the prepreg P.
  • step S303 the breather 40 is arranged on the first resin bag 30 so as to cover the first resin bag 30.
  • step S304 the breather 40 is covered with the second resin bag 50, and the second resin bag 50 and the molding surface 21 are adhered with the sealing material Se to airtightly seal the breather 40.
  • the operator of the composite material molding apparatus 100 applies the sealing material Se to the molding surface 21 or the edge of the second resin bag 50, and molds the second resin bag 50 so as to cover the breather 40 with the second resin bag 50. Join to surface 21.
  • step S304 the door is opened without sealing the pressure vessel 10.
  • step S304 the operator of the composite material forming apparatus 100 closes the door and seals the pressure vessel 10.
  • step S305 decompression step
  • the vacuum pump 70 is put into an operating state and the on-off valve 71 is put into an open state, and the decompression space S1 sealed by the first resin bag 30 is depressurized.
  • the control device 90 continues the process of depressurizing the decompression space S1 so as to maintain the vacuum state until the end of step S306 described later.
  • step S306 heat curing step
  • water vapor having a predetermined temperature and a predetermined pressure is applied to the internal space IS of the pressure vessel 10 in a state where the pressure vessel 10 is sealed.
  • the steam supply unit 80 and the on-off valve 81 are controlled to supply the steam.
  • the prepreg P arranged in the internal space IS of the pressure vessel 10 is in a state of being pressurized by the differential pressure between the pressure of the decompressed space S1 decompressed in a vacuum state and the internal space IS pressurized by water vapor. Further, the prepreg P is in a state of being heated by the heat transferred from the steam.
  • the thermosetting resin which is a matrix resin, is cured by continuing the pressurized state and the heated state for a predetermined time, and the prepreg P is cured in a state of maintaining a desired shape. As a result, a composite material obtained by curing the matrix resin is formed from the prepreg P.
  • step S307 the composite material cured by step S307 is cooled.
  • the control device 90 stops the operation of the vacuum pump 70 and the steam supply unit 80, supplies cooling water to the internal space IS by a cooling water supply mechanism (not shown), and disposes of a composite material arranged in the internal space IS. Cooling. Further, the control device 90 may maintain the standby state until a certain period of time elapses so that the composite material becomes, for example, a predetermined temperature or less.
  • step S308 When the composite material drops below a predetermined temperature, high-temperature steam condenses to generate condensed water, which adheres to the surface of the second resin bag 50.
  • the condensed water adhering to the second resin bag 50 is removed before performing a subsequent step (steps such as removal of the first resin bag 30, breather 40 and second resin bag 50, inspection of the composite material, etc.) on the cured composite material. Need to be done. Therefore, in the present embodiment, the condensed water is removed in step S308.
  • step S308 condensed water removing step
  • the door 12 of the pressure vessel 10 is opened.
  • condensed water W generated by condensing water vapor adheres to the surface of the second resin bag 50 arranged in the internal space IS of the pressure vessel 10.
  • step S308 the condensed water removing unit 60 removes the condensed water W adhering to the second resin bag 50 by injecting the compressed air supplied from the compressed air supply unit 64 toward the second resin bag 50.
  • the specific configuration of the condensed water removing unit 60 will be described later.
  • step S309 the door of the pressure vessel 10 is opened, and the cured composite material is taken out from the internal space IS of the pressure vessel 10. Further, the second resin bag 50, the breather 40, and the first resin bag 30 are removed from the molding surface 21 of the molding jig 20 in this order to expose the composite material. As described above, the composite material is formed.
  • FIG. 5 is a perspective view showing a condensed water removing portion 60 included in the composite material forming apparatus 100.
  • the condensed water removing unit 60 shown in FIG. 5 is a device that removes the condensed water W by injecting compressed air toward the second resin bag 50.
  • the condensed water removing unit 60 may inject another gas such as compressed nitrogen instead of the compressed air.
  • the condensed water removing portion 60 includes a main body portion 61 formed in a semi-cylindrical shape and a plurality of injection portions 62 formed in a semicircular ring shape and installed on the inner peripheral surface of the main body portion 61. And a plurality of wheels (moving mechanism) 63 that support the lower ends of the plurality of injection portions 62.
  • the injection unit 62 is a device that injects the compressed air supplied from the compressed air supply unit 64 toward the second resin bag 50 via the plurality of injection nozzles 62a. As shown in FIG. 5, each of the plurality of injection units 62 is provided with a plurality of injection nozzles 62a for injecting compressed air along the injection direction toward the second resin bag 50.
  • the injection unit 62 has a semi-cylindrical inner peripheral surface centered on the axis Y.
  • the plurality of injection nozzles 62a are arranged at predetermined intervals (for example, at regular intervals) on the inner peripheral surface of the semi-cylindrical shape along the circumferential direction around the axis Y.
  • a plurality of injection portions 62 are installed at a plurality of locations in a direction (first arrangement direction) along the axis Y shown in FIG.
  • the axis Y is an axis corresponding to the central axis of the semi-cylindrical injection unit 62.
  • each injection unit 62 is provided with injection nozzles 62a at a plurality of locations in the width direction (second arrangement direction) orthogonal to the direction along the axis Y.
  • the injection nozzles 62a are arranged at a plurality of positions in the first arrangement direction from the opening 10a on one end side of the pressure vessel 10 toward the closing portion 10b on the other end side, and are further orthogonal to the first arrangement direction. It is installed at multiple locations in two arrangement directions.
  • the wheel 63 is a moving mechanism capable of moving the condensed water removing unit 60 between the external space OS and the internal space IS of the pressure vessel 10 through the opening 10a of the pressure vessel 10.
  • a rail 14 that engages with the wheel 63 is attached to the inner peripheral surface of the pressure vessel 10.
  • the rails 14 are members that extend linearly from the opening 10a toward the closing portion 10b, and are provided in pairs with the installation base 11 interposed therebetween.
  • FIG. 6 is a perspective view showing a state in which the condensed water removing unit 60 has entered the pressure vessel 10 shown in FIG.
  • FIG. 7 is a perspective view showing a state in which the condensate water removing unit 60 has completed entering the pressure vessel shown in FIG.
  • step S308 after the door 12 of the pressure vessel 10 is opened, the condensed water removing portion 60 is pushed toward the closing portion 10b of the pressure vessel 10 with the wheels 63 engaged with the pair of rails 14.
  • the state shown in 6 is assumed. Further, by further pushing the condensed water removing unit 60 into the closing portion 10b from the state shown in FIG. 6, the state shown in FIG. 7 is obtained, and the entry of the condensed water removing unit 60 into the pressure vessel 10 is completed.
  • the operator of the composite material forming apparatus 100 closes the door 12 to close the internal space IS in a sealed state in response to the completion of the entry of the condensed water removing unit 60 into the pressure vessel 10.
  • FIG. 8 is a vertical cross-sectional view of the composite material molding apparatus 100 to which the condensed water removing portion 60 is attached.
  • FIG. 9 is a cross-sectional view taken along the line AA of the condensed water removing unit 60 shown in FIG.
  • the internal space IS of the pressure vessel 10 is a closed space with the door 12 closed.
  • the injection nozzles 62a are arranged at four positions X1, X2, X3, and X4 shown in FIG. 8 at predetermined intervals (for example, at regular intervals). ing.
  • the injection nozzle 62a injects compressed air toward the second resin bag 50 along the injection direction Id.
  • the injection direction Id is a direction along the axis Ax.
  • the direction in which the axis Ax extends is inclined by an angle ⁇ with respect to the axis Z extending in the vertical direction toward the closing portion 10b.
  • the injection direction Id has a directional component from the opening 10a on one end side of the pressure vessel 10 to the closing portion 10b on the other end side. Therefore, when the compressed air injected from the injection nozzle 62a in the injection direction Id collides with the condensed water W, the condensed water W moves in the direction from the opening 10a to the closing portion 10b.
  • FIG. 9 is a cross-sectional view taken along the line AA of the condensed water removing portion 60 shown in FIG. 8 and is a cross-sectional view cut along a plane orthogonal to the horizontal direction along the axis X.
  • the injection direction Id in which each injection nozzle 62a injects compressed air is the second resin bag 50 when the condensed water removing portion 60 is visually recognized in the horizontal direction along the axis X shown in FIG. The direction is toward the central portion 50a.
  • the direction toward the central portion 50a is not limited to the direction in which the central portion 50a exists on the extension line of the injection direction Id starting from the injection nozzle 62a.
  • the injection direction Id may have a direction component toward the central portion 50a of the second resin bag 50 in a plane orthogonal to the horizontal direction along the axis X.
  • the condensed water W moves from the end portion in the width direction of the second resin bag 50 toward the center portion in the width direction. In this way, the condensed water W adhering to the second resin bag 50 is collected in the vicinity of the central portion 50a in the width direction, and then moves in the direction from the opening 10a to the closing portion 10b.
  • the condensed water W that has moved from the opening 10a to the closing portion 10b falls from the end of the molding surface 21 on the closing portion 10b side to the installation table 11, and further drops to the lower end of the pressure vessel 10. Then, the condensed water W that has fallen to the lower end of the pressure vessel 10 is guided from the drain hole 10c to the drain pipe 13 and drained to the outside.
  • the injection of compressed air by the condensed water removing unit 60 is performed with the door 12 of the pressure vessel 10 closed.
  • the compressed air is injected with the internal space IS of the pressure vessel 10 as a closed space, which is advantageous in that the noise caused by the injection of the compressed air is reduced.
  • other aspects are also possible.
  • the control device 90 injects compressed air toward the second resin bag 50 when moving the condensed water removing unit 60 from the external space OS to the internal space IS with the door 12 of the pressure vessel 10 open.
  • the condensed water removing unit 60 may be controlled as described above. In this case, when the condensed water removing unit 60 is moved from the external space OS to the internal space IS, the condensed water W is removed from the second resin bag 50 along with the movement, so that the condensed water W is removed from the second resin bag 50. The time for removing W can be shortened.
  • the steam supply unit 80 supplies steam at a predetermined temperature and a predetermined pressure to the internal space IS of the pressure vessel 10. Therefore, as compared with the case where air is used as the heating source, the prepreg P can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air.
  • the condensed water W in which the water vapor used as the heating source is condensed adheres to the second resin bag 50, but the condensed water removing portion 60 is removed by the injected compressed air. Therefore, it is possible to prevent the condensed water W in which water vapor is condensed from remaining attached to the second resin bag 50 that seals the prepreg P.
  • the condensed water removing portion 60 is moved from the external space OS of the pressure vessel 10 to the internal space by a moving mechanism using the wheels 63. By moving to IS, the condensed water W adhering to the second resin bag can be removed.
  • the first arrangement The condensed water W adhering to the second resin bag 50 can be removed at each position where the injection nozzle 62a is arranged in the direction. Further, since the plurality of injection nozzles 62a are arranged at a plurality of locations along the second arrangement direction (width direction) orthogonal to the first arrangement direction, the injection nozzles 62a are arranged in the second arrangement direction in addition to the first arrangement direction. The condensed water W adhering to the second resin bag 50 can be removed at each position where the nozzles are arranged.
  • the injection direction Id for injecting compressed air toward the second resin bag 50 has a directional component from one end side to the other end side of the pressure vessel 10.
  • the condensed water W adhering to the second resin bag 50 moves from one end side to the other end side of the pressure vessel 10. Since the condensed water is stored in the closed other end side of the pressure vessel 10, it is possible to prevent the condensed water W from flowing out to the external space OS from the opening 10a when the door of the pressure vessel 10 is opened.
  • the composite material forming apparatus 100 of the first embodiment includes a condensed water removing unit 60 having wheels 63 as a moving mechanism, and moves the condensed water removing unit 60 from the external space OS of the pressure vessel 10 to the internal space IS. there were.
  • the composite material molding apparatus 100A of the present embodiment includes a condensed water removing portion 60A attached in the vicinity of the opening 10a of the pressure vessel 10, and holds a second resin bag 50 for accommodating the cured composite material in the pressure vessel.
  • the condensed water W is removed when moving from the internal space IS of 10 to the external space OS.
  • FIG. 10 is a perspective view showing the composite material molding apparatus 100A according to the present embodiment.
