WO2020241431A1 - バッテリー冷却システム - Google Patents

バッテリー冷却システム Download PDF

Info

Publication number
WO2020241431A1
WO2020241431A1 PCT/JP2020/020034 JP2020020034W WO2020241431A1 WO 2020241431 A1 WO2020241431 A1 WO 2020241431A1 JP 2020020034 W JP2020020034 W JP 2020020034W WO 2020241431 A1 WO2020241431 A1 WO 2020241431A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange unit
heat
unit group
heat medium
Prior art date
Application number
PCT/JP2020/020034
Other languages
English (en)
French (fr)
Inventor
高橋 修
修司 垣内
高野 明彦
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Priority to CN202080038883.9A priority Critical patent/CN113875073B/zh
Priority to JP2021522280A priority patent/JP7370128B2/ja
Priority to EP20815512.7A priority patent/EP3979395A4/en
Publication of WO2020241431A1 publication Critical patent/WO2020241431A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cooling system that cools a battery of an electric vehicle or the like with coolant.
  • the battery heats up when charging.
  • a cooling device that cools the battery using a heat medium (refrigerant, coolant, etc.) is used.
  • an electric vehicle can travel a long distance with one charge and can complete a quick charge in a short time.
  • a battery consisting of a large number of battery modules is installed in the vehicle.
  • the cooling device is required to reduce the temperature difference between the battery modules in order to reduce the performance difference between a large number of battery modules (including the difference in the degree of deterioration due to heat generation).
  • the heat medium used in the cooling device is a coolant
  • the pressure loss inside the cooling device, particularly the heat exchange section is reduced in order to avoid an increase in size and power consumption of the water pump that circulates the heat medium. It is also required.
  • An object of the present invention is to provide a battery cooling device capable of suppressing variation in cooling capacity among a plurality of heat exchange units while reducing the total pressure loss generated in the plurality of heat exchange units.
  • the battery cooling device includes a plurality of heat exchange units, and each heat exchange unit is a heat medium flowing through a heat medium passage formed inside the heat exchange unit and the heat medium. It is configured to exchange heat with a battery module that is in thermal contact with the surface of the heat exchange section, and each heat exchange section has a heat medium inflow section and a heat medium outflow section, and a plurality of heat exchanges occur.
  • the section is configured such that the relationship between the pressure difference between the heat medium inflow section and the heat medium outflow section and the flow velocity of the heat medium flowing in the heat medium passage is substantially the same among the plurality of heat exchange sections.
  • the plurality of heat exchange units are grouped into a plurality of heat exchange unit groups, a plurality of heat exchange units belong to each heat exchange unit group, and the plurality of heat exchange units belonging to one heat exchange unit group are concerned.
  • the heat exchange units passing through each of the plurality of heat exchange units are connected in parallel so that the flow rates are substantially the same as each other, and the plurality of heat exchange units are connected in series with each other and are relatively relative to each other.
  • the number of heat exchange units belonging to the heat exchange unit group on the upstream side is larger than the number of heat exchange units belonging to the heat exchange unit group on the downstream side, thereby causing heat relatively downstream.
  • the flow velocity of the heat medium passing through each one heat exchange unit belonging to the exchange unit group becomes faster than the flow velocity of the heat medium passing through each one heat exchange unit belonging to the relatively upstream heat exchange unit group.
  • the battery cooling device is configured as a heat exchanger that forms part of a circulation path (not shown) of coolant as a heat medium.
  • the circulation path includes a pump that sends out coolant to circulate the coolant in the circulation path, and a cooling unit that cools the heated coolant by exchanging heat with the battery at the battery cooling device (both figures are shown in the figure). Not shown).
  • the cooling unit can be provided, for example, behind the front grill of the vehicle (automobile).
  • coolant means a liquid that cools an object to be cooled by removing heat from the object to be cooled without an intrinsic phase change.
  • water containing an antifreeze component a component that lowers the freezing point
  • an antifreeze component a component that lowers the freezing point
  • the cooling device is formed by joining two panels 2 and 3.
  • the panels 2 and 3 can be formed of a metal material having high thermal conductivity, for example, an aluminum alloy.
  • Such panels 2 and 3 (metal plates) are processed into a predetermined shape by a plastic working technique such as press working.
  • the panel 2 (also referred to as the upper panel 2) is formed with a plurality of (five in the illustrated example) convex portions (upwardly convex regions). In other words, an upwardly convex recess is formed on the lower surface of the panel 2.
  • One battery module 1a is placed on each convex portion of the panel 2.
  • Each battery module 1a is thermally coupled to the panel 2.
  • the plurality of battery modules 1a are electrically connected in series and / or in parallel to form the battery 1 having a desired output voltage and capacity.
  • the cross-sectional view on the right side of FIG. 1 shows a cross section obtained by cutting the central portion of one heat exchange portion 10 described later in the Y direction with a cut plane parallel to the XZ plane.
  • An upwardly convex pleated protrusion is formed at a position of the panel 3 (also referred to as a lower panel 3) corresponding to the convex portion of the panel 2.
  • a plurality of (for example, four) heat medium flow paths 6 extending in parallel with each other in the Y direction are formed between the panels 2 and 3.
  • the portion where the panels 2 and 3 are in contact with each other is sealed with a brazing material (not shown).
  • the battery cooling device is provided with an inflow port 4 and an outflow port 5.
  • the inflow port 4 and the outflow port 5 can be formed in a shape suitable for connection with, for example, a quick connector.
  • the inflow port 4 and the outflow port 5 are connected to the above-mentioned coolant circulation path.
  • the coolant that has flowed into the battery cooling device from the circulation path through the inflow port 4 flows through the heat medium flow path 6 formed between the panels 2 and 3, and flows out to the circulation path through the outflow port 5.
  • the coolant flows through the heat medium flow path 6, it takes heat from the battery 1 and cools the battery 1.
  • FIG. 2 the thick arrow indicates the flow of the heat medium in the battery cooling device (the same applies to FIGS. 3 and 4).
  • the battery cooling device includes a plurality of heat exchange units 10.
  • Each heat exchange unit 10 is between a coolant as a heat medium flowing through a heat medium passage 11 formed inside the heat exchange unit 10 and a battery module 1a that is in thermal contact with the surface of the heat exchange unit 10. It is configured to exchange heat with.
  • One heat exchange unit 10 is provided at a position corresponding to each convex portion (upwardly convex region) of the upper panel 2 shown in FIG.
  • the plurality of heat exchange units 10 are arranged along the X direction.
  • the X direction is preferably the horizontal direction.
  • Each heat exchange unit 10 has a first end portion 12 and a second end portion 14 that are opposite to each other with respect to the Y direction orthogonal to the X direction.
