WO2020244278A1 - 一种新型内齿轮泵月牙板及其制备方法 - Google Patents

一种新型内齿轮泵月牙板及其制备方法 Download PDF

Info

Publication number
WO2020244278A1
WO2020244278A1 PCT/CN2020/080126 CN2020080126W WO2020244278A1 WO 2020244278 A1 WO2020244278 A1 WO 2020244278A1 CN 2020080126 W CN2020080126 W CN 2020080126W WO 2020244278 A1 WO2020244278 A1 WO 2020244278A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal gear
gear pump
crescent plate
nickel
niobium diselenide
Prior art date
Application number
PCT/CN2020/080126
Other languages
English (en)
French (fr)
Inventor
焦生炉
卢昊
权江涛
彭玉兴
朱真才
周涛
王年
姜伟
李剑锋
连旭日
Original Assignee
徐州圣邦机械有限公司
中国矿业大学
圣邦集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州圣邦机械有限公司, 中国矿业大学, 圣邦集团有限公司 filed Critical 徐州圣邦机械有限公司
Publication of WO2020244278A1 publication Critical patent/WO2020244278A1/zh

Links

Images

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/101Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent-shaped filler element, located between the inner and outer intermeshing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a novel internal gear pump crescent plate and a preparation method thereof, and belongs to the technical field of powder metallurgy.
  • the technical problem to be solved by the present invention is to provide a new type of internal gear pump crescent plate, which can effectively improve the mechanical properties, wear resistance, and environmental adaptability of the crescent plate.
  • the present invention designs a new type of internal gear pump crescent plate, which is made of copper powder and nickel-coated niobium diselenide, wherein the mass of copper powder accounts for 85%-95%, the mass proportion of nickel-coated niobium diselenide is 5%-15%.
  • the mass proportion of copper powder is 85%, and the mass proportion of nickel-coated niobium diselenide is 15%.
  • the mass ratio of nickel to niobium diselenide is 1:1.
  • the purity of the copper powder and the purity of the nickel-coated niobium diselenide are both greater than 99%.
  • the technical problem to be solved by the present invention is to provide a method for preparing a new type of internal gear pump crescent plate, which includes the following steps:
  • Step A1 Weigh the copper powder and nickel-coated niobium diselenide according to the mass percentage ratio, and use a planetary ball mill for uniform mixing to obtain mixed ingredients;
  • Step A2 Put the mixed ingredients into the mold and shake them evenly, and press to shape them to obtain molding materials;
  • Step A3. Pass an inert gas into the enclosed space, place the molding material in the enclosed space, and perform pressureless sintering of the molding material according to preset sintering parameters to obtain an internal gear pump crescent plate.
  • the sintering parameters are as follows:
  • Sintering temperature is 750°C ⁇ 900°C, heating rate is 9°C/min ⁇ 11°C/min, pressure is 300MPa ⁇ 500Mpa, holding time is 100min ⁇ 150min;
  • the sintering parameters are as follows:
  • the sintering temperature is 800°C
  • the heating rate is 10°C/min
  • the pressure is 400Mpa
  • the holding time is 120min;
  • the inert gas is argon.
  • the preparation of the nickel-coated niobium diselenide includes the following steps:
  • Step B Add NbSe 2 to deionized water for a preset duration of ultrasound to obtain a uniformly dispersed NbSe 2 solution;
  • Step B2. Add NiSO 4 and EDTA ⁇ 2Na ⁇ 2H2O to the NbSe 2 solution, and stir the ultrasonic for a preset time to obtain a primary solution;
  • Step B3. Drop the hydrazine hydrate solution into the primary solution, and continue to stir for a preset time at a preset temperature to obtain a solution product;
  • Step B4 Centrifuge the solution product, wash it with distilled water for a preset number of times, and then dry it in a vacuum oven at a preset temperature for a preset time to obtain nickel-coated niobium diselenide particles.
  • the new internal gear pump crescent plate designed by the present invention and its preparation method adopts a new component structure to prepare the ratio.
  • the prepared crescent plate has excellent physical and mechanical properties, high strength, low friction coefficient, and wear resistance. Good abrasion performance and other advantages; and based on a new preparation method designed for composition ratio, the whole process has simple process, strong operability, and relatively low cost, and has a wide range of uses in the mechanical manufacturing industry.
  • Figure 1 is a 500 times metallographic photo of the internal gear pump crescent plate prepared in Example 3;
  • Fig. 2a is a schematic diagram of the comparison between the pure copper crescent plate and the examples 1 to 4 based on the friction coefficient at room temperature;
  • 2b is a schematic diagram of comparison of the wear rate of pure copper crescent plate and Examples 1 to 4 based on the room temperature state;
  • Figure 3a is a scan of the wear scar of the pure copper crescent plate at room temperature
  • Figure 3b is a scan of the wear scar in Example 1 based on room temperature
  • Figure 3c is a scan of the wear scar in Example 3 based on room temperature
  • Fig. 3d is a scanning diagram of the wear scar of Example 4 based on the room temperature state.
  • Solid lubricating materials are used in harsh environmental conditions such as wide range, high load, ultra-high vacuum, strong oxidation or reduction, strong radiation, etc., which can significantly reduce the friction factor of friction parts, and reduce or avoid the occurrence of contact friction during the movement of parts Wear and tear, prolong its service life. Therefore, in the anti-friction and anti-wear design of mechanical parts, solid lubricating materials have the same important position as the parts materials themselves. This copper-based self-lubricating composite material can be used for important parts such as crescent plates in internal gear pumps.
  • the copper-based self-lubricating composite material containing solid lubricant has the characteristics of base copper and solid lubricant, and can be widely used in industrial fields.