  • FIG. 11 is a vertical cross-sectional view of the composite material molding apparatus 100A shown in FIG. 10, showing a state in which the cured composite material is arranged in the internal space IS of the pressure vessel 10.
  • FIG. 12 is a vertical cross-sectional view of the composite material molding apparatus 100A shown in FIG. 10, showing a state in which the cured composite material is moved from the internal space IS of the pressure vessel 10 to the external space OS.
  • the condensed water removing portion 60A of the present embodiment is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10 formed in a cylindrical shape with the axis X as the central axis. Has been done.
  • the condensed water removing portion 60A is attached to the inner peripheral surface of the pressure vessel 10 in a region above the installation table 11 in the vertical direction.
  • the condensed water removing unit 60A confirms, for example, that the operator of the composite material molding apparatus 100 has reached a temperature and pressure at which the internal space IS of the pressure vessel 10 can take out the composite material, and the door of the pressure vessel 10 After the 12 is opened, it is attached by the operator of the composite material forming apparatus 100.
  • the condensed water removing portion 60A may be fixed in advance to the inner peripheral surface of the pressure vessel 10.
  • the operator of the composite material molding apparatus 100 confirms that the internal space IS of the pressure vessel 10 has reached a temperature and pressure at which the composite material can be taken out, and opens the door 12 of the pressure vessel 10. Make it a state. Then, the control device 90 sends compressed air toward the second resin bag 50 when the molding jig 20 and the composite material and the second resin bag 50 placed on the molding jig 20 are moved from the internal space IS to the external space OS.
  • the condensed water removing unit 60A is controlled so as to inject.
  • the injection nozzle 62a injects compressed air toward the second resin bag 50 along the injection direction Id.
  • the injection direction Id is a direction along the axis Ax.
  • the direction in which the axis Ax extends is inclined by an angle ⁇ with respect to the axis Z extending in the vertical direction toward the closing portion 10b.
  • the injection direction Id has a directional component from the opening 10a on one end side of the pressure vessel 10 to the closing portion 10b on the other end side. Therefore, when the compressed air injected from the injection nozzle 62a in the injection direction Id collides with the condensed water W, the condensed water W moves in the direction from the opening 10a to the closing portion 10b.
  • the injection nozzle 62a is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10 (the position of X1 in the axis X direction shown in FIG. 11). ..
  • the injection nozzle 62a is not attached to any place other than the vicinity of the opening 10a. Therefore, in the present embodiment, the condensed water W adhering to the second resin bag 50 is removed by moving the molding jig 20 with respect to the injection nozzle 62a.
  • the state shown in FIG. 11 is a state in which the molding jig 20 is arranged in the internal space IS of the pressure vessel 10.
  • the state shown in FIG. 12 is obtained.
  • the state shown in FIG. 12 shows a state in which the molding jig 20 is moved from the internal space IS of the pressure vessel 10 to the external space OS.
  • the control device 90 continuously injects compressed air from the injection nozzle 62a while the molding jig 20 is being moved from the internal space IS of the pressure vessel 10 to the external space OS. As a result, the condensed water W adhering to the second resin bag 50 is removed as the molding jig 20 moves.
  • the condensed water removing portion 60A is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10, but other embodiments may be used. ..
  • the four condensed water removing portions 60A may be attached to the inner peripheral surface of the pressure vessel 10 at the positions of X1, X2, X3, and X4 in the axis X direction shown in FIG.
  • Second resin bag (sealing member) 60, 60A Condensed water removal part 61 Main body part 62 Injection part 62a Injection nozzle 63 Wheel (moving mechanism) 64 Compressed air supply unit 70 Vacuum pump 80 Water vapor supply unit 90 Control device 100, 100A Composite material molding device IS Internal space Id Injection direction OS External space P prepreg (composite material) W Condensed water X, Y, Z axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Through the present invention, a composite material can be efficiently heated using steam, and condensate water formed by condensation of steam is prevented from remaining adhered to a sealing member for sealing the composite material. Provided is a composite material molding apparatus (100) comprising: a pressure vessel (10); a molding tool (20) having a molding surface (21) for positioning a prepreg (P); a resin bag (50) for hermetically sealing the prepreg (P); a steam supply unit (80) for supplying steam having a predetermined temperature and a predetermined pressure to an internal space (IS) of the pressure vessel (10) to heat-cure the prepreg (P); and a condensate water removal unit (60) for removing condensate water that adheres to the resin bag (50) due to condensation of the steam supplied to the internal space (IS), by jetting compressed air to the resin bag (50).

Description

複合材成形装置および複合材成形方法Composite molding equipment and composite molding method
 本発明は、複合材成形装置および複合材成形方法に関するものである。 The present invention relates to a composite material molding apparatus and a composite material molding method.
 従来、強化繊維基材が積層された複合材を成形する方法として、オートクレーブ成形装置を用いた複合材の成形方法が広く用いられている。従来の成形方法では、硬化されていないマトリックス樹脂を含むプリプレグをバッグフィルムで覆い、バッグフィルムの内部を減圧することによりプリプレグを加圧状態にする。また、バッグフィルムの外部の空間を加熱した空気で満たすことにより、プリプレグを加熱状態にする。 Conventionally, a method of molding a composite material using an autoclave molding apparatus has been widely used as a method of molding a composite material in which a reinforcing fiber base material is laminated. In the conventional molding method, the prepreg containing the uncured matrix resin is covered with a bag film, and the inside of the bag film is depressurized to put the prepreg in a pressurized state. Further, the prepreg is brought into a heated state by filling the space outside the bag film with heated air.
 また、近年では、空気よりも熱容量が大きい水蒸気を加熱源として用いる手法が提案されている(例えば、特許文献1参照)。特許文献1には、プリプレグをシリコーンゴムバッグで覆い、プリプレグが配置される空間を減圧しながらプリプレグを水蒸気で加熱することにより、プリプレグの曲げ成形を行うことが開示されている。 Further, in recent years, a method of using water vapor having a heat capacity larger than that of air as a heating source has been proposed (see, for example, Patent Document 1). Patent Document 1 discloses that the prepreg is bent and molded by covering the prepreg with a silicone rubber bag and heating the prepreg with steam while reducing the pressure in the space where the prepreg is arranged.
特開2016-168684号公報Japanese Unexamined Patent Publication No. 2016-168648
 しかしながら、水蒸気を加熱源として用いる場合、プリプレグの熱硬化によって得られた複合材を冷却する際に、水蒸気が凝縮して凝縮水となってバッグフィルムに付着してしまう。そのため、オートクレーブから搬出した複合材に対する後工程(バッグフィルムの除去、複合材の検査等の工程)を行う前に、バッグフィルムに付着した凝縮水を除去する作業が必要となる。そのため、空気等を加熱源として用いる場合に比べ、後工程を終えるまでに要する作業時間が増加してしまう。特許文献1においては、このような凝縮水の除去に関する具体的な解決策が示されていない。 However, when steam is used as a heating source, when the composite material obtained by thermosetting the prepreg is cooled, the steam condenses into condensed water and adheres to the bag film. Therefore, it is necessary to remove the condensed water adhering to the bag film before performing the post-process (steps such as removal of the bag film and inspection of the composite material) on the composite material carried out from the autoclave. Therefore, the working time required to complete the post-process increases as compared with the case where air or the like is used as the heating source. Patent Document 1 does not provide a specific solution for removing such condensed water.
 本発明は、このような事情に鑑みてなされたものであって、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が凝縮した凝縮水が複合材料を封止する封止部材に付着した状態のままとなることを防止することが可能な複合材成形装置および複合材成形方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is in a state where the composite material is efficiently heated by using water vapor and condensed water in which water vapor is condensed adheres to a sealing member that seals the composite material. It is an object of the present invention to provide a composite material molding apparatus and a composite material molding method capable of preventing the mixture from remaining.
 上記課題を解決するために、本発明の複合材成形装置および複合材成形方法は、以下の手段を採用する。
 本発明の一態様に係る複合材成形装置は、複合材を成形するものであって、密閉可能な圧力容器と、前記圧力容器の内部空間に設置されるとともに複合材料を配置するための成形面を有する成形用冶具と、前記複合材料を覆うとともにシール材により前記成形面に接着されて前記複合材料を気密に封止する封止部材と、前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる水蒸気供給部と、前記内部空間に供給された水蒸気が凝縮して前記封止部材に付着した凝縮水を、該封止部材に向けて気体を噴射して除去する凝縮水除去部と、を備える。
In order to solve the above problems, the composite material molding apparatus and the composite material molding method of the present invention employ the following means.
The composite material molding apparatus according to one aspect of the present invention forms a composite material, and is a pressure vessel that can be sealed and a molding surface that is installed in the internal space of the pressure vessel and for arranging the composite material. A molding jig having the above, a sealing member that covers the composite material and is adhered to the molding surface by a sealing material to airtightly seal the composite material, and the pressure vessel with the pressure vessel sealed. A steam supply unit that supplies steam at a predetermined temperature and a predetermined pressure to the internal space to thermally cure the composite material, and condensed water in which the steam supplied to the internal space is condensed and adhered to the sealing member. A condensate water removing unit for injecting and removing a gas toward the sealing member.
 本発明の一態様に係る複合材成形装置によれば、複合材料を熱硬化させるため、水蒸気供給部が、所定の温度及び所定の圧力の水蒸気を圧力容器の内部空間へ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気により複合材料を効率よく迅速に加熱することができる。また、封止部材により気密に封止された複合材料が冷却される際に、加熱源として用いた水蒸気が凝縮した凝縮水が封止部材に付着するが、凝縮水除去部が噴射した気体により除去される。したがって、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が凝縮した凝縮水が複合材料を封止する封止部材に付着した状態のままとなることを防止することができる。 According to the composite material molding apparatus according to one aspect of the present invention, in order to thermoset the composite material, the steam supply unit supplies steam at a predetermined temperature and a predetermined pressure to the internal space of the pressure vessel. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air. Further, when the composite material airtightly sealed by the sealing member is cooled, the condensed water in which water vapor used as a heating source is condensed adheres to the sealing member, but the gas ejected by the condensed water removing portion causes the condensed water. Will be removed. Therefore, it is possible to efficiently heat the composite material using water vapor and prevent the condensed water in which the water vapor is condensed from remaining attached to the sealing member that seals the composite material.
 本発明の一態様に係る複合材成形装置において、前記圧力容器は、一端側の開口部に開閉可能な扉が設けられるとともに他端側が閉塞された筒状に形成されており、前記凝縮水除去部は、前記開口部を介して前記圧力容器の外部空間と前記内部空間との間で移動可能な移動機構を備える構成であってよい。
 本構成の複合材成形装置によれば、複合材料を水蒸気により熱硬化させた後に、移動機構により凝縮水除去部を圧力容器の外部空間から内部空間へ移動させることにより、封止部材に付着した凝縮水を除去することができる。
In the composite material molding apparatus according to one aspect of the present invention, the pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end is closed, and the condensed water is removed. The portion may be configured to include a moving mechanism that is movable between the external space of the pressure vessel and the internal space through the opening.
According to the composite material molding apparatus having this configuration, after the composite material is thermoset with steam, the condensed water removing portion is moved from the outer space to the inner space of the pressure vessel by a moving mechanism, so that the composite material adheres to the sealing member. Condensed water can be removed.
 上記構成の複合材成形装置においては、前記凝縮水除去部を制御する制御部を備え、前記制御部は、前記外部空間から前記内部空間に前記凝縮水除去部を移動させる際に前記封止部材に向けて気体を噴射するよう前記凝縮水除去部を制御してもよい。
 凝縮水除去部を移動させる際に封止部材に気体が噴射されるため、凝縮水除去部が内部空間の奥へ移動するのに伴って、圧力容器の一端側から他端側に向けて凝縮水が移動し、最終的には封止部材から凝縮水が除去される。
The composite material molding apparatus having the above configuration includes a control unit that controls the condensed water removing unit, and the control unit is the sealing member when moving the condensed water removing unit from the external space to the internal space. The condensed water removing unit may be controlled so as to inject gas toward.
Since gas is injected into the sealing member when the condensed water removing part is moved, it condenses from one end side to the other end side of the pressure vessel as the condensed water removing part moves to the inner part of the internal space. The water moves and eventually the condensed water is removed from the sealing member.
