WO2020244223A1 - 滤光片 - Google Patents

滤光片 Download PDF

Info

Publication number
WO2020244223A1
WO2020244223A1 PCT/CN2019/130577 CN2019130577W WO2020244223A1 WO 2020244223 A1 WO2020244223 A1 WO 2020244223A1 CN 2019130577 W CN2019130577 W CN 2019130577W WO 2020244223 A1 WO2020244223 A1 WO 2020244223A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
film system
pass
band
Prior art date
Application number
PCT/CN2019/130577
Other languages
English (en)
French (fr)
Inventor
陈策
丁维红
方叶庆
杨伟
肖念恭
Original Assignee
信阳舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信阳舜宇光学有限公司 filed Critical 信阳舜宇光学有限公司
Priority to JP2021564099A priority Critical patent/JP7436508B2/ja
Priority to EP19931930.2A priority patent/EP3982171A4/en
Priority to SG11202111677YA priority patent/SG11202111677YA/en
Priority to KR1020217034652A priority patent/KR20220002321A/ko
Publication of WO2020244223A1 publication Critical patent/WO2020244223A1/zh
Priority to US17/517,047 priority patent/US20220120951A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Definitions

  • the present disclosure relates to the field of optical elements, and more specifically, to a near-infrared filter.
  • the near-infrared narrow-band filter can be applied to face recognition systems, gesture recognition systems, lidars, and smart home appliances. When these systems or devices work, the near-infrared narrow-band filter often receives obliquely incident light.
  • the near-infrared narrow-band filter usually includes a substrate. The two sides of the substrate are coated with a multilayer film to form a film system.
  • the near-infrared narrow-band filter has a passband corresponding to light. , Most of the light in the non-passband band is cut off.
  • the industry needs a filter with excellent filtering performance to improve image quality.
  • the embodiments of the present application propose a filter and a method for manufacturing the filter.
  • the embodiment of the present application also provides an optical system.
  • the embodiment of the present application provides a filter, the filter includes a substrate and a first film system arranged on the outer side of the first surface of the substrate, the first film system includes a high refractive index film layer, A low refractive index film layer and a matching film layer; the material of the matching film layer includes a nitrogen-doped silicon-germanium mixture, and the chemical formula of the nitrogen-doped silicon-germanium mixture is Si x Ge 1-x N y , where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1, in the wavelength range of 780nm to 3000nm, the refractive index of the high refractive index film layer is greater than the refractive index of the low refractive index film layer, and the refractive index of the matching film layer is not equal to The refractive index of adjacent layers.
  • the filter has a pass band, and when the incident angle of light changes from 0° to 30°, the shift of the center wavelength of the pass band is not more than 16 nm.
  • the pass band of the filter has a center wavelength corresponding to p light and a center wavelength corresponding to s light.
  • the incident angle of the light is 30°
  • the center wavelength of the corresponding p light and the corresponding s light The drift between the center wavelengths is not more than 5nm.
  • the average transmittance of the passband of the filter is not less than 93%.
  • the refractive index of the high refractive index film layer is greater than 3
  • the refractive index of the low refractive index film layer is less than 3
  • the refractive index of the matching film layer is located at 1.7. To 4.5.
  • the nitrogen-doped silicon-germanium mixture can be further doped with hydrogen, and the chemical formula is Si x Ge 1-x N y :H z , where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, z ⁇ 1, at least part of which is an amorphous hydrogenated nitrogen-doped silicon germanium mixture ⁇ -Si x Ge 1-x O y :H z .
  • the nitrogen-doped silicon-germanium mixture further includes an auxiliary component, the auxiliary component includes one or more of oxygen, boron, or phosphorus, and the number of atoms in the auxiliary component is less than the number of silicon atoms.
  • the ratio is less than 10%.
  • the material of the high refractive index film layer includes Si w Ge 1-w :H v , where 0 ⁇ w ⁇ 1 and 0 ⁇ v ⁇ 1.
  • the material of the low refractive index film layer includes one of SiO 2 , Si 3 N 4 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , Al 2 O 3 , SiCN, SiC, or A variety of mixtures
  • the substrate further includes a second surface opposite to the first surface, and the filter further includes a second film system disposed outside the second surface of the substrate;
  • the second film system is a long wave pass film system or a wide band pass film system, the first film system is a narrow band pass film system; the pass band of the second film system covers the pass band of the first film system.
  • the sum of the thickness of the first film system and the thickness of the second film system is less than 12 ⁇ m.
  • the second film system is a long wave pass film system, corresponding to a wavelength range of 350 nm to 1200 nm, the narrow band pass film system has a pass band, and the long wave pass film system has a pass band and a cutoff band.
  • the pass band of the long-wave pass film system covers the pass band of the narrow-band pass film system; the cut-off degree of the cut-off band of the long-wave pass film system is not lower than the cut-off degree of the corresponding wavelength band of the narrow-band pass film system.
  • the second film system is a broadband pass film system, corresponding to a wavelength range of 780 nm to 1200 nm, the narrow band pass film system has a pass band, the broadband pass film system has a pass band, and the broadband pass film
  • the passband of the system covers the passband of the narrowbandpass film system; corresponding to a wavelength range of less than 780nm, the average cutoff of the widebandpass film system is not lower than the average cutoff of the narrowbandpass film system.
  • the structural form of the first film system is one of the following structural forms: (L 3 -L 1 -L 3 -L 2 ) s -L 3- L 1 ; (L 1 -L 3 ) 2 -(L 2 -L 3 -L 1 -L 3 ) s -L 1 -L 3 ; (L 1 -L 3 ) s –(L 2 -(L 1- L 3 ) p -L 1 -L 2 ) q -(L 1 -L 3 ) r L 1 ;(L 3 -L 1 ) s –(L 2 -(L 1 -L 3 ) p -L 1 -L 2 ) q -(L 3 -L 1 ) r L 3 -L 1 -(L 2 -(L 1 -L 3 ) t -L 1 -L 2 ) n ; (L 3 -L 1 ) s
  • an embodiment of the present application provides an optical system, which may include an infrared image sensor and the aforementioned filter, and the filter is disposed on the photosensitive side of the infrared image sensor.
  • the first film system of the optical filter includes a high refractive index film layer, a matching film layer and a low refractive index film layer
  • the material of the matching film layer is the nitrogen-doped silicon germanium mixture Suitable for matching high refractive index film or low refractive index film.
  • the silicon-germanium mixture is doped with nitrogen atoms to change the bonding mode of germanium (or silicon) and other elements, so that the moles of nitrogen are less than the sum of moles of silicon and moles of germanium. 10%, different nitrogen doping content has different effects on the refractive index of the material. For details, see the relationship between refractive index and nitrogen doping in the figure below.
  • the nitrogen doping quantity to produce suitable medium refractive index materials for F-P structure film material or matching layer film material or.
  • the bandwidth of the passband of the filter provided by the present application is small when light is incident at different angles.
  • the optical system provided with this filter has a high signal-to-noise ratio and high data quality. In other words, under the same signal-to-noise ratio requirement, other parts of the optical system can have a higher design margin.
  • Fig. 1 shows a schematic structural diagram of a filter according to an embodiment of the present application
  • Figure 3 shows a transmittance wavelength curve according to the first embodiment of the present application
  • Figure 4 shows a transmittance wavelength curve according to the second embodiment of the present application
  • Figure 5 shows the transmittance wavelength curve according to the third embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of an optical system according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first film system discussed below may also be referred to as the second film system. vice versa.
  • Fig. 1 shows a schematic structural diagram of a filter according to an embodiment of the present application.
  • the filter 5 provided by the embodiment of the present application includes: a substrate 51 and a first film system 52.
  • the substrate 51 is a transparent substrate and includes an upper surface and a lower surface opposite to each other.
  • the upper surface is the first surface and the lower surface
  • the surface is the second surface, and the first film system 52 is disposed outside the first surface of the base 51.
  • the first film system 52 includes a high refractive index film layer, a low refractive index film layer and a matching film layer.