  • NbSe 2 is a layered compound material with a hexagonal crystal structure. Covalent bonds, metal bonds, and ionic bonds coexist. This weak bond combination between layers is similar to layered graphite. It has self-lubricating effect and high temperature resistance. With high strength and good stability, it can be used under severe working conditions such as heavy load and vacuum.
  • By covering the surface of NbSe 2 with a layer of nickel not only the bonding strength of the interface between NbSe 2 and the copper matrix can be improved, but also the hardness of the material and the anti-friction and wear resistance can be improved.
  • the crescent plate is made of copper powder and nickel-coated niobium diselenide.
  • the mass of copper powder accounts for 85% to 95%.
  • the mass ratio of niobium diselenide is 5% to 15%; in practical applications, the purity of copper powder and the purity of nickel-coated niobium diselenide are both greater than 99%; for the ratio of different components, copper can be specifically designed
  • the mass ratio of the powder is 85%, and the mass ratio of the nickel-coated niobium diselenide is 15%.
  • the mass ratio of nickel and niobium diselenide is 1:1. Ni-coated niobium diselenide.
  • the nickel-coated niobium diselenide is prepared according to the following steps B1 to B4.
  • Step B1 The NbSe 2 is added to the preset length of ultrasonic deionized water to obtain a uniform dispersion of NbSe 2 solution; actual applications, such as ultrasound said 0.1gNbSe 2 60min 50ml was added to the deionized water to obtain a uniform dispersion of NbSe 2 solution.
  • Step B2. Add NiSO 4 and EDTA ⁇ 2Na ⁇ 2H2O to the NbSe 2 solution, and stir the ultrasonic for a preset time to obtain the primary solution; in practical applications, such as adding 0.16g NiSO 4 and 0.08g EDTA ⁇ 2Na ⁇ 2H2O to the NbSe 2 In the solution, stir and ultrasonic for 15min to obtain the primary solution.
  • Step B3. Drop the hydrazine hydrate solution into the primary solution, and continue to stir at the preset temperature for a preset time to obtain the solution product; in practical applications, such as dropping 2ml of hydrazine hydrate solution into the primary solution, and Stirring was continued for 120 min at 30°C to obtain a solution product.
  • Step B4 Centrifuge the solution product, wash it with distilled water for a preset number of times, and then dry it in a vacuum oven at a preset temperature for a preset time to obtain nickel-coated niobium diselenide particles; in practical applications, such as for solution products Carry out centrifugal treatment, wash with distilled water 3 times, and then dry in a vacuum oven at 60°C for 8 hours to obtain nickel-coated niobium diselenide particles.
  • the designed internal gear pump crescent plate is prepared.
  • Step A1 Weigh the copper powder and nickel-coated niobium diselenide according to the mass percentage ratio, and use a planetary ball mill for uniform mixing to obtain mixed ingredients.
  • Step A2 Put the mixed ingredients into the mold and shake them evenly, and press to shape to obtain the molding material.
  • Step A3. Pass inert gas into the confined space and place the molding material in the confined space.
  • preset sintering parameters perform pressureless sintering of the molding material to obtain the crescent plate of the internal gear pump; in actual application, inert gas design Argon gas is used for the access of confined spaces.
  • step A3 is in actual application, according to the following sintering parameters:
  • the sintering temperature is 750°C ⁇ 900°C
  • the heating rate is 9°C/min ⁇ 11°C/min
  • the pressure is 300MPa ⁇ 500Mpa
  • the holding time is 100min ⁇ 150min.
  • Pressureless sintering is performed on the molding material in the confined space to obtain the internal gear pump crescent plate; and in the specific operation, the sintering temperature can be set at 800°C, the heating rate is 10°C/min, the pressure is 400Mpa, and the holding time is 120min.
  • Step A1 According to the mass percentage of copper powder 95%, nickel-coated niobium diselenide 5%, weigh the copper powder and nickel-coated niobium diselenide, and use a planetary ball mill for uniform mixing to obtain mixed ingredients, wherein, ball mill The speed is 250r/min, and the mixing time is 12h.
  • Step A2 Put the mixed ingredients into the mold and shake them evenly, and press to shape to obtain the molding material.
  • Step A3. Pass argon gas into the enclosed space, and place the molding material in the enclosed space, according to the following sintering parameters:
  • the sintering temperature is 800°C
  • the heating rate is 10°C/min
  • the pressure is 400Mpa
  • the holding time is 120min.
  • the tribological performance was carried out on the CETRRMT-2Multi-SpecimenTestSystem friction tester.
  • the experimental parameters were load 500g, speed 200r/min, time 30min, and temperature at room temperature.
  • the new internal gear pump crescent plate designed by the present invention has excellent mechanical properties at normal temperature, low friction coefficient and low wear rate, and has excellent wear resistance at normal temperature while realizing self-lubrication; as shown in Figure 1
  • the metallographic photo shows its microstructure. As shown in Figure 2a, it can be seen that the friction coefficients of Examples 1, 2, 3, and 4 are lower than those of pure copper, and Figure 2b shows that Examples 1, 2, The wear rates of 3 and 4 are lower than those of pure copper.
  • the new internal gear pump crescent plate designed by the present invention is prepared with a new component structure.
  • the prepared crescent plate has excellent physical and mechanical properties, high strength, low friction coefficient, and wear resistance. Good performance and other advantages; and based on a new preparation method designed for the composition ratio, the whole process has simple process, strong operability, and relatively low cost, and has a wide range of uses in the mechanical manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