 上記構成の複合材成形装置において、前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する複数の噴射ノズルを有し、前記複数の噴射ノズルは、前記圧力容器の前記一端側から前記他端側に向けた第1配列方向に沿った複数個所に配置されている。
 複数の噴射ノズルが第1配列方向に沿った複数個所に配置されているため、第1配列方向において噴射ノズルが配置された各位置において封止部材に付着した凝縮水を除去することができる。
In the composite material molding apparatus having the above configuration, the condensed water removing unit has a plurality of injection nozzles for injecting gas toward the sealing member along the injection direction, and the plurality of injection nozzles are the pressure vessel. It is arranged at a plurality of places along the first arrangement direction from the one end side to the other end side.
Since the plurality of injection nozzles are arranged at a plurality of locations along the first arrangement direction, it is possible to remove the condensed water adhering to the sealing member at each position where the injection nozzles are arranged in the first arrangement direction.
 上記構成の複合材成形装置において、前記複数の噴射ノズルは、前記第1配列方向に直交する第2配列方向の複数個所に配置されていてもよい。
 複数の噴射ノズルが第2配列方向に沿った複数個所に配置されているため、第1配列方向に加え、第2配列方向において噴射ノズルが配置された各位置において封止部材に付着した凝縮水を除去することができる。
In the composite material molding apparatus having the above configuration, the plurality of injection nozzles may be arranged at a plurality of locations in the second arrangement direction orthogonal to the first arrangement direction.
Since a plurality of injection nozzles are arranged at a plurality of locations along the second arrangement direction, condensed water adhering to the sealing member is provided at each position where the injection nozzles are arranged in the second arrangement direction in addition to the first arrangement direction. Can be removed.
 上記構成の複合材成形装置において、前記圧力容器は、一端側の開口部に開閉可能な扉が設けられるとともに他端側が閉塞された筒状に形成されており、前記凝縮水除去部は、前記開口部の近傍で前記圧力容器に取り付けられており、前記凝縮水除去部を制御する制御部を備え、前記制御部は、前記内部空間から外部空間へ前記成形用冶具を移動させる際に前記封止部材に向けて気体を噴射するよう前記凝縮水除去部を制御してもよい。
 成形用冶具を内部空間から外部空間へ移動させる際に、開口部の近傍に取り付けられた凝縮水除去部から封止部材に気体が噴射されるため、凝縮水除去部が外部空間へ移動するのに伴って、封止部材に付着した凝縮水が除去される。
In the composite material molding apparatus having the above configuration, the pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end side is closed, and the condensed water removing portion is described above. It is attached to the pressure vessel in the vicinity of the opening and includes a control unit that controls the condensed water removing unit, and the control unit is sealed when moving the molding jig from the internal space to the external space. The condensed water removing unit may be controlled so as to inject gas toward the stop member.
When moving the molding jig from the internal space to the external space, gas is injected from the condensed water removing portion attached near the opening to the sealing member, so that the condensed water removing portion moves to the external space. As a result, the condensed water adhering to the sealing member is removed.
 上記構成の複合材成形装置において、前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する噴射ノズルを有し、前記噴射方向は、前記圧力容器の前記一端側から前記他端側に向けた方向成分を有してもよい。
 封止部材に向けて気体を噴射する噴射方向が圧力容器の一端側から他端側に向けた方向成分を有するため、封止部材に付着した凝縮水が圧力容器の一端側から他端側に向けて移動する。凝縮水が圧力容器の閉塞した他端側に貯留されるため、圧力容器の扉を開いた場合に開口部から凝縮水が外部空間に流出することを防止できる。
In the composite material molding apparatus having the above configuration, the condensed water removing portion has an injection nozzle that injects gas toward the sealing member along the injection direction, and the injection direction is one end side of the pressure vessel. It may have a directional component from the to the other end side.
Since the injection direction for injecting gas toward the sealing member has a directional component from one end side to the other end side of the pressure vessel, the condensed water adhering to the sealing member flows from one end side to the other end side of the pressure vessel. Move towards. Since the condensed water is stored in the closed other end side of the pressure vessel, it is possible to prevent the condensed water from flowing out to the external space from the opening when the door of the pressure vessel is opened.
 上記構成の複合材成形装置において、前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する噴射ノズルを有し、前記噴射方向は、前記圧力容器の前記一端側から前記他端側に向けた方向に直交する平面において、前記封止部材の中央部に向けた方向成分を有してもよい。
 封止部材に向けて気体を噴射する噴射方向が封止部材の中央部に向けた方向成分を有するため、噴射ノズルから噴射された気体が封止部材の中央部の近傍に噴射され、封止部材に付着した凝縮水を確実に除去することができる。
In the composite material molding apparatus having the above configuration, the condensed water removing portion has an injection nozzle that injects gas toward the sealing member along the injection direction, and the injection direction is one end side of the pressure vessel. It may have a directional component toward the central portion of the sealing member in a plane orthogonal to the direction toward the other end side.
Since the injection direction for injecting the gas toward the sealing member has a directional component toward the central portion of the sealing member, the gas injected from the injection nozzle is injected into the vicinity of the central portion of the sealing member and sealed. Condensed water adhering to the member can be reliably removed.
 上記構成の複合材成形装置において、前記圧力容器は、前記凝縮水除去部により前記封止部材から除去された凝縮水を前記内部空間から排出する排水機構を備えていてもよい。
 圧力容器が排水機構を備えるため、凝縮水除去部により封止部材から除去された凝縮水を圧力容器から排出することができる。
In the composite material molding apparatus having the above configuration, the pressure vessel may include a drainage mechanism for discharging the condensed water removed from the sealing member by the condensed water removing portion from the internal space.
Since the pressure vessel is provided with a drainage mechanism, the condensed water removed from the sealing member by the condensed water removing portion can be discharged from the pressure vessel.
 上記構成の複合材成形装置において、前記複合材料は、繊維基材が樹脂材料とともに積層されたプリプレグであってもよい。
 成形用冶具の成形面にプリプレグを配置するため、繊維基材に樹脂材料を注入する方法等に比べ、複合材の成形を容易に行うことができる。
In the composite material molding apparatus having the above configuration, the composite material may be a prepreg in which a fiber base material is laminated together with a resin material.
Since the prepreg is arranged on the molding surface of the molding jig, the composite material can be easily molded as compared with the method of injecting the resin material into the fiber base material.
 本発明の一態様に係る複合材成形方法は、複合材を成形する方法であって、密閉可能な圧力容器の内部空間に設置された成形用冶具の成形面に複合材料を配置する配置工程と、前記複合材料を封止部材で覆うとともに前記封止部材と前記成形面をシール材により接着して前記複合材料を気密に封止する封止工程と、前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる熱硬化工程と、前記内部空間に供給された水蒸気が凝縮して前記封止部材に付着した凝縮水を、該封止部材に向けて気体を噴射して除去する凝縮水除去工程と、を備える。 The composite material molding method according to one aspect of the present invention is a method for molding a composite material, which is a step of arranging the composite material on a molding surface of a molding tool installed in an internal space of a sealable pressure vessel. A sealing step of covering the composite material with a sealing member and adhering the sealing member and the molding surface with a sealing material to airtightly seal the composite material, and the pressure in a state where the pressure vessel is sealed. A heat curing step of supplying steam of a predetermined temperature and a predetermined pressure to the internal space of the container to thermally cure the composite material, and a heat curing step of heat-curing the composite material, and the water vapor supplied to the internal space is condensed and adhered to the sealing member. It is provided with a condensed water removing step of injecting a gas toward the sealing member to remove the condensed water.
 本発明の一態様に係る複合材成形方法によれば、複合材料を熱硬化させるため、熱硬化工程において、所定の温度及び所定の圧力の水蒸気を圧力容器の内部空間へ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気により複合材料を効率よく迅速に加熱することができる。また、封止部材により気密に封止された複合材料が冷却される際に、加熱源として用いた水蒸気が凝縮した凝縮水が封止部材に付着するが、凝縮水除去工程で噴射された気体により除去される。したがって、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が凝縮した凝縮水が複合材料を封止する封止部材に付着した状態のままとなることを防止することができる。 According to the composite material molding method according to one aspect of the present invention, in order to thermally cure the composite material, steam at a predetermined temperature and a predetermined pressure is supplied to the internal space of the pressure vessel in the thermal curing step. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air. Further, when the composite material airtightly sealed by the sealing member is cooled, the condensed water in which water vapor used as a heating source is condensed adheres to the sealing member, but the gas ejected in the condensed water removing step. Is removed by. Therefore, it is possible to efficiently heat the composite material using water vapor and prevent the condensed water in which the water vapor is condensed from remaining attached to the sealing member that seals the composite material.
 本発明によれば、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が凝縮した凝縮水が複合材料を封止する封止部材に付着した状態のままとなることを防止することが可能な複合材成形装置および複合材成形方法を提供することができる。 According to the present invention, it is possible to efficiently heat the composite material using water vapor and prevent the condensed water in which the water vapor is condensed from remaining attached to the sealing member that seals the composite material. A composite material molding apparatus and a composite material molding method can be provided.
本発明の第1実施形態に係る複合材成形装置を示す概略構成図である。It is a schematic block diagram which shows the composite material molding apparatus which concerns on 1st Embodiment of this invention. 図1に示す複合材成形装置の縦断面図である。It is a vertical sectional view of the composite material molding apparatus shown in FIG. 第1実施形態に係る複合材成形方法を示すフローチャートである。It is a flowchart which shows the composite material molding method which concerns on 1st Embodiment. 図2に示す複合材成形装置の斜視図であり、熱硬化工程が終了して圧力容器の扉を開いた状態を示す。It is a perspective view of the composite material molding apparatus shown in FIG. 2, and shows the state which the door of a pressure vessel is opened after the thermosetting process is completed. 複合材成形装置が備える凝縮器除去部を示す斜視図である。It is a perspective view which shows the condenser removal part provided in the composite material molding apparatus. 図4に示す圧力容器に凝縮水除去部が進入している状態を示す斜視図である。It is a perspective view which shows the state which the condensed water removal part has entered into the pressure vessel shown in FIG. 図4に示す圧力容器への凝縮水除去部の進入が完了した状態を示す斜視図である。It is a perspective view which shows the state which the entry of the condensed water removal part into the pressure vessel shown in FIG. 4 is completed. 凝縮水除去部が取り付けられた複合材成形装置の縦断面図である。It is a vertical sectional view of the composite material molding apparatus which attached the condensed water removal part. 図8に示す凝縮水除去部のA-A矢視断面図である。FIG. 8 is a cross-sectional view taken along the line AA of the condensed water removing portion shown in FIG. 本発明の第2実施形態に係る複合材形成装置を示す斜視図である。It is a perspective view which shows the composite material forming apparatus which concerns on 2nd Embodiment of this invention. 図10に示す複合材成形装置の縦断面図であり、硬化した複合材を圧力容器の内部空間に配置した状態を示す。It is a vertical cross-sectional view of the composite material molding apparatus shown in FIG. 10, and shows the state in which the cured composite material is arranged in the internal space of a pressure vessel. 図10に示す複合材成形装置の縦断面図であり、硬化した複合材を圧力容器の内部空間から外部空間へ移動させている状態を示す。FIG. 10 is a vertical cross-sectional view of the composite material molding apparatus shown in FIG. 10, showing a state in which the cured composite material is moved from the internal space of the pressure vessel to the external space.
〔第1実施形態〕
 以下、本発明の第1実施形態に係る複合材成形装置100およびそれを用いた複合材成形方法について、図面を参照して説明する。図1は、本発明の第1実施形態に係る複合材成形装置100を示す概略構成図である。図2は、図1に示す複合材成形装置100の縦断面図である。
[First Embodiment]
Hereinafter, the composite material molding apparatus 100 according to the first embodiment of the present invention and the composite material molding method using the same will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a composite material molding apparatus 100 according to the first embodiment of the present invention. FIG. 2 is a vertical cross-sectional view of the composite material molding apparatus 100 shown in FIG.