  • the Y direction is also preferably the horizontal direction.
  • the upper end portion of the heat exchange portion 10 in the drawing is referred to as a first end portion 12, and the lower end portion in the drawing is referred to as a second end portion 14. There is.
  • One of the first end portion 12 and the second end portion 14 is a heat medium inflow portion that serves as an inlet for the heat medium to the heat exchange portion 10, and the other serves as an outlet for the heat medium from the heat exchange portion 10. It is a heat medium outflow part.
  • the heat medium passage 11 in the heat exchange unit 10 can be composed of a plurality of heat medium passages 6 (see the cross-sectional view on the right side of FIG. 1).
  • the heat exchange unit 10 flows in the heat medium passage 11 with the pressure difference between the first end portion 12 and the second end portion 14 (that is, the pressure difference between the heat medium inflow portion and the heat medium outflow portion).
  • the relationship with the flow velocity of the heat medium is configured to be substantially the same among the plurality of heat exchange units 10.
  • each heat exchange unit 10 has the same number (for example, four) of heat medium flow paths 6 (see the cross-sectional view on the right side of FIG. 1), and all the heat medium flow paths 6 have. This can be achieved by having substantially the same equivalent diameters of each other (but not limited to this).
  • the plurality of heat exchange units 10 are grouped into a plurality of heat exchange unit groups.
  • the plurality of heat exchange units 10 are grouped into two heat exchange unit groups, that is, a first heat exchange unit group G1 and a second heat exchange unit group G2.
  • a plurality of heat exchange units 10 belong to each of the first and second heat exchange unit groups G1 and G2.
  • the plurality of heat exchange units 10 belonging to one heat exchange unit group (G1, G2) are mutually so as to have substantially the same flow velocity of the heat medium passing through each of the plurality of heat exchange units 10. They are connected in parallel.
  • the first heat exchange section group G1 includes a plurality of first header sections 16 to which the first end portions 12 of each of the plurality of heat exchange sections 10 (heat medium outflow sections in the first heat exchange section group G1) are connected. It has a second header portion 20 to which each second end portion 14 (heat medium inflow portion in the first heat exchange unit group G1) of each of the heat exchange units 10 of the above is connected.
  • the first header portion 16 and the second header portion 20 each extend continuously in the X direction.
  • a first connection path 18 is formed which is connected to the heat medium passage 11 of each heat exchange portion 10 via the first end portion 12.
  • a second connection path 22 is formed which is connected to the heat medium passage 11 of each heat exchange portion 10 via the second end portion 14.
  • the second heat exchange unit group G2 includes a plurality of third header units 24 to which the first end portions 12 of each of the plurality of heat exchange units 10 (heat medium inflow portions in the second heat exchange unit group G2) are connected. It has a fourth header portion 28 to which the second end portion 14 of each of the heat exchange portions 10 (heat medium outflow portion in the second heat exchange unit group G2) is connected.
  • the third header portion 24 and the fourth header portion 28 each extend continuously in the X direction.
  • a third connection path 26 is formed which is connected to the heat medium passage 11 of each heat exchange portion 10 via the first end portion 12.
  • a fourth connection path 30 is formed which is connected to the heat medium passage 11 of each heat exchange portion 10 via the second end portion 14.
  • the above-mentioned inflow port 4 is provided in the vicinity of the end on the side opposite to the end on the second heat exchange portion group G2 side of the second connection path 22.
  • the inflow port 4 communicates with the second connecting path 22 via a heat medium flow path (not shown in detail).
  • An outlet 5 is provided in the vicinity of the end on the side opposite to the end on the first heat exchange portion group G1 side of the fourth connection path 30.
  • the outlet 5 communicates with the fourth connecting path 30 via a heat medium flow path (not shown in detail).
  • each heat exchange unit 10 belonging to the first heat exchange unit group G1 the heat medium flows from the second end portion 14 to the first end portion 12, and the second heat exchange unit group In each heat exchange unit 10 belonging to G2, the heat medium flows from the first end portion 12 to the second end portion 14.
  • One heat exchange unit group (for example, G1) is "a plurality of adjacent heat exchange units provided in parallel between a common pair of header units (20, 16) and having a heat medium flowing in the same direction inside. It can be defined as a group of parts (10). This point is common to all the heat exchange unit groups (G1 to G3) according to all the embodiments.
  • the downstream end of the first header portion 16 (end on the heat exchange group G2 side) and the upstream end of the third header 24 (end on the heat exchange group G1 side) are connected by the first connecting portion 32. ing.
  • the heat medium flows from the first heat exchange unit group G1 to the second heat exchange unit group G2 via the first continuous passage 34 formed inside the first connecting portion 32. That is, a first heat exchange unit group G1 having a plurality of (three in the illustrated example) heat exchange units 10 and a second heat exchange unit group G2 having a plurality of (two in the illustrated example) heat exchange units 10. Are connected in series with each other.
  • the number of heat exchange units 10 (three) belonging to the first heat exchange unit group G1 relatively upstream side is the heat exchange unit belonging to the second heat exchange unit group G2 relatively downstream side. It is more than the number of ten (two).
  • the plurality of heat exchange units 10 belonging to one heat exchange unit group (G1, G2) have substantially the same flow velocity of the heat medium passing through each of the plurality of heat exchange units 10. They are connected in parallel with each other so as to be. Therefore, the flow velocity of the heat medium passing through each heat exchange unit 10 belonging to the second heat exchange unit group G2 is faster than the flow velocity of the heat medium passing through each heat exchange unit 10 belonging to the first heat exchange unit group G1. Become.
  • the flow velocity of the heat medium passing through the heat exchange section 10 of the second heat exchange section group G2 is faster than the flow velocity of the heat medium passing through the heat exchange section 10 of the first heat exchange section group G1.
  • the cooling performance of the first heat exchange unit group G1 and the second heat exchange unit group G2 can be made uniform.
  • the temperature difference between the heat medium and the battery module 1a is relatively large compared to the second heat exchange unit group G2, and the flow velocity of the heat medium passing through the heat exchange unit 10 is high. Relatively slow. Therefore, the heat medium passing through the first heat exchange unit group G1 has low mixing property, and the temperature difference between the central portion and the vicinity of the inner surface becomes large when viewed in the cross section of the heat medium passage 11. That is, since the temperature of the heat medium flowing near the inner surface of the heat medium passage 11 rises, the amount of heat exchange between the first heat exchange unit group G1 and the heat medium is suppressed to a certain degree.