一种内齿轮泵月牙板,其中,月牙板由铜粉和镍包覆二硒化铌制成,其中,铜粉的质量占比为85%~95%,镍包覆二硒化铌的质量占比为5%~15%。以及该月牙板的制备方法,包括步骤:依次执行配料混合、压制成型、密闭空间无压烧结;该方法采用全新组分结构进行配比制备,所制备出的月牙板具有优异的物理性能和机械性能,拥有强度高,摩擦系数低,抗磨磨损性能好等优点;并且基于全新组分配比设计的制备方法,整个过程工艺简单、可操作性强,成本相对较低,在机械制造工业领域具有广泛用途。

Description

一种新型内齿轮泵月牙板及其制备方法 技术领域
本发明涉及一种新型内齿轮泵月牙板及其制备方法,属于粉末冶金技术领域。
背景技术
在现代工业生产中,对于机械设备中零件摩擦的工作过程,由于在各类不同条件下,摩擦零部件很少具有自润滑功能,摩擦磨损是造成材料损耗的重要原因之一,通过使用润滑材料,减少摩擦与磨损,以尽可能地减少无用的能量消耗,延长摩擦件的使用寿命,降低使用成本,节省能源等,摩擦学者、润滑工程师、设计者和工程师通过润滑以达到减摩抗磨的理论与实例研究一直没有停止过。
发明内容
本发明所要解决的技术问题是提供一种新型内齿轮泵月牙板,能够有效提高月牙板的机械性能、耐磨损性能、以及环境适应性。
本发明为了解决上述技术问题采用以下技术方案:本发明设计了一种新型内齿轮泵月牙板,月牙板由铜粉和镍包覆二硒化铌制成,其中,铜粉的质量占比为85%~95%,镍包覆二硒化铌的质量占比为5%~15%。
作为本发明的一种优选技术方案:所述月牙板中,铜粉的质量占比为85%,镍包覆二硒化铌的质量占比为15%。
作为本发明的一种优选技术方案:所述镍包覆二硒化铌中,镍和二硒化铌的质量比为1:1。
作为本发明的一种优选技术方案:所述月牙板中,铜粉的纯度和镍包覆二硒化铌的纯度均大于99%。
与上述相对应,本发明还要解决的技术问题是提供一种针对新型内齿轮泵月牙板的制备方法,包括如下步骤:
步骤A1.按质量百分比配比、称取铜粉和镍包覆二硒化铌,并采用行星式球磨机进行均匀混合,获得混合配料;
步骤A2.将混合配料放入模具中摇匀,并压制成型,获得成型料;
步骤A3.在密闭空间中通入惰性气体,并将成型料置于密闭空间中,按预设烧结参数,针对成型料进行无压烧结,获得内齿轮泵月牙板。
作为本发明的一种优选技术方案,所述步骤A3中,按如下烧结参数:
烧结温度750℃~900℃,升温速率为9℃/min~11℃/min,压力为300MPa~500Mpa、保温时间100min~150min;
针对密闭空间中的成型料进行无压烧结,获得内齿轮泵月牙板。
作为本发明的一种优选技术方案,所述步骤A3中,按如下烧结参数:
烧结温度800℃,升温速率为10℃/min,压力为400Mpa、保温时间120min;
针对密闭空间中的成型料进行无压烧结,获得内齿轮泵月牙板。
作为本发明的一种优选技术方案:所述惰性气体为氩气。
作为本发明的一种优选技术方案,所述镍包覆二硒化铌的制备,包括如下步骤:
步骤B1.将NbSe 2加入到去离子水中超声预设时长,获得均匀分散的NbSe 2溶液;
步骤B2.将NiSO 4和EDTA·2Na·2H2O加入到NbSe 2溶液中,并搅拌超声预设时长,获得初级溶液;
步骤B3.将水合肼溶液滴加到初级溶液中,并在预设温度下、继续搅拌预设时长,获得溶液产物;
步骤B4.针对溶液产物进行离心处理,并用蒸馏水洗涤预设次数,然后在预设温度的真空烘箱中干燥预设时长,即获得镍包覆二硒化铌颗粒。
本发明所述一种新型内齿轮泵月牙板及其制备方法,采用以上技术方案与现有技术相比,具有以下技术效果:
本发明所设计新型内齿轮泵月牙板及其制备方法,采用全新组分结构进行配比制备,所制备出的月牙板具有优异的物理性能和机械性能,拥有强度高,摩擦系数低,抗磨磨损性能好等优点;并且基于全新组分配比设计的制备方法,整个过程工艺简单、可操作性强,成本相对较低,在机械制造工业领域具有广泛用途。
附图说明
图1为实施例3制备的内齿轮泵月牙板放大500倍的金相照片;
图2a为纯铜月牙板与实施例1至4基于室温状态下摩擦系数的对比示意图;
图2b为纯铜月牙板与实施例1至4基于室温状态下磨损率的对比示意图;
图3a为纯铜月牙板基于室温状态下的磨痕扫描图;
图3b为实施例1基于室温状态下的磨痕扫描图;
图3c为实施例3基于室温状态下的磨痕扫描图;
图3d为实施例4基于室温状态下的磨痕扫描图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
固体润滑材料用于范围宽、高负荷、超高真空、强氧化或还原、强辐射等苛刻环境条件中使用,能够显著降低摩擦件的摩擦因数,减少或避零部件在运动时因接触摩擦发生的磨损,延长其使用寿命。因此在机械部件减摩抗磨设计中,固体润滑材料具有与零部件材料本身同等重要的地位,这种铜基自润滑复合材料可使用在内啮合齿轮泵中的月牙板等重要的零部件。
含有固体润滑剂(镍包覆二硒化铌)的铜基自润滑复合材料,兼具基体铜和固体润滑剂的特性,而能够被广泛的应用于工业领域。NbSe 2是一种层状的化合物材料,属于六方晶体结构,共价键、金属键、离子键共存,这种各层间的弱键结合类似于层状石墨,具有自润滑作用,耐高温,强度大,稳定性好,能在大负荷、真空等苛刻工况条件下使用。通过在NbSe 2表面包覆一层镍,不仅可改善NbSe 2与铜基体的界面结合强度,还能提高材料的硬度以及减摩耐磨性能。
基于上述特点,本发明设计一种新型内齿轮泵月牙板,月牙板由铜粉和镍包覆二 硒化铌制成,其中,铜粉的质量占比为85%~95%,镍包覆二硒化铌的质量占比为5%~15%;实际应用当中,铜粉的纯度和镍包覆二硒化铌的纯度均大于99%;对于不同组分的配比,具体可以设计铜粉的质量占比为85%,镍包覆二硒化铌的质量占比为15%,并且对于镍包覆二硒化铌,采用质量比为1:1的镍和二硒化铌,构成镍包覆二硒化铌。
对于上述新型内齿轮泵月牙板的制备来说,首先按如下步骤B1至步骤B4,制备镍包覆二硒化铌。
步骤B1.将NbSe 2加入到去离子水中超声预设时长,获得均匀分散的NbSe 2溶液;实际应用中,诸如称0.1gNbSe 2加入到50ml去离子水中超声60min,获得均匀分散的NbSe 2溶液。
步骤B2.将NiSO 4和EDTA·2Na·2H2O加入到NbSe 2溶液中,并搅拌超声预设时长,获得初级溶液;实际应用中,诸如将0.16gNiSO 4和0.08gEDTA·2Na·2H2O加入到NbSe 2溶液中,并搅拌超声15min,获得初级溶液。
步骤B3.将水合肼溶液滴加到初级溶液中,并在预设温度下、继续搅拌预设时长,获得溶液产物;实际应用中,诸如将2ml水合肼溶液滴加到初级溶液中,并在30℃下、继续搅拌120min,获得溶液产物。
步骤B4.针对溶液产物进行离心处理,并用蒸馏水洗涤预设次数,然后在预设温度的真空烘箱中干燥预设时长,即获得镍包覆二硒化铌颗粒;实际应用中,诸如针对溶液产物进行离心处理,并用蒸馏水洗涤3次,然后在60℃的真空烘箱中干燥8小时,即获得镍包覆二硒化铌颗粒。
在获得镍包覆二硒化铌的基础上,按如下步骤A1至步骤A3,制备所设计的内齿轮泵月牙板。
步骤A1.按质量百分比配比、称取铜粉和镍包覆二硒化铌,并采用行星式球磨机进行均匀混合,获得混合配料。