 本実施形態の複合材成形装置100は、強化繊維基材が樹脂材料とともに積層されたプリプレグ(複合材料)Pを熱硬化させることにより所望の形状の繊維強化複合材を成形する装置である。ここで、プリプレグとは、強化繊維基材と未硬化のマトリックス樹脂を含み、熱硬化することにより繊維強化複合材となる材料をいう。また、強化繊維基材とは、例えば、炭素繊維、ガラス繊維、アラミド繊維等である。また、マトリックス樹脂は、熱硬化性樹脂であり、エポキシ、不飽和ポリエステル、ビニルエステル、ビスマレイミド、フェノール、シアネート、ポリイミド等である。1枚あるいは複数枚のプリプレグを熱硬化させることにより、繊維強化複合材が成形される。 The composite material molding apparatus 100 of the present embodiment is an apparatus for molding a fiber-reinforced composite material having a desired shape by thermosetting a prepreg (composite material) P in which a reinforcing fiber base material is laminated together with a resin material. Here, the prepreg is a material containing a reinforcing fiber base material and an uncured matrix resin, which becomes a fiber-reinforced composite material by being thermoset. The reinforcing fiber base material is, for example, carbon fiber, glass fiber, aramid fiber, or the like. The matrix resin is a thermosetting resin, such as epoxy, unsaturated polyester, vinyl ester, bismaleimide, phenol, cyanate, and polyimide. A fiber-reinforced composite is formed by thermosetting one or more prepregs.
 図1および図2に示すように、本実施形態の複合材成形装置100は、密閉可能な圧力容器10と、成形用冶具20と、第1樹脂バッグ30と、ブリーザー(通気用部材)40と、第2樹脂バッグ(封止部材)50と、凝縮水除去部60と、真空ポンプ(減圧部)70と、水蒸気供給部80と、制御装置90と、を備える。 As shown in FIGS. 1 and 2, the composite material molding apparatus 100 of the present embodiment includes a sealable pressure vessel 10, a molding jig 20, a first resin bag 30, and a breather (ventilation member) 40. A second resin bag (sealing member) 50, a condensed water removing unit 60, a vacuum pump (pressure reducing unit) 70, a steam supply unit 80, and a control device 90 are provided.
 圧力容器10は、開閉可能な扉が取り付けられ、扉を閉状態とすることにより密閉された内部空間ISを形成する密閉可能な容器である。圧力容器10の内部空間ISは、成形用冶具20と成形用冶具20に配置されるプリプレグPが収容される。圧力容器10の内部空間ISには、成形用冶具20を設置するための設置台11が配置されている。 The pressure vessel 10 is a sealable container to which a door that can be opened and closed is attached, and a closed internal space IS is formed by closing the door. The internal space IS of the pressure vessel 10 accommodates the molding jig 20 and the prepreg P arranged in the molding jig 20. In the internal space IS of the pressure vessel 10, an installation table 11 for installing the molding jig 20 is arranged.
 図2に示すように、圧力容器10は、水平方向の一端側に開口部10aを有し、水平方向の他端側に閉塞された閉塞部10bを有する容器である。圧力容器10は、水平方向に延びる軸線Xに沿って円筒状に形成されている。開口部10aには、開閉可能な扉12が設けられている。圧力容器10の下端かつ閉塞部10bに近接した側には、凝縮水Wを排水穴10cから排出するための排水管(排水機構)13が設けられている。図2に示すように、排水穴10cが設けられる位置は、圧力容器10の下端の中で最も下方の位置である。そのため、圧力容器10の下端に導かれた凝縮水Wは、排水穴10cに導かれ、排水管13から外部に排水される。 As shown in FIG. 2, the pressure vessel 10 is a container having an opening 10a on one end side in the horizontal direction and a closed portion 10b closed on the other end side in the horizontal direction. The pressure vessel 10 is formed in a cylindrical shape along an axis X extending in the horizontal direction. The opening 10a is provided with a door 12 that can be opened and closed. A drain pipe (drainage mechanism) 13 for draining the condensed water W from the drain hole 10c is provided at the lower end of the pressure vessel 10 and on the side close to the closing portion 10b. As shown in FIG. 2, the position where the drain hole 10c is provided is the lowermost position in the lower end of the pressure vessel 10. Therefore, the condensed water W guided to the lower end of the pressure vessel 10 is guided to the drain hole 10c and drained to the outside from the drain pipe 13.
 成形用冶具20は、圧力容器10の内部空間ISに設置されるとともにプリプレグPを配置するための成形面21を有する板状に形成される部材である。成形用冶具20は、圧力容器10の内部空間ISに設けられた設置台11の上に配置される。成形用冶具20の成形面21は、図2に示す水平方向に延びる面であり、成形面21の上にプリプレグPが配置される。成形用冶具20は、例えば、アルミニウム合金、鉄等の耐熱性のある金属材料により形成される。 The molding jig 20 is a plate-shaped member that is installed in the internal space IS of the pressure vessel 10 and has a molding surface 21 for arranging the prepreg P. The molding jig 20 is arranged on an installation table 11 provided in the internal space IS of the pressure vessel 10. The molding surface 21 of the molding jig 20 is a surface extending in the horizontal direction shown in FIG. 2, and the prepreg P is arranged on the molding surface 21. The molding jig 20 is formed of, for example, a heat-resistant metal material such as an aluminum alloy or iron.
 第1樹脂バッグ30は、プリプレグPの全面を覆うように配置されるシート状の部材である。第1樹脂バッグ30は、後述する減圧空間S1が減圧された場合にブリーザー40の形状がプリプレグPの表面に転写されることを防止するための部材である。 The first resin bag 30 is a sheet-like member arranged so as to cover the entire surface of the prepreg P. The first resin bag 30 is a member for preventing the shape of the breather 40 from being transferred to the surface of the prepreg P when the decompression space S1 described later is decompressed.
 第1樹脂バッグ30は、プリプレグPを硬化させた複合材に張り付かずに容易に剥がすことができる離型性を有する樹脂フィルムにより形成されている。第1樹脂バッグ30は、例えば、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)などのフッ素樹脂材料を主成分とする樹脂フィルムにより形成されている。 The first resin bag 30 is formed of a releasable resin film that can be easily peeled off without sticking to the composite material obtained by curing the prepreg P. The first resin bag 30 is formed of, for example, a resin film containing a fluororesin material such as FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) as a main component.
 ブリーザー40は、図2に示すように、第1樹脂バッグ30の全面を覆うように配置されるとともに第1樹脂バッグ30と第2樹脂バッグ50との間で気体を通過させることが可能な通気空間を確保するための部材である。ブリーザー40は、例えば、繊維状のポリエステルにより形成されたポリエステルマットである。 As shown in FIG. 2, the breather 40 is arranged so as to cover the entire surface of the first resin bag 30, and is capable of allowing gas to pass between the first resin bag 30 and the second resin bag 50. It is a member for securing a space. The breather 40 is, for example, a polyester mat formed of fibrous polyester.
 第2樹脂バッグ50は、図2に示すように、ブリーザー40の全面を覆うとともにシール材Seにより成形面21に接着されてブリーザー40およびプリプレグPを気密に封止するシート状の部材である。第2樹脂バッグ50は、内部空間ISに水蒸気が供給された場合にプリプレグPを水蒸気から保護するために、耐蒸気性を有する樹脂フィルムにより形成されている。第2樹脂バッグ50は、例えば、FEPなどのフッ素樹脂材料を主成分とする樹脂フィルムにより形成されている。 As shown in FIG. 2, the second resin bag 50 is a sheet-like member that covers the entire surface of the breather 40 and is adhered to the molding surface 21 by the sealing material Se to airtightly seal the breather 40 and the prepreg P. The second resin bag 50 is formed of a steam-resistant resin film in order to protect the prepreg P from water vapor when water vapor is supplied to the internal space IS. The second resin bag 50 is formed of, for example, a resin film containing a fluororesin material such as FEP as a main component.
 凝縮水除去部60は、第2樹脂バッグ50に向けて圧縮空気を噴射することにより第2樹脂バッグ50の表面に付着した凝縮水を除去する装置である。凝縮水除去部60は、圧縮空気供給部64と、圧縮空気供給部64から圧縮空気が供給される噴射部62を有する。 The condensed water removing unit 60 is a device that removes condensed water adhering to the surface of the second resin bag 50 by injecting compressed air toward the second resin bag 50. The condensed water removing unit 60 includes a compressed air supply unit 64 and an injection unit 62 to which compressed air is supplied from the compressed air supply unit 64.
 図1に示すように、圧縮空気供給部64は、開閉弁65を介して配管65aに接続されている。圧縮空気供給部64と開閉弁65は、それぞれ制御装置90から制御信号線(図1に示す破線)を介して伝達される制御信号により制御される。制御装置90は、圧縮空気供給部64を動作状態とし、かつ開閉弁65を開状態とすることにより、配管65aへ圧縮空気を供給する。 As shown in FIG. 1, the compressed air supply unit 64 is connected to the pipe 65a via an on-off valve 65. The compressed air supply unit 64 and the on-off valve 65 are each controlled by a control signal transmitted from the control device 90 via a control signal line (broken line shown in FIG. 1). The control device 90 supplies the compressed air to the pipe 65a by operating the compressed air supply unit 64 and opening the on-off valve 65.
 真空ポンプ70は、第2樹脂バッグ50により封止された減圧空間S1を減圧する装置である。図1に示すように、真空ポンプ70は、開閉弁71を介して配管71aに接続されている。図2に示すように、配管71aは第2樹脂バッグ50に取り付けられた真空ポート71bに接続されている。 The vacuum pump 70 is a device that depressurizes the decompression space S1 sealed by the second resin bag 50. As shown in FIG. 1, the vacuum pump 70 is connected to the pipe 71a via an on-off valve 71. As shown in FIG. 2, the pipe 71a is connected to the vacuum port 71b attached to the second resin bag 50.
 真空ポンプ70と開閉弁71は、それぞれ制御装置90から制御信号線(図1に示す破線)を介して伝達される制御信号により制御される。制御装置90は、真空ポンプ70を動作状態とし、かつ開閉弁71を開状態とすることにより、真空ポート71bを介して減圧空間S1の空気を吸引して減圧空間S1を真空状態まで減圧する。 The vacuum pump 70 and the on-off valve 71 are each controlled by a control signal transmitted from the control device 90 via a control signal line (broken line shown in FIG. 1). By operating the vacuum pump 70 and opening the on-off valve 71, the control device 90 sucks the air in the decompression space S1 through the vacuum port 71b and decompresses the decompression space S1 to the vacuum state.
 水蒸気供給部80は、圧力容器10を密閉した状態で圧力容器10の内部空間ISへ所定の温度及び所定の圧力の水蒸気を供給してプリプレグPを熱硬化させる装置である。図1に示すように、水蒸気供給部80は、開閉弁81を介して配管81aに接続されている。図2に示すように、配管81aは、圧力容器10の内部空間ISと連通している。 The steam supply unit 80 is a device for thermosetting the prepreg P by supplying steam of a predetermined temperature and a predetermined pressure to the internal space IS of the pressure vessel 10 in a state where the pressure vessel 10 is sealed. As shown in FIG. 1, the steam supply unit 80 is connected to the pipe 81a via an on-off valve 81. As shown in FIG. 2, the pipe 81a communicates with the internal space IS of the pressure vessel 10.
 水蒸気供給部80および開閉弁81は、制御装置90から制御信号線を介して伝達される制御信号により制御される。制御装置90は、水蒸気供給部80を動作状態とし、かつ開閉弁81を開状態とすることにより、配管81aを介して水蒸気を内部空間ISへ供給する。水蒸気供給部80は、圧力容器10の内部空間ISへ供給する水蒸気として、例えば、飽和水蒸気を生成する。 The steam supply unit 80 and the on-off valve 81 are controlled by a control signal transmitted from the control device 90 via the control signal line. The control device 90 supplies steam to the internal space IS via the pipe 81a by operating the steam supply unit 80 and opening the on-off valve 81. The steam supply unit 80 generates, for example, saturated steam as steam to be supplied to the internal space IS of the pressure vessel 10.
 制御装置90は、複合材成形装置100を制御する装置である。制御装置90は、図1に破線で示す制御信号線を介して、圧縮空気供給部64、開閉弁65、真空ポンプ70、開閉弁71、水蒸気供給部80、および開閉弁81を制御する。 The control device 90 is a device that controls the composite material molding device 100. The control device 90 controls the compressed air supply unit 64, the on-off valve 65, the vacuum pump 70, the on-off valve 71, the steam supply unit 80, and the on-off valve 81 via the control signal line shown by the broken line in FIG.