  • the temperature difference between the heat medium and the battery module 1a is relatively small compared to the first heat exchange unit group G1, and the flow velocity of the heat medium passing through the heat exchange unit 10 is high. Relatively fast. Therefore, the heat medium passing through the first heat exchange unit group G1 is highly mixed, and the temperature difference between the central portion and the vicinity of the inner surface does not become large when viewed in the cross section of the heat medium passage 11. That is, the temperature of the heat medium flowing near the inner surface of the heat medium passage 11 is unlikely to rise.
  • the heat medium flows from the first connecting portion 32 into the second heat exchange portion group G2
  • the temperature rises above the temperature at the inflow port 4. Therefore, the amount of heat exchange between the second heat exchange unit group G2 and the heat medium is suppressed to a certain degree.
  • the flow velocity of the heat medium passing through the heat exchange unit 10 is made slow, and the heat medium having a relatively high temperature is used.
  • the cooling capacity of the first heat exchange unit group G1 and the second heat exchange with respect to the battery module 1a are made by increasing the flow velocity of the heat medium passing through the heat exchange unit 10.
  • the cooling capacity of the group G2 can be made uniform.
  • the downstream end of the second header portion 20 (the end on the heat exchange group G2 side) and the upstream end of the fourth header 28 (the end on the heat exchange group G1 side) are second.
  • a part of the heat medium is connected by the connecting portion 36, whereby a part of the heat medium is exchanged from the first heat exchange unit group G1 to the second heat exchange through the second connecting passage 38 formed inside the second connecting portion 36. It is designed to flow to the group G2.
  • the configuration of the second embodiment is the same as that of the first embodiment except for the above points, and duplicate description will be omitted.
  • the first embodiment is different from the second embodiment in that it does not have a connecting portion (second connecting portion 36) that directly connects the downstream end of the second header portion 20 and the upstream end of the fourth header portion 28. ..
  • the first and second connecting portions 32 and 36 are formed so that the flow rate of the heat medium flowing through the first passage 34 is larger than the flow rate of the heat medium flowing through the second passage 38.
  • the above flow rate relationship can be obtained.
  • the first passage 34 and the second passage 38 can be configured so that the following inequality 1 holds.
  • the number of heat exchange units 10 belonging to the first heat exchange unit group G1 is "m”
  • the number of heat exchange units 10 belonging to the second heat exchange unit group G2 is "n”
  • the heat medium passing through the second communication passage 38 When the ratio of the flow rate of the above to the sum of the flow rates of the heat medium passing through the first passage 34 and the second passage 38 is "k", k ⁇ 1- (n / m) ... (Inequality 1)
  • the first passage 34 and the second passage 38 can be configured so that the following inequality 2 holds.
  • the number of heat exchange units 10 belonging to the first heat exchange unit group (G1) is "m”
  • the number of heat exchange units 10 belonging to the second heat exchange unit group G2 is "n”
  • the passage of the second continuous passage 38 is interrupted.
  • the flow velocity of the heat medium flowing through the heat exchange unit 10 belonging to the second heat exchange unit group G2 flows through the heat exchange unit 10 belonging to the first heat exchange unit group G1. It will be lower than the flow velocity of the heat medium. Therefore, the temperature of the battery module 1a cooled by the heat exchange unit 10 belonging to the second heat exchange unit group G2 is higher than the temperature of the battery module 1 cooled by the heat exchange unit 10 belonging to the first heat exchange unit group G1. Will also be expensive.
  • first connecting portion 32 and second connecting portion 36 since the first heat exchange unit group G1 and the second heat exchange unit group G2 are connected by two connecting portions (first connecting portion 32 and second connecting portion 36), the first embodiment is performed.
  • the strength and rigidity of the entire battery cooling device can be increased as compared with the case where only one connecting portion (first connecting portion 32) is connected as in the embodiment. Further, this makes it possible to reduce the burden on the operator when transporting and assembling the battery cooling device.
  • the third heat exchange unit group G3 is further provided on the downstream side of the second heat exchange unit group G2.
  • the first heat exchange unit group G1, the second heat exchange unit group G2, and the third heat exchange unit group G3 are connected in series.
  • Four heat exchange units 10 belong to the first heat exchange unit group G1, three heat exchange units 10 belong to the second heat exchange unit group G2, and two belong to the third heat exchange unit group G3.
  • Two heat exchange units 10 belong to it. That is, as in the first embodiment and the second embodiment, the number of heat exchange units 10 to which the heat exchange unit group on the upstream side belongs is larger.
  • the first heat exchange unit group G1 and the second heat exchange unit group G2 are the same as the first embodiment except that the number of heat exchange units 10 to which they belong is increased by one.
  • the relationship between the second heat exchange unit group G2 and the third heat exchange unit group G3 is the same as the relationship between the first heat exchange unit group G1 and the second heat exchange unit group G2.
  • the first end portion 12 of each of the plurality of heat exchange units 10 (the heat medium outflow unit in the third heat exchange unit group G3) is connected. It has a 5 header portion 40 and a 6th header portion 44 to which the second end portion 14 of each of the plurality of heat exchange portions 10 (the heat medium inflow portion in the third heat exchange unit group G3) is connected. ..
  • the fifth header portion 40 and the sixth header portion 44 respectively extend continuously in the X direction. Inside the fifth header portion 40, a fifth connection path 42 connected to the heat medium passage 11 of each heat exchange portion 10 via the first end portion 12 is formed. Inside the sixth header portion 44, a sixth connection path 46 is formed which is connected to the heat medium passage 11 of each heat exchange portion 10 via the second end portion 14.
  • the downstream end of the fourth header 28 (the end on the G3 side of the heat exchange group) and the upstream end of the sixth header 44 (the end on the G2 side of the heat exchange group) are connected by the third connecting 48. ing.
  • the heat medium flows from the second heat exchange unit group G2 to the third heat exchange unit group G3 via the third communication passage 50 formed inside the third connecting portion 48.
  • An outlet 5 is provided in the vicinity of the end on the side opposite to the end on the second heat exchange portion group G1 side of the fifth connection path 42.
  • the outflow port 5 communicates with the fifth connecting path 42.
  • the heat medium flows from the second end 14 to the first end 12 of each heat exchange 10 of the third heat exchange group G3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】複数の熱交換部で生じる総圧力損失を低減しつつ、複数の熱交換部間の温度のばらつきを抑制する。【解決手段】バッテリー冷却装置は、各々の内部に熱媒体通路(11)を有する複数の熱交換部(10)を備える。複数の熱交換部は、複数の熱交換部群(G1,G2,G3)にグループ分けされる。各熱交換部群に複数の熱交換部(10)が属し、一つの熱交換部群に属する複数の熱交換部は、当該の複数の熱交換部の各々を通過する熱媒体の流速が互いに実質的に同じになるように並列に接続されている。複数の熱交換部群は互いに直列に接続されており、相対的に上流側にある熱交換部群に属する熱交換部の数が、相対的に下流側にある熱交換部群に属する熱交換部の数よりも多い。これにより、相対的に下流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速が、相対的に上流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速よりも速くなっている。