步骤A2.将混合配料放入模具中摇匀,并压制成型,获得成型料。
步骤A3.在密闭空间中通入惰性气体,并将成型料置于密闭空间中,按预设烧结参数,针对成型料进行无压烧结,获得内齿轮泵月牙板;实际应用当中,惰性气体设计采用氩气,用于密闭空间的通入。
上述步骤A3在实际应用中,按如下烧结参数:
烧结温度750℃~900℃,升温速率为9℃/min~11℃/min,压力为300MPa~500Mpa、保温时间100min~150min。
针对密闭空间中的成型料进行无压烧结,获得内齿轮泵月牙板;并且在具体操作中,可以设定烧结温度800℃,升温速率为10℃/min,压力为400Mpa、保温时间120min。
将上述所设计新型内齿轮泵月牙板及其制备方法应用于实际当中,诸如下述实施例1至实施例4.
实施例1:
针对设计组分,按质量百分比:铜粉为95%、镍包覆二硒化铌为5%,制备新型内齿轮泵月牙板,其制作步骤如下:
步骤A1.按质量百分比铜粉95%、镍包覆二硒化铌5%,称取铜粉和镍包覆二硒化铌,并采用行星式球磨机进行均匀混合,获得混合配料,其中,球磨机转速250r/min,混合时间12h。
步骤A2.将混合配料放入模具中摇匀,并压制成型,获得成型料。
步骤A3.在密闭空间中通入氩气,并将成型料置于密闭空间中,按如下烧结参数:
烧结温度800℃,升温速率为10℃/min,压力为400Mpa、保温时间120min。
针对成型料进行无压烧结,获得内齿轮泵月牙板;实际应用当中,惰性气体设计采用氩气,用于密闭空间的通入。
实施例2:
按质量百分比:铜粉为90%、镍包覆二硒化铌为10%,以上述同样的步骤,制备新型内齿轮泵月牙板。
实施例3:
按质量百分比:铜粉为85%、镍包覆二硒化铌为15%,以上述同样的步骤,制备新型内齿轮泵月牙板。
实施例4:
按质量百分比:铜粉为85%、二硒化铌为15%,以上述同样的步骤,制备新型内齿轮泵月牙板。
如此方便获得上述实施例1至实施例4,四种配比的新型内齿轮泵月牙板,并且实施例3中所获新型内齿轮泵月牙板,密度为6.7g/cm3,维氏硬度为108HV,同样针对上述实施例1、2、4月牙板进行力学性能、摩擦学性能测试,获得如下表1所示。
序号 硬度(HV) 密度(g/cm 3)
实施例1 90 7.1
实施例2 95 6.9
实施例3 108 6.7
实施例4 101 6.4
表1
摩擦学性能是在CETRRMT-2Multi-SpecimenTestSystem摩擦试验机上进行的,实验参数为载荷500g、转速200r/min,时间30min,温度为室温。
本发明所设计新型内齿轮泵月牙板,在常温下具有优异的力学性能,摩擦系数较小,磨损率较小,在常温下具有优良耐磨性能的同时实现了自润滑;如图1所示的金相照片显示了其微观组织结构,如图2a看出实施例1、2、3、4的摩擦系数相对纯铜的摩擦系数均较低,以及如图2b看出实施例1、2、3、4的磨损率相对纯铜的磨损率均较低。
并且比较图3a至图3d,可以看出实施例1、3、4的磨痕程度明显低于纯铜的磨痕程度,并且实施例3的磨痕程度明显低于实施例1、4的磨痕程度。
由此可知本发明所设计新型内齿轮泵月牙板,采用全新组分结构进行配比制备,所制备出的月牙板具有优异的物理性能和机械性能,拥有强度高,摩擦系数低,抗磨磨损性能好等优点;并且基于全新组分配比设计的制备方法,整个过程工艺简单、可操作性强,成本相对较低,在机械制造工业领域具有广泛用途。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (9)