 次に、図3を参照して、本実施形態の複合材成形装置100が実行する複合材成形方法について説明する。図3は、本実施形態に係る複合材成形方法を示すフローチャートである。
 ステップS301(配置工程)において、プリプレグPを成形用冶具20の成形面21に配置する。操作者は、例えば、運搬装置(図示略)を操作してプリプレグPを成形面21に配置する。
Next, with reference to FIG. 3, the composite material molding method executed by the composite material molding apparatus 100 of the present embodiment will be described. FIG. 3 is a flowchart showing a composite material molding method according to the present embodiment.
In step S301 (arrangement step), the prepreg P is arranged on the forming surface 21 of the forming jig 20. For example, the operator operates a transport device (not shown) to arrange the prepreg P on the molding surface 21.
 ステップS302において、プリプレグPの全面を覆うようにプリプレグPの上に第1樹脂バッグ30を配置する。
 ステップS303において、第1樹脂バッグ30を覆うように第1樹脂バッグ30の上にブリーザー40を配置する。
In step S302, the first resin bag 30 is arranged on the prepreg P so as to cover the entire surface of the prepreg P.
In step S303, the breather 40 is arranged on the first resin bag 30 so as to cover the first resin bag 30.
 ステップS304(封止工程)において、ブリーザー40を第2樹脂バッグ50で覆うとともに第2樹脂バッグ50と成形面21をシール材Seにより接着してブリーザー40を気密に封止する。複合材成形装置100の操作者は、成形面21または第2樹脂バッグ50の縁部にシール材Seを塗布し、第2樹脂バッグ50でブリーザー40を覆うようにして第2樹脂バッグ50を成形面21に接合する。 In step S304 (sealing step), the breather 40 is covered with the second resin bag 50, and the second resin bag 50 and the molding surface 21 are adhered with the sealing material Se to airtightly seal the breather 40. The operator of the composite material molding apparatus 100 applies the sealing material Se to the molding surface 21 or the edge of the second resin bag 50, and molds the second resin bag 50 so as to cover the breather 40 with the second resin bag 50. Join to surface 21.
 以上のステップS301からステップS304においては、圧力容器10を密閉せずに扉を開状態にしている。ステップS304が終了すると、複合材成形装置100の操作者は、扉を閉状態とし、圧力容器10を密閉する。 In the above steps S301 to S304, the door is opened without sealing the pressure vessel 10. When step S304 is completed, the operator of the composite material forming apparatus 100 closes the door and seals the pressure vessel 10.
 ステップS305(減圧工程)において、真空ポンプ70を動作状態とし、かつ開閉弁71を開状態とし、第1樹脂バッグ30により封止された減圧空間S1を減圧する。制御装置90は、減圧空間S1を真空状態に維持するように減圧する処理を、後述するステップS306終了するまで継続する。 In step S305 (decompression step), the vacuum pump 70 is put into an operating state and the on-off valve 71 is put into an open state, and the decompression space S1 sealed by the first resin bag 30 is depressurized. The control device 90 continues the process of depressurizing the decompression space S1 so as to maintain the vacuum state until the end of step S306 described later.
 ステップS306(熱硬化工程)において、減圧空間S1が真空状態となったことに応じて、圧力容器10を密閉した状態で、圧力容器10の内部空間ISへ所定の温度及び所定の圧力の水蒸気を供給するよう水蒸気供給部80および開閉弁81が制御される。 In step S306 (heat curing step), in response to the vacuum state of the decompression space S1, water vapor having a predetermined temperature and a predetermined pressure is applied to the internal space IS of the pressure vessel 10 in a state where the pressure vessel 10 is sealed. The steam supply unit 80 and the on-off valve 81 are controlled to supply the steam.
 圧力容器10の内部空間ISに配置されるプリプレグPは、真空状態に減圧された減圧空間S1の圧力と水蒸気により加圧された内部空間ISとの差圧によって加圧された状態となる。また、プリプレグPは、水蒸気から伝達される熱によって加熱された状態となる。プリプレグPは、加圧状態および加熱状態が所定時間継続することにより、マトリックス樹脂である熱硬化性樹脂が硬化し、所望の形状を維持した状態で硬化する。これにより、プリプレグPからマトリックス樹脂が硬化した複合材が成形される。 The prepreg P arranged in the internal space IS of the pressure vessel 10 is in a state of being pressurized by the differential pressure between the pressure of the decompressed space S1 decompressed in a vacuum state and the internal space IS pressurized by water vapor. Further, the prepreg P is in a state of being heated by the heat transferred from the steam. The thermosetting resin, which is a matrix resin, is cured by continuing the pressurized state and the heated state for a predetermined time, and the prepreg P is cured in a state of maintaining a desired shape. As a result, a composite material obtained by curing the matrix resin is formed from the prepreg P.
 ステップS307(冷却工程)において、ステップS307により硬化した複合材を冷却する。制御装置90は、例えば、真空ポンプ70および水蒸気供給部80の動作を停止させ、冷却水供給機構(図示略)により内部空間ISへ冷却水を供給して内部空間ISに配置される複合材を冷却する。また、制御装置90は、例えば、複合材が所定温度以下となるように一定時間経過するまで待機状態を維持するようにしてもよい。 In step S307 (cooling step), the composite material cured by step S307 is cooled. The control device 90, for example, stops the operation of the vacuum pump 70 and the steam supply unit 80, supplies cooling water to the internal space IS by a cooling water supply mechanism (not shown), and disposes of a composite material arranged in the internal space IS. Cooling. Further, the control device 90 may maintain the standby state until a certain period of time elapses so that the composite material becomes, for example, a predetermined temperature or less.
 なお、複合材が所定温度以下まで低下すると、高温の水蒸気が凝縮して凝縮水が生成され、第2樹脂バッグ50の表面に付着する。第2樹脂バッグ50に付着した凝縮水は、硬化した複合材に対する後工程(第1樹脂バッグ30、ブリーザー40、第2樹脂バッグ50の除去、複合材の検査等の工程)を行う前に除去される必要がある。そこで、本実施形態では、ステップS308において凝縮水除去を行う。 When the composite material drops below a predetermined temperature, high-temperature steam condenses to generate condensed water, which adheres to the surface of the second resin bag 50. The condensed water adhering to the second resin bag 50 is removed before performing a subsequent step (steps such as removal of the first resin bag 30, breather 40 and second resin bag 50, inspection of the composite material, etc.) on the cured composite material. Need to be done. Therefore, in the present embodiment, the condensed water is removed in step S308.
 ステップS308(凝縮水除去工程)で、圧力容器10の内部空間ISが複合材を取り出すことが可能な温度および圧力となった場合に、圧力容器10の扉12を開状態とする。図4に示すように、圧力容器10の内部空間ISに配置される第2樹脂バッグ50の表面には、水蒸気が凝縮して生成された凝縮水Wが付着している。 In step S308 (condensed water removing step), when the internal space IS of the pressure vessel 10 reaches a temperature and pressure at which the composite material can be taken out, the door 12 of the pressure vessel 10 is opened. As shown in FIG. 4, condensed water W generated by condensing water vapor adheres to the surface of the second resin bag 50 arranged in the internal space IS of the pressure vessel 10.
 ステップS308において、凝縮水除去部60が、圧縮空気供給部64から供給される圧縮空気を第2樹脂バッグ50へ向けて噴射することにより第2樹脂バッグ50に付着した凝縮水Wを除去する。凝縮水除去部60の具体的な構成については後述する。 In step S308, the condensed water removing unit 60 removes the condensed water W adhering to the second resin bag 50 by injecting the compressed air supplied from the compressed air supply unit 64 toward the second resin bag 50. The specific configuration of the condensed water removing unit 60 will be described later.
 ステップS309において、圧力容器10の扉を開状態とし、硬化した複合材を圧力容器10の内部空間ISから外部へ取り出す。また、成形用冶具20の成形面21から第2樹脂バッグ50、ブリーザー40、第1樹脂バッグ30がこの順で取り外され、複合材を露出させる。以上のようにして、複合材が成形される。 In step S309, the door of the pressure vessel 10 is opened, and the cured composite material is taken out from the internal space IS of the pressure vessel 10. Further, the second resin bag 50, the breather 40, and the first resin bag 30 are removed from the molding surface 21 of the molding jig 20 in this order to expose the composite material. As described above, the composite material is formed.
 ここで、ステップS308において、第2樹脂バッグ50に付着した凝縮水を除去するために用いられる凝縮水除去部60について詳細に説明する。図5は、複合材成形装置100が備える凝縮水除去部60を示す斜視図である。図5に示す凝縮水除去部60は、第2樹脂バッグ50に向けて圧縮空気を噴射することにより凝縮水Wを除去する装置である。なお、凝縮水除去部60は、圧縮空気に替えて圧縮窒素等の他の気体を噴射してもよい。 Here, in step S308, the condensed water removing unit 60 used for removing the condensed water adhering to the second resin bag 50 will be described in detail. FIG. 5 is a perspective view showing a condensed water removing portion 60 included in the composite material forming apparatus 100. The condensed water removing unit 60 shown in FIG. 5 is a device that removes the condensed water W by injecting compressed air toward the second resin bag 50. The condensed water removing unit 60 may inject another gas such as compressed nitrogen instead of the compressed air.
 図5に示すように、凝縮水除去部60は、半円筒状に形成される本体部61と、半円環状に形成されるとともに本体部61の内周面に設置される複数の噴射部62と、複数の噴射部62の下端を支持する複数の車輪(移動機構)63と、を備える。 As shown in FIG. 5, the condensed water removing portion 60 includes a main body portion 61 formed in a semi-cylindrical shape and a plurality of injection portions 62 formed in a semicircular ring shape and installed on the inner peripheral surface of the main body portion 61. And a plurality of wheels (moving mechanism) 63 that support the lower ends of the plurality of injection portions 62.
 噴射部62は、圧縮空気供給部64から供給される圧縮空気を複数の噴射ノズル62aを介して第2樹脂バッグ50へ向けて噴射する装置である。図5に示すように、複数の噴射部62のそれぞれには、第2樹脂バッグ50へ向けた噴射方向に沿って圧縮空気を噴射するための複数の噴射ノズル62aが設けられている。 The injection unit 62 is a device that injects the compressed air supplied from the compressed air supply unit 64 toward the second resin bag 50 via the plurality of injection nozzles 62a. As shown in FIG. 5, each of the plurality of injection units 62 is provided with a plurality of injection nozzles 62a for injecting compressed air along the injection direction toward the second resin bag 50.
 図5に示すように、噴射部62は、軸線Yを中心とした半円筒形状の内周面を有する。各噴射部62において、複数の噴射ノズル62aは、軸線Y回りの周方向に沿って、半円筒形状の内周面に所定の間隔(例えば、一定間隔)で配置されている。 As shown in FIG. 5, the injection unit 62 has a semi-cylindrical inner peripheral surface centered on the axis Y. In each injection unit 62, the plurality of injection nozzles 62a are arranged at predetermined intervals (for example, at regular intervals) on the inner peripheral surface of the semi-cylindrical shape along the circumferential direction around the axis Y.
 それぞれ複数の噴射ノズル62aを有する複数の噴射部62は、図5に示す軸線Yに沿った方向(第1配列方向)において複数個所に設置されている。軸線Yは、半円筒形状の噴射部62の中心軸に相当する軸線である。凝縮水除去部60を圧力容器10の内部空間ISへ移動させる際に、図5に示す軸線Yに沿った方向は、圧力容器10の一端側の開口部10aから他端側の閉塞部10bへ向けた方向(図1に示す水平方向)と一致する。 A plurality of injection portions 62, each having a plurality of injection nozzles 62a, are installed at a plurality of locations in a direction (first arrangement direction) along the axis Y shown in FIG. The axis Y is an axis corresponding to the central axis of the semi-cylindrical injection unit 62. When the condensed water removing portion 60 is moved to the internal space IS of the pressure vessel 10, the direction along the axis Y shown in FIG. 5 is from the opening 10a on one end side of the pressure vessel 10 to the closing portion 10b on the other end side. It coincides with the direction (horizontal direction shown in FIG. 1).