Description

バッテリー冷却システム
本発明は、電気自動車などのバッテリーをクーラントで冷却する冷却システムに関する。
バッテリーは充電時に発熱する。とりわけ、電気自動車などの車両用のバッテリーを急速充電するときには、バッテリーの発熱は大きい。バッテリーが高温となった状態で充電を継続すると、バッテリーの劣化が促進されて充電容量が低下し、電気自動車の走行可能距離が短くなってしまう。この問題を解決するために、バッテリーを、熱媒体(冷媒、クーラント等)を用いて冷却する冷却装置が用いられる。(例えば特許文献1を参照) 
電気自動車では、一度の充電で長距離走行ができること、かつ短時間で急速充電を完了できることが望まれている。このような要求を満足するため、多数のバッテリーモジュールからなるバッテリーが車両に搭載される。冷却装置には、多数のバッテリーモジュール間の性能差(発熱による劣化度合いの差も含む)を小さくするため、バッテリーモジュール間の温度差を小さくすることが求められている。また、冷却装置で用いる熱媒体がクーラントである場合には、熱媒体を循環させるウォーターポンプの大型化および消費電力増大を回避するために、冷却装置特に熱交換部の内部の圧力損失を小さくすることも求められている。
特開2012-190675号公報
本発明は、複数の熱交換部で生じる総圧力損失を低減しつつ、複数の熱交換部間の冷却能力のばらつきを抑制しうるバッテリー冷却装置を提供することを目的としている。
本発明の一実施形態によれば、バッテリー冷却装置であって、複数の熱交換部を備え、各熱交換部が、当該熱交換部の内部に形成された熱媒体通路を流れる熱媒体と当該熱交換部の表面に熱的に接触するバッテリーモジュールとの間で熱交換を行うように構成され、各熱交換部が熱媒体流入部および熱媒体流出部を有しており、複数の熱交換部は、熱媒体流入部と熱媒体流出部との間の圧力差と熱媒体通路内を流れる熱媒体の流速との関係が複数の熱交換部間において実質的に同じになるように構成されており、複数の熱交換部は複数の熱交換部群にグループ分けされ、各熱交換部群に複数の熱交換部が属し、一つの熱交換部群に属する複数の熱交換部は、当該の複数の熱交換部の各々を通過する熱媒体の流速が互いに実質的に同じになるように並列に接続されており、複数の熱交換部群は互いに直列に接続されており、相対的に上流側にある熱交換部群に属する熱交換部の数が、相対的に下流側にある熱交換部群に属する熱交換部の数よりも多く、これにより、相対的に下流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速が、相対的に上流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速よりも速くなっていることを特徴とするバッテリー冷却装置が提供される。
本発明によれば、複数の熱交換部で生じる総圧力損失を低減しつつ、複数の熱交換部間の冷却能力のばらつきを抑制することができる。
本発明の一実施形態に係るバッテリー冷却装置の構成をバッテリーモジュールと一緒に示した概略分解斜視図および断面図である。 第1実施形態に係るバッテリー冷却装置の熱媒体流路間の接続関係を示す流体回路図である。 第2実施形態に係るバッテリー冷却装置の熱媒体流路間の接続関係を示す流体回路図である。 第3実施形態に係るバッテリー冷却装置の熱媒体流路間の接続関係を示す流体回路図である。
以下に図面を参照して車両用のバッテリー冷却装置の好適かつ非限定的な実施形態について説明する。 
バッテリー冷却装置は、熱媒体としてのクーラントの循環経路(図示せず)の一部をなす熱交換器として構成される。循環経路には、クーラントを循環経路内で循環させるためにクーラントを送出するポンプと、バッテリー冷却装置のところでバッテリーと熱交換することにより加熱されたクーラントを冷却する冷却部とを有する(いずれも図示せず)。冷却部は、例えば車両(自動車)のフロントグリルの背後に設けることができる。 
本明細書において用語「クーラント」とは、本質的な相変化を伴うことなく熱を冷却対象物から奪うことにより冷却対象物を冷却する液体を意味している。具体的には、クーラントとして、自動車のエンジン冷却水に用いられるような不凍成分(凝固点を低下させる成分)を含む水が例示される。 
図1に示すように、冷却装置は、2枚のパネル2,3を接合することにより形成される。パネル2,3は、高い熱伝導率を有する金属材料、例えばアルミニウム合金により形成することができる。このようなパネル2,3(金属板)は、プレス加工等の塑性加工技術により予め定められた形状に加工される。 
パネル2(上パネル2とも呼ぶ)には、複数(図示例では5つ)の凸部(上に凸の領域)が形成されている。言い換えれば、パネル2の下面には上に凸の窪みが形成されている。パネル2の各凸部の上にバッテリーモジュール1aが1つずつ載置されている。各バッテリーモジュール1aは、パネル2に熱的に結合されている。複数のバッテリーモジュール1aが直列及び/又は並列に電気的に接続されることにより、所望の出力電圧および容量を有するバッテリー1が構成される。 
図1の右側の断面図は、後述する1つの熱交換部10のY方向中央部をXZ平面に平行な切断面で切断した断面を示している。パネル3(下パネル3とも呼ぶ)のうちのパネル2の上記の凸部に対応する位置には、上に凸のプリーツ状の突起が形成されている。パネル2,3がろう付けにより接合されることにより、パネル2,3の間に、Y方向に互いに平行に延びる複数(例えば4つ)の熱媒体流路6が形成されている。パネル2,3同士が接触している部分は、図示されていないろう材によりシールされている。 
互いにろう付けされるパネル2,3に適宜凹凸を設けることにより、上述した熱媒体流路6だけでなく、後述するヘッダ部(16,20,24,28,40,44)、接続路(18,22,26,30,42,46)および連通路(34,38,50)を形成することができる。このような凹凸は、図1に描かれたパネル3の斜視図に概略的に示されている。 
バッテリー冷却装置には、流入口4および流出口5が設けられている。流入口4および流出口5は、例えばクイックコネクタとの接続に適した形状に形成することができる。流入口4および流出口5は、前述したクーラントの循環経路に接続される。流入口4を介して循環経路からバッテリー冷却装置に流入したクーラントは、パネル2,3の間に形成された熱媒体流路6内を流れ、流出口5を介して循環経路に流出する。クーラントは、熱媒体流路6内を流れるときに、バッテリー1から熱を奪い、バッテリー1を冷却する。 
次に、図2を参照してバッテリー冷却装置の第1実施形態について説明する。図2において、太線の矢印はバッテリー冷却装置内の熱媒体の流れを示している(図3、図4においても同じ)。 
バッテリー冷却装置は、複数の熱交換部10を備えている。各熱交換部10は、当該熱交換部10の内部に形成された熱媒体通路11を流れる熱媒体としてのクーラントと、当該熱交換部10の表面に熱的に接触するバッテリーモジュール1aとの間で熱交換を行うように構成されている。熱交換部10は、図1に示した上パネル2の各凸部(上に凸の領域)に対応する位置に1つずつ設けられる。 
