WO2020242049A1 - 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말 - Google Patents

항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말 Download PDF

Info

Publication number
WO2020242049A1
WO2020242049A1 PCT/KR2020/005057 KR2020005057W WO2020242049A1 WO 2020242049 A1 WO2020242049 A1 WO 2020242049A1 KR 2020005057 W KR2020005057 W KR 2020005057W WO 2020242049 A1 WO2020242049 A1 WO 2020242049A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
nanopowder
copper nanopowder
antibacterial
present
Prior art date
Application number
PCT/KR2020/005057
Other languages
English (en)
French (fr)
Inventor
박정욱
강진규
Original Assignee
박정욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박정욱 filed Critical 박정욱
Publication of WO2020242049A1 publication Critical patent/WO2020242049A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder

Definitions

  • the present invention relates to a method for producing an antibacterial copper nanopowder and an antimicrobial copper nanopowder prepared accordingly, and more particularly, to a method of producing an antibacterial copper nanopowder in which a film layer is formed on the surface, which is produced by an electric wire explosion method of a copper wire. It relates to a method and an antimicrobial copper nanopowder prepared by this method.
  • the manufacturing process of such nano-powder is largely a gas phase synthesis method in which the powder is produced through homogeneous nucleation and condensation processes, a mechanical pulverization method in which the powder is pulverized using a ball mill to make it nano, and a precipitation agent or a reducing agent is added to the aqueous solution of And a liquid phase method for producing oxide powder.
  • the gas phase synthesis method has the advantage of being able to produce high-purity powder, but it has a disadvantage that the powder that can be produced is limited and energy consumption is large.
  • the mechanical grinding method or the liquid phase method can be mass-produced, there is a problem of powder contamination by a grinding tool.
  • 'Korea Patent Registration No. 10-2384003' includes a plating process of plating Cr on a Ti wire, and a process of exploding Ti plated with Cr by the plating process in an electric explosion device (Ti, Cr )N
  • an electric explosion device Ti, Cr
  • the nanopowder produced by the disclosed method is not a nanopowder having functionality such as antibacterial properties, but a material that can simply replace titanium.
  • the present invention aims to solve this problem by providing a method of manufacturing a copper nanopowder with antimicrobial properties.
  • an object of the present invention is to provide a method of manufacturing an antibacterial copper nanopowder using an electric wire explosion method.
  • It provides a method for producing an antibacterial copper nanopowder comprising a; a third step of forming an amorphous coating layer or a coating layer in which amorphous and crystalline are mixed on the surface of the copper nanopowder.
  • the internal pressure of the reaction chamber filled with the mixed gas is 1 to 5 bar.
  • the copper wire has a diameter of 0.1 to 0.5 mm, and the copper nanopowder has a particle diameter of 50 to 200 nm.
  • the copper nanopowder is formed by evaporation and condensation of the copper wire to which the energy is applied, and the energy is 1000 to 2000 J.
  • Antibacterial copper nanopowder is characterized by exhibiting an antibacterial effect of 90 to 99.99% against at least one selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, pneumonia, MRSA, Bacillus, Candida, streptococcus, and Staphylococcus aureus. .
  • It provides an antibacterial copper nanopowder prepared by a method of producing an antibacterial copper nanopowder.
  • the present invention is produced by the electric wire explosion method of a copper wire, by providing a method for producing an antibacterial copper nanopowder in which a film layer is formed on the surface, and an antibacterial copper nanopowder produced by this method, the conventional copper nanopowder manufacturing process
  • the cost is cheaper, the process is simple, the energy efficiency is excellent, the mass production is possible, the antibacterial performance of the copper nanopowder is strengthened, and the cohesiveness of the powder and the content of impurities are reduced.
  • the amorphous or amorphous and crystalline coating layer is formed on the copper nanopowder, stability is high, and even when mixed with yarn or resin, it is not eluted and can be highly dispersed.
  • FIG. 1 is a schematic diagram of a reaction chamber for forming a copper nanopowder according to an embodiment of the present invention.
  • 2A is a TEM image of a shape and a surface of a copper nanopowder according to an embodiment of the present invention.
  • 2B is a TEM image showing surface characteristics of a copper nanopowder according to an embodiment of the present invention.
  • 2C is a TEM image showing the surface properties of a copper nanopowder according to a comparative example of the present invention.
  • 3A is an XRD graph of a copper nanopowder according to an embodiment of the present invention.
  • Figure 3b is a graph confirming the content of copper and copper oxide (Cu 2 O) according to the XRD result of the copper nanopowder according to an embodiment of the present invention.
  • Figure 4 shows the results of an antimicrobial test for streptococci of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 5 shows the results of an antimicrobial test for Candida bacteria of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 6 shows the results of an antimicrobial test for pneumococcal bacteria of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 7 shows the results of an antimicrobial test for antibiotic-resistant bacteria (MRSA) of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 8 shows the results of an antimicrobial test for Bacillus bacteria of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 10 shows the results of an antimicrobial experiment on Pseudomonas aeruginosa of copper nanopowder according to an embodiment of the present invention.
  • FIG. 11 shows the results of an antimicrobial test for Staphylococcus aureus of a copper nanopowder according to an embodiment of the present invention.
  • FIG. 13 is a test report confirming the copper content after washing of a fabric woven with functional fibers according to an embodiment of the present invention.
  • the present invention relates to a method for producing an antimicrobial copper nanopowder produced by an electric wire explosion method of a copper wire and having a film layer formed on the surface thereof, and to an antibacterial copper nanopowder produced by the method.
  • a first step of supplying a copper wire into a reaction chamber filled with a mixed gas A second step of forming a copper nanopowder by applying energy to the copper wire supplied into the reaction chamber to cause electric explosion; And a third step of forming an amorphous coating layer or a coating layer in which amorphous and crystalline are mixed on the surface of the copper nanopowder. It provides a method of producing an antimicrobial copper nanopowder comprising:
  • a copper nanopowder can be prepared using an electric wire explosion method.
  • the electric wire explosion method is a method of manufacturing nano powder by using the phenomenon that the metal wire explodes in the form of fine particles or vapors when a high-density current is passed through the metal wire.
  • the production speed is relatively fast and various pure metals, oxides, nitrides, alloys, And it is possible to prepare a nanopowder of the intermetallic compound.
  • pulse power is used in the process, energy consumption is low, and there are no by-products other than the powder to be produced, which is environmentally friendly.
  • the principle of manufacturing nanopowder by electric ray explosion method is as follows.
  • a strong impact current is applied to the metal wire positioned between the two electrodes, the metal wire becomes molten due to the resistance heating generated at this time, and discharge occurs and vaporizes as the temperature continues to increase thereafter.
  • the vaporized metal gas is confined inside the wire rod, and when the vapor pressure rises above the threshold value, it expands instantaneously to form a shock wave, and metal fine particles and gas are ejected at high speed to form fine particles as a result.
  • the diameter of the copper wire may be 0.1 to 0.7 mm, and when supplied into the reaction chamber, a copper wire having a length of 80 to 140 nm may be added at a time.
  • the diameter and length of the copper wire may be determined according to the amount of energy applied to the copper wire. If the diameter of the copper wire is less than 0.1 nm, the thickness of the wire is too thin, which may interfere with the continuous production of copper nanopowder. If it exceeds 0.7 mm, the size of the particle increases due to insufficient applied energy. It can be produced by mixing particles and nano-scale particles.
  • the diameter of the copper wire, that is, the thickness may be 0.1 to 0.5 mm.
  • the internal pressure of the reaction chamber filled with the mixed gas of the present invention may be 1 to 5 bar. If the internal pressure of the reaction chamber filled with the mixed gas is less than 1 bar, the shape or particle size of the copper nanopowder cannot be properly formed. If it exceeds 5 bar, the pressure inside the reaction chamber increases, causing stability problems such as explosion. And the consumption of the mixed gas can be increased.
  • the mixed gas may be a gas in which at least one selected from nitrogen, argon, and oxygen is mixed, and preferably, a mixed gas including argon gas and nitrogen or a mixed gas including argon gas and oxygen.
  • FIG. 1 is a view showing a schematic diagram of a reaction chamber for forming a copper nanopowder.
  • a copper wire may be supplied into a reaction chamber filled with a mixed gas through a wire feeding system and then electrically explode to form a copper nanopowder.
  • the mixed gas filled in the reaction chamber is circulated back to the reaction chamber through the injection pipe and discharge pipe and filtering systems 1, 2, and 3 provided in the reaction chamber.
  • the discharge pipe can be interconnected through a connector.
  • each filtration system of the connecting pipe may be provided with a collecting powder that collects copper nanopowder formed by an electric explosion, and the container is supplied to the inside of the reaction chamber through an injection pipe and then through a discharge pipe. The discharged mixed gas and copper nanopowder formed by the electric explosion may be discharged and collected.
  • the electric explosion is to evaporate and condense the copper wire by generating a pulse power charged with a capacitor, which is an energy storage device, and instantaneously applying the generated pulse power of 1000 to 3000 J to the copper wire.
  • a copper nanopowder having a particle diameter of 50 to 200 nm may be formed.
  • the pulse power applied to the copper wire may be determined according to the diameter and length of the copper wire, and the particle size of the copper nanopowder may be determined due to process factors such as pulse power, application speed, and pressure inside the chamber. In general, the higher the applied energy and the faster the application speed, the higher the rate of generation of small particle diameters.
  • a pulse power of 1000 to 3000 J is preferably applied to the copper wire to form a copper nanopowder having a particle diameter of 50 to 200 nm. At this time, the pulse power, that is, the energy may be more preferably 1000 to 2000 J.
  • metals such as copper form a crystal phase having a regular crystal structure in which atoms are arranged at room temperature, and can be said to be an aggregate of fine crystals.
  • Crystals theoretically mean that the arrangement of atoms has a three-dimensional, regular pattern, and the state in which these crystals have properties is called crystalline.
  • amorphous is a state in which the arrangement of a plurality of atoms or molecules is regular or non-periodic, and has superior properties such as toughness, battery resistance, hardness, abrasion resistance, corrosion resistance, strength, biocompatibility, and processability compared to crystalline .
  • an alloy or metal itself may be manufactured in an amorphous form, but this may be an ineffective and uneconomical method. Accordingly, by coating an amorphous material on the surface of the base material, it is possible to manufacture a metallic material that is more efficient and economical and exhibits excellent amorphous properties.