  • the shape of the substrate 51 has other optical structures, such as a prism, the light incident surface of the substrate 51 can be regarded as the first surface, and the light exit surface can be regarded as the second surface.
  • the material of the matching film layer includes a hydrogenated nitrogen-doped silicon-germanium mixture
  • the chemical formula of the hydrogenated nitrogen-doped silicon-germanium mixture is Si x Ge 1-x N y :H, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1.
  • the chemical formula of the nitrogen-doped silicon-germanium mixture is Si x Ge 1-x N y , 0 ⁇ x ⁇ 0.5, and 0 ⁇ y ⁇ 0.1, for example, the chemical formula of the nitrogen-doped silicon-germanium mixture is Si 0.5 Ge 0.5 N 0.05 .
  • the chemical formula of the nitrogen-doped silicon-germanium mixture is Si 0.1 Ge 0.9 N 0.02 :H 0.7 .
  • the chemical formula of the nitrogen-doped silicon germanium mixture is SiN 0.1 :H.
  • the material of at least a part of the matching film layer is an amorphous nitrogen-doped silicon germanium mixture: ⁇ -Si x Ge 1-x N y .
  • the volume of the amorphous nitrogen-doped silicon-germanium mixture accounts for 20% of the volume of the matching film.
  • the matching film layer is formed by accumulation of molecular layers.
  • the matching film layer includes several amorphous nitrogen-doped silicon germanium mixture layers and several single crystal nitrogen-doped silicon germanium mixture layers, of which all amorphous nitrogen-doped silicon germanium The ratio of the thickness of the mixture layer to the thickness of the matching film layer is between 16% and 20%.
  • the material of the matching film layer includes one or more of a polycrystalline nitrogen-doped silicon germanium mixture, a microcrystalline nitrogen-doped silicon germanium mixture, and a nanocrystalline nitrogen-doped silicon germanium mixture.
  • the optical constants of the matching film layer are suitable for precise setting in a large range, and can keep the state of P light and s light passing through it stable in a complex working environment, so that the center wavelength of p light of the first film system The drift with the center wavelength of s light is small.
  • the refractive index of the high refractive index film layer is greater than the refractive index of the low refractive index film layer, and the refractive index of the matching film layer is not equal to the refractive index of its adjacent film layer.
  • the optical filter provided by the embodiment of the present application can accurately set the optical constants and realize the specially designated optical characteristics in a wide range. For example, a narrowband filter with a specific bandwidth.
  • the optical filter provided in the present application can be used to realize the passage of a specific optical band gap in a photovoltaic cell, or to achieve high absorption or high cut-off of light in a specific wavelength band.
  • the filter 5 has a pass band, and when the incident angle of light changes from 0° to 30°, the shift amount of the center wavelength of the pass band is not more than 16 nm.
  • the shift amount of the center wavelength of the pass band is not more than 13 nm, for example, not more than 11 nm. It can increase the bandwidth of the passband by controlling the drift of the center wavelength and improve the signal-to-noise ratio.
  • the pass band of the filter 5 has a center wavelength corresponding to p light and a center wavelength corresponding to s light.
  • the incident angle of the light is 30°
  • the center wavelength of the corresponding p light and the corresponding s light The drift between the center wavelengths is not more than 5nm.
  • the drift between the center wavelength of p light and the center wavelength of s light is not more than 4.2 nm. Controlling the drift between the center wavelength of the p light and the center wavelength of the s light can increase the bandwidth of the passband, so that devices and circuits using the filter have a higher design margin.
  • the average transmittance of the pass band of the filter 5 is not less than 93%.
  • the average transmittance of the pass band of the filter 5 is not less than 94%.
  • the average transmittance of the passband is controlled so that the light intensity of the wavelength band corresponding to the passband of the light passing through the filter 5 is high, and the signal-to-noise ratio can also be improved.
  • the refractive index of the high refractive index film layer is greater than 3, the refractive index corresponding to the low refractive index film layer is less than 3, and the refractive index corresponding to the matching film layer is between 1.7 and 4.5 .
  • the refractive index of the high refractive index film layer is greater than 4
  • the refractive index of the matching layer is between 3 and 4.5
  • the refractive index of the low refractive index film layer is less than 3.
  • the refractive index of the high refractive index film layer is 4.5
  • the refractive index of the low refractive index film layer is 2.8
  • the plurality of matching film layers have different refractive indexes, for example, the refractive indexes are 3, 3.5, and 4 respectively.
  • the state of light after passing through each film layer is controlled, for example, the optical properties of p light and s light after passing through.
  • the gap is small to realize the specific optical characteristics of the first film system 52.
  • the refractive index of the matching film layer is less than the refractive index of the high refractive index film layer, and the refractive index of the matching film layer is greater than the refractive index of the low refractive index film layer.
  • the nitrogen-doped silicon-germanium mixture is a hydrogenated nitrogen-doped silicon-germanium mixture
  • the chemical formula of the hydrogenated nitrogen-doped silicon-germanium mixture is Si x Ge 1-x N y :H z , where 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 0.1, z ⁇ 1.
  • the chemical formula of the hydrogenated oxygen-doped silicon germanium-based material is Si 0.5 Ge 0.5 N 0.05 :H 0.5 .
  • the chemical formula Si x Ge 1-x N y :H z of the hydrogenated oxygen-doped silicon germanium-based material 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.1, 0.8 ⁇ z ⁇ 1; exemplary
  • the chemical formula of hydrogenated oxygen-doped silicon germanium-based materials is Si 0.1 Ge 0.9 N 0.02 :H 0.7 .
  • the chemical formula of the hydrogenated oxygen-doped silicon germanium-based material is SiN 0.1 :H, that is, the hydrogenated oxygen-doped silicon-germanium-based material.
  • At least a part of the hydrogenated nitrogen-doped silicon germanium mixture is an amorphous hydrogenated nitrogen-doped silicon germanium mixture: ⁇ -Si x Ge 1-x N y :H z .
  • the nitrogen-doped silicon-germanium mixture further includes auxiliary components, the auxiliary components include one or more of nitrogen, boron, or phosphorus, and the ratio of the number of atoms of each auxiliary component to the number of silicon atoms is less than 0.1.
  • the material of the high refractive index film layer includes Si w Ge 1-w :H v , where 0 ⁇ w ⁇ 1 and 0 ⁇ v ⁇ 1.
  • w is 0.2 or 0.37.
  • the material of the low refractive index film layer includes one or more of SiO 2 , Si 3 N 4 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , Al 2 O 3 , SiCN, and SiC. Kind of mixture.
  • the material of the substrate includes glass. Specifically, it can be D263T, AF32, Eagle XG, H-ZPK5, H-ZPK7, etc.
  • the substrate further includes a second surface opposite to the first surface, and the filter further includes a second film system disposed outside the second surface of the substrate; the second film system is a long-wave pass film system or Broadband pass film system, the first film system is a narrow band pass film system; the pass band of the second film system covers the pass band of the first film system.
  • the filter 5 can have a better anti-reflection and cut-off effect on the light, so that the light passing through the filter 5 has a higher signal-to-noise ratio.
  • the sum of the thickness of the first film system and the thickness of the second film system is less than 15 ⁇ m, for example, less than 12 ⁇ m. Controlling the thickness of the two film systems can make the shift between the center wavelength corresponding to the p light and the center wavelength corresponding to the s light small, and at the same time can reduce the manufacturing cost.
  • the second film system is a long wave pass film system, corresponding to the wavelength range of 350 nm to 1200 nm
  • the narrow band pass film system has a pass band
  • the long wave pass film system has a pass band and a cutoff band
  • the long wave pass film system has a pass band.
  • the band covers the pass band of the narrow-band pass film system; the cut-off degree of the cut-off band of the long-wave pass film system is not lower than the cut-off degree of the corresponding band of the narrow-band pass film system. Controlling the cut-off of the long-wavelength pass film system can better improve the cut-off of the filter 5 and reduce the light transmittance of the corresponding wavelength band, so that the noise signal in the image formed by the light passing through the filter 5 is weak.
