WO2020244013A1 - 一种封隔导管架水泥浆的塔式封隔器 - Google Patents

一种封隔导管架水泥浆的塔式封隔器 Download PDF

Info

Publication number
WO2020244013A1
WO2020244013A1 PCT/CN2019/094565 CN2019094565W WO2020244013A1 WO 2020244013 A1 WO2020244013 A1 WO 2020244013A1 CN 2019094565 W CN2019094565 W CN 2019094565W WO 2020244013 A1 WO2020244013 A1 WO 2020244013A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
sealing
packer
tower
sealing ring
Prior art date
Application number
PCT/CN2019/094565
Other languages
English (en)
French (fr)
Inventor
刘保权
马美琴
田建德
孙建帮
石臣刚
尹婷
张亚生
张军
王逯达
Original Assignee
衡橡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 衡橡科技股份有限公司 filed Critical 衡橡科技股份有限公司
Priority to US17/041,425 priority Critical patent/US11634879B2/en
Publication of WO2020244013A1 publication Critical patent/WO2020244013A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2450/00Gaskets

Definitions

  • the invention belongs to the field of installation of marine jackets, in particular to a tower packer for isolating jacket cement slurry.
  • Offshore fixed platforms are generally composed of upper modules and lower jackets.
  • the fixing of the jacket to the seabed is generally completed by the fixed connection between the sleeve placed at the bottom of the main leg of the jacket and the steel pile that penetrates the sleeve and is driven into the seabed.
  • the inner diameter of the sleeve and the outer diameter of the pile The fixation is achieved through cement grouting.
  • the construction of fixed jacket is divided into first piling operation and post piling operation.
  • the first piling operation is mainly to fix the piling directly on the submarine mud bed according to the formwork, and then the jacket is set from the upper part of the steel pile to the inside of the steel pile, and the cement slurry is poured for connection and fixation; this operation method is mainly suitable for shallow sea areas. It has obvious advantages in the construction of large quantities of jackets of the same size.
  • the post-piling operation is mainly to fix the steel pile after the jacket is in place at sea after passing through the jacket sleeve; this operation method is mainly suitable for the large tonnage of the jacket, and it is often used in the deep sea field.
  • the main function of the offshore underwater packer is to block the space between the inner side of the annular sleeve and the outer diameter of the pile at the bottom of the sleeve when grouting after the pile driving is completed, to prevent the cement slurry from flowing out.
  • the packer itself or a supporting device is required to prevent the mud from the seabed from entering the annular space between the pile outer diameter and the sleeve to ensure that the cement slurry is not contaminated.
  • the active packer is mainly an inflatable packer.
  • the advantage of an inflatable packer is that the inner surface of the inflatable packer does not contact the outer surface of the column during the column driving process; it is not affected by cement slurry The weight and water depth are restricted; it can allow the reverse movement of the pile and the moderate eccentricity of the pile; it can withstand the vibration of the pile driving and the impact load of the pile caused by the vertical movement of the offshore crane during the pile-down process.
  • the disadvantage is that the system is complex and requires power stations, hydraulic pipelines, and emergency interfaces for underwater robots.
  • Passive packers mainly include mechanical packers and Crux packers.
  • the advantages of passive packers are: no need for pipelines, power systems, valve installations and underwater robot backup systems; no need for land debugging and offshore operations, and at the same time play a role in blocking mud from entering the annular space; no residual hardware that consumes anodes , There are no pipelines and valves that endanger divers' underwater operations; the price is cheap.
  • the main disadvantages are: the application of water is severely restricted; the rapid fall of the pile may cause damage and failure of the packer.
  • the object of the present invention is to provide a tower packer for packing the jacket cement slurry.
  • the tower packer of the present invention is located between the steel pile and the inner sleeve.
  • the tower packer includes a support ring, a sealing ring and a limit ring, wherein the support ring and the limit ring are respectively installed on the steel pile
  • On the outer surface of the inner inner sleeve a plurality of sealing rings stacked from top to bottom along the inner sleeve sleeve direction are arranged between the support ring and the limit ring, and the sealing rings are sealed in the radial direction.
  • the seal ring at the bottom is always supported by the support ring, and the seal ring at the top always abuts against the lower surface of the limit ring; during the process of the inner sleeve being fitted into the steel pile, the outer diameter
  • the outer surface of the largest sealing ring is in sealing abutment with the inner surface of the steel pile, and the remaining sealing ring changes along the diameter as the distance between the outer surface of the inner sleeve and the inner surface of the steel pile changes during the falling process of the inner sleeve set.
  • the number of the sealing rings is an odd number greater than 1, and they are symmetrically arranged on the upper and lower sides of the sealing ring with the largest outer diameter;
  • the number of the sealing rings is an even number greater than 2, the number of the sealing rings with the largest outer diameter is two, and the remaining sealing rings are symmetrically arranged on the upper and lower sides of the two sealing rings with the largest outer diameter;
  • the number of the sealing ring is an even number greater than 2, the number of the sealing ring with the largest outer diameter is one, and the remaining sealing rings are respectively arranged on the upper and lower sides of the sealing ring with the largest outer diameter;
  • each of the seal rings is equal, and the inner diameter of the seal ring with the largest outer diameter and the inner diameter of the remaining seal rings on the upper or lower side are sequentially reduced in the form of an arithmetic sequence;
  • the tower packer of the present invention is located between the outer sleeve and the steel pile.
  • the tower packer includes a support ring, a sealing ring and a limit ring, wherein the support ring and the limit ring are respectively installed inside the outer sleeve
  • On the surface a plurality of sealing rings stacked from top to bottom along the steel pile penetration direction are arranged between the support ring and the limit ring, and the sealing rings are connected in a radially sealed and sliding manner.
  • the bottom seal The ring is always supported by the support ring, and the sealing ring at the top always abuts against the lower surface of the stop ring; when the steel pile penetrates into the outer sleeve, the inner surface of the sealing ring with the smallest outer diameter Sealing and abutting against the outer surface of the steel pile, and the remaining sealing rings respectively slide in the radial direction to adapt to the change of the distance between the outer surface of the steel pile and the inner surface of the outer sleeve during the falling process of the steel pile penetration;