  1. 一种新型内齿轮泵月牙板,其特征在于:月牙板由铜粉和镍包覆二硒化铌制成,其中,铜粉的质量占比为85%~95%,镍包覆二硒化铌的质量占比为5%~15%。
  2. 根据权利要求1所述一种新型内齿轮泵月牙板,其特征在于:所述月牙板中,铜粉的质量占比为85%,镍包覆二硒化铌的质量占比为15%。
  3. 根据权利要求1所述一种新型内齿轮泵月牙板,其特征在于:所述镍包覆二硒化铌中,镍和二硒化铌的质量比为1:1。
  4. 根据权利要求1所述一种新型内齿轮泵月牙板,其特征在于:所述月牙板中,铜粉的纯度和镍包覆二硒化铌的纯度均大于99%。
  5. 一种针对权利要求1至4中任意一项所述新型内齿轮泵月牙板的制备方法,其特征在于,包括如下步骤:
    步骤A1.按质量百分比配比、称取铜粉和镍包覆二硒化铌,并采用行星式球磨机进行均匀混合,获得混合配料;
    步骤A2.将混合配料放入模具中摇匀,并压制成型,获得成型料;
    步骤A3.在密闭空间中通入惰性气体,并将成型料置于密闭空间中,按预设烧结参数,针对成型料进行无压烧结,获得内齿轮泵月牙板。
  6. 根据权利要求5所述一种针对新型内齿轮泵月牙板的制备方法,其特征在于,所述步骤A3中,按如下烧结参数:
    烧结温度750℃~900℃,升温速率为9℃/min~11℃/min,压力为300MPa~500Mpa、保温时间100min~150min;
    针对密闭空间中的成型料进行无压烧结,获得内齿轮泵月牙板。
  7. 根据权利要求6所述一种针对新型内齿轮泵月牙板的制备方法,其特征在于,所述步骤A3中,按如下烧结参数:
    烧结温度800℃,升温速率为10℃/min,压力为400Mpa、保温时间120min;
    针对密闭空间中的成型料进行无压烧结,获得内齿轮泵月牙板。
  8. 根据权利要求5所述一种针对新型内齿轮泵月牙板的制备方法,其特征在于:所述惰性气体为氩气。
  9. 根据权利要求5所述一种针对新型内齿轮泵月牙板的制备方法,其特征在于:所述镍包覆二硒化铌的制备,包括如下步骤:
    步骤B1.将NbSe 2加入到去离子水中超声预设时长,获得均匀分散的NbSe 2溶液;
    步骤B2.将NiSO 4和EDTA·2Na·2H2O加入到NbSe 2溶液中,并搅拌超声预设时长,获得初级溶液;
    步骤B3.将水合肼溶液滴加到初级溶液中,并在预设温度下、继续搅拌预设时长,获得溶液产物;
    步骤B4.针对溶液产物进行离心处理,并用蒸馏水洗涤预设次数,然后在预设温度的真空烘箱中干燥预设时长,即获得镍包覆二硒化铌颗粒。
PCT/CN2020/080126 2019-06-06 2020-03-19 一种新型内齿轮泵月牙板及其制备方法 WO2020244278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910490027.6A CN110293230A (zh) 2019-06-06 2019-06-06 一种新型内齿轮泵月牙板及其制备方法
CN201910490027.6 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244278A1 true WO2020244278A1 (zh) 2020-12-10