 また、図5に示すように、各噴射部62には、軸線Yに沿った方向と直交する幅方向(第2配列方向)の複数個所に噴射ノズル62aが配置されている。このように、噴射ノズル62aは、圧力容器10の一端側の開口部10aから他端側の閉塞部10bへ向けた第1配列方向の複数個所に配置され、さらに第1配列方向に直交する第2配列方向の複数個所に設置される。 Further, as shown in FIG. 5, each injection unit 62 is provided with injection nozzles 62a at a plurality of locations in the width direction (second arrangement direction) orthogonal to the direction along the axis Y. As described above, the injection nozzles 62a are arranged at a plurality of positions in the first arrangement direction from the opening 10a on one end side of the pressure vessel 10 toward the closing portion 10b on the other end side, and are further orthogonal to the first arrangement direction. It is installed at multiple locations in two arrangement directions.
 車輪63は、圧力容器10の開口部10aを介して圧力容器10の外部空間OSと内部空間ISとの間で凝縮水除去部60を移動させることが可能な移動機構である。図4に示すように、圧力容器10の内周面には、車輪63と係合するレール14が取り付けられている。レール14は、開口部10aから閉塞部10bに向けて直線状に延びる部材であり、設置台11を挟んで一対設けられている。 The wheel 63 is a moving mechanism capable of moving the condensed water removing unit 60 between the external space OS and the internal space IS of the pressure vessel 10 through the opening 10a of the pressure vessel 10. As shown in FIG. 4, a rail 14 that engages with the wheel 63 is attached to the inner peripheral surface of the pressure vessel 10. The rails 14 are members that extend linearly from the opening 10a toward the closing portion 10b, and are provided in pairs with the installation base 11 interposed therebetween.
 複合材成形装置100の操作者は、車輪63を一対のレール14に係合させた状態で凝縮水除去部60を圧力容器10の閉塞部10bへ向けて押し込むことにより、凝縮水除去部60をレール14に沿って移動させることができる。図6は、図4に示す圧力容器10に凝縮水除去部60が進入している状態を示す斜視図である。図7は、図4に示す圧力容器への凝縮水除去部60の進入が完了した状態を示す斜視図である。 The operator of the composite material forming apparatus 100 pushes the condensed water removing portion 60 toward the closing portion 10b of the pressure vessel 10 with the wheels 63 engaged with the pair of rails 14, thereby pushing the condensed water removing portion 60. It can be moved along the rail 14. FIG. 6 is a perspective view showing a state in which the condensed water removing unit 60 has entered the pressure vessel 10 shown in FIG. FIG. 7 is a perspective view showing a state in which the condensate water removing unit 60 has completed entering the pressure vessel shown in FIG.
 ステップS308において、圧力容器10の扉12を開状態とした後、車輪63を一対のレール14に係合させた状態で凝縮水除去部60を圧力容器10の閉塞部10bへ向けて押し込み、図6に示す状態とする。また、図6に示す状態から凝縮水除去部60を更に閉塞部10bへ押し込むことにより、図7に示す状態とし、圧力容器10への凝縮水除去部60の進入を完了させる。複合材成形装置100の操作者は、圧力容器10への凝縮水除去部60の進入を完了したことに応じて、扉12を閉じて内部空間ISを密閉状態とする。 In step S308, after the door 12 of the pressure vessel 10 is opened, the condensed water removing portion 60 is pushed toward the closing portion 10b of the pressure vessel 10 with the wheels 63 engaged with the pair of rails 14. The state shown in 6 is assumed. Further, by further pushing the condensed water removing unit 60 into the closing portion 10b from the state shown in FIG. 6, the state shown in FIG. 7 is obtained, and the entry of the condensed water removing unit 60 into the pressure vessel 10 is completed. The operator of the composite material forming apparatus 100 closes the door 12 to close the internal space IS in a sealed state in response to the completion of the entry of the condensed water removing unit 60 into the pressure vessel 10.
 図8は、凝縮水除去部60が取り付けられた複合材成形装置100の縦断面図である。図9は、図8に示す凝縮水除去部60のA-A矢視断面図である。図8に示すように、圧力容器10の内部空間ISは、扉12が閉状態となって密閉空間となっている。また、圧力容器10が延びる方向である軸線Xに沿った水平方向において、図8に示すX1,X2,X3,X4の4箇所に所定の間隔(例えば、一定間隔)で噴射ノズル62aが配置されている。ここでは、X1,X2,X3,X4の4箇所に配置するものとしたが、4未満または4以上の任意の数の噴射ノズル62aを配置してもよい。 FIG. 8 is a vertical cross-sectional view of the composite material molding apparatus 100 to which the condensed water removing portion 60 is attached. FIG. 9 is a cross-sectional view taken along the line AA of the condensed water removing unit 60 shown in FIG. As shown in FIG. 8, the internal space IS of the pressure vessel 10 is a closed space with the door 12 closed. Further, in the horizontal direction along the axis X, which is the direction in which the pressure vessel 10 extends, the injection nozzles 62a are arranged at four positions X1, X2, X3, and X4 shown in FIG. 8 at predetermined intervals (for example, at regular intervals). ing. Here, it is assumed that they are arranged at four locations of X1, X2, X3, and X4, but any number of injection nozzles 62a of less than 4 or 4 or more may be arranged.
 図8に示すように、噴射ノズル62aは、第2樹脂バッグ50へ向けて噴射方向Idに沿って圧縮空気を噴射する。噴射方向Idは、軸線Axに沿った方向である。軸線Axが延びる方向は、鉛直方向に延びる軸線Zに対して閉塞部10bへ向けて角度θだけ傾斜している。この噴射方向Idは、圧力容器10の一端側の開口部10aから他端側の閉塞部10bへ向けた方向成分を有する。そのため、噴射ノズル62aから噴射方向Idに向けて噴射された圧縮空気が凝縮水Wに衝突すると、凝縮水Wが開口部10aから閉塞部10bへ向けた方向に移動する。 As shown in FIG. 8, the injection nozzle 62a injects compressed air toward the second resin bag 50 along the injection direction Id. The injection direction Id is a direction along the axis Ax. The direction in which the axis Ax extends is inclined by an angle θ with respect to the axis Z extending in the vertical direction toward the closing portion 10b. The injection direction Id has a directional component from the opening 10a on one end side of the pressure vessel 10 to the closing portion 10b on the other end side. Therefore, when the compressed air injected from the injection nozzle 62a in the injection direction Id collides with the condensed water W, the condensed water W moves in the direction from the opening 10a to the closing portion 10b.
 図9は、図8に示す凝縮水除去部60のA-A矢視断面図であり、軸線Xに沿った水平方向に直交する平面で切断した断面図である。図9に示すように、各噴射ノズル62aが圧縮空気を噴射する噴射方向Idは、凝縮水除去部60を図8に示す軸線Xに沿って水平方向に視認した場合、第2樹脂バッグ50の中央部50aへ向けた方向となっている。 FIG. 9 is a cross-sectional view taken along the line AA of the condensed water removing portion 60 shown in FIG. 8 and is a cross-sectional view cut along a plane orthogonal to the horizontal direction along the axis X. As shown in FIG. 9, the injection direction Id in which each injection nozzle 62a injects compressed air is the second resin bag 50 when the condensed water removing portion 60 is visually recognized in the horizontal direction along the axis X shown in FIG. The direction is toward the central portion 50a.
 中央部50aへ向けた方向とは、噴射ノズル62aを始点とする噴射方向Idの延長線上に中央部50aが存在する方向には限られない。図9に示すように、噴射方向Idは、軸線Xに沿った水平方向に直交する平面において、第2樹脂バッグ50の中央部50aに向けた方向成分を有するものであればよい。 The direction toward the central portion 50a is not limited to the direction in which the central portion 50a exists on the extension line of the injection direction Id starting from the injection nozzle 62a. As shown in FIG. 9, the injection direction Id may have a direction component toward the central portion 50a of the second resin bag 50 in a plane orthogonal to the horizontal direction along the axis X.
 そのため、第2樹脂バッグ50に複数の噴射ノズル62aから圧縮空気を噴射することにより、第2樹脂バッグ50の幅方向の端部から幅方向の中央部へ向けて凝縮水Wが移動する。このように、第2樹脂バッグ50に付着した凝縮水Wは、幅方向の中央部50aの近傍に集められた上で、開口部10aから閉塞部10bへ向けた方向に移動する。 Therefore, by injecting compressed air from the plurality of injection nozzles 62a into the second resin bag 50, the condensed water W moves from the end portion in the width direction of the second resin bag 50 toward the center portion in the width direction. In this way, the condensed water W adhering to the second resin bag 50 is collected in the vicinity of the central portion 50a in the width direction, and then moves in the direction from the opening 10a to the closing portion 10b.
 開口部10aから閉塞部10bへ向けて移動した凝縮水Wは、成形面21の閉塞部10b側の端部から設置台11へ落下し、更に圧力容器10の下端へ落下する。そして、圧力容器10の下端へ落下した凝縮水Wは、排水穴10cから排水管13へ導かれて外部へ排水される。 The condensed water W that has moved from the opening 10a to the closing portion 10b falls from the end of the molding surface 21 on the closing portion 10b side to the installation table 11, and further drops to the lower end of the pressure vessel 10. Then, the condensed water W that has fallen to the lower end of the pressure vessel 10 is guided from the drain hole 10c to the drain pipe 13 and drained to the outside.
 以上の説明において、凝縮水除去部60による圧縮空気の噴射は、圧力容器10の扉12を閉めた状態で行うものとした。このようにすることで、圧力容器10の内部空間ISを密閉空間とした状態で圧縮空気が噴射されるため、圧縮空気の噴射による騒音が軽減される点で有利である。ただし、他の態様も可能である。 In the above description, the injection of compressed air by the condensed water removing unit 60 is performed with the door 12 of the pressure vessel 10 closed. By doing so, the compressed air is injected with the internal space IS of the pressure vessel 10 as a closed space, which is advantageous in that the noise caused by the injection of the compressed air is reduced. However, other aspects are also possible.
 例えば、制御装置90は、圧力容器10の扉12を開けた状態で、外部空間OSから内部空間ISに凝縮水除去部60を移動させる際に第2樹脂バッグ50に向けて圧縮空気を噴射するように凝縮水除去部60を制御してもよい。この場合、外部空間OSから内部空間ISに凝縮水除去部60を移動させる際に、その移動に伴って第2樹脂バッグ50から凝縮水Wが除去されるため、第2樹脂バッグ50から凝縮水Wを除去する時間を短縮することができる。 For example, the control device 90 injects compressed air toward the second resin bag 50 when moving the condensed water removing unit 60 from the external space OS to the internal space IS with the door 12 of the pressure vessel 10 open. The condensed water removing unit 60 may be controlled as described above. In this case, when the condensed water removing unit 60 is moved from the external space OS to the internal space IS, the condensed water W is removed from the second resin bag 50 along with the movement, so that the condensed water W is removed from the second resin bag 50. The time for removing W can be shortened.
 以上説明した本実施形態の複合材成形装置が奏する作用および効果について説明する。
 本実施形態の複合材成形装置によれば、プリプレグPを熱硬化させるため、水蒸気供給部80が、所定の温度及び所定の圧力の水蒸気を圧力容器10の内部空間ISへ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気によりプリプレグPを効率よく迅速に加熱することができる。
The actions and effects of the composite material molding apparatus of the present embodiment described above will be described.
According to the composite material molding apparatus of the present embodiment, in order to thermoset the prepreg P, the steam supply unit 80 supplies steam at a predetermined temperature and a predetermined pressure to the internal space IS of the pressure vessel 10. Therefore, as compared with the case where air is used as the heating source, the prepreg P can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air.
 また、第2樹脂バッグ50により気密に封止されたプリプレグPが冷却される際に、加熱源として用いた水蒸気が凝縮した凝縮水Wが第2樹脂バッグ50に付着するが、凝縮水除去部60が噴射した圧縮空気により除去される。したがって、水蒸気が凝縮した凝縮水WがプリプレグPを封止する第2樹脂バッグ50に付着した状態のままとなることを防止することができる。 Further, when the prepreg P airtightly sealed by the second resin bag 50 is cooled, the condensed water W in which the water vapor used as the heating source is condensed adheres to the second resin bag 50, but the condensed water removing portion 60 is removed by the injected compressed air. Therefore, it is possible to prevent the condensed water W in which water vapor is condensed from remaining attached to the second resin bag 50 that seals the prepreg P.