  • the number of the sealing rings is an odd number greater than 1, and they are symmetrically arranged on the upper and lower sides of the sealing ring with the smallest outer diameter;
  • the number of the seal rings is an even number greater than 2, the number of the smallest outer diameter seal rings is two, and the remaining seal rings are symmetrically arranged on the upper and lower sides of the two smallest outer diameter seal rings;
  • the number of the seal rings is an even number greater than 2, the smallest outer diameter seal ring is one, and the remaining seal rings are respectively arranged on the upper and lower sides of the smallest outer diameter seal ring;
  • each of the seal rings is equal, and the inner diameter of the seal ring with the smallest outer diameter and the inner diameter of the remaining seal rings on the upper or lower side increase sequentially in the form of an arithmetic sequence;
  • each sealing ring width, the maximum value of the support ring width, and the maximum value of the limit ring width are all equal to the minimum distance between the sleeve and the steel pile;
  • An annular waterproof skin is provided above each of the sealing rings, the outer edge of the waterproof skin is sealed to the inner surface of the limit ring, and the inner edge of the waterproof skin is sealed to the seal ring with the largest outer diameter Or sealingly connected to the smallest outer diameter sealing ring.
  • the present invention can be applied to two operation modes of fixed jacket construction of marine engineering, can improve the shortcomings of the prior art, and improve the sealing ability and anti-damage ability of the packer.
  • Each sealing ring of the present invention can slide along the radial direction to adapt to the two states of positive pile or partial pile.
  • each sealing ring stacked on the support ring of the present invention changes regularly, and the annular space between the sleeve and the steel pile is sealed under the premise of ensuring that the pile is not jammed.
  • a waterproof skin is arranged above the sealing ring, which further improves the sealing performance of the packer.
  • Figure 1 is a working state diagram of the present invention in the pile-first construction environment of the jacket
  • Figure 2 is a working state diagram of the present invention in a pile-first-pile construction environment of the jacket;
  • Figure 3 is a structural cross-sectional view of a structure of the invention in a jacket first pile construction environment
  • Figure 4 is a structural cross-sectional view of another structure of the invention in a jacket first pile construction environment
  • Figure 5 is a structural cross-sectional view of another structure of the present invention in a jacket first pile construction environment
  • Figure 6 is a working state diagram of the present invention in the post-pile construction environment of the jacket
  • Fig. 7 is a working state diagram of the present invention in a partial pile state in a post-jacket pile construction environment
  • Figure 8 is a structural cross-sectional view of a structure of the present invention in a post-jacket pile construction environment
  • Figure 9 is a structural cross-sectional view of another structure of the present invention in a post-jacket pile construction environment
  • Figure 10 is a structural cross-sectional view of another structure of the present invention in a post-jacket pile construction environment
  • 1 is a tower packer
  • 2 is an inner sleeve
  • 3 is a steel pile
  • 4 is a support ring
  • 5 is a sealing ring
  • 6 is a sealing ring
  • 7 is a limit ring
  • 8 is a waterproof skin
  • 9 is The outer diameter is the largest seal ring
  • 10 is the smallest outer diameter seal ring
  • 11 is the outer sleeve
  • 12 is the positioning cone guide plate.
  • the tower packer 1 of this embodiment is located between the steel pile 3 and the inner sleeve 2.
  • This embodiment is the first piling operation construction, that is, the steel pile 3 is fixed first, and then the The inner sleeve 2 is sleeved inside the steel pile 3;
  • the tower packer 1 includes a support ring 4, a sealing ring 5 and a limit ring 7, wherein the support ring 4 and the limit ring 7 are respectively fixed outside the inner sleeve 2
  • the limit ring 7 is located above the support ring 4.
  • the sealing rings 5 are sleeved on the inner sleeve 2 and collinear with the axial centerline of the inner sleeve 2, the sealing rings 5 are connected in a radially sealed and sliding manner, and the sealing ring 5 at the bottom is always supported by the support ring 4.
  • the sealing ring 5 at the top always abuts against the lower surface of the limit ring 7.
  • a positioning cone guide plate 12 is provided at the lower end of the inner sleeve 2, and the positioning cone guide plate 12 is located below the tower packer 1.
  • the number of the sealing ring 5 in this embodiment is an odd number greater than 1, and is symmetrically arranged on the upper and lower sides of the sealing ring 9 with the largest outer diameter.
  • the widths of the seal rings 5 are equal, and the inner diameter of the seal ring 9 with the largest outer diameter and the inner diameter of the remaining seal rings 5 on the upper or lower side are sequentially reduced in an arithmetic sequence.
  • the maximum value of the width of each seal ring 5, the maximum value of the width of the support ring 4, and the maximum value of the width of the limit ring 7 are all equal to the minimum gap value between the outer surface of the inner sleeve 2 and the inner surface of the steel pile 3.
  • this embodiment has seven seal rings 5, of which the seal ring 9 with the largest outer diameter is located in the middle, and there are three seal rings 5 on the upper and lower sides respectively.
  • the inner diameter of the steel pile 3 in this embodiment is ⁇ 2290mm
  • the outer diameter of the inner sleeve 2 is ⁇ 1900mm
  • the height of the steel pile 3 and the inner sleeve 2 are both 600mm
  • the width of each sealing ring 5 is both 80mm and the height is 15mm
  • the inner diameter of the seal ring 9 with the largest outer diameter is ⁇ 2140mm.
  • the inner diameters are ⁇ 2070mm, ⁇ 2000mm, and ⁇ 1930mm in sequence.
  • the material of the sealing ring 5 is rigid, such as iron or glass steel.
  • a rubber seal ring 6 is provided on the outer surface of the seal ring 9 with the largest outer diameter. During the falling process of the inner sleeve 3, the seal ring 6 always seals against the inner surface of the steel pile 3.
  • An annular waterproof skin 8 is provided above each sealing ring 5.
  • the inner edge of the waterproof skin 8 is sealingly connected to the outer surface of the stop ring 7, and the outer edge of the waterproof skin 8 is sealingly connected to the sealing ring 9 with the largest outer diameter. on.
  • the seal ring 9 with the largest outer diameter is set on the outer surface