  • the second film system is a broadband pass film system, corresponding to the wavelength range of 780 nm to 1200 nm, the narrow band pass film system has a pass band, the broadband pass film system has a pass band, and the pass band of the broadband pass film system covers the narrow band pass
  • the pass band of the film system corresponding to the wavelength range of less than 780nm, the average cut-off of the broadband pass film is not lower than the average cut-off of the narrow band pass film. Controlling the cut-off degree of the broadband pass film system can better improve the cut-off degree of the filter 5 and reduce the light transmittance of the corresponding wavelength band, so that the noise signal in the image formed by the light passing through the filter 5 is weak.
  • the structural form of the first film system is one of the following structural forms: (L 3 -L 1 -L 3 -L 2 ) s -L 3 -L 1 ; (L 1 -L 3 ) 2 -(L 2 -L 3 -L 1 -L 3 ) s -L 1 -L 3 ; (L 1 -L 3 ) s -(L 2 -(L 1 -L 3 ) p -L 1 -L 2 ) q -(L 1 -L 3 ) r L 1 ;(L 3 -L 1 ) s –(L 2 -(L 1 -L 3 ) p -L 1 -L 2 ) q -(L 3 -L 1 ) r L 3 -L 1 -(L 2 -(L 1 -L 3 ) t -L 1 -L 2 ) n ; (L 3 -
  • the filter 5 of this embodiment includes a substrate 51.
  • a first film system 52 formed by sputtering is provided on the outer side of the first surface of the substrate 51.
  • the first film system 52 may include the narrow bandpass film system provided in Table 1.
  • the first layer is the film layer closest to the substrate 51; the second surface of the substrate 51 is provided with a second film system 53 formed by sputtering coating.
  • the second film system 53 may include the long wave pass film system provided in Table 2, where the first The layer is the film layer closest to the substrate 51. 3, when the incident angle of light changes from 0° to 30°, the shift of the center wavelength of the pass band of the filter 5 is not greater than 12 nm.
  • Table 1 of this application provides a narrow bandpass film system, and the materials of the film layers in the same column in Table 1 are the same.
  • the serial numbers 1-22 indicate the stacking order of the film layers of the first film system 52 along the direction away from the substrate 51. For example, "1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 1 The film structure of a narrow band pass film system (film thickness unit: nm)
  • the material of the high refractive index film layer is ⁇ -Si:H
  • the material of the low refractive index film layer is SiO 2
  • the material of the matching film layer is ⁇ -SiNy: Hz.
  • Table 2 provides a long-wave pass film system, and the materials of the film layers in the same column in Table 2 are the same.
  • the numbers 1-27 indicate the stacking order of the layers of the second film system 53 along the direction away from the substrate 51. For example, "1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 2 The film structure of a long wave pass film system (film thickness unit: nm)
  • the filter 5 has a thinner thickness, is easier to manufacture, has a higher pass band transmittance, and the required light intensity of the light passing through the filter 5 is higher.
  • the filter 5 provided in this embodiment includes a base 51.
  • the first surface of the base 51 is provided with a first film system 52 formed by sputtering coating, and the second surface of the base 51 is provided with a second film system formed by evaporation coating. 53.
  • the first film system 52 may include the narrow band pass film system provided in Table 3, wherein the first layer is the film layer closest to the substrate 51; the second film system 53 may include the long wave pass film system provided in Table 4, of which the first The layer is the film layer closest to the substrate 51. Referring to Fig. 4, when the incident angle of the light is changed from 0° to 30°, the shift of the center wavelength of the pass band of the filter 5 is less than 13 nm.
  • Table 3 provides a narrow bandpass film system.
  • the numbers 1-23 indicate the stacking order of the film layers of the first film system 52 in the direction away from the substrate 51.
  • “1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 3 Film structure of a narrow band pass film system (film thickness unit: nm)
  • the material of the high refractive index film layer is ⁇ -Si:H
  • the material of the low refractive index film layer is SiO 2
  • the material of the matching film layer is ⁇ -GeN y :H z .
  • the eleventh layer is a matching film layer, which is arranged symmetrically with the film layer roughly according to the eleventh layer.
  • Table 4 provides a long-wave pass film system, and the materials of the film layers in the same column in Table 4 are the same.
  • the serial numbers 1-47 indicate the stacking order of the film layers of the second film system 53 along the direction away from the substrate 51. For example, "1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 4 The film structure of a long wave pass film system (film thickness unit: nm)
  • the width of the pass band of the filter 5 is relatively narrow, the offset between the center wavelength of the p light and the center wavelength of the s light is relatively small, and the cutoff of the cutoff region is relatively high.
  • the filter 5 provided in this embodiment includes a base 51.
  • a first film system 52 formed by sputtering is provided on the outside of the first surface of the base 51, and a second film formed by sputtering is provided on the outside of the second surface of the base 51.
  • the first film system 52 may include the narrow bandpass film system provided in Table 5, where the first layer is the film layer closest to the substrate 51;
  • the second film system 53 may include the wide band pass film system provided in Table 6, where the first The first layer is the film layer closest to the base 51. Please refer to FIG. 5, when the incident angle of light changes from 0° to 30°, the shift of the center wavelength of the passband of the filter 5 is less than 11 nm.
  • Table 5 provides a narrow band pass film system.
  • the serial numbers 1-30 indicate the stacking sequence of the film layers of the first film system 52 along the direction away from the substrate 51.
  • "1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 5 Film structure of a narrow band pass film system (film thickness unit: nm)
  • the material of the high refractive index film layer is Si w Ge 1-w :H z
  • the material of the low refractive index film layer is SiO 2
  • the material of the matching film layer is ⁇ -SiNy: Hz.
  • the structure of the 5th to the 28th layer is (L 2 -L 3 -L 1 -L 3 ) 6 .
  • Table 6 provides a wide band pass film system, and the serial numbers 1-35 indicate the stacking sequence of the film layers of the second film system 53 along the direction away from the substrate 51. For example, "1" represents the first layer of the film layer closest to the substrate 51 described above.
  • Table 6 Film structure of a broadband pass film system (film thickness unit: nm)
  • the width of the pass band of the filter 5 is relatively narrow, the center wavelength shift of the pass band is small, and the transmittance of the pass band is high.
  • the first film system 52 and the second film system 53 of the filter 5 may also have other film layer structures.
  • the first film system 52 or The second film system 53 can also be applied to other exemplary embodiments.
  • other transparent layers, such as air cavities, can be provided on the outside of the first surface and the outside of the second surface of the filter 5.
  • the embodiment of the present application also provides a method for manufacturing a filter, which includes the following steps:
  • the target material includes silicon and germanium components. Vacuum the deposition chamber and the vacuum degree in the deposition chamber is preset value;
  • the flow of hydrogen is a preset value, and the flow of oxygen is less than 60 sccm; a film is formed on the article to be plated, and the material of the film includes the aforementioned nitrogen-doped silicon germanium mixture.
  • the vacuum degree in the deposition chamber is less than 5 ⁇ 10 -5 torr; the flow rate of argon is between 10 sccm and 300 sccm; the flow rate of hydrogen is less than 80 sccm.
  • the embodiment of the present application also provides an optical system, which includes an infrared image sensor and the aforementioned filter 5, and the filter 5 is arranged on the photosensitive side of the infrared image sensor.
  • the optical system includes an infrared (IR) light source 2, a first lens assembly 3, a second lens assembly 4, a filter 5 and a three-dimensional sensor 6.
  • the light emitted by the infrared light source 2 is irradiated to the surface of the test object 1 through the first lens assembly 3, and the light reflected from the surface of the test object 1 is irradiated to the filter 5 through the second lens assembly 4, and the ambient light is cut off by the filter 5.
  • infrared or part of the red light-transmitting filter 5 irradiates the photosensitive side of the three-dimensional sensor 6 to form image data for processing.
  • the filter 5 has a relatively low center wavelength offset corresponding to oblique light in different directions, the transmitted infrared ray has a high signal-to-noise ratio, and the resulting image quality is good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