複数の熱交換部10は、X方向に沿って並べられている。X方向は、好ましくは水平方向である。 
各熱交換部10は、X方向に直交するY方向に関して互いに反対側にある第1端部12と第2端部14とを有している。Y方向も、好ましくは水平方向である。図2~図4に示した実施形態では、熱交換部10の図中上側にある端部を第1端部12と呼び、図中下側にある端部を第2端部14と呼んでいる。 
第1端部12および第2端部14のうちの一方が、熱交換部10への熱媒体の入口となる熱媒体流入部であり、他方が熱交換部10からの熱媒体の出口となる熱媒体流出部である。 
熱交換部10内の熱媒体通路11は、複数の熱媒体流路6(図1の右側の断面図を参照)により構成することができる。熱交換部10は、第1端部12と第2端部14とのの間の圧力差(つまり熱媒体流入部と熱媒体流出部との間の圧力差)と熱媒体通路11内を流れる熱媒体の流速との関係が、複数の熱交換部10間において実質的に同じになるように構成されている。この関係は、例えば、各熱交換部10が同じ数(例えば4つ)の熱媒体流路6(図1の右側の断面図を参照)を有し、かつ、全ての熱媒体流路6が互いに実質的に同じ相当直径を有していることにより実現することができる(但しこれには限定されない)。 
複数の熱交換部10は複数の熱交換部群にグループ分けされている。図2の実施形態では、複数の熱交換部10が、2つの熱交換部群、すなわち第1熱交換部群G1と第2熱交換部群G2とにグループ分けされている。 
第1および第2熱交換部群G1,G2の各々には複数の熱交換部10が属している。一つの熱交換部群(G1,G2)に属する複数の熱交換部10は、当該の複数の熱交換部10の各々を通過する熱媒体の流速が互いに実質的に同じになるように、互いに並列に接続されている。 
第1熱交換部群G1は、複数の熱交換部10の各々の第1端部12(第1熱交換部群G1においては熱媒体流出部)が接続される第1ヘッダ部16と、複数の熱交換部10の各々の第2端部14(第1熱交換部群G1においては熱媒体流入部)が接続される第2ヘッダ部20とを有している。 
第1ヘッダ部16および第2ヘッダ部20はそれぞれX方向に連続的に延びている。第1ヘッダ部16の内部には、各熱交換部10の熱媒体通路11と第1端部12を介して接続される第1接続路18が形成されている。第2ヘッダ部20の内部には、各熱交換部10の熱媒体通路11と第2端部14を介して接続される第2接続路22が形成されている。 
第2熱交換部群G2は、複数の熱交換部10の各々の第1端部12(第2熱交換部群G2においては熱媒体流入部)が接続される第3ヘッダ部24と、複数の熱交換部10の各々の第2端部14(第2熱交換部群G2においては熱媒体流出部)が接続される第4ヘッダ部28とを有している。 
第3ヘッダ部24および第4ヘッダ部28はそれぞれX方向に連続的に延びている。第3ヘッダ部24の内部には、各熱交換部10の熱媒体通路11と第1端部12を介して接続される第3接続路26が形成されている。第4ヘッダ部28の内部には、各熱交換部10の熱媒体通路11と第2端部14を介して接続される第4接続路30が形成されている。 
第2接続路22の第2熱交換部群G2側の端部と反対側の端部の近傍に、前述した流入口4が設けられている。流入口4は、詳細には図示しない熱媒体流路を介して第2接続路22に連通している。第4接続路30の第1熱交換部群G1側の端部と反対側の端部の近傍に、流出口5が設けられている。流出口5は、詳細には図示しない熱媒体流路を介して第4接続路30に連通している。 
従って、第1熱交換部群G1に属する各熱交換部10では、第2端部14から第1端部12に向けて熱媒体が流れるようになっており、また、第2熱交換部群G2に属する各熱交換部10では、第1端部12から第2端部14に向けて熱媒体が流れるようになっている。 
つまり、1つの熱交換部群(例えばG1)に属する全ての熱交換部(10)において、一方のヘッダ部(20
)から他方のヘッダ部(16)に熱媒体が流れるようになっている。1つの熱交換部群(例えばG1)とは、「共通の一対のヘッダ部(20,16)の間に並列に設けられ、かつ、内部を同じ方向に熱媒体が流れる隣接する複数の熱交換部(10)の群」と定義することができる。この点は、全ての実施形態に係る全ての熱交換部群(G1~G3)において共通する。 
第1ヘッダ部16の下流端(熱交換部群G2側の端部)と第3ヘッダ部24の上流端(熱交換部群G1側の端部)とは、第1連結部32により連結されている。熱媒体は、第1連結部32の内部に形成された第1連通路34を介して第1熱交換部群G1から第2熱交換部群G2に流れる。つまり、複数(図示例では3つ)の熱交換部10を備えた第1熱交換部群G1と複数(図示例では2つ)の熱交換部10を備えた第2熱交換部群G2とは互いに直列に接続されている。 
ここで、相対的に上流側にある第1熱交換部群G1に属する熱交換部10の数(3つ)が、相対的に下流側にある第2熱交換部群G2に属する熱交換部10の数(2つ)よりも多くなっている。前述したように、一つの熱交換部群(G1,G2)に属する複数の熱交換部10は、当該の複数の熱交換部10の各々を通過する熱媒体の流速が互いに実質的に同じになるように、互いに並列に接続されている。このため、第2熱交換部群G2に属する各熱交換部10を通過する熱媒体の流速が、第1熱交換部群G1に属する各熱交換部10を通過する熱媒体の流速よりも速くなる。 
第2熱交換部群G2には、第1熱交換部群G1の熱交換部10を通過するときにバッテリーモジュール1aから熱を奪うことにより昇温された熱媒体が流入する。上述したように、第2熱交換部群G2の熱交換部10を通過する熱媒体の流速が、第1熱交換部群G1の熱交換部10を通過する熱媒体の流速よりも速いため、第1熱交換部群G1および第2熱交換部群G2の冷却性能を均一化することができる。 
第1熱交換部群G1および第2熱交換部群G2の冷却性能を均一化できることについて説明する。 
第1熱交換部群G1では、第2熱交換部群G2に対し、熱媒体とバッテリーモジュール1aとの温度差が相対的に大きく、かつ熱交換部10を通流する熱媒体の流速が、相対的に遅い。このため、第1熱交換部群G1を通過する熱媒体は混合性が低く、熱媒体通路11の断面で見たときに、中心部分と内表面近傍との温度差が大きくなる。すなわち、熱媒体通路11の内表面近傍を通流する熱媒体の温度が上昇するので、第1熱交換部群G1と熱媒体との熱交換量は、ある一定の程度に抑制される。 