Family

ID=68027621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080126 WO2020244278A1 (zh) 2019-06-06 2020-03-19 一种新型内齿轮泵月牙板及其制备方法

Country Status (2)

Country Link
CN (1) CN110293230A (zh)
WO (1) WO2020244278A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293230A (zh) * 2019-06-06 2019-10-01 徐州圣邦机械有限公司 一种新型内齿轮泵月牙板及其制备方法
CN111250936A (zh) * 2020-03-12 2020-06-09 上海瑙克科技发展有限公司 折弯机用齿轮泵及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868232A (en) * 1971-07-19 1975-02-25 Norton Co Resin-bonded abrasive tools with molybdenum metal filler and molybdenum disulfide lubricant
WO2006096687A1 (en) * 2005-03-07 2006-09-14 Baker Hughes Incorporated Use of coated proppant to minimize abrasive erosion in high rate fracturing operations
CN105149593A (zh) * 2015-06-23 2015-12-16 江苏鹰球集团有限公司 粉末冶金应用于汽油泵电机含油轴承的制造方法
CN106119584A (zh) * 2016-08-03 2016-11-16 江苏大学 一种银铬基电接触自润滑复合材料及其制备方法
CN106493353A (zh) * 2016-12-06 2017-03-15 江苏大学 一种铜银基自润滑复合材料及其制备方法
CN106636725A (zh) * 2017-01-05 2017-05-10 江苏大学 一种铜石墨烯基电接触材料及其制备方法
CN107058808A (zh) * 2017-01-16 2017-08-18 中国科学院兰州化学物理研究所 一种铝合金基固体润滑复合材料及其制备方法
CN110293230A (zh) * 2019-06-06 2019-10-01 徐州圣邦机械有限公司 一种新型内齿轮泵月牙板及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757464A (zh) * 2014-01-02 2014-04-30 江苏大学 一种铜基自润滑复合材料及其制备方法
JP2018145448A (ja) * 2017-03-01 2018-09-20 住友金属鉱山株式会社 ニッケルコート銅粉とその製造方法、および導電性ペースト