一种滤光片(5),包括基底(51)和设置在基底(51)的第一面外侧的第一膜系(52),第一膜系(52)包括高折射率膜层、低折射率膜层和匹配膜层;匹配膜层的材料包括氮掺杂硅锗混合物,氮掺杂硅锗混合物的化学式为Si xGe 1-xN y,其中,0≤x≤1,0<y≤0.1,在780nm至3000nm波长范围内,高折射率膜层的折射率大于低折射率膜层的折射率,匹配膜层的折射率不等于其相邻的膜层的折射率。

Description

滤光片
相关申请的交叉引用
本申请要求于2019年6月5日递交于中国国家知识产权局(CNIPA)的、申请号为201910487270.2、发明名称为“滤光片”的中国发明专利申请的优先权和权益,该中国发明专利申请通过引用整体并入本文。
技术领域
本公开涉及光学元件领域,更具体的,涉及一种近红外滤光片。
背景技术
近红外窄带滤光片可以应用于人脸识别***、手势识别***、激光雷达及智能家电等,前述这些***或设备工作时,近红外窄带滤光片经常接收到倾斜入射的光线。
近红外窄带滤光片通常包括基底,基底的两面镀上多层膜形成膜系,近红外窄带滤光片具有对应光线的通带,通带波段对应的光大部分可以通过近红外窄带滤光片,非通带波段的光大部分被截止。业内需要一种具有优良滤光性能的滤光片以提高成像质量。
发明内容
为解决或部分解决现有技术中的上述缺陷,本申请的实施例提出了滤光片及制造滤光片的方法。本申请的实施例还提供了光学***。
本申请的实施例提供了一种滤光片,所述滤光片包括基底和设置在所述基底的第一面外侧的第一膜系,所述第一膜系包括高折射率膜层、低折射率膜层和匹配膜层;所述匹配膜层的材料包括氮掺杂硅锗混合物,所述氮掺杂硅锗混合物的化学式为Si xGe 1-xN y,其中,0≤x≤1,0<y≤0.1,在780nm至3000nm波长范围内,所述高折射率膜层的折 射率大于所述低折射率膜层的折射率,所述匹配膜层的折射率不等于其相邻的膜层的折射率。
在一个实施方式中,对应780nm至1200nm波长范围,所述滤光片具有通带,当光线的入射角由0°变为30°时,所述通带的中心波长的漂移量不大于16nm。
在一个实施方式中,所述滤光片的通带具有对应p光的中心波长和对应s光的中心波长,当光线的入射角为30°时,对应p光的中心波长与对应s光的中心波长之间的漂移不大于5nm。
在一个实施方式中,所述滤光片的通带的平均透过率不小于93%。
在一个实施方式中,对应780nm至1200nm波长范围内,所述高折射率膜层的折射率大于3,所述低折射率膜层的折射率小于3,所述匹配膜层的折射率位于1.7至4.5之间。
在一个实施方式中,所述氮掺杂硅锗混合物还可进一步掺杂氢,化学式为Si xGe 1-xN y:H z,其中,0≤x≤1,0<y≤1,z≤1,其至少一部分为非晶态氢化掺氮硅锗混合物α-Si xGe 1-xO y:H z
在一个实施方式中,所述氮掺杂硅锗混合物还包括辅助成分,所述辅助成分包括氧、硼或磷中的一种或多种,所述辅助成分中各原子数与硅原子数之比小于10%。
在一个实施方式中,所述高折射率膜层的材料包括Si wGe 1-w:H v,其中,0≤w≤1,0≤v≤1。
在一个实施方式中,所述低折射率膜层的材料包括SiO 2、Si 3N 4、Ta 2O 5、Nb 2O 5、TiO 2、Al 2O 3、SiCN、SiC中的一种或多种的混合物
在一个实施方式中,所述基底还包括与所述第一面背对的第二面,所述滤光片还包括设置在所述基底的第二面外侧的第二膜系;所述第二膜系为长波通膜系或宽带通膜系,所述第一膜系为窄带通膜系;所述第二膜系的通带覆盖所述第一膜系的通带。
在一个实施方式中,第一膜系的厚度和第二膜系的厚度之和小于12μm。
在一个实施方式中,所述第二膜系为长波通膜系,对应350nm至1200nm波长范围内,所述窄带通膜系具有通带,所述长波通膜系具有 通带和截止带,所述长波通膜系的通带覆盖所述窄带通膜系的通带;所述长波通膜系的截止带的截止度不低于所述窄带通膜系的对应波段的截止度。
在一个实施方式中,所述第二膜系为宽带通膜系,对应780nm至1200nm波长范围,所述窄带通膜系具有通带,所述宽带通膜系具有通带,所述宽带通膜系的通带覆盖所述窄带通膜系的通带;对应小于780nm的波长范围,所述宽带通膜系的平均截止度不低于所述窄带通膜系的平均截止度。
在一个实施方式中,沿背离所述基底的方向,所述第一膜系的结构形式为以下结构形式中的一种:(L 3-L 1-L 3-L 2) s-L 3-L 1;(L 1-L 3) 2-(L 2-L 3-L 1-L 3) s-L 1-L 3;(L 1-L 3) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 1-L 3) rL 1;(L 3-L 1) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-L 1-(L 2-(L 1-L 3) t-L 1-L 2) n;(L 3-L 1) s–(L 3-L 1) rL 3-(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-(L 2-(L 1-L 3) t-L 1-L 2) n-(L 3-L 1) r,所述第一膜系的结构形式中,L 1代表高折射率膜层,L 3代表第一低折射率膜层,L 2代表匹配膜层,p、q、r、s代表括号内的结构形式重复的次数,p、q、r、s为大于或等于0的整数。
第二方面,本申请的实施例提供了一种光学***,该光学***可包括红外图像传感器和前述的滤光片,滤光片设置于红外图像传感器的感光侧。
本公开的实施例提供的滤光片,该滤光片的第一膜系包括高折射率膜层、匹配膜层和低折射率膜层,匹配膜层的材料为该掺氮硅锗混合物以适于匹配高折射率膜层或低折射率膜层。具体是通过在硅锗混合物中掺杂氮原子,使锗元素(或者,硅元素)与其他元素的键合方式改变,其氮元素的摩尔数不到硅元素摩尔数和锗元素摩尔数之和的10%,不同的掺氮含量对材料的折射率影响不同,详见下图折射率与掺氮关系图。根据不同的产品或客户光学规格要求,调整掺氮数量进而制造出合适的中折射率材料用作F-P结构的膜料或匹配层的膜料或。通过匹配膜层与其它膜层配合,使本申请提供的滤光片在对应不同角度入射光线时,滤光片的通带的带宽变化小。设置有此滤光片的 光学***,其信噪比高、数据的质量高,或者说,在同样的信噪比要求下,光学***的其它部件可以具有更高的设计裕量。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施例的滤光片示意性结构图;
图2a和图2b分别示出了根据本申请实施例的匹配层的折射率曲线和消光系数曲线;
图3示出了根据本申请实施例一的透过率波长曲线;
图4示出了根据本申请实施例二的透过率波长曲线;
图5示出了根据本申请实施例三的透过率波长曲线;以及
图6示出了根据本申请实施例的光学***示意性结构图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一膜系也可被称作第二膜系。反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。例如,第一膜系的厚度和第二膜系的厚度并非按照实际生产中的比例。如在本文中使用的,用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
图1示出了根据本申请实施例的滤光片示意性结构图。参考图1,本申请实施例提供的滤光片5包括:基底51和第一膜系52,基底51为透明基底,包括背对的上表面和下表面,其上表面为第一面,下表面为第二面,则第一膜系52设置于基底51的第一面外侧。第一膜系52包括高折射率膜层、低折射率膜层和匹配膜层。