第2熱交換部群G2では、第1熱交換部群G1に対し、熱媒体とバッテリーモジュール1aとの温度差が相対的に小さく、かつ熱交換部10を通流する熱媒体の流速が、相対的に速い。このため、第1熱交換部群G1を通過する熱媒体は混合性が高く、熱媒体通路11の断面で見たときに、中心部分と内表面近傍との温度差が大きくならない。すなわち、熱媒体通路11の内表面近傍を通流する熱媒体の温度が上昇しにくい。しかしながら、熱媒体は、第1連結部32から第2熱交換部群G2に流入した時点で、流入口4における温度よりも上昇している。このため、第2熱交換部群G2と熱媒体との熱交換量は、ある一定の程度に抑制される。 
上記のように、相対的に低い温度の熱媒体が通流する第1熱交換部群G1では熱交換部10を通過する熱媒体の流速を遅いものとし、相対的に高い温度の熱媒体が通流する第2熱交換部群G2では、熱交換部10を通過する熱媒体の流速を早いものとすることで、バッテリーモジュール1aに対する第1熱交換部群G1の冷却能力と第2熱交換部群G2の冷却能力とを均一化することができる。 
また、上記実施形態によれば、並列接続された複数の熱交換部10により1つの熱交換部群(G1,G2)を構成することにより、1つの熱交換部群を通過するときの熱媒体の圧力損失を小さくすることができる。そして、このような熱交換部群を直列に接続するとともに、下流側にある熱交換部群に属する熱交換部10の数を上流側にある熱交換部群に属する熱交換部10の数よりも少なくすることにより、全ての熱交換部群(G1,G2)に含まれる熱交換部10の冷却性能を均一化することができる。 
次に、図3を参照してバッテリー冷却装置の第2実施形態について説明する。第2実施形態では、第2ヘッダ部20の下流端(熱交換部群G2側の端部)と第4ヘッダ部28の上流端(熱交換部群G1側の端部)とは、第2連結部36により連結されており、これにより、熱媒体の一部は、第2連結部36の内部に形成された第2連通路38も介して第1熱交換部群G1から第2熱交換部群G2に流れるようになっている。第2実施形態の構成は上記の点を除き第1実施形態の構成と同一であり、重複説明は省略する。第1実施形態は、第2ヘッダ部20の下流端と第4ヘッダ部28の上流端とを直接連結する連結部(第2連結部36)を有しない点が第2実施形態と異なるとも言える。 
第1連通路34を流れる熱媒体の流量が、第2連通路38を流れる熱媒体の流量よりも大きくなるように、第1および第2連結部32,36が形成されている。例えば、第1連通路34の断面積を、第2連通路38の断面積よりも大きくすることにより、上記流量の関係を得ることができる。 
より具体的には、例えば、下記の不等式1が成立するように、第1連通路34および第2連通路38を構成することができる。 第1熱交換部群G1に属する熱交換部10の数を「m」、第2熱交換部群G2に属する熱交換部10の数を「n」、第2連通路38を通過する熱媒体の流量の、第1連通路34および第2連通路38を通過する熱媒体の流量の和に対する比を「k」としたとき、  k < 1-(n/m)・・・(不等式1) 
あるいは、下記の不等式2が成立するように、第1連通路34および第2連通路38を構成することができる。 第1熱交換部群(G1)に属する熱交換部10の数を「m」、第2熱交換部群G2に属する熱交換部10の数を「n」、第2連通路38の通路断面積の、第1連通路34の通路断面積および第2連通路38の通路断面積の和に対する比を「k」としたとき、 k < 1-(n/m)・・・(不等式2) 
上記の不等式1,2のうちの少なくとも一方を満たすことにより、第1連通路34および第2連通路38を通過する熱媒体の流量の比を適正化すること可能となる、これにより熱交換部群の冷却性能をより均一化することが可能となる。 
なお、k ≧ 1-(n/m)の場合、第2熱交換部群G2に属する熱交換部10を流れる熱媒体の流速が、第1熱交換部群G1に属する熱交換部10を流れる熱媒体の流速よりも低くなってしまう。このため、第2熱交換部群G2に属する熱交換部10により冷却されるバッテリーモジュール1aの温度が、第1熱交換部群G1に属する熱交換部10により冷却されるバッテリーモジュール1の温度よりも高くなってしまう。 
第2実施形態では、第1熱交換部群G1と第2熱交換部群G2とが2つの連結部(第1連結部32および第2連結部36)により連結されているため、第1実施形態のように1つの連結部(第1連結部32)のみで連結されている場合と比較して、バッテリー冷却装置全体の強度および剛性を高めることができる。またこれにより、バッテリー冷却装置の搬送および組み付け時に作業者の負担を低減することができる。 
次に、図4を参照してバッテリー冷却装置の第3実施形態について説明する。第3実施形態では、第2熱交換部群G2の下流側にさらに第3熱交換部群G3が設けられている。第1熱交換部群G1、第2熱交換部群G2および第3熱交換部群G3は直列に接続されている。第1熱交換部群G1には4つの熱交換部10が属しており、第2熱交換部群G2には3つの熱交換部10が属しており、第3熱交換部群G3には2つの熱交換部10が属している。すなわち、第1実施形態および第2実施形態と同様に、上流側にある熱交換部群ほど、属する熱交換部10の数が多い。 
第3実施形態において、第1熱交換部群G1および第2熱交換部群G2については属する熱交換部10の数が1つずつ多い点以外は、第1実施形態と同一である。第2熱交換部群G2と第3熱交換部群G3との関係は、第1熱交換部群G1と第2熱交換部群G2との関係と同一である。 
図4に示すように、第3熱交換部群G3は、複数の熱交換部10の各々の第1端部12(第3熱交換部群G3においては熱媒体流出部)が接続される第5ヘッダ部40と、複数の熱交換部10の各々の第2端部14(第3熱交換部群G3においては熱媒体流入部)が接続される第6ヘッダ部44とを有している。 
第5ヘッダ部40および第6ヘッダ部44はそれぞれX方向に連続的に延びている。第5ヘッダ部40の内部には、各熱交換部10の熱媒体通路11と第1端部12を介して接続される第5接続路42が形成されている。第6ヘッダ部44の内部には、各熱交換部10の熱媒体通路11と第2端部14を介して接続される第6接続路46が形成されている。 
第4ヘッダ部28の下流端(熱交換部群G3側の端部)と第6ヘッダ部44の上流端(熱交換部群G2側の端部)とは、第3連結部48により連結されている。熱媒体は、第3連結部48の内部に形成された第3連通路50を介して第2熱交換部群G2から第3熱交換部群G3に流れる。 
第5接続路42の第2熱交換部群G1側の端部と反対側の端部の近傍に、流出口5が設けられている。流出口5は、第5接続路42に連通している。熱媒体は、第3熱交換部群G3の各熱交換部10の第2端部14から第1端部12に向けて流れる 
第3実施形態は、第1実施形態と同様の効果を奏することは明らかである。
1 バッテリー 1a バッテリーモジュール 10 熱交換部 11 熱媒体通路 12 第1端部(熱媒体流入部または熱媒体流出部) 14 第2端部(熱媒体流入部または熱媒体流出部) 16,20,24,28,40,44 ヘッダ部 18,22,26,30,42,46 接続路 32,36,48 連結部 34,38,50 連通路 G1,G2,G3 熱交換部群