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868232A (en) * 1971-07-19 1975-02-25 Norton Co Resin-bonded abrasive tools with molybdenum metal filler and molybdenum disulfide lubricant
WO2006096687A1 (en) * 2005-03-07 2006-09-14 Baker Hughes Incorporated Use of coated proppant to minimize abrasive erosion in high rate fracturing operations
CN105149593A (zh) * 2015-06-23 2015-12-16 江苏鹰球集团有限公司 粉末冶金应用于汽油泵电机含油轴承的制造方法
CN106119584A (zh) * 2016-08-03 2016-11-16 江苏大学 一种银铬基电接触自润滑复合材料及其制备方法
CN106493353A (zh) * 2016-12-06 2017-03-15 江苏大学 一种铜银基自润滑复合材料及其制备方法
CN106636725A (zh) * 2017-01-05 2017-05-10 江苏大学 一种铜石墨烯基电接触材料及其制备方法
CN107058808A (zh) * 2017-01-16 2017-08-18 中国科学院兰州化学物理研究所 一种铝合金基固体润滑复合材料及其制备方法
CN110293230A (zh) * 2019-06-06 2019-10-01 徐州圣邦机械有限公司 一种新型内齿轮泵月牙板及其制备方法

Also Published As

Publication number Publication date
CN110293230A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2020244278A1 (zh) 一种新型内齿轮泵月牙板及其制备方法
CN101871058A (zh) 一种金属基自润滑复合材料及其制备方法
Wang et al. Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites
CN106762631B (zh) 一种涡旋式压缩机组件及其制造方法、及涡旋式压缩机
CN112276076B (zh) 一种宽温域高熵合金基固体润滑复合材料的制备方法
CN107236231B (zh) 二硫化钼-镍磷-聚偏氟乙烯耐磨减摩复合材料的制备方法
CN102094146B (zh) 新型耐高温自润滑滑动轴承材料及其制备方法
CN110983234A (zh) NiAl基双金属氧化物高温润滑耐磨复合涂层及其制备方法
CN110218890B (zh) 原位生长固体润滑剂增强镍基高温润滑复合材料制备方法
CN104550923A (zh) 一种高温环境阀门用铁基粉末冶金材料及其制备方法
CN109676130A (zh) 一种铜元素改性铜基石墨耐磨液压柱塞泵缸体的制备方法
CN105714135A (zh) 一种Ni-Al基低摩擦抗磨损复合材料的制备方法
CN106011539B (zh) 一种镍铝/氧化钒/银宽温域自润滑复合材料及其制备方法
CN106636725A (zh) 一种铜石墨烯基电接触材料及其制备方法
CN111748719B (zh) 宽温域自润滑VN-Ag2MoO4复合材料及其制备方法
CN106498232B (zh) 一种镍铝基自修复复合材料的制备方法
CN106493353A (zh) 一种铜银基自润滑复合材料及其制备方法
CN111705231A (zh) 一种镍基铜包石墨自润滑复合材料及其烧结方法
CN209083559U (zh) 一种转子式压缩机和空调器
CN109354502B (zh) 一种高温环境中具有高耐磨表面的自润滑氮化硅基复合材料
CN109468494B (zh) 一种耐磨损网状Cr3C2增强NiAl合金的制备方法
CN206503710U (zh) 一种涡旋式压缩机组件及涡旋式压缩机
CN102251144B (zh) 一种高强度高耐磨配流盘及其制备方法
EP4112208A1 (en) Bushing manufacturing method, bushing, and excavator
CN114703441A (zh) 一种高低温固体润滑相自适应再生的摩擦学涂层制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819452

Country of ref document: EP

Kind code of ref document: A1