在示例性实施方式中,基底51的形状具有其它光学结构,例如为棱镜,基底51的入光面可视为第一面,出光面可视为第二面。
在示例性实施方式中,匹配膜层的材料包括氢化掺氮硅锗混合物,氢化掺氮硅锗混合物的化学式为Si xGe 1-xN y:H,其中,0≤x≤1,0<y≤0.1。示例性的,掺氮硅锗混合物的化学式为Si xGe 1-xN y中,0≤x≤0.5,0<y<0.1,例如掺氮硅锗混合物的化学式为Si 0.5Ge 0.5N 0.05。示例性的,0≤x≤0.3,0<y<0.1,如掺氮硅锗混合物的化学式为Si 0.1Ge 0.9N 0.02:H 0.7。示例性的,掺氮硅锗混合物的化学式为SiN 0.1:H。
在示例性实施方式中,匹配膜层的至少一部分的材料为非晶态掺氮硅锗混合物:α-Si xGe 1-xN y。示例性的,非晶态掺氮硅锗混合物的体积占该匹配膜层的体积的20%。匹配膜层是由分子层累积形成的,示例性的,匹配膜层包括若干非晶态掺氮硅锗混合物层和若干单晶掺氮硅锗混合物层,其中,全部非晶态掺氮硅锗混合物层的厚度的和与该匹配膜层的厚度之比位于16%至20%之间。示例性的,匹配膜层的材料包括多晶掺氮硅锗混合物、微晶掺氮硅锗混合物及纳晶掺氮硅锗混合物中的一种或多种。该匹配膜层的光学常数适于在较大范围内精确的设定,能够在复杂的工作环境下保持通过其的P光和s光的状态稳定,使该第一膜系的p光中心波长与s光中心波长之间的漂移小。
在示例性实施方式中,780nm至1200nm波长范围内,高折射率膜层的折射率大于低折射率膜层的折射率,匹配膜层的折射率不等于其相邻的膜层的折射率。
本申请实施例提供的滤光片,可精确的设定光学常数而在较宽范围内实现特殊指定的光学特性。例如特定带宽的窄带滤光片。本申请提供的滤光片可以用于光伏电池中实现特定光学带隙的通过,或者用于对特定波段的光实现高吸收或高截止等。
在示例性实施方式中,对应780nm至1200nm波长范围,滤光片5具有通带,当光线的入射角由0°变为30°时,通带的中心波长的漂移量不大于16nm。示例性的,当光线的入射角由0°变为30°时,该通带的中心波长的漂移量不大于13nm,例如不大于11nm。可具有通过控制中心波长的漂移量可提高该通带的带宽,提高信噪比。
在示例性实施方式中,滤光片5的通带具有对应p光的中心波长和对应s光的中心波长,当光线的入射角为30°时,对应p光的中心波长与对应s光的中心波长之间的漂移不大于5nm。示例性的,p光中心波长与s光中心波长之间的漂移不大于4.2nm。控制p光中心波长与s光中心波长之间的漂移量,可提高该通带的带宽,使得使用该滤光片的设备、电路具有更高的设计裕量。
在示例性实施方式中,滤光片5的通带的平均透过率不小于93%。示例性的,滤光片5的通带的平均透过率不小于94%。控制通带的平 均透过率,使得透过该滤光片5的光线中通带对应的波段的光线强度高,也可以提高信噪比。
在示例性实施方式中,780nm至1200nm波长范围内,高折射率膜层的折射率大于3,低折射率膜层对应的折射率小于3,匹配膜层对应的折射率位于1.7至4.5之间。示例性的,高折射率膜层的折射率大于4,匹配层的折射率位于3至4.5之间,低折射率膜层的折射率小于3。示例性的,高折射率膜层的折射率为4.5,低折射率膜层的折射率为2.8,多个匹配膜层分别具有不同的折射率,例如折射率分别为3,3.5,4。通过控制匹配膜层的折射率、高折射率膜层的折射率及低折射率膜层的折射率,以控制光线通过各膜层后的状态,例如p光和s光在通过后状态光学特性差距小,以实现第一膜系52的特定光学特征。
在示例性实施方式中,匹配膜层的折射率小于高折射率膜层的折射率,匹配膜层的折射率大于低折射率膜层的折射率。
在示例性实施方式中,掺氮硅锗混合物为氢化掺氮硅锗混合物,氢化掺氮硅锗混合物的化学式为Si xGe 1-xN y:H z,其中,0≤x≤1,0<y≤0.1,z≤1。示例性的,Si xGe 1-xN y:H z中,0≤x≤0.5,0<y<0.1,z≤1;例如氢化掺氧硅锗基材料的化学式为Si 0.5Ge 0.5N 0.05:H 0.5
在示例性实施方式中,氢化掺氧硅锗基材料的化学式Si xGe 1-xN y:H z中,0≤x≤0.3,0<y<0.1,0.8<z≤1;示例性的,氢化掺氧硅锗基材料的化学式为Si 0.1Ge 0.9N 0.02:H 0.7。示例性的,氢化掺氧硅锗基材料的化学式为SiN 0.1:H,即氢化掺氧硅基材料。
在示例性实施方式中,所述氢化掺氮硅锗混合物的至少一部分为非晶态氢化掺氮硅锗混合物:α-Si xGe 1-xN y:H z
在示例性实施方式中,掺氮硅锗混合物还包括辅助成分,辅助成分包括氮、硼或磷中的一种或多种,辅助成分的各原子数与硅的原子数之比小于0.1。
请参照图2,满足条件式:a<0.1b,可以使用较少量的氧元素以及辅助成分,且在较窄区间内变化,就达到较大范围的调整折射率。 对应的匹配膜层的理化性能稳定,而能具有较大范围内特殊指定的光学特性。
在示例性实施方式中,高折射率膜层的材料包括Si wGe 1-w:H v,其中,0≤w≤1,0≤v≤1。示例性的,w为0.2或0.37。
在示例性实施方式中,低折射率膜层的材料包括SiO 2、Si 3N 4、Ta 2O 5、Nb 2O 5、TiO 2、Al 2O 3、SiCN、SiC中的一种或多种的混合物。
在示例性实施方式中,基底的材料包括玻璃。具体地,可为D263T、AF32、Eagle XG、H-ZPK5、H-ZPK7等。
在示例性实施方式中,基底还包括与第一面背对的第二面,滤光片还包括设置在基底的第二面外侧的第二膜系;第二膜系为长波通膜系或宽带通膜系,第一膜系为窄带通膜系;第二膜系的通带覆盖第一膜系的通带。通过设置第二膜系,可以使该滤光片5对光线具有更好的增透及截止作用,使透过该滤光片5的光线具有更高的信噪比。
在示例性实施方式中,第一膜系的厚度和第二膜系的厚度之和小于15μm,例如,小于12μm。控制两个膜系的厚度可以使对应于p光的中心波长和对应于s光的中心波长的偏移量小,同时可以降低生产制造成本。
在示例性实施方式中,第二膜系为长波通膜系,对应350nm至1200nm波长范围内,窄带通膜系具有通带,长波通膜系具有通带和截止带,长波通膜系的通带覆盖窄带通膜系的通带;长波通膜系的截止带的截止度不低于窄带通膜系的对应波段的截止度。控制长波通膜系的截止度,可以更好地提高该滤光片5的截止度,降低对应波段的光的透过率,使得通过该滤光片5的光线形成的图像中噪声信号弱。
在示例性实施方式中,第二膜系为宽带通膜系,对应780nm至1200nm波长范围,窄带通膜系具有通带,宽带通膜系具有通带,宽带通膜系的通带覆盖窄带通膜系的通带;对应小于780nm的波长范围,宽带通膜系的平均截止度不低于窄带通膜系的平均截止度。控制宽带通膜系的截止度,可以更好地提高该滤光片5的截止度,降低对应波段的光的透过率,使得通过该滤光片5的光线形成的图像中噪声信号弱。
在示例性实施方式中,沿背离基底的方向,第一膜系的结构形式为以下结构形式中的一种:(L 3-L 1-L 3-L 2) s-L 3-L 1;(L 1-L 3) 2-(L 2-L 3-L 1-L 3) s-L 1-L 3;(L 1-L 3) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 1-L 3) rL 1;(L 3-L 1) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-L 1-(L 2-(L 1-L 3) t-L 1-L 2) n;(L 3-L 1) s–(L 3-L 1) rL 3-(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-(L 2-(L 1-L 3) t-L 1-L 2) n-(L 3-L 1) r,所述第一膜系的结构形式中,L 1代表高折射率膜层,L 3代表第一低折射率膜层,L 2代表匹配膜层,p、q、r、s代表括号内的结构形式重复的次数,p、q、r、s为大于或等于0的整数。