  • the sealing ring 6 is always in sealing contact with the inner surface of the steel pile 3, sealing the annular space between the inner sleeve 2 and the steel pile 3, ensuring that the cement slurry inside the annular space will not flow out, and blocking the tower packer 1
  • Embodiment 2 (first piling operation)
  • the difference between this embodiment and the first embodiment is: the number of seal rings 5 in this embodiment is an even number greater than 2, the number of seal rings 9 with the largest outer diameter is two, and the rest
  • the sealing ring 5 is symmetrically arranged on the upper and lower sides of the two sealing rings 9 with the largest outer diameter.
  • this embodiment has eight seal rings 5, of which two seal rings 9 with the largest outer diameter are stacked on top of each other and located in the middle, and three seal rings 5 are provided on the upper and lower sides respectively.
  • the rest are the same as the first embodiment.
  • Embodiment 3 (pile driving first)
  • the difference between this embodiment and the first embodiment is that the number of the sealing ring 5 in this embodiment is an even number greater than 2, the number of the sealing ring 9 with the largest outer diameter is one, and the remaining sealing ring
  • the rings 5 are respectively arranged on the upper and lower sides of the seal ring 9 with the largest outer diameter.
  • this embodiment has six seal rings, of which there are three seal rings 5 above and two seal rings 5 below the seal ring 9 with the largest outer diameter. Since there are only two seal rings 5 below, the width of the support ring 4 in this embodiment is increased to ensure that the bottom seal ring 5 is always supported by the support ring 4, that is, it always partially overlaps the support ring 4, and the support ring 4 The width will not cause jamming. The rest are the same as the first embodiment.
  • Embodiment 4 post piling operation
  • this embodiment is a post-piling operation construction, that is, the jacket is first placed at sea, and then the steel The pile 3 is fixed after passing through the outer sleeve 11 on the jacket;
  • the tower packer 1 includes a support ring 4, a sealing ring 5 and a limit ring 7, wherein the support ring 4 and the limit ring 7 are respectively fixed on the outer sleeve On the inner surface of 11, the limit ring 7 is located above the support ring 4.
  • a plurality of sealing rings 5 stacked from top to bottom along the penetration direction of the steel pile 3 are arranged between the support ring 4 and the limit ring 7.
  • Each sealing ring 5 is sleeved on the steel pile 3 and is collinear with the axial center line of the steel pile 3.
  • the sealing rings 5 are connected in a radial sealing and sliding manner.
  • the sealing ring 5 at the bottom is always supported by the supporting ring 4 ,
  • the sealing ring 5 at the top always abuts against the lower surface of the limit ring 7.
  • the inner surface of the sealing ring 10 with the smallest outer diameter is in sealing contact with the outer surface of the steel pile 3, and the remaining sealing rings 5 follow the falling process of the steel pile 3 penetration
  • the distance between the outer surface of the steel pile 3 and the inner surface of the outer sleeve 11 changes and respectively slides along the radial direction to adapt.
  • the number of the sealing ring 5 in this embodiment is an odd number greater than 1, and is symmetrically arranged on the upper and lower sides of the sealing ring 10 with the smallest outer diameter.
  • the widths of the seal rings 5 are equal, and the inner diameter of the seal ring 10 with the smallest outer diameter and the inner diameter of the remaining seal rings 5 on the upper or lower side increase sequentially in the form of an arithmetic sequence.
  • the maximum value of the width of each seal ring 5, the maximum value of the width of the support ring 4, and the maximum value of the width of the limit ring 7 are all equal to the minimum gap value between the inner surface of the outer sleeve 11 and the outer surface of the steel pile 3.
  • this embodiment has seven seal rings 5, of which the seal ring 10 with the smallest outer diameter is located in the middle, and there are three seal rings 5 on the upper and lower sides respectively.
  • the inner diameter of the sleeve 11 is ⁇ 2290mm
  • the outer diameter of the steel pile 3 is ⁇ 1900mm
  • the height of the steel pile 3 and the outer sleeve 11 are both 600mm
  • the width of each sealing ring 5 is both 80mm and the height is 15mm
  • the inner diameter of the smallest outer diameter seal ring 10 is ⁇ 1930mm.
  • the inner diameters are ⁇ 2000mm, ⁇ 2070mm, and ⁇ 2140mm in sequence.
  • the material of the sealing ring 5 is rigid, such as iron or glass steel.
  • a rubber sealing ring 6 is provided on the inner surface of the sealing ring 10 with the smallest outer diameter. During the falling process of the steel pile 3 penetrating, the sealing ring 6 always seals against the outer surface of the steel pile 3.
  • a ring-shaped waterproof skin 8 is provided above each sealing ring 5.
  • the outer edge of the waterproof skin 8 is sealed to the inner surface of the limit ring 7, and the inner edge of the waterproof skin 8 is sealed to the seal ring 10 with the smallest outer diameter. on.
  • Embodiment 5 post piling operation
  • the difference between this embodiment and the fourth embodiment is: the number of seal rings 5 in this embodiment is an even number greater than 2, the number of seal rings 10 with the smallest outer diameter is two, and the rest
  • the seal ring 5 is symmetrically arranged on the upper and lower sides of the two smallest outer diameter seal rings 10.
  • this embodiment has eight seal rings 5, of which two seal rings 10 with the smallest outer diameter are stacked on top of each other and located in the middle, and three seal rings 5 are respectively provided on the upper and lower sides.
  • the rest are the same as the fourth embodiment.
  • Embodiment 6 post piling operation
  • the difference between this embodiment and the fourth embodiment is: the number of seal rings 5 in this embodiment is an even number greater than 2, the smallest outer diameter seal ring 10 is one, and the rest The rings 5 are respectively arranged on the upper and lower sides of the seal ring 10 with the smallest outer diameter.
  • this embodiment has six seal rings, of which three seal rings 5 are located above the seal ring 10 with the smallest outer diameter and two seal rings 5 are located below. Since there are only two seal rings 5 below, the width of the support ring 4 in this embodiment is increased to ensure that the bottom seal ring 5 is always supported by the support ring 4, that is, it always partially overlaps the support ring 4, and the support ring 4 The width will not cause jamming.
  • the rest are the same as the fourth embodiment.
  • the invention can be applied to two operation modes of fixed jacket construction of marine engineering, can improve the shortcomings of the prior art, and improve the sealing ability and anti-damage ability of the packer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Mechanical Engineering (AREA)
  • Piles And Underground Anchors (AREA)
  • Gasket Seals (AREA)