Claims (7)

  1. バッテリー冷却装置であって、 複数の熱交換部(10)を備え、前記各熱交換部が、当該熱交換部の内部に形成された熱媒体通路(11)を流れる熱媒体と当該熱交換部の表面に熱的に接触するバッテリーモジュール(1a)との間で熱交換を行うように構成され、前記各熱交換部が熱媒体流入部および熱媒体流出部(12,14)を有しており、前記複数の熱交換部は、前記熱媒体流入部と前記熱媒体流出部との間の圧力差と前記熱媒体通路内を流れる熱媒体の流速との関係が前記複数の熱交換部間において実質的に同じになるように構成されており、 前記複数の熱交換部は複数の熱交換部群(G1,G2,G3)にグループ分けされ、各熱交換部群に複数の熱交換部(10)が属し、一つの熱交換部群に属する複数の熱交換部は、当該の複数の熱交換部の各々を通過する熱媒体の流速が互いに実質的に同じになるように並列に接続されており、 前記複数の熱交換部群(G1,G2,G3)は互いに直列に接続されており、相対的に上流側にある熱交換部群に属する熱交換部(10)の数が、相対的に下流側にある熱交換部群に属する熱交換部の数よりも多く、これにより、相対的に下流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速が、相対的に上流側にある熱交換部群に属する各一つの熱交換部を通過する熱媒体の流速よりも速くなっていることを特徴とするバッテリー冷却装置。
  2. 前記複数の熱交換部群には、第1熱交換部群(G1)および第2熱交換部群(G2)が少なくとも含まれ、 前記第1および第2熱交換部群(G1,G2)に属する複数の熱交換部(10)は、X方向に沿って並べられ、 前記各熱交換部(10)は、前記X方向に直交するY方向に関して互いに反対側にある第1端部(12)と第2端部(14)とを有し、これら第1端部および第2端部のいずれか一方が前記熱媒体流入部であり、他方が前記熱媒体流出部であり、 前記第1熱交換部群(G1)は、前記第1熱交換部群(G1)に属する複数の熱交換部(10)の各々の第1端部(12)および第2端部(14)がそれぞれ接続された第1ヘッダ部(16)および第2ヘッダ部(20)を有し、前記第1ヘッダ部および前記第2ヘッダ部はX方向に連続的に延び、前記第1ヘッダ部の内部に、複数の熱交換部(10)の熱媒体通路(11)と接続された第1接続路(18)が形成され、前記第2ヘッダ部の内部に、複数の熱交換部の熱媒体通路と接続された第2接続路(22)が形成され、 前記第2熱交換部群(G2)は、前記第2熱交換部群(G2)に属する複数の熱交換部(10)の各々の第1端部(12)および第2端部(14)がそれぞれ接続された第3ヘッダ部(24)および第4ヘッダ部(28)を有し、前記第3ヘッダ部および前記第4ヘッダ部はX方向に連続的に延び、前記第3ヘッダ部の内部に、複数の熱交換部の熱媒体通路と接続する第3接続路(26)が形成され、前記第4ヘッダ部の内部に、複数の熱交換部の熱媒体通路と接続する第4接続路(30)が形成され、 前記第1熱交換部群に(G1)属する各熱交換部(10)では、前記第2端部(14)から前記第1端部(12)に向けて熱媒体が流れるようになっており、 前記第2熱交換部群(G2)に属する各熱交換部(10)では、前記第1端部(12)から前記第2端部(14)に向けて熱媒体が流れるようになっており、 前記第1ヘッダ部(16)の下流端と前記第3ヘッダ部(24)の上流端とは、第1連結部(32)により連結され、熱媒体は、前記第1連結部の内部に形成された第1連通路(34)を介して前記第1熱交換部群(G1)から前記第2熱交換部群(G2)に流れるように構成されている、請求項1記載のバッテリー冷却装置。
  3. 前記第2ヘッダ部(20)の下流端と前記第4ヘッダ部(28)の上流端とは、第2連結部(36)により連結され、熱媒体は、前記第2連結部の内部に形成された第2連通路(38)も介して前記第1熱交換部群から前記第2熱交換部群に流れるように構成されており、前記第1連通路(34)を流れる熱媒体の流量が、前記第2連通路(38)を流れる熱媒体の流量よりも大きくなるように、前記第1および第2連結部(32,36)が形成されている、請求項2記載のバッテリー冷却装置。
  4. 前記第1熱交換部群(G1)に属する熱交換部(10)の数を「m」、前記第2熱交換部群(G2)に属する熱交換部(10)の数を「n」、前記第2連通路(38)を通過する熱媒体の流量の、前記第1連通路(34)を通過する熱媒体の流量および前記第2連通路(38)を通過する熱媒体の流量の和に対する比を「k」としたとき、 k < 1-(n/m)という関係が成立する、請求項3記載のバッテリー冷却装置。
  5. 前記第1熱交換部群(G1)に属する熱交換部(10)の数を「m」、前記第2熱交換部群(G2)に属する熱交換部(10)の数を「n」、前記第2連通路(38)の通路断面積の、第1連通路(34)の通路断面積および第2連通路(38)の通路断面積の和に対する比を「k」としたとき、 k < 1-(n/m)という関係が成立する、請求項3記載のバッテリー冷却装置。
  6. 前記第2ヘッダ部(20)の下流端と、前記第4ヘッダ部(28)の上流端とを直接連結する連結部を有しない、請求項2記載のバッテリー冷却装置。
  7. 少なくとも、前記複数の熱交換部(10)と、前記第1ヘッダ部(16)および前記第2ヘッダ部(20)と、前記第3ヘッダ部(24)および前記第4ヘッダ部(28)とが、互いにろう付けされた2枚の金属板(2,3)から一体的に形成されている、請求項2から6のうちのいずれか一項に記載のバッテリー冷却装置。
PCT/JP2020/020034 2019-05-24 2020-05-21 バッテリー冷却システム WO2020241431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080038883.9A CN113875073B (zh) 2019-05-24 2020-05-21 电池冷却***
JP2021522280A JP7370128B2 (ja) 2019-05-24 2020-05-21 バッテリー冷却システム
EP20815512.7A EP3979395A4 (en) 2019-05-24 2020-05-21 BATTERY COOLING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019098004 2019-05-24
JP2019-098004 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020241431A1 true WO2020241431A1 (ja) 2020-12-03