以下结合附图3至5详述本申请提供的三个实施例。
实施例一
本实施例的滤光片5包括基底51,基底51的第一面外侧设置有溅射镀膜形成的第一膜系52,第一膜系52可包括表1提供的窄带通膜系,其中第1层为最贴近基底51的膜层;基底51的第二面外侧设置有溅射镀膜形成的第二膜系53,第二膜系53可包括表2提供的长波通膜系,其中第1层为最贴近基底51的膜层。请参照图3,当光线的入射角由0°变为30°时,该滤光片5的通带的中心波长的漂移量不大于12nm。
本申请表1提供了一种窄带通膜系,表1中同一列的膜层的材质相同。在表1中,序号1-22表示沿背离基底51的方向,第一膜系52的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表1:一种窄带通膜系的膜层结构(膜厚单位:nm)
Figure PCTCN2019130577-appb-000001
Figure PCTCN2019130577-appb-000002
该窄带通膜系中,高折射率膜层的材料为α-Si:H,低折射率膜层的材料为SiO 2,匹配膜层的材料为α-SiNy:Hz。
表2提供了一种长波通膜系,表2中同一列的膜层的材质相同。在表2中,序号1-27表示沿背离基底51的方向,第二膜系53的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表2:一种长波通膜系的膜层结构(膜厚单位:nm)
Figure PCTCN2019130577-appb-000003
该滤光片5厚度较薄,制造比较容易,通带的透过率较高,通过该滤光片5的光线中所需光线的强度较高。
实施例二
本实施例提供的滤光片5包括基底51,基底51的第一面外侧设置有溅射镀膜形成的第一膜系52,基底51的第二面外侧设置有蒸发镀膜形成的第二膜系53,第一膜系52可包括表3提供的窄带通膜系,其中第1层为最贴近基底51的膜层;第二膜系53可包括表4提供的长波通膜系,其中第1层为最贴近基底51的膜层。请参照图4,当光 线的入射角由0°变为30°时,该滤光片5的通带的中心波长的漂移量小于13nm。
表3提供了一种窄带通膜系,在表3中,序号1-23表示沿背离基底51的方向,第一膜系52的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表3:一种窄带通膜系的膜层结构(膜厚单位:nm)
Figure PCTCN2019130577-appb-000004
该窄带通膜系中,高折射率膜层的材料为α-Si:H,低折射率膜层的材料为SiO 2,匹配膜层的材料为α-GeN y:H z。第11层为匹配膜层,其与膜层大致按第11层对称设置。
表4提供了一种长波通膜系,表4中同一列的膜层的材质相同。在表4中,序号1-47表示沿背离基底51的方向,第二膜系53的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表4:一种长波通膜系的膜层结构(膜厚单位:nm)
材料 SiO 2 Si:H SiO 2 Si:H SiO 2 Si:H
膜层 1 2 3 4 5 6
膜厚 134.4 72.6 90.3 67.45 120.98 77.91
膜层 7 8 9 10 11 12
膜厚 136 83.4 97.5 70.9 270.45 75.64
膜层 13 14 15 16 17 18
膜厚 111.7 67.6 101.7 197.77 116.51 74.86
膜层 19 20 21 22 23 24
膜厚 118.7 75.8 120.1 76.06 103.28 42.14
膜层 25 26 27 28 29 30
膜厚 133.6 83.1 131.4 83.54 133.68 85.88
膜层 31 32 33 34 35 36
膜厚 133.1 84.1 135.3 84.91 135.75 84.61
膜层 37 38 39 40 41 42
膜厚 87.1 75.6 124.5 80.29 129.71 82.58
膜层 43 44 45 46 47 -
膜厚 136.4 87.5 130.1 77.82 103.24 -
该滤光片5通带的宽度较窄,p光中心波长和s光中心波长之间的偏移量较小,截止区的截止度较高。
实施例三
本实施例提供的滤光片5包括基底51,基底51的第一面外侧设置有溅射镀膜形成的第一膜系52,基底51的第二面外侧设置有溅射镀膜形成的第二膜系53,第一膜系52可包括表5提供的窄带通膜系,其中第1层为最贴近基底51的膜层;第二膜系53可包括表6提供的宽带通膜系,其中第1层为最贴近基底51的膜层。请参照图5,当光线的入射角由0°变为30°时,该滤光片5的通带的中心波长的漂移量小于11nm。
表5提供了一种窄带通膜系,在表5中,序号1-30表示沿背离基底51的方向,第一膜系52的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表5:一种窄带通膜系的膜层结构(膜厚单位:nm)
材料 Si wGe 1-w:H z SiO 2 Si wGe 1-w:H v SiO 2
膜层 1 2 3 4
膜厚 251.17 546.59 259.12 78.57
材料 α-SiN y:H z SiO 2 Si wGe 1-w:H v SiO 2
膜层 5 6 7 8
膜厚 45.8 260.65 129.01 79.08
膜层 9 10 11 12
膜厚 405.59 176.63 512.64 199.39
膜层 13 14 15 16
膜厚 51.95 129.4 529.57 134.55
膜层 17 18 19 20
膜厚 83.33 92.16 516.39 231.92
膜层 21 22 23 24
膜厚 380.86 130.42 137.36 136.26
膜层 25 26 27 28
膜厚 52.8 63.74 259.88 559.97
材料 Si wGe 1-w:H v SiO 2 - -
膜层 29 30 - -
膜厚 240.7 126.8 - -
该窄带通膜系中,高折射率膜层的材料为Si wGe 1-w:H z,低折射率膜层的材料为SiO 2,匹配膜层的材料为α-SiNy:Hz。第5层至第28层的结构形式为(L 2-L 3-L 1-L 3) 6
表6提供了一种宽带通膜系,序号1-35表示沿背离基底51的方向,第二膜系53的各膜层堆叠的顺序。例如“1”表示以上所述的最贴近基底51的膜层的第1层。
表6:一种宽带通膜系的膜层结构(膜厚单位:nm)
Figure PCTCN2019130577-appb-000005
该滤光片5通带的宽度较窄,通带的中心波长的漂移量小,通带的透过率较高。
然而,本领域技术人员可理解,以上实施例仅仅是示例,滤光片5的第一膜系52和第二膜系53也可具有其它膜层结构,各实施例的第一膜系52或第二膜系53也可应用于其它示例性实施例。并且滤光片5的第一面外侧及第二面外侧还可以设置其它透明层,例如空气腔等。
本申请实施例还提供一种制造滤光片的方法,该方法包括如下步骤:
将待镀件和靶材放置于沉积室内的对应位置,当待镀膜层为匹配膜层时,靶材的材料包括硅成分和锗成分,将沉积室内抽真空,沉积室内的真空度为预设值;
向沉积室内通入氩气,氩气的流量为预设值;
向沉积室内通入氢气和氧气,氢气的流量为预设值,氧气的流量小于60sccm;待镀件上形成膜层,膜层的材料包括前述的掺氮硅锗混合物。
在示例性实施方式中,沉积室内的真空度小于5×10 -5torr;氩气的流量为10sccm至300sccm之间;氢气的流量小于80sccm。
本申请的实施例还提供一种光学***,该光学***包括红外图像传感器和前述的滤光片5,滤光片5设置于红外图像传感器的感光侧。
请参照图6,光学***包括红外(Infrared Radiation,简称IR)光源2,第一镜头组件3,第二镜头组件4,滤光片5和三维传感器6。红外光源2发出的光经第一镜头组件3照射到待测物1的表面,待测物1表面反射的光经第二镜头组件4照射到滤光片5,环境光线被滤光片5截止,而红外线或者部分红光透过滤光片5照射到三维传感器6的感光侧,以形成可供处理的图像数据。滤光片5对应不同方向的倾斜光线具有较低的中心波长偏移量,透过的红外线信噪比高,继而形成的图像质量好。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 一种滤光片,其特征在于,所述滤光片包括基底和设置在所述基底的第一面外侧的第一膜系,所述第一膜系包括高折射率膜层、低折射率膜层和匹配膜层;
    所述匹配膜层的材料包括氮掺杂硅锗混合物,所述氮掺杂硅锗混合物的化学式为Si xGe 1-xN y,其中,0≤x≤1,0<y≤0.1,在780nm至3000nm波长范围内,所述高折射率膜层的折射率大于所述低折射率膜层的折射率,所述匹配膜层的折射率不等于其相邻的膜层的折射率。
  2. 根据权利要求1所述的滤光片,其特征在于,对应780nm至1200nm波长范围,所述滤光片具有通带,当光线的入射角由0°变为30°时,所述通带的中心波长的漂移量不大于16nm。
  3. 根据权利要求2所述的滤光片,其特征在于,所述滤光片的通带具有对应p光的中心波长和对应s光的中心波长,当光线的入射角为30°时,对应p光的中心波长与对应s光的中心波长之间的漂移不大于5nm。
  4. 根据权利要求2所述的滤光片,其特征在于,所述滤光片的通带的平均透过率不小于93%。
  5. 根据权利要求1所述的滤光片,其特征在于,对应780nm至1200nm波长范围内,所述高折射率膜层的折射率大于3,所述低折射率膜层的折射率小于3,所述匹配膜层的折射率位于1.7至4.5之间。
  6. 根据权利要求1所述的滤光片,其特征在于,所述氮掺杂硅锗混合物还可进一步掺杂氢,化学式为Si xGe 1-xN y:H z,其中,0≤x≤1,0<y≤1,z≤1,其至少一部分为非晶态氢化掺氮硅锗混合物α-Si xGe 1-xO y:H z
  7. 根据权利要求1所述的滤光片,其特征在于,所述氮掺杂硅锗混合物还包括辅助成分,所述辅助成分包括氧、硼或磷中的一种或多种,所述辅助成分中各原子数与硅原子数之比小于10%。
  8. 根据权利要求1所述的滤光片,其特征在于,所述高折射率膜层的材料包括Si wGe 1-w:H v,其中,0≤w≤1,0≤v≤1。
  9. 根据权利要求1所述的滤光片,其特征在于,所述低折射率膜层的材料包括SiO 2、Si 3N 4、Ta 2O 5、Nb 2O 5、TiO 2、Al 2O 3、SiCN、SiC中的一种或多种的混合物。
  10. 根据权利要求4所述的滤光片,其特征在于,所述基底还包括与所述第一面背对的第二面,所述滤光片还包括设置在所述基底的第二面外侧的第二膜系;
    所述第二膜系为长波通膜系或宽带通膜系,所述第一膜系为窄带通膜系;所述第二膜系的通带覆盖所述第一膜系的通带。
  11. 根据权利要求10所述的滤光片,其特征在于,所述第一膜系的厚度和所述第二膜系的厚度之和小于12μm。
  12. 根据权利要求10所述的滤光片,其特征在于,所述第二膜系为长波通膜系,对应350nm至1200nm波长范围内,所述窄带通膜系具有通带,所述长波通膜系具有通带和截止带,所述长波通膜系的通带覆盖所述窄带通膜系的通带;
    所述长波通膜系的截止带的截止度不低于所述窄带通膜系的对应波段的截止度。
  13. 根据权利要求10所述的滤光片,其特征在于,所述第二膜系为宽带通膜系,对应780nm至1200nm波长范围,所述窄带通膜系具 有通带,所述宽带通膜系具有通带,所述宽带通膜系的通带覆盖所述窄带通膜系的通带;
    对应小于780nm的波长范围,所述宽带通膜系的平均截止度不低于所述窄带通膜系的平均截止度。
  14. 根据权利要求11所述的滤光片,其特征在于,沿背离所述基底的方向,所述第一膜系的结构形式为以下结构形式中的一种:
    (L 3-L 1-L 3-L 2) s-L 3-L 1
    (L 1-L 3) 2-(L 2-L 3-L 1-L 3) s-L 1-L 3
    (L 1-L 3) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 1-L 3) rL 1
    (L 3-L 1) s–(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-L 1-(L 2-(L 1-L 3) t-L 1-L 2) n
    (L 3-L 1) s–(L 3-L 1) rL 3-(L 2-(L 1-L 3) p-L 1-L 2) q-(L 3-L 1) rL 3-(L 2-(L 1-L 3) t-L 1-L 2) n-(L 3-L 1) r
    所述第一膜系的结构形式中,L 1代表高折射率膜层,L 3代表第一低折射率膜层,L 2代表匹配膜层,p、q、r、s代表括号内的结构形式重复的次数,p、q、r、s为大于或等于0的整数。
PCT/CN2019/130577 2019-06-05 2019-12-31 滤光片 WO2020244223A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021564099A JP7436508B2 (ja) 2019-06-05 2019-12-31 光学フィルター
EP19931930.2A EP3982171A4 (en) 2019-06-05 2019-12-31 OPTICAL FILTER PLATE
SG11202111677YA SG11202111677YA (en) 2019-06-05 2019-12-31 Optical filter
KR1020217034652A KR20220002321A (ko) 2019-06-05 2019-12-31 광필터
US17/517,047 US20220120951A1 (en) 2019-06-05 2021-11-02 Optical filter plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910487270.2A CN110109210B (zh) 2019-06-05 2019-06-05 滤光片
CN201910487270.2 2019-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/517,047 Continuation US20220120951A1 (en) 2019-06-05 2021-11-02 Optical filter plate