Abstract

本发明涉及一种封隔导管架水泥浆的塔式封隔器,该塔式封隔器位于钢桩与内套筒之间,包括支撑环、密封环及限位环,支撑环及限位环分别安装在套装于钢桩内部的内套筒的外表面上,支撑环与限位环之间设有多个沿内套筒套装方向由上至下叠置的密封环,各密封环之间沿径向密封滑动连接,位于底部的密封环始终由支撑环支撑,位于顶部的密封环始终与限位环的下表面抵接;在内套筒向钢桩内部套装过程中,外径最大密封环的外表面与钢桩的内表面密封抵接,其余密封环在内套筒套装的下落过程中随内套筒外表面与钢桩内表面之间间距变化而沿径向分别滑动适应。本发明可适用于海洋工程固定导管架施工的两种作业方式,提高封隔器的密封能力和抗破坏能力。

Description

一种封隔导管架水泥浆的塔式封隔器 技术领域
本发明属于海上导管架安装领域,具体地说是一种封隔导管架水泥浆的塔式封隔器。
背景技术
海上固定式平台一般是由上部组块和下部导管架组成。导管架与海底的固定一般是通过安置在导管架主腿底部的套筒与穿过套筒并打入海底的钢桩之间的固定连接来完成的,而套筒内径和桩外径之间的固定是通过水泥灌浆的形式来达到的。
根据海上施工作业工序不同,固定导管架的施工分为先打桩作业和后打桩作业。先打桩作业主要是直接在海底泥床上按照模架进行打桩固定,之后导管架从钢桩上部,套装在钢桩内部后,灌注水泥浆进行连接固定;这种作业方式主要适合于浅海领域,在大批量、同尺寸导管架施工时具有明显的优势。后打桩作业主要是在导管架在海上就位后,钢桩穿过导管架套筒后进行固定;这种作业方式主要适合于导管架吨位大,在深海领域采用这种作业方式较多。海上导管架两种施工作业方式,导管架与钢桩之间的连接固定均采用水泥浆粘结固定的方式。因海上作业的特殊性以及水泥浆易流动的特性,钢桩与套筒的环形空间下部需要设置封隔器产品,封堵两者之间的环形空间,确保环形空间内部水泥浆不流出,避免钢桩与导管架之间连接失效,阻隔下部海底污泥对上部的水泥浆进行污染,避免影响水泥浆的凝固质量。海上用水下封隔器的主要功能是在打桩完毕后灌浆时,在套筒底部封堵环形套筒内侧与桩外径之间的空间,防止水泥浆流出。对于软土海床,需要封隔器自身或配套的装置用来防止海底的泥巴进入桩外径和套筒之间的环形空间,保证水泥浆不被污染。
目前,海上用的水下封隔器按工作类型分为主动式封隔器和被动式封隔器。主动式封隔器主要是气胀式封隔器,气胀式封隔器的优点是:在打柱过程中气胀式封隔器的内表面不与柱的外表面接触;不受水泥浆重量和水深的限制;能够允许桩的反向运动和桩的适度偏心;可以经受打桩时的振动和桩在下桩过程中由于海上吊机垂向运动而引起的桩的冲击荷载。缺点是***复杂,需要配备动力站、液压管线、水下机器人应急接口。一旦管线损坏需要水下机器人水下连接软管;陆地安装调试工作量大和费用高,海上操作复杂;有残留的五金件消耗阳极,管线的存在危害潜水员水下操作;造价高。
被动式封隔器主要有机械式封隔器和Crux封隔器。被动式封隔器的优点是:不需要管线、动力***,阀门安装和水下机器人备用***;不需要陆地调试和海上操作,同时起到阻挡泥巴进入环形空间的作用;没有残留的五金件消耗阳极, 没有危害潜水员水下操作的各种管线和阀门;价格便宜。缺点主要有:应用水深受限制;桩快速下落,有可能造成封隔器破坏、失效。
发明内容
为了满足导管架套筒与钢桩之间固定连接的要求,本发明的目的在于提供一种封隔导管架水泥浆的塔式封隔器。
本发明的目的是通过以下技术方案来实现的:
本发明的塔式封隔器位于钢桩与内套筒之间,所述塔式封隔器包括支撑环、密封环及限位环,其中支撑环及限位环分别安装在套装于钢桩内部的内套筒的外表面上,该支撑环与限位环之间设有多个沿内套筒套装方向由上至下叠置的密封环,各所述密封环之间沿径向密封滑动连接,位于底部的密封环始终由所述支撑环支撑,位于顶部的密封环始终与所述限位环的下表面抵接;在所述内套筒向钢桩内部套装过程中,外径最大密封环的外表面与所述钢桩的内表面密封抵接,其余密封环在所述内套筒套装的下落过程中随内套筒外表面与钢桩内表面之间间距变化而沿径向分别滑动适应;
其中:所述密封环的个数为大于1的奇数,对称设置于所述外径最大密封环的上下两侧;
所述密封环的个数为大于2的偶数,所述外径最大密封环为两个,其余的密封环对称设置于这两个外径最大密封环的上下两侧;
所述密封环的个数为大于2的偶数,所述外径最大密封环为一个,其余的密封环分别设置于该外径最大密封环的上下两侧;
各所述密封环的宽度相等,所述外径最大密封环的内径与上侧或下侧的其余密封环的内径以等差数列的形式依次减小;
本发明的塔式封隔器位于外套筒与钢桩之间,所述塔式封隔器包括支撑环、密封环及限位环,其中支撑环及限位环分别安装在外套筒的内表面上,该支撑环与限位环之间设有多个沿钢桩穿入方向由上至下叠置的密封环,各所述密封环之间沿径向密封滑动连接,位于底部的密封环始终由所述支撑环支撑,位于顶部的密封环始终与所述限位环的下表面抵接;在所述钢桩穿入外套筒内部的过程中,外径最小密封环的内表面与钢桩的外表面密封抵接,其余密封环在所述钢桩穿入的下落过程中随钢桩外表面与外套筒内表面之间间距变化而沿径向分别滑动适应;