 また、本実施形態の複合材成形装置100によれば、プリプレグPを水蒸気により熱硬化させた後に、車輪63を用いた移動機構により凝縮水除去部60を圧力容器10の外部空間OSから内部空間ISへ移動させることにより、第2樹脂バッグに付着した凝縮水Wを除去することができる。 Further, according to the composite material molding apparatus 100 of the present embodiment, after the prepreg P is thermoset with steam, the condensed water removing portion 60 is moved from the external space OS of the pressure vessel 10 to the internal space by a moving mechanism using the wheels 63. By moving to IS, the condensed water W adhering to the second resin bag can be removed.
 また、本実施形態の複合材成形装置100によれば、複数の噴射ノズル62aが開口部10aから閉塞部10bへ向けた第1配列方向に沿った複数個所に配置されているため、第1配列方向において噴射ノズル62aが配置された各位置において第2樹脂バッグ50に付着した凝縮水Wを除去することができる。さらに、複数の噴射ノズル62aが第1配列方向に直交する第2配列方向(幅方向)に沿った複数個所に配置されているため、第1配列方向に加え、第2配列方向において噴射ノズル62aが配置された各位置において第2樹脂バッグ50に付着した凝縮水Wを除去することができる。 Further, according to the composite material molding apparatus 100 of the present embodiment, since the plurality of injection nozzles 62a are arranged at a plurality of locations along the first arrangement direction from the opening 10a to the closing portion 10b, the first arrangement The condensed water W adhering to the second resin bag 50 can be removed at each position where the injection nozzle 62a is arranged in the direction. Further, since the plurality of injection nozzles 62a are arranged at a plurality of locations along the second arrangement direction (width direction) orthogonal to the first arrangement direction, the injection nozzles 62a are arranged in the second arrangement direction in addition to the first arrangement direction. The condensed water W adhering to the second resin bag 50 can be removed at each position where the nozzles are arranged.
 また、本実施形態の複合材成形装置100によれば、第2樹脂バッグ50に向けて圧縮空気を噴射する噴射方向Idが圧力容器10の一端側から他端側に向けた方向成分を有するため、第2樹脂バッグ50に付着した凝縮水Wが圧力容器10の一端側から他端側に向けて移動する。凝縮水が圧力容器10の閉塞した他端側に貯留されるため、圧力容器10の扉を開いた場合に開口部10aから凝縮水Wが外部空間OSに流出することを防止できる。 Further, according to the composite material molding apparatus 100 of the present embodiment, the injection direction Id for injecting compressed air toward the second resin bag 50 has a directional component from one end side to the other end side of the pressure vessel 10. , The condensed water W adhering to the second resin bag 50 moves from one end side to the other end side of the pressure vessel 10. Since the condensed water is stored in the closed other end side of the pressure vessel 10, it is possible to prevent the condensed water W from flowing out to the external space OS from the opening 10a when the door of the pressure vessel 10 is opened.
〔第2実施形態〕
 以下、本発明の第2実施形態に係る複合材成形装置100Aおよびそれを用いた複合材成形方法について、図面を参照して説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
[Second Embodiment]
Hereinafter, the composite material molding apparatus 100A according to the second embodiment of the present invention and the composite material molding method using the same will be described with reference to the drawings. This embodiment is a modification of the first embodiment, and is the same as that of the first embodiment except for the cases described below, and the description thereof will be omitted below.
 第1実施形態の複合材成形装置100は、移動機構としての車輪63を有する凝縮水除去部60を備え、圧力容器10の外部空間OSから内部空間ISへ凝縮水除去部60を移動させるものであった。それに対して、本実施形態の複合材成形装置100Aは、圧力容器10の開口部10aの近傍に取り付けられる凝縮水除去部60Aを備え、硬化した複合材を収容する第2樹脂バッグ50を圧力容器10の内部空間ISから外部空間OSへ移動させる際に凝縮水Wを除去するものである。 The composite material forming apparatus 100 of the first embodiment includes a condensed water removing unit 60 having wheels 63 as a moving mechanism, and moves the condensed water removing unit 60 from the external space OS of the pressure vessel 10 to the internal space IS. there were. On the other hand, the composite material molding apparatus 100A of the present embodiment includes a condensed water removing portion 60A attached in the vicinity of the opening 10a of the pressure vessel 10, and holds a second resin bag 50 for accommodating the cured composite material in the pressure vessel. The condensed water W is removed when moving from the internal space IS of 10 to the external space OS.
 図10は、本実施形態に係る複合材成形装置100Aを示す斜視図である。図11は、図10に示す複合材成形装置100Aの縦断面図であり、硬化した複合材を圧力容器10の内部空間ISに配置した状態を示す。図12は、図10に示す複合材成形装置100Aの縦断面図であり、硬化した複合材を圧力容器10の内部空間ISから外部空間OSへ移動させている状態を示す。 FIG. 10 is a perspective view showing the composite material molding apparatus 100A according to the present embodiment. FIG. 11 is a vertical cross-sectional view of the composite material molding apparatus 100A shown in FIG. 10, showing a state in which the cured composite material is arranged in the internal space IS of the pressure vessel 10. FIG. 12 is a vertical cross-sectional view of the composite material molding apparatus 100A shown in FIG. 10, showing a state in which the cured composite material is moved from the internal space IS of the pressure vessel 10 to the external space OS.
 図10に示すように、本実施形態の凝縮水除去部60Aは、軸線Xを中心軸として円筒状に形成される圧力容器10の開口部10aの近傍において、圧力容器10の内周面に取り付けられている。凝縮水除去部60Aは、圧力容器10の内周面において、設置台11よりも鉛直方向の上方の領域に取り付けられている。 As shown in FIG. 10, the condensed water removing portion 60A of the present embodiment is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10 formed in a cylindrical shape with the axis X as the central axis. Has been done. The condensed water removing portion 60A is attached to the inner peripheral surface of the pressure vessel 10 in a region above the installation table 11 in the vertical direction.
 凝縮水除去部60Aは、例えば、複合材成形装置100の操作者が圧力容器10の内部空間ISが複合材を取り出すことが可能な温度および圧力となったことを確認して圧力容器10の扉12を開状態とした後に、複合材成形装置100の操作者により取り付けられる。凝縮水除去部60Aは、圧力容器10の内周面に予め固定されていてもよい。 The condensed water removing unit 60A confirms, for example, that the operator of the composite material molding apparatus 100 has reached a temperature and pressure at which the internal space IS of the pressure vessel 10 can take out the composite material, and the door of the pressure vessel 10 After the 12 is opened, it is attached by the operator of the composite material forming apparatus 100. The condensed water removing portion 60A may be fixed in advance to the inner peripheral surface of the pressure vessel 10.
 本実施形態において、複合材成形装置100の操作者は、圧力容器10の内部空間ISが複合材を取り出すことが可能な温度および圧力となったことを確認し、圧力容器10の扉12を開状態とする。そして、制御装置90は、内部空間ISから外部空間OSへ成形用冶具20およびそれに載置された複合材および第2樹脂バッグ50を移動させる際に、第2樹脂バッグ50に向けて圧縮空気を噴射するよう凝縮水除去部60Aを制御する。 In the present embodiment, the operator of the composite material molding apparatus 100 confirms that the internal space IS of the pressure vessel 10 has reached a temperature and pressure at which the composite material can be taken out, and opens the door 12 of the pressure vessel 10. Make it a state. Then, the control device 90 sends compressed air toward the second resin bag 50 when the molding jig 20 and the composite material and the second resin bag 50 placed on the molding jig 20 are moved from the internal space IS to the external space OS. The condensed water removing unit 60A is controlled so as to inject.
 図11および図12に示すように、噴射ノズル62aは、第2樹脂バッグ50へ向けて噴射方向Idに沿って圧縮空気を噴射する。噴射方向Idは、軸線Axに沿った方向である。軸線Axが延びる方向は、鉛直方向に延びる軸線Zに対して閉塞部10bへ向けて角度θだけ傾斜している。この噴射方向Idは、圧力容器10の一端側の開口部10aから他端側の閉塞部10bへ向けた方向成分を有する。そのため、噴射ノズル62aから噴射方向Idに向けて噴射された圧縮空気が凝縮水Wに衝突すると、凝縮水Wが開口部10aから閉塞部10bへ向けた方向に移動する。 As shown in FIGS. 11 and 12, the injection nozzle 62a injects compressed air toward the second resin bag 50 along the injection direction Id. The injection direction Id is a direction along the axis Ax. The direction in which the axis Ax extends is inclined by an angle θ with respect to the axis Z extending in the vertical direction toward the closing portion 10b. The injection direction Id has a directional component from the opening 10a on one end side of the pressure vessel 10 to the closing portion 10b on the other end side. Therefore, when the compressed air injected from the injection nozzle 62a in the injection direction Id collides with the condensed water W, the condensed water W moves in the direction from the opening 10a to the closing portion 10b.
 図11および図12に示すように、噴射ノズル62aは、圧力容器10の開口部10aの近傍(図11に示す軸線X方向におけるX1の位置)で圧力容器10の内周面に取り付けられている。噴射ノズル62aは、開口部10aの近傍を除く他の箇所には取り付けられていない。そこで、本実施形態では、噴射ノズル62aに対して成形用冶具20を移動させることにより、第2樹脂バッグ50に付着した凝縮水Wを除去している。 As shown in FIGS. 11 and 12, the injection nozzle 62a is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10 (the position of X1 in the axis X direction shown in FIG. 11). .. The injection nozzle 62a is not attached to any place other than the vicinity of the opening 10a. Therefore, in the present embodiment, the condensed water W adhering to the second resin bag 50 is removed by moving the molding jig 20 with respect to the injection nozzle 62a.
 図11に示す状態は、成形用冶具20を圧力容器10の内部空間ISに配置した状態である。図11に示す状態から成形用冶具20を外部空間OSへ向けて移動させると図12に示す状態となる。図12に示す状態は、成形用冶具20を圧力容器10の内部空間ISから外部空間OSへ移動させている状態を示す。制御装置90は、成形用冶具20を圧力容器10の内部空間ISから外部空間OSへ移動させている状態で、噴射ノズル62aからの圧縮空気の噴射を継続的に行う。これにより、第2樹脂バッグ50に付着した凝縮水Wが、成形用冶具20の移動に伴って除去される。 The state shown in FIG. 11 is a state in which the molding jig 20 is arranged in the internal space IS of the pressure vessel 10. When the molding jig 20 is moved from the state shown in FIG. 11 toward the external space OS, the state shown in FIG. 12 is obtained. The state shown in FIG. 12 shows a state in which the molding jig 20 is moved from the internal space IS of the pressure vessel 10 to the external space OS. The control device 90 continuously injects compressed air from the injection nozzle 62a while the molding jig 20 is being moved from the internal space IS of the pressure vessel 10 to the external space OS. As a result, the condensed water W adhering to the second resin bag 50 is removed as the molding jig 20 moves.
 以上説明した第2実施形態において、凝縮水除去部60Aは、圧力容器10の開口部10aの近傍において、圧力容器10の内周面に取り付けられるものとしたが、他の態様であってもよい。例えば、4つの凝縮水除去部60Aを図11に示す軸線X方向におけるX1,X2,X3,X4の位置で圧力容器10の内周面に取り付けてもよい。ここでは、X1,X2,X3,X4の4箇所に配置するものとしたが、2以上の任意の位置に凝縮水除去部60Aを配置してもよい。 In the second embodiment described above, the condensed water removing portion 60A is attached to the inner peripheral surface of the pressure vessel 10 in the vicinity of the opening 10a of the pressure vessel 10, but other embodiments may be used. .. For example, the four condensed water removing portions 60A may be attached to the inner peripheral surface of the pressure vessel 10 at the positions of X1, X2, X3, and X4 in the axis X direction shown in FIG. Here, it is assumed that they are arranged at four positions of X1, X2, X3, and X4, but the condensed water removing unit 60A may be arranged at two or more arbitrary positions.