Publications (1)

Publication Number Publication Date
WO2020244223A1 true WO2020244223A1 (zh) 2020-12-10

Family

ID=67494063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130577 WO2020244223A1 (zh) 2019-06-05 2019-12-31 滤光片

Country Status (7)

Country Link
US (1) US20220120951A1 (zh)
EP (1) EP3982171A4 (zh)
JP (1) JP7436508B2 (zh)
KR (1) KR20220002321A (zh)
CN (1) CN110109210B (zh)
SG (1) SG11202111677YA (zh)
WO (1) WO2020244223A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355496A (zh) * 2021-12-30 2022-04-15 苏州厚朴传感科技有限公司 一种工作波段为11500-12500nm的远红外带滤光片

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109210B (zh) * 2019-06-05 2024-06-18 信阳舜宇光学有限公司 滤光片
CN112444898B (zh) * 2019-08-30 2023-06-16 福州高意光学有限公司 一种宽角度应用的滤光片
CN110879435B (zh) * 2019-11-18 2021-08-06 中国科学院上海技术物理研究所 一种以硒化锌晶体为基底的中长波红外宽光谱分色片
CN114706153B (zh) * 2022-02-18 2024-04-16 湖南麓星光电科技有限公司 一种10600nm波长超窄带滤光片及其制备方法
CN115166886B (zh) * 2022-06-14 2024-02-09 浙江晶驰光电科技有限公司 一种超低角度偏移效应的红外截止滤光器
CN115808733B (zh) * 2023-02-08 2023-05-23 南京英田光学工程股份有限公司 一种基于卫星激光通信的滤波片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137518A (zh) * 2015-08-25 2015-12-09 浙江大学 一种入射角度不敏感的颜色滤光片及其制备方法
DE102015208705A1 (de) * 2014-08-13 2016-02-18 Carl Zeiss Smt Gmbh Kombinierter reflektor und filter für licht unterschiedlicher wellenlängen
CN105511004A (zh) * 2014-10-14 2016-04-20 岩崎电气株式会社 波长选择滤光器及光照射装置
CN108121026A (zh) * 2016-11-30 2018-06-05 唯亚威解决方案股份有限公司 硅锗基光学滤波器
CN110109210A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 滤光片
CN210015252U (zh) * 2019-06-05 2020-02-04 信阳舜宇光学有限公司 滤光片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018812B (zh) * 2012-12-17 2015-05-13 晋谱(福建)光电科技有限公司 用于体感识别***的近红外窄带滤光片
KR102502192B1 (ko) 2015-01-23 2023-02-21 마테리온 코포레이션 개선된 투과를 갖는 근적외선 광학 간섭 필터
CN107209306B (zh) * 2015-02-18 2020-10-20 美题隆公司 具有改进的透射率的近红外光学干涉滤波器
JP6892743B2 (ja) 2016-06-17 2021-06-23 株式会社トプコン 製膜装置
DE202017100512U1 (de) * 2017-01-31 2017-02-09 Optics Balzers Ag Optische Filter und/oder Spiegel
JP6836428B2 (ja) 2017-03-17 2021-03-03 倉敷紡績株式会社 分光フィルタおよび分光測光装置
DE102017004828B4 (de) * 2017-05-20 2019-03-14 Optics Balzers Ag Optischer Filter und Verfahren zur Herstellung eines optischen Filters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208705A1 (de) * 2014-08-13 2016-02-18 Carl Zeiss Smt Gmbh Kombinierter reflektor und filter für licht unterschiedlicher wellenlängen
CN105511004A (zh) * 2014-10-14 2016-04-20 岩崎电气株式会社 波长选择滤光器及光照射装置
CN105137518A (zh) * 2015-08-25 2015-12-09 浙江大学 一种入射角度不敏感的颜色滤光片及其制备方法
CN108121026A (zh) * 2016-11-30 2018-06-05 唯亚威解决方案股份有限公司 硅锗基光学滤波器
CN110109210A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 滤光片
CN210015252U (zh) * 2019-06-05 2020-02-04 信阳舜宇光学有限公司 滤光片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982171A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355496A (zh) * 2021-12-30 2022-04-15 苏州厚朴传感科技有限公司 一种工作波段为11500-12500nm的远红外带滤光片
CN114355496B (zh) * 2021-12-30 2024-02-02 苏州厚朴传感科技有限公司 一种工作波段为11500-12500nm的远红外带滤光片

Also Published As

Publication number Publication date
CN110109210B (zh) 2024-06-18
CN110109210A (zh) 2019-08-09
EP3982171A4 (en) 2022-12-28
JP7436508B2 (ja) 2024-02-21
US20220120951A1 (en) 2022-04-21
SG11202111677YA (en) 2021-11-29
JP2022531155A (ja) 2022-07-06
KR20220002321A (ko) 2022-01-06
EP3982171A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
WO2020244223A1 (zh) 滤光片
US11372144B2 (en) Near infrared optical interference filters with improved transmission
WO2020244219A1 (zh) 近红外窄带滤光片及制作方法
TWI706168B (zh) 光學濾波器及其形成方法
CN107209305B (zh) 具有改进的透射率的近红外光学干涉滤波器
TWI743378B (zh) 光學濾波器
JP7299346B2 (ja) 近赤外帯域通過光フィルター及び光センシングシステム
JP2020512478A (ja) 高屈折率の水素化シリコン薄膜の製造方法、高屈折率の水素化シリコン薄膜、フィルター積層体及びフィルター
TWI681217B (zh) 紅外帶通濾波器
TW201920997A (zh) 光學濾波器及感測器系統
WO2020244222A1 (zh) 近红外带通滤光片及其制备方法以及光学传感***
CN210015252U (zh) 滤光片
WO2020103206A1 (zh) 一种偏振无关的滤光片
TWI651542B (zh) 長波長紅外線抗反射疊層
US20220244430A1 (en) Optical filter, sensor system comprising same, and method for manufacturing halogenated amorphous silicon thin film for optical filter
JP3225571U (ja) 赤外線バンドパスフィルター構造及び該構造を応用する赤外線バンドパスフィルター
JP2009205070A (ja) Uv−irカットフィルターの製造方法とuv−irカットフィルターおよびカメラチップの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931930

Country of ref document: EP

Effective date: 20220105