其中:所述密封环的个数为大于1的奇数,对称设置于所述外径最小密封环的上下两侧;
所述密封环的个数为大于2的偶数,所述外径最小密封环为两个,其余的密封环对称设置于这两个外径最小密封环的上下两侧;
所述密封环的个数为大于2的偶数,所述外径最小密封环为一个,其余的密 封环分别设置于该外径最小密封环的上下两侧;
各所述密封环的宽度相等,所述外径最小密封环的内径与上侧或下侧的其余密封环的内径以等差数列的形式依次增加;
各所述密封环宽度的最大值、所述支撑环宽度最大值以及所述限位环宽度的最大值,均和套筒与钢桩之间的最小间距值相等;
各所述密封环的上方设有环形的防水蒙皮,该防水蒙皮的外边缘密封连接于所述限位环的内表面,所述防水蒙皮的内边缘密封连接于外径最大密封环或密封连接于外径最小密封环上。
本发明的优点与积极效果为:
1.本发明可适用于海洋工程固定导管架施工的两种作业方式,能够改进现有技术的不足,提高封隔器的密封能力和抗破坏能力。
2.本发明的各密封环可沿径向滑动,以适应正桩或偏桩两种状态。
3.本发明叠放在支撑环上的各个密封环内径呈规律性变化,在保证不卡桩的前提下实现套筒与钢桩之间环形空间的封堵。
4.本发明在密封环上方设置了防水蒙皮,进一步提高了封隔器的密封性。
附图说明
图1为本发明在导管架先桩式施工环境中正桩状态的工作状态图;
图2为本发明在导管架先桩式施工环境中偏桩状态的工作状态图;
图3为本发明在导管架先桩式施工环境中一种结构的结构剖视图;
图4为本发明在导管架先桩式施工环境中另一种结构的结构剖视图;
图5为本发明在导管架先桩式施工环境中再一种结构的结构剖视图;
图6为本发明在导管架后桩式施工环境中正桩状态的工作状态图;
图7为本发明在导管架后桩式施工环境中偏桩状态的工作状态图;
图8为本发明在导管架后桩式施工环境中一种结构的结构剖视图;
图9为本发明在导管架后桩式施工环境中另一种结构的结构剖视图;
图10为本发明在导管架后桩式施工环境中再一种结构的结构剖视图;
其中:1为塔式封隔器,2为内套筒,3为钢桩,4为支撑环,5为密封环,6为密封圈,7为限位环,8为防水蒙皮,9为外径最大密封环,10为外径最小密封环,11为外套筒,12为定位锥向导向板。
具体实施方式
下面结合附图对本发明作进一步详述。
实施例一(先打桩作业)
如图1~3所示,本实施例的塔式封隔器1位于钢桩3与内套筒2之间,本实施例为先打桩作业施工,即先将钢桩3固定,然后再将内套筒2套装于钢桩3 的内部;塔式封隔器1包括支撑环4、密封环5及限位环7,其中支撑环4及限位环7分别固定在内套筒2的外表面上,限位环7位于支撑环4的上方,该支撑环4与限位环7之间设有多个沿内套筒2套装方向由上至下叠置的密封环5,各密封环5均套设在内套筒2上、与内套筒2的轴向中心线共线,各密封环5之间沿径向密封滑动连接,位于底部的密封环5始终由支撑环4支撑,位于顶部的密封环5始终与限位环7的下表面抵接。在内套筒2向钢桩3内部套装过程中,外径最大密封环9的外表面与钢桩3的内表面密封抵接,其余密封环5在内套筒2套装的下落过程中随内套筒2外表面与钢桩3内表面之间间距变化而沿径向分别滑动适应。各密封环5在沿径向滑动的过程中,相邻密封环5之间始终有部分重合。为了方便内套筒2的安装,在内套筒2的下端设置了定位锥向导向板12,该定位锥向导向板12位于塔式封隔器1的下方。
本实施例密封环5的个数为大于1的奇数,对称设置于外径最大密封环9的上下两侧。各密封环5的宽度相等,外径最大密封环9的内径与上侧或下侧的其余密封环5的内径以等差数列的形式依次减小。各密封环5宽度的最大值、支撑环4宽度最大值以及限位环7宽度的最大值,均和内套筒2外表面与钢桩3内表面之间的最小间隙值相等。具体地,本实施例有七个密封环5,其中外径最大密封环9位于中间,上下两侧分别有三个密封环5。本实施例钢桩3的内径为φ2290mm,内套筒2的外径为φ1900mm,钢桩3及内套筒2的高度均为600mm;各密封环5的宽度均为80mm、高度均为15mm,外径最大密封环9的内径为φ2140mm,以一侧的三个密封环5为例,内径依次为φ2070mm、φ2000mm、φ1930mm。密封环5的材质为刚性的,如铁或玻璃钢。在外径最大密封环9的外表面设有橡胶材质的密封圈6,在内套筒3的下落过程中,密封圈6始终与钢桩3的内表面密封抵接。
各密封环5的上方设有环形的防水蒙皮8,该防水蒙皮8的内边缘密封连接于限位环7的外表面,防水蒙皮8的外边缘密封连接于外径最大密封环9上。
在内套筒2套装的下落过程中,若是如图1所示的正桩状态(即内套筒2与钢桩3的轴向中心线共线),外径最大密封环9外表面上设置的密封圈6始终与钢桩3的内表面密封抵接,封堵内套筒2与钢桩3之间的环形空间,确保环形空间内部水泥浆不会流出,同时阻隔塔式封隔器1下部海底污泥对上部的水泥浆进行污染。若是如图2所示的偏桩状态(即内套筒2与钢桩3的轴向中心线不共线),在内套筒2套装的下落过程中,除外径最大密封环9外的其余密封环5的外表面会与钢桩3的内表面发生接触,进而沿径向滑动,以适应内套筒2与钢桩3之间的间距变化。