Family

ID=73552209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020034 WO2020241431A1 (ja) 2019-05-24 2020-05-21 バッテリー冷却システム

Country Status (4)

Country Link
EP (1) EP3979395A4 (ja)
JP (1) JP7370128B2 (ja)
CN (1) CN113875073B (ja)
WO (1) WO2020241431A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124251A1 (ja) * 2020-12-11 2022-06-16 株式会社ヴァレオジャパン バッテリ冷却装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190675A (ja) 2011-03-11 2012-10-04 Sanyo Electric Co Ltd バッテリー装置
JP2013089507A (ja) * 2011-10-19 2013-05-13 Toyota Industries Corp 電池モジュール
JP2013105880A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 電気機器の冷却装置
US20140041835A1 (en) * 2012-08-08 2014-02-13 Magna Steyr Battery Systems Gmbh & Co Og Cooling device for a vehicle battery
JP2014216298A (ja) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 電池モジュール
JP2015022830A (ja) * 2013-07-17 2015-02-02 カルソニックカンセイ株式会社 組電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416236A1 (de) * 1994-05-07 1995-11-09 Schmidt Bretten W Gmbh Wärmeaustauscher
JP2004293833A (ja) * 2003-03-26 2004-10-21 Mitsubishi Heavy Ind Ltd 冷却装置
JP5513445B2 (ja) * 2011-06-08 2014-06-04 本田技研工業株式会社 車両用電源装置
JP2013037869A (ja) * 2011-08-08 2013-02-21 Panasonic Corp 冷却装置および蓄電池装置
JP2013089508A (ja) * 2011-10-19 2013-05-13 Toyota Industries Corp 電池モジュール
JP6516577B2 (ja) * 2015-06-15 2019-05-22 株式会社Subaru バッテリパックの冷却装置
WO2017033412A1 (ja) * 2015-08-27 2017-03-02 三洋電機株式会社 バッテリシステム及びバッテリシステムを備える電動車両
CN106785192A (zh) * 2016-11-30 2017-05-31 浙江吉利控股集团有限公司 一种热管理***
CN206388826U (zh) * 2017-01-25 2017-08-08 安徽江淮汽车集团股份有限公司 一种动力电池的电池液冷管总成及动力电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190675A (ja) 2011-03-11 2012-10-04 Sanyo Electric Co Ltd バッテリー装置
JP2013089507A (ja) * 2011-10-19 2013-05-13 Toyota Industries Corp 電池モジュール
JP2013105880A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 電気機器の冷却装置
US20140041835A1 (en) * 2012-08-08 2014-02-13 Magna Steyr Battery Systems Gmbh & Co Og Cooling device for a vehicle battery
JP2014216298A (ja) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 電池モジュール
JP2015022830A (ja) * 2013-07-17 2015-02-02 カルソニックカンセイ株式会社 組電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124251A1 (ja) * 2020-12-11 2022-06-16 株式会社ヴァレオジャパン バッテリ冷却装置

Also Published As

Publication number Publication date
EP3979395A4 (en) 2023-11-08
JP7370128B2 (ja) 2023-10-27
CN113875073B (zh) 2023-08-15
CN113875073A (zh) 2021-12-31
JPWO2020241431A1 (ja) 2020-12-03
EP3979395A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US8191615B2 (en) Linked heat exchangers having three fluids
KR101750066B1 (ko) 수냉식 이차전지
JP6064730B2 (ja) 冷却装置
US11254236B2 (en) High performance uniform temperature cold plate
US20070228113A1 (en) Method of manufacturing metallic foam based heat exchanger
JP5585543B2 (ja) 車両用冷却装置
KR100687637B1 (ko) 열교환기
US20200292249A1 (en) Heat exchanger
WO2020241431A1 (ja) バッテリー冷却システム
JP4941398B2 (ja) 積層型冷却器
WO2012138833A2 (en) Cooling assembly and method of control
US7845392B2 (en) Heat exchanger assembly
JP6414504B2 (ja) 熱交換器
CN115117514A (zh) 一种交错逆流式一体化冷却***及电动车
CN113357936B (zh) 换热器和用于运行换热器的方法
KR101273440B1 (ko) 열교환기
JPH0650675A (ja) 熱交換器
JP7101449B2 (ja) 車両用バッテリ冷却装置
US20240102745A1 (en) Heat exchanger
CN113270663B (zh) 一种电动车软包电池的冷却***
US20240118042A1 (en) Heat Exchanger
JP2022181053A (ja) 面接触型熱交換器
CN118315732A (zh) 电池换热器、电池包及车辆
JP2022181052A (ja) 面接触型熱交換器
JP2013009011A (ja) 積層型冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020815512

Country of ref document: EP

Effective date: 20220103