  • Copper nanopowder does not originally contain a surface layer, and if a surface layer, that is, a film layer, is not formed, it may explode due to the high reactivity of the copper nanopowder itself. Therefore, in order to use the copper nanopowder in the industrial field, a surface layer must be formed arbitrarily.
  • a film layer having a thickness of several nanometers is formed on the surface to passivate it (passivation).
  • a coating layer may be formed on the surface of the copper nanopowder through a process of injecting air into the copper nanopowder formed by an electric explosion and collected in a container and then leaving it for 12 to 24 hours.
  • the coating layer formed at this time is an amorphous or a mixture of amorphous and crystalline, and can prevent oxidation of the copper nanopowder, and thus the surface of the finally prepared antibacterial copper nanopowder is 1 to 10 nm, preferably 1 to 3 nm.
  • a coating layer of may be formed. Unlike the crystalline coating layer, this coating layer does not peel off, so that the surface of the copper nanopowder can be stably coated.
  • the coating layer of the present invention may be formed through an oxidation process, and may also be referred to as an oxide film.
  • the antibacterial copper nanopowder prepared according to the manufacturing method of the present invention is 90 to 99.99% with respect to at least one selected from the group consisting of E. coli, Pseudomonas aeruginosa, pneumonia, MRSA, Bacillus, Candida, streptococcus, and Staphylococcus aureus. It can exhibit the antibacterial effect of.
  • the antimicrobial copper nanopowder of the present invention is copper oxide having an amorphous or amorphous and crystalline surface layer (Cu 2 O) unlike the copper oxide nanopowder having a crystalline surface layer (CuO) formed by the conventional electric ray explosion method.
  • the nanopowder exhibits excellent amorphous properties (stability, storage), and the surface layer is made of Cu 2 O, which exhibits excellent antimicrobial properties, and thus can exhibit superior antimicrobial properties than conventional copper or copper oxide nanopowder.
  • an antibacterial copper nanopowder prepared by a method for producing an antibacterial copper nanopowder.
  • the antibacterial copper nanopowder comprises a first step of supplying a copper wire into a reaction chamber filled with a mixed gas; A second step of forming a copper nanopowder by applying energy to the copper wire supplied into the reaction chamber to cause electric explosion; And a third step of forming an amorphous coating layer or a coating layer in which amorphous and crystalline mixtures are mixed on the surface of the copper nanopowder. It can be prepared through a method of manufacturing an antibacterial copper nanopowder comprising.
  • the diameter of the supplied copper wire may be 0.1 to 0.7 mm, preferably 0.1 to 0.5 mm, and when supplied into the reaction chamber, a copper wire having a length of 80 to 140 nm may be added at one time.
  • the diameter and length of the copper wire may be determined according to the amount of energy applied to the copper wire. If the diameter of the copper wire is less than 0.1 nm, the thickness of the wire is too thin, which may interfere with the continuous production of copper nanopowder. If it exceeds 0.7 mm, the size of the particle increases due to insufficient applied energy. It can be produced by mixing particles and nano-scale particles.
  • the internal pressure of the reaction chamber filled with the mixed gas of the present invention may be 1 to 5 bar. If the internal pressure of the reaction chamber filled with the mixed gas is less than 1 bar, the shape or particle size of the copper nanopowder cannot be properly formed. If it exceeds 5 bar, the pressure inside the reaction chamber increases, causing stability problems such as explosion. And the consumption of the mixed gas can be increased.
  • the mixed gas may be a gas in which at least one selected from nitrogen, argon, and oxygen is mixed, and preferably, a mixed gas including argon gas and nitrogen or a mixed gas including argon gas and oxygen.
  • the electric explosion generates a pulse power charged with a capacitor, which is an energy storage device, and instantaneously applies the generated pulse power to the copper wire to evaporate and condense the copper wire, resulting in a particle diameter of 50 to 200.
  • a capacitor which is an energy storage device
  • the pulse power applied to the copper wire may be determined according to the diameter and length of the copper wire, and the particle size of the copper nanopowder may be determined due to process factors such as pulse power, application speed, and pressure inside the chamber. In general, the higher the applied energy and the faster the application speed, the higher the rate of generation of small particle diameters.
  • the antibacterial copper nanopowder prepared by the method for producing the antibacterial copper nanopowder of the present invention may be prepared through the above manufacturing process, and may be formed using the reaction chamber of FIG. 1.
  • a film layer having a thickness of several nanometers can be formed on the surface to be passivated (passivation).
  • a coating layer may be formed on the surface of the copper nanopowder through a process of injecting air into the copper nanopowder formed by an electric explosion and collected in a container and then leaving it for 12 to 24 hours.
  • the coating layer formed at this time is an amorphous or a mixture of amorphous and crystalline, and can prevent oxidation of the copper nanopowder, and thus the surface of the finally prepared antibacterial copper nanopowder is 1 to 10 nm, preferably 1 to 3 nm
  • a coating layer of may be formed. Unlike the crystalline coating layer, this coating layer does not peel off, so that the surface of the copper nanopowder can be stably coated.
  • the coating layer of the present invention may be formed through an oxidation process, and may also be referred to as an oxide film.
  • Such antibacterial copper nanopowder may exhibit an antimicrobial effect of 90 to 99.99% against at least one selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, pneumonia, MRSA, Bacillus, Candida, streptococcus, and Staphylococcus aureus.
  • copper oxide nanopowder having a crystalline surface layer (CuO) formed by the conventional electric ray explosion method is a copper oxide nanopowder having an amorphous or amorphous and crystalline surface layer (Cu 2 O) with excellent amorphous properties ( Stability and preservation), and the surface layer is made of Cu 2 O showing excellent antimicrobial properties, so that it can exhibit superior antimicrobial properties than conventional copper or copper oxide nanopowder.
  • CuO crystalline surface layer
  • Cu 2 O amorphous or amorphous and crystalline surface layer
  • a copper wire with a diameter of 0.4 mm and a length of 80 mm was supplied to the inside of the reaction chamber filled with mixed gas at a pressure of 3 bar, and then the pulse power charged with the capacitor was instantaneously applied to the copper wire by 2000 J. It was evaporated and then condensed to form a copper nanopowder.
  • Example 1 In the process of injecting various inorganic materials such as metals, ceramics, oxides, etc. into the ultra-high temperature plasma region around 10,000 o C to obtain nano powders through the steps of vaporization, nuclear growth, and rapid cooling, a plasma method of forming metal nano powders is used.
  • the prepared copper nanopowder was used as a comparative example of Example 1.
  • Air was injected into the container in which the copper nanopowder formed according to Examples 1 and 2 was collected, and allowed to stand for 24 hours while injecting air at a rate of 5 cc/min to form an oxide film on the surface of the copper nanopowder.
  • 50 g of copper nanopowder stabilized through a passivation process and 450 g of polyethylene terephthalate (PET) were mixed at 90 rpm at 280°C using a compressor to obtain a masterbatch containing 10 wt% of copper nanopowder.
  • PET polyethylene terephthalate
  • a master batch containing copper nanopowder was prepared, and then fiber yarn and fabric were produced, and excellent dispersibility and adhesion of the copper nanopowder through the fiber yarn and fabric were confirmed.
  • the master batch may be prepared and used without limitation, as long as it is a thermoplastic resin, and polyethylene terephthalate was used as a manufacturing example.
  • the fabric was woven using the yarn manufactured according to the same method as in the above example, and the used yarn is shown in Table 3 below.
  • Test strains include Streptococcus mutans ATCC 25175, Candida, Candida albicans ATCC 10231 , Klebisiella pneumoniae ATCC 4352, a pneumococcus, Staphylococcus aureus subsp. aureus ATCC 33591, Bacillus cereus 11778, and E.
  • Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 15442, and Staphylococcus aureus ATCC 6538 were used, respectively, 3.7 ⁇ 10 6 CFU/ml, 3.9 ⁇ 10 6 CFU/ml, 1.0 ⁇ 10 6 CFU for each medium. /ml, 1.1 ⁇ 10 6 CFU/ml, 1.2 ⁇ 10 6 CFU/ml, 1.0 ⁇ 10 6 CFU/ml, 2.0 ⁇ 10 6 CFU/ml, and 1.0 ⁇ 10 6 CFU/ml.
  • a medium containing 4 g of copper nanopowder and a medium containing nothing were cultured in an incubator at about 37° C. for 24 hours to measure the concentration of the bacteria.
  • test strain mixed spore solution was inoculated in 100 ml of distilled water to which 4g of copper nanopowder was added, reacted for 24 hours, and then cultured in a solid medium for 5 days to grow mold. Check the presence or absence.
  • Aspergillus brasiliensis ATCC 9642, Penicillium pinophilum ATCC 11797, Chaetomium globosum ATCC 6205, Trichoderma virens ATCC 9645, and Aureobasidium pullulans ATCC 15233 were used as test strains.
  • a PET fiber yarn containing 0.5 wt% of copper nanopowder prepared according to the above Examples and Preparation Examples was used with a LYRA3 scanning electron microscope to obtain a SEM (Scanning Electron Microscope) image under the conditions of an acceleration voltage of 10 kV, a working distance of 9 mm, and an intensity of 10. Photographed.
  • SEM Sccanning Electron Microscope
  • the copper content was measured before and after washing the fabric according to KS K ISO 6330:2011.
  • the shape of the copper nanopowder formed according to the embodiment could be confirmed through a TEM image measured based on 100 nm, and 1 to 3 nm on the surface of the copper nanopowder through a TEM image measured based on 5 nm It was confirmed that an amorphous coating layer was formed.
  • FIG. 2B it was confirmed that amorphous and crystalline film layers were simultaneously formed on the surface of the copper nanopowder according to the embodiment. Accordingly, it was found that the copper nanopowder of the present invention forms an amorphous coating layer or a coating layer in which amorphous and crystalline are mixed on the surface.
  • the surface of the copper nanopowder formed according to the comparative example formed a crystalline film layer through the TEM image measured based on 5 nm in FIG. 2C.
  • the peaks of Cu and Cu 2 O were detected, and it was confirmed that Cu and Cu 2 O in the copper nanopowder were contained in 93.4 wt% and 6.6 wt%, respectively.
  • the graph line was shown to have very severe noise, indicating that the coating layer of the copper nanopowder was formed including the amorphous coating layer.
  • the strain concentration increased or showed an insignificant reduction rate, but in the medium containing copper nanopowder, all eight strains compared to the initial test strain concentration, when compared to the initial test strain concentration, more than 99.9% bacteria It showed a reduction rate.
  • the content of copper nanopowder which was 5.489 mg/kg before washing, was measured as 5.428 mg/kg after washing 30 times (detection limit 10 mg/kg), and the elution amount of copper in the fabric was about 0.98 wt%.
  • CuS-containing commercially available copper-containing fabric
  • the copper nanopowder of the present invention is hardly eluted during the process of spinning a fiber yarn using a master batch and weaving a fabric using a fiber yarn, and is added to various materials due to such excellent adhesion to It was confirmed that a functional material exhibiting characteristics could be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말에 관한 것으로, 보다 상세하게는 구리 와이어의 전기선폭발법에 의해 생성되며, 표면에 피막층이 형성되는 항균 구리 나노분말의 제조방법과 이러한 제조방법에 의해 제조되는 항균 구리 나노분말에 관한 것이다. 본 발명은 구리 와이어의 전기선폭발법에 의해 생성되며, 표면에 피막층이 형성되는 항균 구리 나노분말의 제조방법과 이러한 제조방법에 의해 제조되는 항균 구리 나노분말을 제공함으로써, 종래의 구리 나노분말 제조공정보다 비용이 저렴하고 공정이 간단하며 에너지 효율이 우수하고 대량생산이 가능하며, 구리 나노분말의 항균 성능이 강화되고 분말의 응집도와 불순물의 함량이 적은 효과가 있다. 또한, 비정질 또는 비정질과 결정질이 혼재된 피막층이 구리 나노분말에 형성되어 있어 안정성이 높으며, 원사나 수지 등에 혼합하여도 용출되지 않고 고분산될 수 있는 효과가 있다.

Description

항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말
본 발명은 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말에 관한 것으로, 보다 상세하게는 구리 와이어의 전기선폭발법에 의해 생성되며, 표면에 피막층이 형성되는 항균 구리 나노분말의 제조방법과 이러한 제조방법에 의해 제조되는 항균 구리 나노분말에 관한 것이다.
현대 산업기술의 급속한 발달로 미세한 부품 및 이를 이용한 기기들에 이용할 수 있는 새로운 재료의 필요성에 의해 종래의 마이크로미터 크기의 재료에 비해 탁월한 성질을 갖는 수백 나노미터 이하의 나노분말의 합성 및 응용에 관한 연구에 대한 관심이 집중되고 있다.
이러한 나노분말의 제조과정은 크게 균질핵생성 및 응축과정을 통하여 분말을 제조하는 기상합성법과 볼밀을 사용하여 분말을 분쇄시켜 나노화시키는 기계적 분쇄법, 금속염의 수용액에 침전제나 환원제를 가하여 수용액에서 금속이나 산화물 분말을 제조하는 액상법 등이 있다. 기상합성법은 고순도의 분말을 제조할 수 있다는 장점이 있지만, 제조할 수 있는 분말이 한정되어있고, 에너지 소비가 크다는 단점이 있다. 또한, 기계적 분쇄법이나 액상법은 대량생산이 가능한 반면 분쇄도구에 의한 분말 오염의 문제가 있다.
나노분말의 제조 시에는 오염되지 않는 고순도의 균일한 크기를 갖는 분말들이 서로 응집되지 않아야 한다. 이러한 요구조건을 만족시키고 생산 과정에서 오염원이 전혀 발생되지 않으며, 경제적인 금속 나노분말의 제조기술로는 전기선폭발법이 있다.
이에 따라, '대한민국 등록특허 제10-2384003호'는 Ti 선재에 Cr을 도금하는 도금 공정, 및 상기 도금 공정에 의하여 Cr이 도금된 Ti를 전기폭발장치에서 폭발시키는 공정을 포함하는 (Ti, Cr)N 나노분말의 제조방법을 개시하고 있으나, 개시된 제조방법에 의해 제조되는 나노분말이 항균성과 같은 기능성의 나노분말이 아닌, 단순히 티타늄을 대체할 수 있는 소재에 불과하다는 문제점이 있다.
현대 사회는 고도로 발전 중인 산업기술과 과학기술에 의해 보다 건강하고 안전하며 쾌적한 삶에 대한 요구가 증가하고 있으며, 특히 환경오염과 환경오염으로 인한 건강문제가 전 세계적으로 민감한 문제로 대두됨에 따라, 신체와 밀접하게 사용되고 산업에 이용되는 여러 재료에 항균성을 부여하는 것이 필수적인 과정이 되었다. 따라서 본 발명에서는 항균성이 부여된 구리 나노분말의 제조방법을 제공하여 이러한 문제점을 해결하고자 한다.
상기 문제점을 해결하기 위하여 본 발명은 전기선폭발법을 이용한 항균 구리 나노분말의 제조방법을 제공하는 것을 목적으로 한다.
또한, 항균 구리 나노분말의 제조방법에 따라 제조된 구리 나노분말을 제공하는 것을 목적으로 한다.
상기 목적을 해결하기 위하여 본 발명은,
혼합가스가 충진된 반응챔버 내부에 구리 와이어를 공급하는 제 1단계;
상기 반응챔버 내부에 공급된 구리 와이어에 에너지를 인가하여 전기폭발시켜 구리 나노분말을 형성하는 제 2단계; 및
상기 구리 나노분말의 표면에 비정질의 피막층 또는 비정질과 결정질이 혼재된 피막층을 형성시키는 제 3단계;를 포함하는 것을 특징으로 하는 항균 구리 나노분말의 제조방법을 제공한다.
혼합가스가 충진된 반응챔버의 내부 압력은 1 내지 5 bar인 것을 특징으로 한다.
구리 와이어의 직경은 0.1 내지 0.5 mm이며, 구리 나노분말의 입경은 50 내지 200 nm인 것을 특징으로 한다.
구리 나노분말은 상기 에너지가 인가된 구리 와이어의 증발 및 응축에 의해 형성되며, 에너지는 1000 내지 2000 J인 것을 특징으로 한다.
항균 구리 나노분말은 대장균, 녹농균, 폐렴균, MRSA균, 바실러스균, 칸디다균, 연쇄상구균, 및 황색포도상구균으로 이루어진 군으로부터 선택되는 하나 이상에 대하여 90 내지 99.99%의 항균 효과를 나타내는 것을 특징으로 한다.
상기 다른 목적을 해결하기 위하여 본 발명은,
항균 구리 나노분말의 제조방법에 의해 제조된 항균 구리 나노분말을 제공한다.
본 발명은 구리 와이어의 전기선폭발법에 의해 생성되며, 표면에 피막층이 형성되는 항균 구리 나노분말의 제조방법과 이러한 제조방법에 의해 제조되는 항균 구리 나노분말을 제공함으로써, 종래의 구리 나노분말 제조공정보다 비용이 저렴하고 공정이 간단하며 에너지 효율이 우수하고 대량생산이 가능하며, 구리 나노분말의 항균 성능이 강화되고 분말의 응집도와 불순물의 함량이 적은 효과가 있다. 또한, 비정질 또는 비정질과 결정질이 혼재된 피막층이 구리 나노분말에 형성되어 있어 안정성이 높으며, 원사나 수지 등에 혼합하여도 용출되지 않고 고분산될 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 구리 나노분말을 형성하기 위한 반응챔버의 개략도를 나타낸 것이다.
도 2a는 본 발명의 일 실시예에 따른 구리 나노분말의 형상과 표면의 TEM 이미지이다.
도 2b는 본 발명의 일 실시예에 따른 구리 나노분말의 표면 특성을 나타내는 TEM 이미지이다.
도 2c는 본 발명의 일 비교예에 따른 구리 나노분말의 표면 특성을 나타내는 TEM 이미지이다.
도 3a는 본 발명의 일 실시예에 따른 구리 나노분말의 XRD 그래프이다.
도 3b는 본 발명의 일 실시예에 따른 구리 나노분말의 XRD 결과에 따른 구리 및 산화구리(Cu2O)의 함량을 확인한 그래프이다.
도 4는 본 발명의 일 실시예에 따른 구리 나노분말의 연쇄상구균에 대한 항균성 실험결과를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 구리 나노분말의 칸디다균에 대한 항균성 실험결과를 나타낸 것이다.
도 6는 본 발명의 일 실시예에 따른 구리 나노분말의 폐렴균에 대한 항균성 실험결과를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 구리 나노분말의 항생제내성균(MRSA)에 대한 항균성 실험결과를 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 구리 나노분말의 바실러스균에 대한 항균성 실험결과를 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 구리 나노분말의 대장균에 대한 항균성 실험결과를 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따른 구리 나노분말의 녹농균에 대한 항균성 실험결과를 나타낸 것이다.
도 11은 본 발명의 일 실시예에 따른 구리 나노분말의 황색포도상구균에 대한 항균성 실험결과를 나타낸 것이다.
도 12는 본 발명의 일 실시예에 따른 구리 나노분말이 분산된 기능성 섬유 원사의 이미지이다.
도 13은 본 발명의 일 실시예에 따른 기능성 섬유로 제직한 원단의 세탁 후 구리 함량을 확인한 시험성적서이다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하 본 발명에 대하여 보다 상세히 설명한다.
본 발명은 구리 와이어의 전기선폭발법에 의해 생성되며, 표면에 피막층이 형성되는 항균 구리 나노분말의 제조방법과 이러한 제조방법에 의해 제조되는 항균 구리 나노분말에 관한 것이다.
본 발명의 일 측면에 따르면, 혼합가스가 충진된 반응챔버 내부에 구리 와이어를 공급하는 제 1단계; 상기 반응챔버 내부에 공급된 구리 와이어에 에너지를 인가하여 전기폭발시켜 구리 나노분말을 형성하는 제 2단계; 및 상기 구리 나노분말의 표면에 비정질의 피막층 또는 비정질과 결정질이 혼재된 피막층을 형성시키는 제 3단계;를 포함하는 것을 특징으로 하는 항균 구리 나노분말의 제조방법을 제공한다.
본 발명에서는 전기선폭발법을 이용하여 구리 나노분말을 제조할 수 있다. 전기선폭발법은 금속선재에 고밀도의 전류를 통과시키면 금속선재가 미세한 입자나 증기형태로 폭발하는 현상을 이용하여 나노분말을 제조하는 방법으로서, 생산속도가 비교적 빠르고 다양한 순금속, 산화물, 질화물, 합금, 및 금속간 화합물의 나노분말을 제조할 수 있다. 또한, 공정에서 펄스파워를 이용하기 때문에 에너지 소비가 적고, 제조되는 분말 이외에 부산물이 전혀 없는 환경친화적인 장점이 있다.
전기선폭발법에 의해 나노분말을 제조하는 원리는 다음과 같다. 두 개의 전극 사이에 위치한 금속선재에 강력한 충격전류를 인가하게 되면 이때 발생되는 저항발열에 의해 금속선재가 용융상태가 되고 이후 온도가 계속 증가함에 따라 방전이 일어나 기화하게 된다. 기화된 금속 가스는 선재 내부에 구속되어 있다가 증기압이 임계값 이상으로 높아지면 순간적으로 팽창하면서 충격파를 형성하고 금속 미립자와 가스가 고속으로 분출되어 결과적으로 미세한 입자를 형성할 수 있게 된다.
본 발명에서 구리 와이어의 직경은 0.1 내지 0.7 mm일 수 있으며, 반응챔버 내 공급시 1회에 길이 80 내지 140 nm의 구리 와이어를 투입할 수 있다. 구리 와이어의 직경 및 길이는 구리 와이어에 인가하는 에너지의 크기에 따라 결정될 수 있다. 구리 와이어의 직경은 0.1 nm 미만일 경우, 와이어의 두께가 너무 가늘어 구리 나노분말의 연속 생산에 차질이 발생할 수 있으며, 0.7 mm를 초과할 경우, 인가에너지가 부족하여 입자의 크기가 커지거나 마이크로 단위의 입자와 나노 단위의 입자가 혼재되어 생산될 수 있다. 바람직하게 본 발명에서 구리 와이어의 직경, 즉 두께는 0.1 내지 0.5 mm 일 수 있다.
또한, 본 발명의 혼합가스가 충진된 반응챔버의 내부 압력은 1 내지 5 bar일 수 있다. 혼합가스가 충진된 반응챔버의 내부 압력이 1 bar 미만일 경우, 구리 나노분말의 형상 또는 입도가 제대로 형성되지 못하며, 5 bar 초과할 경우, 반응챔버 내부의 압력이 높아져 폭발과 같은 안정상의 문제가 발생될 수 있고, 혼합가스의 소비량이 증가할 수 있다. 혼합가스는 질소, 아르곤, 산소 중 선택되는 하나 이상이 혼합된 가스일 수 있으며, 바람직하게는 아르곤 가스와 질소를 포함하는 혼합가스 또는 아르곤 가스와 산소를 포함하는 혼합가스일 수 있다.
도 1은 구리 나노분말을 형성하기 위한 반응챔버의 개략도를 나타낸 도면이다. 도 1에 따르면, 구리 와이어를 와이어 공급기(Wire Feeding System)을 통해 혼합가스가 충진된 반응챔버(Reactor Chamber) 내부에 공급한 후 전기폭발시켜 구리 나노분말을 형성할 수 있다. 구리 나노분말을 형성하는 단계에서 반응챔버 내부에 충진된 혼합가스는 반응챔버에 구비된 주입관과 배출관 및 여과 시스템(Filtering System) 1, 2, 및 3을 통해 다시 반응챔버로 순환되며, 주입관과 배출관은 연결관을 통해 상호 연결될 수 있다. 또한, 연결관의 각각의 여과 시스템에는 전기폭발에 의해 형성된 구리 나노분말을 포집하는 용기(Collecting powder)가 구비될 수 있으며, 이 용기에는 주입관을 통해 반응챔버의 내부로 공급된 후 배출관을 통해 배출되는 혼합가스와 전기폭발에 의해 형성된 구리 나노분말이 배출되어 포집될 수 있다.
구리 나노분말을 제조하는 방법에서 전기폭발은 에너지 축적장치인 캐패시터로 충전된 펄스파워를 생성하고, 생성된 1000 내지 3000 J의 펄스파워를 순간적으로 구리 와이어에 인가함으로써 구리 와이어를 증발 및 응축시키는 것으로, 이에 따른 결과로 입경이 50 내지 200 nm의 구리 나노분말을 형성할 수 있다.
구리 와이어에 인가하는 펄스파워는 구리 와이어의 직경 및 길이에 따라 결정될 수 있으며, 구리 나노분말의 입경은 펄스파워, 인가속도, 챔버 내부압력 등과 같은 공정인자로 인해 그 크기가 결정될 수 있다. 통상적으로 인가에너지가 높고, 인가속도가 빠를수록 작은 입경의 생성률은 높아질 수 있다. 본 발명의 전기선폭발법을 이용한 항균 구리 나노분말의 제조방법에서는 바람직하게 1000 내지 3000 J의 펄스파워를 구리 와이어에 인가하여, 50 내지 200 nm의 입경을 나타내는 구리 나노분말을 형성할 수 있다. 이때, 펄스파워 즉, 에너지는 보다 바람직하게 1000 내지 2000 J 일 수 있다.
일반적으로 구리와 같은 금속은 상온에서 원자의 배열이 규칙적인 결정구조를 가지는 결정상을 형성하며, 미세 결정들이 집합되어있는 집합체라 할 수 있다. 결정은 이론적으로 원자의 배열이 3차원적으로 규칙적인 패턴을 가지는 것을 의미하며, 이러한 결정을 성질을 가지고 있는 상태를 결정질이라 일컫는다.
반면, 비결정질(비정질)은 복수의 원자나 분자의 배열 상태가 규칙적이거나 주기적이지 않은 상태로서, 결정질에 비해 인성, 전지저항, 경도, 내마모성, 내식성, 강도, 생체적합성, 가공성 등과 같은 특성이 우수하다. 이러한 기계적, 화학적 특성을 나타내는 비정질을 활용하기 위하여 합금이나 금속자체를 비정질의 형태로 제조할 수 있으나, 이는 비효육적이고 비경제적인 방법일 수 있다. 이에 비정질의 소재를 모재의 표면에 코팅함으로써 보다 효율적이고 경제적이며, 비정질의 우수한 특성을 나타내는 금속소재를 제조할 수 있다.
구리 나노분말은 본래 표면층을 포함하고 있지 않으며, 표면층 즉, 피막층을 형성하지 않을 경우 구리 나노분말 자체의 높은 반응성에 의해 폭발할 수 있다. 따라서, 구리 나노분말을 산업분야에서 활용하기 위해서는 표면층을 임의로 형성해야한다.
본 발명에서는 구리 나노분말의 상온 또는 대기에서 나타나는 높은 폭발성과 산화성으로 인한 부식을 방지하고 안정성을 확보하기 위하여 그 표면에 수 나노미터 두께의 피막층을 형성시켜 부동태화(부동태 피막처리, passivation)할 수 있다. 또한, 전기폭발에 의해 형성되고 용기에 포집된 구리 나노분말에 공기를 주입한 후 12 내지 24시간 동안 방치하는 과정을 통해 구리 나노분말 표면에 피막층을 형성시킬 수 있다.
이때 형성되는 피막층은 비정질 또는 비정질과 결정질이 혼재된 피막층으로 구리 나노분말의 산화를 막아줄 수 있으며, 이로써 최종적으로 제조되는 항균 구리 나노분말의 표면에는 1 내지 10 nm, 바람직하게는 1 내지 3 nm의 피막층이 형성될 수 있다. 이러한 피막층은 결정질의 피막층과 달리 박리가 되지 않아 안정적으로 구리 나노분말의 표면을 코팅할 수 있다. 본 발명의 피막층은 산화과정을 통해 형성될 수 있으며, 산화막이라 표현할 수도 있다.
본 발명의 제조방법에 따라 제조된 항균 구리 나노분말은 대장균, 녹농균, 폐렴균, MRSA균, 바실러스균, 칸디다균, 연쇄상구균, 및 황색포도상구균으로 이루어진 군으로부터 선택되는 하나 이상에 대하여 90 내지 99.99%의 항균 효과를 나타낼 수 있다.
또한, 본 발명의 항균 구리 나노분말은 기존의 전기선폭발법에 의해 형성되는 결정질의 표면층(CuO)을 갖는 산화구리 나노분말와 달리 비정질 또는 비정질과 결정질이 혼재된 표면층(Cu2O)을 갖는 산화구리 나노분말로 우수한 비정질의 특성(안정성, 보존성)을 나타내면서, 그 표면층이 뛰어난 항균성을 나타내는 Cu2O로 이루어져 있어, 종래의 구리 또는 산화구리 나노분말 보다 우수한 항균성을 나타낼 수 있다.
본 발명의 다른 측면에 따르면, 항균 구리 나노분말의 제조방법에 의해 제조된 항균 구리 나노분말을 제공한다.
항균 구리 나노분말은 혼합가스가 충진된 반응챔버 내부에 구리 와이어를 공급하는 제 1단계; 상기 반응챔버 내부에 공급된 구리 와이어에 에너지를 인가하여 전기폭발시켜 구리 나노분말을 형성하는 제 2단계; 및 상기 구리 나노분말의 표면에 비정질의 피막층 또는 비정질과 결정질이 혼재된 피막층을 형성시키는 제 3단계;를 포함하는 것을 특징으로 하는 항균 구리 나노분말의 제조방법을 통해 제조할 수 있다.
공급되는 구리 와이어의 직경은 0.1 내지 0.7 mm, 바람직하게 0.1 내지 0.5 mm일 수 있으며, 반응챔버 내 공급시 1회에 길이 80 내지 140 nm의 구리 와이어를 투입할 수 있다. 구리 와이어의 직경 및 길이는 구리 와이어에 인가하는 에너지의 크기에 따라 결정될 수 있다. 구리 와이어의 직경은 0.1 nm 미만일 경우, 와이어의 두께가 너무 가늘어 구리 나노분말의 연속 생산에 차질이 발생할 수 있으며, 0.7 mm를 초과할 경우, 인가에너지가 부족하여 입자의 크기가 커지거나 마이크로 단위의 입자와 나노 단위의 입자가 혼재되어 생산될 수 있다.
또한, 본 발명의 혼합가스가 충진된 반응챔버의 내부 압력은 1 내지 5 bar일 수 있다. 혼합가스가 충진된 반응챔버의 내부 압력이 1 bar 미만일 경우, 구리 나노분말의 형상 또는 입도가 제대로 형성되지 못하며, 5 bar 초과할 경우, 반응챔버 내부의 압력이 높아져 폭발과 같은 안정상의 문제가 발생될 수 있고, 혼합가스의 소비량이 증가할 수 있다. 혼합가스는 질소, 아르곤, 산소 중 선택되는 하나 이상이 혼합된 가스일 수 있으며, 바람직하게는 아르곤 가스와 질소를 포함하는 혼합가스 또는 아르곤 가스와 산소를 포함하는 혼합가스일 수 있다.
제조과정 중 전기폭발은 에너지 축적장치인 캐패시터로 충전된 펄스파워를 생성하고, 생성된 펄스파워를 순간적으로 구리 와이어에 인가함으로써 구리 와이어를 증발 및 응축시키는 것으로, 이에 따른 결과로 입경이 50 내지 200 nm의 구리 나노분말을 형성할 수 있다.
구리 와이어에 인가하는 펄스파워는 구리 와이어의 직경 및 길이에 따라 결정될 수 있으며, 구리 나노분말의 입경은 펄스파워, 인가속도, 챔버 내부압력 등과 같은 공정인자로 인해 그 크기가 결정될 수 있다. 통상적으로 인가에너지가 높고, 인가속도가 빠를수록 작은 입경의 생성률은 높아질 수 있다.
본 발명의 항균 구리 나노분말의 제조방법에 의해 제조된 항균 구리 나노분말은 상기 제조과정을 통해 제조할 수 있으며, 도 1의 반응챔버를 이용하여 형성될 수 있다. 형성된 구리 나노분말의 상온 또는 대기에서 나타나는 높은 폭발성과 산화성으로 인한 부식을 방지하고 안정성을 확보하기 위하여 그 표면에 수 나노미터 두께의 피막층을 형성시켜 부동태화(부동태 피막처리, passivation)할 수 있다. 또한, 전기폭발에 의해 형성되고 용기에 포집된 구리 나노분말에 공기를 주입한 후 12 내지 24시간 동안 방치하는 과정을 통해 구리 나노분말 표면에 피막층을 형성시킬 수 있다.
이때 형성되는 피막층은 비정질 또는 비정질과 결정질이 혼재된 피막층으로 구리 나노분말의 산화를 막아줄 수 있으며, 이로써 최종적으로 제조되는 항균 구리 나노분말의 표면에는 1 내지 10 nm, 바람직하게는 1 내지 3 nm의 피막층이 형성될 수 있다. 이러한 피막층은 결정질의 피막층과 달리 박리가 되지 않아 안정적으로 구리 나노분말의 표면을 코팅할 수 있다. 본 발명의 피막층은 산화과정을 통해 형성될 수 있으며, 산화막이라 표현할 수도 있다.
이러한 항균 구리 나노분말은 대장균, 녹농균, 폐렴균, MRSA균, 바실러스균, 칸디다균, 연쇄상구균, 및 황색포도상구균으로 이루어진 군으로부터 선택되는 하나 이상에 대하여 90 내지 99.99%의 항균 효과를 나타낼 수 있다. 또한, 기존의 전기선폭발법에 의해 형성되는 결정질의 표면층(CuO)을 갖는 산화구리 나노분말와 달리 비정질 또는 비정질과 결정질이 혼재된 표면층(Cu2O)을 갖는 산화구리 나노분말로 우수한 비정질의 특성(안정성, 보존성)을 나타내면서, 그 표면층이 뛰어난 항균성을 나타내는 Cu2O로 이루어져 있어, 종래의 구리 또는 산화구리 나노분말 보다 우수한 항균성을 나타낼 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예>
실시예 1 - 구리 나노분말 형성 (전기선폭발법)
직경이 0.4 mm이며, 길이가 80 mm인 구리 와이어를 3 bar의 압력으로 혼합가스가 충진된 반응챔버 내부에 공급한 후 캐패시터로 충전된 펄스파워를 순간적으로 구리 와이어에 2000 J 인가함으로써 구리 와이어를 증발시켰으며, 이후 응축시켜 구리 나노분말을 형성하였다.
실시예 2 - 구리 나노분말의 부동태화
상기 실시예 1에 따라 형성된 구리 나노분말의 안정성을 높이기 위하여 구리 나노분말이 포집된 용기의 내부에 공기를 5 cc/min의 속도로 주입하면서 24시간 동안 방치하여 구리 나노분말의 표면에 피막층을 형성시켰다.
비교예 1 - 구리 나노분말 형성 (플라즈마법)
금속, 세라믹, 산화물 등과 같은 다양한 무기소재를 10,000 oC 전후의 초고온 플라즈마 영역에 주입하여 기화, 핵성장, 급속냉각의 단계를 거쳐 나노분말을 획득하는 과정으로 금속 나노분말을 형성하는 플라즈마법을 이용하여 제조한 구리 나노분말을 실시예 1의 비교예로 사용하였다.
제조예 1 - 구리 나노분말을 포함하는 마스터배치 제조
상기 실시예 1 및 실시예 2에 따라 형성된 구리 나노분말이 포집된 용기의 내부에 공기를 5 cc/min의 속도로 주입하면서 24시간 동안 방치하여 구리 나노분말의 표면에 산화막을 형성하였다. 부동태화 공정을 거쳐 안정화된 구리 나노분말 50 g과 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET) 450 g을 압축기를 이용하여 280 ℃에서 90 rpm으로 혼합하여 10 wt%의 구리 나노분말을 포함하는 마스터배치를 제조하였다.
본 발명에서는 일 제조예로 구리 나노분말을 포함하는 마스터배치를 제조한 다음, 섬유 원사 및 원단을 제작하였으며, 섬유 원사 및 원단을 통해 구리 나노분말의 우수한 분산성 및 부착성을 확인하였다. 이때, 마스터배치는 열가소성 수지라면 어떠한 것이든 제한없이 제조하여 사용할 수 있으며, 제조예로서 폴리에틸렌 테레프탈레이트을 사용하였다.
제조예 2 - 구리 나노분말을 포함하는 기능성 섬유 원사 제조
상기 실시예 1 내지 실시예 3에 따라 제조된 구리 나노분말이 포함된 마스터배치 250 g을 PET 4,750 g과 혼합하여 하기 표 1에 나타낸 조건에 따라 방사하여 최종적으로 0.5 wt%의 구리 나노분말을 포함하는 기능성 섬유 원사를 제조하였다.
Contents Conception Unit PET + Cu → 0.5wt%
Chip Chip kind PET SD + 8wt% Cu M/B
Extruder Heater Temp. #1~4 278 286 286 285
Melting Temp. 287
Die Head Temp. 285
Spin Pack Temp. 282
MP Speed rpm 8 (MP 용량 : 0.6cc/rev)
Die Head Pressure Bar 20
Godet R/O GR 1 Speed m/min 170
Temp. 85
GR 2 Speed m/min 420
Temp. 82
연신비 - 2.47
Quenching 풍량 % 30
Temp. 15
Winder Speed rpm 1,250 (약 450 m/min)
제조예 3 - 기능성 섬유 원사의 원단 제직
상기 실시예와 같은 방법에 따라 제조한 원사를 이용하여 원단을 제직하였으며, 사용된 원사는 하기 표 3에 나타내었다.
구분 사용원사 T/M 연방향 본수
경사 PET SD 50/36 450 Z 9,600
위사 PET + Cu 원사 115/18 450 Z 1
상기 표 3의 경사와 위사를 이용하여 하기 표 4의 제직조건에 따라 0.5 wt%의 구리 나노분말을 포함하는 기능성 섬유 원단을 제직하였다.
구 분 조 건
연사 커버링 T/M 450
연방향 Z
제직 경사 밀도 90매/inch
본수 9,600본
위사 80매/inch
제직 밀도 80T/inch
직물 조직 평직
제직 수량 5yds
<실험예>
실험예 1 - 구리 나노분말 투과 전자 현미경 분석
상기 실시예에 따른 구리 나노분말의 형상 및 특성 측정을 위해 FEI사의 Tecnai G2 F30 S-TWIN을 이용하여 300 kV의 Extraction Voltage와 36 μA의 FEG Emiision 조건으로 측정하였다.
실험예 2 - 구리 나노분말 X-선회절 분석
상기 실시예에 따른 구리 나노분말의 결정구조와 성분분석을 위해 PANalytical사의 Empyrean을 이용하여 angle 20-100o, Step Size 0.04, Timp per Step 0.5의 조건으로 측정하였다.
실험예 3 - 구리 나노분말 항균성 평가
상기 실시예에 따른 구리 나노분말의 항균성을 확인하기 위하여 KCL-FIR-1002:2011의 시험 규격에 따라 실험을 실시하였다. 시험 균주로는 연쇄상구균인 Streptococcus mutans ATCC 25175, 칸디다균인 Candida albicans ATCC 10231, 폐렴균인 Klebisiella pneumoniae ATCC 4352, 항생제내성균인 MRSA(Staphylococcus aureus subsp. aureus ATCC 33591), 바실러스균인 Bacillus cereus ATCC 11778, 대장균인 Escherichia coli ATCC 25922, 녹농균인 Pseudomonas aeruginosa ATCC 15442, 및 황색포도상구균인 Staphylococcus aureus ATCC 6538을 사용하였으며, 각각 배지에 3.7×106 CFU/ml, 3.9×106 CFU/ml, 1.0×106 CFU/ml, 1.1×106 CFU/ml, 1.2×106 CFU/ml, 1.0×106 CFU/ml, 2.0×106 CFU/ml, 및 1.0×106 CFU/ml의 농도로 접종하였다. 각각이 균이 접종된 배지를 이용하여 구리 나노분말 4g을 포함하는 배지와 아무것도 포함하지 않은 배지를 24시간 동안 약 37℃의 배양기에서 배양하여 균의 농도를 측정하였다.
실험예 4 - 구리 나노분말 항곰팡이 평가
상기 실시예에 따른 구리 나노분말의 항곰팡이 효능을 확인하기 위하여 구리 나노분말 4g을 첨가한 증류수 100 ml에 시험균주 혼합포자액을 접종하고 24시간 반응시킨 후 5일간 고체배지에서 배양하여 곰팡이의 성장유무를 확인하였다. 시험균주로는 Aspergillus brasiliensis ATCC 9642, Penicillium pinophilum ATCC 11797, Chaetomium globosum ATCC 6205, Trichoderma virens ATCC 9645, 및 Aureobasidium pullulans ATCC 15233를 사용하였으며, 약 29℃, 93 내지 94 % R.H. 조건에서 실험을 실시하였다.
실험예 5 - 구리 나노분말이 분산된 기능성 섬유 원사의 이미지 측정 (SEM)
상기 실시예 및 제조예에 따라 제조한 구리 나노분말이 0.5 wt% 함유된 PET 섬유 원사를 LYRA3 주사전자현미경으로 가속전압 10kV, Working Distance 9 mm, Intensity 10의 조건으로 SEM(Scanning Electron Microscope) 이미지를 촬영하였다.
실험예 6 - 기능성 섬유 원단의 구리 나노분말 용출 시험
상기 실시예 및 제조예에 따라 제조한 기능성 원단의 세탁 전 후(30회) 구리 나노분말의 용출량을 확인하기 위하여 KS K ISO 6330 : 2011에 따라 원단의 세탁 전 후 구리 함유량을 측정하였다.
<평가 및 결과>
결과 1 - 구리 나노분말 투과 전자 현미경 분석
상기 실시예 및 비교예에 따른 구리 나노분말을 상기 실험예 1에 따라 관찰하였으며, 그 결과를 도 2a 내지 도 2c에 도시하였다.
도 2a에서 100 nm를 기준으로 측정한 TEM 이미지를 통해 실시예에 따라 형성된 구리 나노분말의 형상을 확인할 수 있었으며, 5 nm 기준으로 측정한 TEM 이미지를 통해 구리 나노분말의 표면에 1 내지 3 nm의 비정질 피막층이 형성된 것을 확인할 수 있었다. 또한, 도 2b에서 실시예에 따른 구리 나노분말의 표면에 비정질 및 결정질의 피막층이 동시에 형성된 것을 확인할 수 있었다. 이에 따라 본 발명의 구리 나노분말이 표면에 비정질 피막층 또는 비정질과 결정질이 혼재된 피막층을 형성하는 것을 알 수 있었다.
반면, 도 2c에서 5 nm 기준으로 측정한 TEM 이미지를 통해 비교예에 따라 형성된 구리 나노분말의 표면은 결정질의 피막층을 형성하는 것을 확인할 수 있었다.
결과 2 - 구리 나노분말 X-선회절 분석
상기 실시예 및 실험예 2에 따라 구리 나노분말의 성분을 X-Ray Diffraction(XRD)를 통해 분석하였으며, 그 결과를 도 3a 및 도 3b에 도시하였다.
구리 나노분말의 XRD 그래프에서 Cu 및 Cu2O의 피크가 검출되었으며, 구리 나노분말 내 Cu 및 Cu2O는 각각 93.4 wt%, 6.6wt% 포함되어 있는 것을 확인할 수 있었다. 또한, XRD 그래프에서 그래프 선이 고르지 않은 노이즈가 매우 심한 것으로 나타나 구리 나노분말의 피막층이 비결정질의 피막층을 포함하여 형성되는 것을 확인할 수 있었다.
결과 3 - 구리 나노분말 항균성 평가
상기 실시예 및 실험예 3에 따라 구리 나노분말의 항균성을 확인하였으며, 그 결과를 도 4 내지 도 11에 도시하였다.
그 결과, 아무런 처리를 하지 않은 배지에서는 균주 농도가 증가하거나 유의하지 않은 정도의 감소율을 나타내었으나, 구리 나노분말을 포함한 배지에서는 총 8가지 균주 모두 초기 시험균주 농도와 비교하였을 때, 99.9% 이상의 세균감소율을 나타내었다.
구리 나노분말을 포함한 결과인 도 4 내지 도 11의 (a)에서는 균의 생장을 육안으로 확인할 수 없었으나, 아무런 처리를 하지 않은 대조군은 도 4 내지 도 11의 (b)는 균이 생장한 것을 확인할 수 있었다.
결과 4 - 구리 나노분말 항곰팡이 평가
상기 실시예 및 실험예 4에 따라 구리 나노분말의 항곰팡이성을 확인한 결과, 5 가지 곰팡이 균주 모두 배지에서 성장하지 않은 것을 확인할 수 있었으며, 본 발명의 구리 나노분말이 항균성 외에도 항곰팡이 효능을 가지는 것을 알 수 있었다.
결과 5 - 구리 나노분말이 분산된 기능성 섬유 원사의 이미지
상기 실시예 및 실험예 5에 따라 구리 나노분말이 분산된 섬유 원사를 확대하여 SEM 촬영을 하였으며, 그 결과를 도 12에 도시하였다.
원사를 확대하면 원사의 표면에 기능성 구리 나노입자들이 고르게 분산된 것을 확인할 수 있었으며, 이를 통해 본 발명의 기능성 섬유 원사가 항균 구리 나노분말의 특성을 나타낼 수 있음을 알 수 있었다.
결과 6 - 기능성 섬유 원단의 구리 나노분말 용출 시험 결과
상기 실시예 및 제조예에 따라 제조한 기능성 원단의 세탁 전 후 구리 나노분말의 용출량을 실험예 6에 따라 확인하였으며, 그 시험성적서를 도 13에 도시하였다.
그 결과, 세탁 전 5.489 mg/kg였던 구리 나노분말의 함량이 30회 세탁 후 5.428 mg/kg으로 측정되었으며(검출한계 10 mg/kg), 원단의 구리 용출량은 약 0.98 wt%인 것으로 나타났다. 이를 시중에 판매 중인 구리 함유 원단(CuS 함유)과 비교해보았을 때, 시중 판매 중인 K사의 구리 함유 원단은 구리의 용출량이 46 wt%로, 본 발명에 따른 원단의 구리 용출량이 매우 적은 것임을 알 수 있었다.
따라서, 본 발명의 구리 나노분말은 마스터배치를 이용하여 섬유 원사를 방사하고, 섬유 원사를 이용하여 원단을 제직하는 과정 중에서도 거의 용출되지 않으며, 이러한 우수한 부착성에 의해 다양한 소재에 첨가하여 구리 나노분말의 특성을 나타내는 기능성 소재를 제조할 수 있음을 확인할 수 있었다.

Claims (8)

  1. 혼합가스가 충진된 반응챔버 내부에 구리 와이어를 공급하는 제 1단계;
    상기 반응챔버 내부에 공급된 구리 와이어에 에너지를 인가하여 전기폭발시켜 구리 나노분말을 형성하는 제 2단계; 및
    상기 구리 나노분말의 표면에 비정질의 피막층 또는 비정질과 결정질이 혼재된 피막층을 형성시키는 제 3단계;를 포함하는 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  2. 제 1 항에 있어서,
    상기 혼합가스가 충진된 반응챔버의 내부 압력은 1 내지 5 bar인 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  3. 제 1 항에 있어서,
    상기 구리 와이어의 직경은 0.1 내지 0.5 mm인 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  4. 제 1 항에 있어서,
    상기 항균 구리 나노분말의 입경은 50 내지 200 nm인 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  5. 제 1 항에 있어서,
    상기 항균 구리 나노분말은 상기 에너지가 인가된 구리 와이어의 증발 및 응축에 의해 형성되는 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  6. 제 1 항 또는 제 5 항에 있어서,
    상기 에너지는 1000 내지 2000 J인 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  7. 제 1 항에 있어서,
    상기 항균 구리 나노분말은 대장균, 녹농균, 폐렴균, MRSA균, 바실러스균, 칸디다균, 연쇄상구균, 및 황색포도상구균으로 이루어진 군으로부터 선택되는 하나 이상에 대하여 90 내지 99.99%의 항균 효과를 나타내는 것을 특징으로 하는 항균 구리 나노분말의 제조방법.
  8. 제 1 항에 따른 제조방법에 의해 제조된 항균 구리 나노분말.
PCT/KR2020/005057 2019-05-24 2020-04-16 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말 WO2020242049A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190061477A KR102231999B1 (ko) 2019-05-24 2019-05-24 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말
KR10-2019-0061477 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020242049A1 true WO2020242049A1 (ko) 2020-12-03

Family

ID=73553257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005057 WO2020242049A1 (ko) 2019-05-24 2020-04-16 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말

Country Status (2)

Country Link
KR (1) KR102231999B1 (ko)
WO (1) WO2020242049A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584650B1 (ko) * 2022-11-09 2023-10-05 (주)씨큐파이버 비정질 금속 와이어의 전기 폭발에 의한 비정질 금속 나노 분말의 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230166867A (ko) 2022-05-31 2023-12-07 한국재료연구원 살균성 구리 산화물 형성 방법 및 살균성 구리계 물품

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006096205A2 (en) * 2004-08-04 2006-09-14 Nanotechnologies, Inc. Carbon and metal nanomaterial composition and synthesis
KR20090092167A (ko) * 2008-02-26 2009-08-31 한국원자력연구원 탄소 코팅된 금속 나노 분말 제조 방법 및 그를 이용하여제조된 탄소 코팅된 금속 나노 분말
KR20100123238A (ko) * 2009-05-15 2010-11-24 한국생산기술연구원 전기선 폭발법을 이용한 나노합금 분말 제조장치 및 나노합금 분말 제조방법
KR101269407B1 (ko) * 2012-11-05 2013-05-30 한국기계연구원 탄소피막이 형성된 구리분말의 제조방법
KR20150002350A (ko) * 2013-06-28 2015-01-07 삼성전기주식회사 전기폭발에 의한 금속 나노분말의 제조방법 및 제조장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547618B1 (ko) * 2003-09-04 2006-01-31 한국과학기술연구원 구리가 도금된 비정질 복합 분말을 이용한 구리/비정질복합 재료 및 그 제조방법
KR20050076148A (ko) * 2004-01-19 2005-07-26 한국과학기술연구원 저온 성형 가능한 구리/비정질 복합 분말을 이용한구리/비정질 복합 성형체 및 그 제조 방법
KR100581259B1 (ko) * 2004-06-18 2006-05-22 한국기계연구원 금속이 코팅된 비정질 분말의 제조방법
KR100883016B1 (ko) 2007-05-22 2009-02-12 충북대학교 산학협력단 금속 나노입자 제조방법
KR101648250B1 (ko) * 2010-11-08 2016-08-12 후루카와 덴키 고교 가부시키가이샤 리튬이온이차전지용 부극에 이용하는 나노사이즈 입자 및 그 제조방법
KR101284003B1 (ko) 2010-11-17 2013-07-09 한국지질자원연구원 전기선폭발법을 이용한 (Ti,Cr)N 나노분말의 제조방법
KR101374883B1 (ko) * 2012-05-19 2014-03-17 국립대학법인 울산과학기술대학교 산학협력단 향상된 살균성을 갖는 구리-철 나노 분말 및 그 제조 방법
KR101612340B1 (ko) * 2014-04-02 2016-04-15 한국생산기술연구원 전기선 폭발법을 이용한 나노-마이크로 혼합분말의 제조방법과 이 방법에 의해 제조된 혼합분말
KR101705943B1 (ko) * 2014-04-08 2017-02-22 성균관대학교산학협력단 전기 폭발법을 이용한 다중층 그래핀이 코팅된 복합체 분말의 제조방법
KR101680138B1 (ko) * 2015-01-15 2016-11-29 한국원자력연구원 탄소 코팅된 구리 나노입자의 저온소결을 통해 제조되는 고전도성 금속 막 또는 패턴의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006096205A2 (en) * 2004-08-04 2006-09-14 Nanotechnologies, Inc. Carbon and metal nanomaterial composition and synthesis
KR20090092167A (ko) * 2008-02-26 2009-08-31 한국원자력연구원 탄소 코팅된 금속 나노 분말 제조 방법 및 그를 이용하여제조된 탄소 코팅된 금속 나노 분말
KR20100123238A (ko) * 2009-05-15 2010-11-24 한국생산기술연구원 전기선 폭발법을 이용한 나노합금 분말 제조장치 및 나노합금 분말 제조방법
KR101269407B1 (ko) * 2012-11-05 2013-05-30 한국기계연구원 탄소피막이 형성된 구리분말의 제조방법
KR20150002350A (ko) * 2013-06-28 2015-01-07 삼성전기주식회사 전기폭발에 의한 금속 나노분말의 제조방법 및 제조장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584650B1 (ko) * 2022-11-09 2023-10-05 (주)씨큐파이버 비정질 금속 와이어의 전기 폭발에 의한 비정질 금속 나노 분말의 제조방법

Also Published As

Publication number Publication date
KR20200135066A (ko) 2020-12-02
KR102231999B1 (ko) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2020242050A1 (ko) 구리 나노분말을 포함하는 항균 기능성 섬유 원사 및 그 제조방법
WO2020242049A1 (ko) 항균 구리 나노분말의 제조방법 및 그에 따라 제조된 항균 구리 나노분말
KR101337994B1 (ko) 그래핀/금속 나노 복합 분말 및 이의 제조 방법
Harris Carbon nanotube composites
US8758900B2 (en) Spherical particles having nanometer size, crystalline structure, and good sphericity and method for producing the same
WO2010090479A2 (ko) 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조 방법
US20110220851A1 (en) Dispersion of carbon nanotubes and nanoplatelets in polyolefins
EP2686460A1 (de) Beschichtung sowie verfahren und vorrichtung zum beschichten
KR101355996B1 (ko) 금속-코팅된 탄소나노튜브로 강화된 세라믹 나노복합 분말 및 그의 제조 방법
WO2011054701A1 (de) Verfahren zur herstellung von nanofasern
CN111168083A (zh) 一种纳米银粉的制备方法
Zhang et al. Antibacterial and anti-flaming PA6 composite with metathetically prepared nano AgCl@ BaSO 4 co-precipitates
Khalil et al. Facile synthesis of copper oxide nanoparticles via electrospinning
Huang et al. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures
WO2016032227A1 (ko) 기능성 물질 코팅이 수반되는 in situ 나노소재 제조방법 이에 따라 제조된 나노소재
Qiu et al. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers
Jo et al. Synthesis of Y2O3-dispersed W powders prepared by ultrasonic spray pyrolysis and polymer solution route
Yousef et al. Low temperature synthesis of cobalt–chromium carbide nanoparticles-doped carbon nanofibers
Lin et al. Sol–gel electrophoretic deposition and optical properties of Fe 2 O 3 nanowire arrays
DE102006006675A1 (de) Antimikrobielle polymerabgeleitete Silber-(Kupfer)-Nanokomposite
Barış et al. Characterization of W2B nanocrystals synthesized by mechanochemical method
Xue et al. Inducing crystallization in an amorphous lead zirconate titanate precursor by mechanical activation
CN112176456A (zh) 一种稀土掺杂Bi2Ti4O11高纯绿色纳米纤维及其制备方法和应用
Chen et al. A room-temperature synthesis of titanium nitride hollow spheres
Su et al. Formation of tungsten oxide encapsulated in titanium oxide nanocages by modified plasma arc gas condensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814899

Country of ref document: EP

Kind code of ref document: A1