实施例二(先打桩作业)
如图1、图2及图4所示,本实施例与实施例一的区别在于:本实施例密封环5的个数为大于2的偶数,外径最大密封环9为两个,其余的密封环5对称设 置于这两个外径最大密封环9的上下两侧。具体地,本实施例有八个密封环5,其中两个外径最大密封环9上下叠放、位于中间,上下两侧分别有三个密封环5。其余均与实施例一相同。
实施例三(先打桩作业)
如图1、图2及图5所示,本实施例与实施例一的区别在于:本实施例密封环5的个数为大于2的偶数,外径最大密封环9为一个,其余的密封环5分别设置于该外径最大密封环9的上下两侧。具体地,本实施例有六个密封环,其中外径最大密封环9的上方有三个密封环5、下方有两个密封环5。由于下方只有两个密封环5,因此,本实施例支撑环4的宽度增加,保证最下方的密封环5始终由支撑环4支撑,即始终与支撑环4保持部分重叠,而且支撑环4的宽度还不会导致卡桩。其余均与实施例一相同。
实施例四(后打桩作业)
如图6~8所示,本实施例的塔式封隔器1外套筒11与钢桩3之间,本实施例为后打桩作业施工,即导管架先在海上就位,然后将钢桩3穿过导管架上的外套筒11后进行固定;塔式封隔器1包括支撑环4、密封环5及限位环7,其中支撑环4及限位环7分别固定在外套筒11的内表面上,限位环7位于支撑环4的上方,该支撑环4与限位环7之间设有多个沿钢桩3穿入方向由上至下叠置的密封环5,各密封环5均套设在钢桩3上、与钢桩3的轴向中心线共线,各密封环5之间沿径向密封滑动连接,位于底部的密封环5始终由支撑环4撑,位于顶部的密封环5始终与限位环7的下表面抵接。在钢桩3穿入外套筒11内部的过程中,外径最小密封环10的内表面与钢桩3的外表面密封抵接,其余密封环5在钢桩3穿入的下落过程中随钢桩3外表面与外套筒11内表面之间间距变化而沿径向分别滑动适应。各密封环5在沿径向滑动的过程中,相邻密封环5之间始终有部分重合。
本实施例密封环5的个数为大于1的奇数,对称设置于外径最小密封环10的上下两侧。各密封环5的宽度相等,外径最小密封环10的内径与上侧或下侧的其余密封环5的内径以等差数列的形式依次增加。各密封环5宽度的最大值、支撑环4宽度最大值以及限位环7宽度的最大值,均和外套筒11内表面与钢桩3外表面之间的最小间隙值相等。具体地,本实施例有七个密封环5,其中外径最小密封环10位于中间,上下两侧分别有三个密封环5。本实施例外套筒11的内径为φ2290mm,钢桩3的外径为φ1900mm,钢桩3及外套筒11的高度度均为600mm;各密封环5的宽度均为80mm、高度均为15mm,外径最小密封环10的内径为φ1930mm,以一侧的三个密封环5为例,内径依次为φ2000mm、φ2070mm、φ2140mm。密封环5的材质为刚性的,如铁或玻璃钢。在外径最小密封环10的内表面设有橡胶材质的密封圈6,在钢桩3穿入的下落过程中,密封圈6始终与钢桩3的外表面密封抵接。
各密封环5的上方设有环形的防水蒙皮8,该防水蒙皮8的外边缘密封连接于限位环7的内表面,防水蒙皮8的内边缘密封连接于外径最小密封环10上。
在钢桩3穿入的下落过程中,若是如图6所示的正桩状态(即外套筒11与钢桩3的轴向中心线共线),外径最小密封环10外表面上设置的密封圈6始终钢桩3的外表面密封抵接,封堵外套筒11与钢桩3之间的环形空间,确保环形空间内部水泥浆不会流出,同时阻隔塔式封隔器1下部海底污泥对上部的水泥浆进行污染。若是如图2所示的偏桩状态(即外套筒11与钢桩3的轴向中心线不共线),在钢桩3穿入的下落过程中,除外径最小密封环10外的其余密封环5的外表面会与钢桩3的外表面发生接触,进而沿径向滑动,以适应外套筒11与钢桩3之间的间距变化。
实施例五(后打桩作业)
如图6、图7及图9所示,本实施例与实施例四的区别在于:本实施例密封环5的个数为大于2的偶数,外径最小密封环10为两个,其余的密封环5对称设置于这两个外径最小密封环10的上下两侧。具体地,本实施例有八个密封环5,其中两个外径最小密封环10上下叠放、位于中间,上下两侧分别有三个密封环5。其余均与实施例四相同。
实施例六(后打桩作业)
如图6、图7及图10所示,本实施例与实施例四的区别在于:本实施例密封环5的个数为大于2的偶数,外径最小密封环10为一个,其余的密封环5分别设置于该外径最小密封环10的上下两侧。具体地,本实施例有六个密封环,其中外径最小密封环10的上方有三个密封环5、下方有两个密封环5。由于下方只有两个密封环5,因此,本实施例支撑环4的宽度增加,保证最下方的密封环5始终由支撑环4支撑,即始终与支撑环4保持部分重叠,而且支撑环4的宽度还不会导致卡桩。其余均与实施例四相同。
本发明可适用于海洋工程固定导管架施工的两种作业方式,能够改进现有技术的不足,提高封隔器的密封能力和抗破坏能力。

Claims (12)

  1. 一种封隔导管架水泥浆的塔式封隔器,该塔式封隔器位于钢桩与内套筒之间,其特征在于:所述塔式封隔器(1)包括支撑环(4)、密封环(5)及限位环(7),其中支撑环(4)及限位环(7)分别安装在套装于钢桩(3)内部的内套筒(2)的外表面上,该支撑环(4)与限位环(7)之间设有多个沿内套筒(2)套装方向由上至下叠置的密封环(5),各所述密封环(5)之间沿径向密封滑动连接,位于底部的密封环(5)始终由所述支撑环(4)支撑,位于顶部的密封环(5)始终与所述限位环(7)的下表面抵接;在所述内套筒(2)向钢桩(3)内部套装过程中,外径最大密封环(9)的外表面与所述钢桩(3)的内表面密封抵接,其余密封环(5)在所述内套筒(2)套装的下落过程中随内套筒(2)外表面与钢桩(3)内表面之间间距变化而沿径向分别滑动适应。
  2. 根据权利要求1所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于1的奇数,对称设置于所述外径最大密封环(9)的上下两侧。
  3. 根据权利要求1所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于2的偶数,所述外径最大密封环(9)为两个,其余的密封环(5)对称设置于这两个外径最大密封环(9)的上下两侧。
  4. 根据权利要求1所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于2的偶数,所述外径最大密封环(9)为一个,其余的密封环(5)分别设置于该外径最大密封环(9)的上下两侧。
  5. 根据权利要求2、3或4所述封隔导管架水泥浆的塔式封隔器,其特征在于:各所述密封环(5)的宽度相等,所述外径最大密封环(9)的内径与上侧或下侧的其余密封环(5)的内径以等差数列的形式依次减小。
  6. 一种封隔导管架水泥浆的塔式封隔器,该塔式封隔器位于外套筒与钢桩之间,其特征在于:所述塔式封隔器(1)包括支撑环(4)、密封环(5)及限位环(7),其中支撑环(4)及限位环(7)分别安装在外套筒(11)的内表面上,该支撑环(4)与限位环(7)之间设有多个沿钢桩(3)穿入方向由上至下叠置的密封环(5),各所述密封环(5)之间沿径向密封滑动连接,位于底部的密封环(5)始终由所述支撑环(4)支撑,位于顶部的密封环(5)始终与所述限位环(7)的下表面抵接;在所述钢桩(3)穿入外套筒(11)内部的过程中,外径最小密封环(10)的内表面与钢桩(3)的外表面密封抵接,其余密封环(5)在所述钢桩(3)穿入的下落过程中随钢桩(3)外表面与外套筒(11)内表面之间间距变化而沿径向分别滑动适应。
  7. 根据权利要求6所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于1的奇数,对称设置于所述外径最小密封环(10) 的上下两侧。
  8. 根据权利要求6所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于2的偶数,所述外径最小密封环(10)为两个,其余的密封环(5)对称设置于这两个外径最小密封环(10)的上下两侧。
  9. 根据权利要求6所述封隔导管架水泥浆的塔式封隔器,其特征在于:所述密封环(5)的个数为大于2的偶数,所述外径最小密封环(10)为一个,其余的密封环(5)分别设置于该外径最小密封环(10)的上下两侧。
  10. 根据权利要求7、8或9所述封隔导管架水泥浆的塔式封隔器,其特征在于:各所述密封环(5)的宽度相等,所述外径最小密封环(10)的内径与上侧或下侧的其余密封环(5)的内径以等差数列的形式依次增加。
  11. 根据权利要求1或6所述封隔导管架水泥浆的塔式封隔器,其特征在于:各所述密封环(5)宽度的最大值、所述支撑环(4)宽度最大值以及所述限位环(7)宽度的最大值,均和套筒与钢桩之间的最小间距值相等。
  12. 根据权利要求1或6所述封隔导管架水泥浆的塔式封隔器,其特征在于:各所述密封环(5)的上方设有环形的防水蒙皮(8),该防水蒙皮(8)的外边缘密封连接于所述限位环(7)的内表面,所述防水蒙皮(8)的内边缘密封连接于外径最大密封环(9)或密封连接于外径最小密封环(10)上。
PCT/CN2019/094565 2019-06-06 2019-07-03 一种封隔导管架水泥浆的塔式封隔器 WO2020244013A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,425 US11634879B2 (en) 2019-06-06 2019-07-03 Tower packer for packing cement slurry of jacket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491359.6A CN110093908B (zh) 2019-06-06 2019-06-06 一种封隔导管架水泥浆的塔式封隔器
CN201910491359.6 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244013A1 true WO2020244013A1 (zh) 2020-12-10

Family

ID=67450419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094565 WO2020244013A1 (zh) 2019-06-06 2019-07-03 一种封隔导管架水泥浆的塔式封隔器

Country Status (3)

Country Link
US (1) US11634879B2 (zh)
CN (1) CN110093908B (zh)
WO (1) WO2020244013A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502797B (zh) * 2021-05-14 2023-02-24 海洋石油工程股份有限公司 一种主动式封隔器
CN115030230B (zh) * 2022-08-10 2023-07-18 衡橡科技股份有限公司 一种先桩式充浆封闭封隔器及封闭方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262702A (en) * 1979-12-20 1981-04-21 Halliburton Company Conductor pipe plug
US4288082A (en) * 1980-04-30 1981-09-08 Otis Engineering Corporation Well sealing system
CN1363743A (zh) * 2002-01-25 2002-08-14 胜利油田胜利石油化工建设有限责任公司 海上平台导管架灌浆方法及设备
US7552769B2 (en) * 2004-11-12 2009-06-30 Isolation Equipment Services Inc. Packoff nipple
CN103998834A (zh) * 2012-10-03 2014-08-20 Nok株式会社 密封装置
CN204252112U (zh) * 2014-11-13 2015-04-08 中国水电基础局有限公司 振冲碎石桩机的伸缩导杆

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720011A (en) * 1951-05-11 1955-10-11 Goodrich Co B F Inflatable closing strip for aircraft
US3178779A (en) * 1962-06-28 1965-04-20 North American Aviation Inc Multi-cell inflatable seal
US3700297A (en) * 1969-11-24 1972-10-24 Us Federal Aviation Admin Flexible oscillatory motion bearing seal
FR2665499B1 (fr) * 1990-07-10 1994-01-28 Joint Francais Dispositif d'etancheite a joint gonflable pour porte ou panneau mobile.
DE10057395A1 (de) * 2000-11-18 2002-05-23 Alstom Switzerland Ltd Dichtungsanordnung zwischen Bauteilen einer rotierenden Baugruppe sowie Verfahren zur Herstellung einer Dichtverbindung
US7178810B1 (en) * 2004-11-02 2007-02-20 The Presray Corporation Mounting arrangement for inflatable seals
CN202926283U (zh) * 2012-11-23 2013-05-08 山东华大安装工程公司 新型封隔器
DE102014104832B4 (de) * 2014-04-04 2015-11-12 Benteler Automobiltechnik Gmbh Querblattfederlagereinheit und Querblattfederanordnung für ein Kraftfahrzeug
CN104859809B (zh) * 2015-02-09 2017-03-08 衡橡科技股份有限公司 自封闭式封隔器
CN204530669U (zh) * 2015-04-15 2015-08-05 衡水橡胶股份有限公司 自封型封隔器
CN109537620B (zh) * 2018-12-30 2023-11-14 衡橡科技股份有限公司 一种用于风电桩基础的封隔器
CN210151696U (zh) * 2019-06-06 2020-03-17 衡橡科技股份有限公司 封隔导管架水泥浆的塔式封隔器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262702A (en) * 1979-12-20 1981-04-21 Halliburton Company Conductor pipe plug
US4288082A (en) * 1980-04-30 1981-09-08 Otis Engineering Corporation Well sealing system
CN1363743A (zh) * 2002-01-25 2002-08-14 胜利油田胜利石油化工建设有限责任公司 海上平台导管架灌浆方法及设备
US7552769B2 (en) * 2004-11-12 2009-06-30 Isolation Equipment Services Inc. Packoff nipple
CN103998834A (zh) * 2012-10-03 2014-08-20 Nok株式会社 密封装置
CN204252112U (zh) * 2014-11-13 2015-04-08 中国水电基础局有限公司 振冲碎石桩机的伸缩导杆

Also Published As

Publication number Publication date
CN110093908A (zh) 2019-08-06
US11634879B2 (en) 2023-04-25
US20210324595A1 (en) 2021-10-21
CN110093908B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP4528652B2 (ja) 水中構造物の仮締切工法及び仮締切用構造体
WO2020244013A1 (zh) 一种封隔导管架水泥浆的塔式封隔器
EP3913145A1 (en) Packer and pile foundation structure
CN108708686A (zh) 一种被动式具有缩小间隙功能的水下封隔器
CN210151696U (zh) 封隔导管架水泥浆的塔式封隔器
US3938343A (en) Platform structure for maritime installation
US4175890A (en) Joints for anchoring structures to the sea bed
CN104859809A (zh) 自封闭式封隔器
CN103482036A (zh) 一种浮力塔式海洋平台
CN204530669U (zh) 自封型封隔器
CN116927236A (zh) 风机单桩基础集成式套笼结构
KR102388594B1 (ko) 해양자켓구조물 설치를 위한 스태빙시스템 및 그 스태빙 시스템을 이용한 해양자켓구조물 설치방법
CN110906102B (zh) 一种水下应急控油装置
JPH09268562A (ja) 乾式作業方法及びそれに用いる作業函
CN212452713U (zh) 一种用于筏板基础降水井口的封堵装置
JP5284218B2 (ja) モノパイル式基礎施工方法及び接合管
CN109941399B (zh) 水下拦阻网的锚链防护方法
CN204623783U (zh) 自封闭式封隔器
CN103465742B (zh) 步履式半潜两栖工程船
CN108625798B (zh) 一种深水隔水管应急脱接器
CN218911432U (zh) 一种用于深水导管架水下灌浆***
CN113028143B (zh) 一种海域管道连接方法
CN221202043U (zh) 一种桩靴水下电缆穿舱件
CN217870573U (zh) 一种基坑基底涌水涌砂封堵装置
CN106759312A (zh) 钢套筒的安装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932213

Country of ref document: EP

Kind code of ref document: A1