10   圧力容器
10a  開口部
10b  閉塞部
10c  排水穴
11   設置台
12   扉
13   排水管
14   レール
20   成形用冶具
21   成形面
50   第2樹脂バッグ(封止部材)
60,60A 凝縮水除去部
61   本体部
62   噴射部
62a  噴射ノズル
63   車輪(移動機構)
64   圧縮空気供給部
70   真空ポンプ
80   水蒸気供給部
90   制御装置
100,100A 複合材成形装置
IS   内部空間
Id   噴射方向
OS   外部空間
P    プリプレグ(複合材料)
W    凝縮水
X,Y,Z 軸線
 
10 Pressure vessel 10a Opening 10b Closure 10c Drain hole 11 Installation stand 12 Door 13 Drain pipe 14 Rail 20 Molding tool 21 Molding surface 50 Second resin bag (sealing member)
60, 60A Condensed water removal part 61 Main body part 62 Injection part 62a Injection nozzle 63 Wheel (moving mechanism)
64 Compressed air supply unit 70 Vacuum pump 80 Water vapor supply unit 90 Control device 100, 100A Composite material molding device IS Internal space Id Injection direction OS External space P prepreg (composite material)
W Condensed water X, Y, Z axis

Claims (11)

  1.  複合材を成形する複合材成形装置であって、
     密閉可能な圧力容器と、
     前記圧力容器の内部空間に設置されるとともに複合材料を配置するための成形面を有する成形用冶具と、
     前記複合材料を覆うとともにシール材により前記成形面に接着されて前記複合材料を気密に封止する封止部材と、
     前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる水蒸気供給部と、
     前記内部空間に供給された水蒸気が凝縮して前記封止部材に付着した凝縮水を、該封止部材に向けて気体を噴射して除去する凝縮水除去部と、を備える複合材成形装置。
    A composite material molding device that molds composite materials.
    With a pressure vessel that can be sealed
    A molding jig installed in the internal space of the pressure vessel and having a molding surface for arranging the composite material,
    A sealing member that covers the composite material and is adhered to the molding surface by a sealing material to airtightly seal the composite material.
    A steam supply unit for thermosetting the composite material by supplying steam at a predetermined temperature and a predetermined pressure to the internal space of the pressure vessel with the pressure vessel sealed.
    A composite material molding apparatus including a condensed water removing portion in which water vapor supplied to the internal space is condensed and condensed water adhering to the sealing member is removed by injecting gas toward the sealing member.
  2.  前記圧力容器は、一端側の開口部に開閉可能な扉が設けられるとともに他端側が閉塞された筒状に形成されており、
     前記凝縮水除去部は、前記開口部を介して前記圧力容器の外部空間と前記内部空間との間で移動可能な移動機構を備える請求項1に記載の複合材成形装置。
    The pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end side is closed.
    The composite material molding apparatus according to claim 1, wherein the condensed water removing unit includes a moving mechanism that can move between the external space of the pressure vessel and the internal space through the opening.
  3.  前記凝縮水除去部を制御する制御部を備え、
     前記制御部は、前記外部空間から前記内部空間に前記凝縮水除去部を移動させる際に前記封止部材に向けて気体を噴射するよう前記凝縮水除去部を制御する請求項2に記載の複合材成形装置。
    A control unit for controlling the condensed water removing unit is provided.
    The composite according to claim 2, wherein the control unit controls the condensed water removing unit so as to inject gas toward the sealing member when the condensed water removing unit is moved from the external space to the internal space. Material molding equipment.
  4.  前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する複数の噴射ノズルを有し、
     前記複数の噴射ノズルは、前記圧力容器の前記一端側から前記他端側に向けた第1配列方向に沿った複数個所に配置されている請求項2または請求項3に記載の複合材成形装置。
    The condensed water removing unit has a plurality of injection nozzles that inject gas toward the sealing member along the injection direction.
    The composite material molding apparatus according to claim 2 or 3, wherein the plurality of injection nozzles are arranged at a plurality of locations along the first arrangement direction from the one end side to the other end side of the pressure vessel. ..
  5.  前記複数の噴射ノズルは、前記第1配列方向に直交する第2配列方向の複数個所に配置されている請求項4に記載の複合材成形装置。 The composite material molding apparatus according to claim 4, wherein the plurality of injection nozzles are arranged at a plurality of locations in the second arrangement direction orthogonal to the first arrangement direction.
  6.  前記圧力容器は、一端側の開口部に開閉可能な扉が設けられるとともに他端側が閉塞された筒状に形成されており、
     前記凝縮水除去部は、前記開口部の近傍で前記圧力容器に取り付けられており、
     前記凝縮水除去部を制御する制御部を備え、
     前記制御部は、前記内部空間から外部空間へ前記成形用冶具を移動させる際に前記封止部材に向けて気体を噴射するよう前記凝縮水除去部を制御する請求項1に記載の複合材成形装置。
    The pressure vessel is formed in a tubular shape in which a door that can be opened and closed is provided at an opening on one end side and the other end side is closed.
    The condensed water removing portion is attached to the pressure vessel in the vicinity of the opening.
    A control unit for controlling the condensed water removing unit is provided.
    The composite material molding according to claim 1, wherein the control unit controls the condensed water removing unit so as to inject gas toward the sealing member when the molding jig is moved from the internal space to the external space. apparatus.
  7.  前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する噴射ノズルを有し、
     前記噴射方向は、前記圧力容器の前記一端側から前記他端側に向けた方向成分を有する請求項2、請求項3、または請求項6のいずれか一項に記載の複合材成形装置。
    The condensed water removing unit has an injection nozzle that injects gas toward the sealing member along the injection direction.
    The composite material molding apparatus according to claim 2, wherein the injection direction has a directional component from one end side to the other end side of the pressure vessel.
  8.  前記凝縮水除去部は、前記封止部材に向けて噴射方向に沿って気体を噴射する噴射ノズルを有し、
     前記噴射方向は、前記圧力容器の前記一端側から前記他端側に向けた方向に直交する平面において、前記封止部材の中央部に向けた方向成分を有する請求項2、請求項3、または請求項6のいずれか一項に記載の複合材成形装置。
    The condensed water removing unit has an injection nozzle that injects gas toward the sealing member along the injection direction.
    Claim 2, claim 3, or claim 3, wherein the injection direction has a directional component toward the central portion of the sealing member in a plane orthogonal to the direction from the one end side to the other end side of the pressure vessel. The composite material molding apparatus according to any one of claims 6.
  9.  前記圧力容器は、前記凝縮水除去部により前記封止部材から除去された凝縮水を前記内部空間から排出する排水機構を備える請求項1から請求項8のいずれか一項に記載の複合材成形装置。 The composite material molding according to any one of claims 1 to 8, wherein the pressure vessel includes a drainage mechanism for discharging condensed water removed from the sealing member by the condensed water removing portion from the internal space. apparatus.
  10.  前記複合材料は、繊維基材が樹脂材料とともに積層されたプリプレグである請求項1から請求項9のいずれか一項に記載の複合材成形装置。 The composite material molding apparatus according to any one of claims 1 to 9, wherein the composite material is a prepreg in which a fiber base material is laminated together with a resin material.
  11.  複合材を成形する複合材成形方法であって、
     密閉可能な圧力容器の内部空間に設置された成形用冶具の成形面に複合材料を配置する配置工程と、
     前記複合材料を封止部材で覆うとともに前記封止部材と前記成形面をシール材により接着して前記複合材料を気密に封止する封止工程と、
     前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる熱硬化工程と、
     前記内部空間に供給された水蒸気が凝縮して前記封止部材に付着した凝縮水を、該封止部材に向けて気体を噴射して除去する凝縮水除去工程と、を備える複合材成形方法。
     
    It is a composite material molding method for molding a composite material.
    The placement process of placing the composite material on the molding surface of the molding jig installed in the internal space of the sealable pressure vessel, and
    A sealing step of covering the composite material with a sealing member and adhering the sealing member and the molded surface with a sealing material to hermetically seal the composite material.
    A thermosetting step of supplying steam of a predetermined temperature and a predetermined pressure to the internal space of the pressure vessel with the pressure vessel sealed to thermally cure the composite material.
    A composite material molding method comprising a step of removing condensed water in which water vapor supplied to the internal space is condensed and the condensed water adhering to the sealing member is removed by injecting gas toward the sealing member.
PCT/JP2019/022627 2019-06-06 2019-06-06 Composite-material molding apparatus and composite-material molding method WO2020246001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022627 WO2020246001A1 (en) 2019-06-06 2019-06-06 Composite-material molding apparatus and composite-material molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022627 WO2020246001A1 (en) 2019-06-06 2019-06-06 Composite-material molding apparatus and composite-material molding method

Publications (1)

Publication Number Publication Date
WO2020246001A1 true WO2020246001A1 (en) 2020-12-10

Family

ID=73653073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022627 WO2020246001A1 (en) 2019-06-06 2019-06-06 Composite-material molding apparatus and composite-material molding method

Country Status (1)

Country Link
WO (1) WO2020246001A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501555A (en) * 2004-06-09 2008-01-24 インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド Method for forming or curing polymer composite
JP2009526675A (en) * 2006-02-15 2009-07-23 グリーン ポリテック カンパニー リミテッド Laminated tube manufacturing apparatus and method
JP2012153133A (en) * 2010-11-26 2012-08-16 Ashida Mfg Co Ltd Autoclave molding method and autoclave molding apparatus
JP2015079851A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Air knife for drying and drying apparatus including the same
JP2016168684A (en) * 2015-03-11 2016-09-23 富士重工業株式会社 Molding apparatus of composite material, and molding method of composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501555A (en) * 2004-06-09 2008-01-24 インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド Method for forming or curing polymer composite
JP2009526675A (en) * 2006-02-15 2009-07-23 グリーン ポリテック カンパニー リミテッド Laminated tube manufacturing apparatus and method
JP2012153133A (en) * 2010-11-26 2012-08-16 Ashida Mfg Co Ltd Autoclave molding method and autoclave molding apparatus
JP2015079851A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Air knife for drying and drying apparatus including the same
JP2016168684A (en) * 2015-03-11 2016-09-23 富士重工業株式会社 Molding apparatus of composite material, and molding method of composite material

Similar Documents

Publication Publication Date Title
US10105911B2 (en) End of arm tooling
US10336019B2 (en) Systems and methods for on-aircraft composite repair using double vacuum debulking
US6861017B1 (en) Method for forming composite parts from volatile-emitting materials using breathable tooling
CN105965915B (en) Apparatus and method for molding composite material
EP2512783B1 (en) Double vacuum cure processing of composite parts
JP2010528899A (en) Fiber composite structural member processing apparatus and fiber composite structural member processing method
US9415536B2 (en) Apparatus and method for producing a composite material aircraft component
US10052828B2 (en) Supporting profiled element, method for producing a supporting profiled element, and use of said supporting profiled element in a method for producing a reinforced vehicle fuselage component
JP2009202440A (en) Demolding method and manufacturing process of fiber-reinforced plastic
US5643522A (en) Method and system for curing fiber reinforced composite structures
US11826969B2 (en) Diaphragm forming
US20100136232A1 (en) curing of polymer composites
WO2020246001A1 (en) Composite-material molding apparatus and composite-material molding method
JP6154670B2 (en) Method and apparatus for molding fiber reinforced plastic member
JP6410755B2 (en) Heat treatment and solidification system and method
EP3290177B1 (en) An automated mold preform system
US10464743B2 (en) Tank made of a composite material
US20220143935A1 (en) Composite material molding method and composite material molding device
JP2000176940A (en) Molding method and apparatus under steam heating
JP7167382B2 (en) COMPOSITE MATERIAL FORMING METHOD AND COMPOSITE MATERIAL FORMING APPARATUS
JP6722369B2 (en) Method for forming honeycomb sandwich composite
CN114536813A (en) Apparatus and method for processing composite structures
US20110248431A1 (en) Thermoforming apparatus
WO2021019604A1 (en) Composite material forming device and composite material forming method
JP2733869B2 (en) Method and apparatus for controlling local heating in autoclave molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP