WO2020241150A1 - Ultrasonic atomization device and humidification device - Google Patents

Ultrasonic atomization device and humidification device Download PDF

Info

Publication number
WO2020241150A1
WO2020241150A1 PCT/JP2020/017961 JP2020017961W WO2020241150A1 WO 2020241150 A1 WO2020241150 A1 WO 2020241150A1 JP 2020017961 W JP2020017961 W JP 2020017961W WO 2020241150 A1 WO2020241150 A1 WO 2020241150A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ultrasonic
tubular member
atomization
nozzle
Prior art date
Application number
PCT/JP2020/017961
Other languages
French (fr)
Japanese (ja)
Inventor
奨 越智
井出 哲也
豪 鎌田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2021522725A priority Critical patent/JP7169443B2/en
Publication of WO2020241150A1 publication Critical patent/WO2020241150A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an ultrasonic atomizer and a humidity control device.
  • the present application claims priority based on Japanese Patent Application No. 2019-098208 filed in Japan on May 27, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an ultrasonic atomizer equipped with a perforated plate in which a large number of minute through holes are formed in a container.
  • the perforated plate is arranged at a position where the upper surface of the perforated plate does not come into contact with the liquid and the lower surface of the perforated plate comes into contact with the liquid column raised from the liquid surface.
  • One aspect of the present invention is to solve the above-mentioned problems, and to provide an ultrasonic atomizer capable of efficiently atomizing and easily adjusting the amount of atomization. Is one of the purposes.
  • Another aspect of the present invention is to provide a humidity control device provided with the above atomization device.
  • the ultrasonic atomizer includes a housing having an internal space and an exhaust port for storing a liquid substance to be atomized droplets, and the housing.
  • An ultrasonic vibrator that is provided and generates the atomized droplets by irradiating the liquid material with ultrasonic waves, and at least a part of the atomized droplets from the internal space to the outside through the exhaust port.
  • the nozzle includes an airflow generating unit that generates an airflow for sending out, and a nozzle that focuses the ultrasonic waves radiated from the ultrasonic vibrator toward a specific region of the liquid surface of the liquid substance.
  • a tubular member having an injection port for the liquid material at the upper end, and a region of the internal space of the tubular member including the center of gravity of the outer shape of the injection port when viewed from the normal direction of the injection port. It has at least a network structure provided above and forming a liquid column of the liquid material above.
  • the network structure may have a plurality of laminated networks.
  • the net-like structure may have a plurality of nets provided at intervals in the height direction of the tubular member.
  • the tubular member may have a swirling flow generating member that generates a swirling flow of the liquid material introduced inside the tubular member. ..
  • the tubular member may have a throttle portion in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member is narrowed. ..
  • a plurality of the ejection ports are provided, and the network structure is provided in a region including at least the center of gravity of each of the plurality of ejection ports. May be good.
  • the pore diameter of the network structure may be 10 ⁇ m or more and 1 mm or less.
  • the thickness of the network structure may be 5 mm or less.
  • the humidity control device includes a hygroscopic portion that allows the liquid hygroscopic material to absorb at least a part of the moisture contained in the air by bringing the liquid hygroscopic material containing a hygroscopic substance into contact with air.
  • the atomization regeneration unit includes an atomization regeneration unit that regenerates the liquid moisture absorption material by atomizing and removing at least a part of the water contained in the liquid moisture absorption material supplied from the moisture absorption unit. , Consists of an ultrasonic atomizer according to one aspect of the present invention.
  • the ultrasonic atomizing device According to the ultrasonic atomizing device according to one aspect of the present invention, atomization can be efficiently performed and the amount of atomization can be easily adjusted. Further, according to one aspect of the present invention, it is possible to provide a humidity control device including the above atomization device.
  • FIG. 1 is a cross-sectional view showing an ultrasonic atomizer of the first embodiment.
  • the scale of the dimension may be different depending on the component.
  • the ultrasonic atomizing device 10 includes a housing 11, an ultrasonic vibrator 12, an air flow generating unit 13, and a nozzle 14.
  • the housing 11 has an internal space 11a for storing a liquid material W to be a mist-like droplet W1, an air supply port 11b, and an exhaust port 11c.
  • the housing 11 is a container made of a material such as metal or resin, and the constituent material is not particularly limited.
  • An air supply pipe 15 is connected to the air supply port 11b, and an exhaust pipe 16 is connected to the exhaust port 11c.
  • the liquid material W has a viscosity of, for example, 1 ⁇ 10 -3 Pa ⁇ s or more.
  • Specific examples of the liquid substance W include glycerin, ethylene glycol, sodium polyacrylate aqueous solution, polyethylene glycol, triethylene glycol, calcium chloride aqueous solution, lithium chloride aqueous solution, or a mixture thereof.
  • the ultrasonic vibrator 12 is provided in the housing 11 and generates atomized droplets W1 from the liquid material W by irradiating the liquid material W with ultrasonic waves.
  • the ultrasonic vibrator 12 is provided on the bottom plate 11e of the housing 11.
  • the ultrasonic vibrator 12 is provided so as to be inclined with respect to the bottom plate 11e of the housing 11.
  • one ultrasonic oscillator 12 is used, but a plurality of ultrasonic oscillators 12 may be used.
  • the airflow generating unit 13 generates an airflow F for sending at least a part of the mist-like droplet W1 from the internal space 11a to the outside through the exhaust port 11c of the housing 11.
  • the airflow generating unit 13 is composed of a blower provided on the air supply pipe 15.
  • the airflow generating unit 13 is not limited to the air supply pipe 15, and may be composed of blowers provided in the exhaust pipe 16.
  • the nozzle 14 focuses the ultrasonic waves radiated from the ultrasonic vibrator 12 toward a specific region on the liquid surface of the liquid material W. Even if there is no nozzle 14, ultrasonic waves can be applied to a specific location on the liquid surface of the liquid material W by adjusting the ultrasonic wave irradiation conditions when irradiating the liquid material W with ultrasonic waves from the ultrasonic vibrator 12. You can concentrate. However, by using the nozzle 14, ultrasonic waves can be efficiently concentrated at a specific location on the liquid surface of the liquid material W. As a result, a liquid column W2 in which the liquid material W is highly raised can be generated above the nozzle 14. The mist-like droplet W1 is generated from every part of the liquid surface, but is particularly abundantly generated from the liquid column W2 and its vicinity.
  • the nozzle 14 has a tubular member 18 and a net-like structure 19.
  • the tubular member 18 has an upper portion and a lower portion open, and has an injection port 18b for the liquid substance W at the upper end. Further, the tubular member 18 has a tapered truncated cone shape in which the internal space is narrowed from the lower side to the upper side, that is, from the side closer to the ultrasonic vibrator 12 to the side farther away.
  • the tubular member 18 is made of a metal material such as aluminum, copper, or stainless steel. However, the constituent material of the tubular member 18 is not particularly limited.
  • the tubular member 18 is arranged such that the central axis 18c of the tubular member 18 intersects the liquid surface.
  • the shape of the tubular member 18 does not necessarily have to be a truncated cone, and may be, for example, a truncated cone.
  • the tubular member 18 is arranged so that the central axis 18c is tilted from the direction perpendicular to the liquid surface.
  • the radiation axis J of the ultrasonic vibrator 12 is also tilted from the direction perpendicular to the liquid surface.
  • the radiation axis J of the ultrasonic vibrator 12 is defined as a virtual axis that passes through the center of the ultrasonic radiation surface 12a of the ultrasonic vibrator 12 and extends parallel to the normal direction of the ultrasonic radiation surface 12a.
  • the central axis 18c of the tubular member 18 coincides with the radiation axis J of the ultrasonic vibrator 12.
  • the central axis 18c of the tubular member 18 does not necessarily have to coincide with the radiation axis J of the ultrasonic vibrator 12. In some cases, it may be desirable that the central axis 18c of the tubular member 18 is arranged at a position deviated from the radiation axis J of the ultrasonic vibrator 12.
  • the liquid column W2 is formed to be tilted from the direction perpendicular to the liquid surface.
  • the ultrasonic waves reflected by the liquid surface are less likely to return to the ultrasonic oscillator 12, and the ultrasonic oscillator 12 itself is less likely to be damaged by the ultrasonic waves.
  • the liquid column W2 is less likely to be disturbed, and the liquid column W2 is stably formed.
  • the network structure 19 is the center of gravity of the outer shape of the injection port 18b when viewed from the normal direction of the injection port 18b in the internal space of the tubular member 18, that is, the outer shape of the injection port 18b in the present embodiment. It is provided at least in the region including the center point of a certain circle, and forms a liquid column W2 of the liquid material W above. As shown in FIGS. 2A to 2D, the region including the center of gravity point is a circular region R centered on the center of gravity point G. The diameter of the region R is, for example, 1 mm.
  • the network structure 19 is made of, for example, a resin material such as polyester, polyethylene, polypropylene, polytetrafluoroethylene, nylon, fluorine fiber, polyurethane, and a metal material such as stainless steel and aluminum, but the constituent material is not particularly limited.
  • the reticulated structure 19 has a mesh having a pore diameter in a predetermined range.
  • the network structure 19 preferably has substantially uniform pore diameters, but may have a predetermined distribution in pore diameters.
  • the thickness of the liquid column W2 can be adjusted by adjusting the pore diameter of the network structure 19, and atomization is performed as compared with the case where the network structure 19 is not used.
  • the amount can be increased or decreased. This effect will be described in detail later.
  • the form in which the net-like structure 19 is provided at least in the region including the center of gravity point G of the circle, which is the outer shape of the injection port 18b, in the internal space of the tubular member 18, is described below.
  • the form shown is conceivable.
  • the region R including the center-of-gravity point G is indicated by a two-dot chain line circle.
  • the center of gravity point G coincides with the center point of the circle.
  • the net-like structure may be provided in the region including the center of gravity point G.
  • FIG. 2A is a diagram showing a first example of a planar installation form of the network structure 19. As shown in FIG. 2A, the network structure 19A of the first example is provided so as to block the entire internal space of the tubular member 18.
  • FIG. 2B is a diagram showing a second example of a two-dimensional installation form of the network structure 19. As shown in FIG. 2B, the reticulated structure 19B of the second example is provided in a linear region extending in the diameter direction including the region R in the internal space of the tubular member 18.
  • FIG. 2C is a diagram showing a third example of a planar installation form of the network structure 19.
  • the network structure 19C of the third example is provided in two linear regions including the region R and orthogonal to each other in the internal space of the tubular member 18.
  • FIG. 2D is a diagram showing a fourth example of a planar installation form of the network structure 19.
  • the reticulated structure 19D of the fourth example is provided in a rectangular region including the region R in the internal space of the tubular member 18.
  • the network structure 19D is supported by the tubular member 18 by an arbitrary support member 21.
  • the thickness t of the reticulated structure 19 is preferably 5 mm or less. If the thickness t of the reticulated structure 19 exceeds 5 mm, the liquid column W2 is less likely to be formed.
  • the net-like structure 19 may be composed of a plurality of nets laminated so as to be in contact with each other.
  • Each of the plurality of nets may be a net having the same pore diameter or a net having different pore diameters. Further, each of the plurality of nets may be a net made of different materials.
  • the plurality of nets may be overlapped with each other without shifting the upper and lower wires constituting the net, or may be overlapped with the upper and lower wires being displaced from each other.
  • the hole diameter of the network structure 19 is the average value of the plurality of hole diameters when the network structure 19 is viewed from the direction along the central axis 18c of the tubular member 18. Just define it. Therefore, the hole diameter of the net-like structure 19 can be made smaller than the hole diameter of one net by laminating a plurality of nets and stacking the upper and lower wire rods in a state of being intentionally displaced from each other.
  • FIG. 3A is a diagram showing a first example of a cross-sectional installation form of the network structure 19.
  • the net-like structure 19E of the first example is provided at a position lower than the upper end of the tubular member 18.
  • the height of the liquid level inside the tubular member 18 is substantially equal to the height of the liquid level around the tubular member 18.
  • the height of the lower surface of the net-like structure 19E is substantially equal to the height of the liquid level around the tubular member 18.
  • the height of the upper surface of the reticulated structure 19E is about 0.5 to 3 cm higher than the height of the liquid level around the tubular member 18.
  • FIG. 3B is a diagram showing a second example of a cross-sectional installation form of the network structure 19.
  • the net-like structure 19F of the second example is provided at the upper end of the tubular member 18.
  • the height of the liquid level inside the tubular member 18 is higher than the height of the liquid level around the tubular member 18.
  • the height of the lower surface of the net-like structure 19F is about 0.5 to 3 cm higher than the height of the liquid level around the tubular member 18.
  • FIG. 3C is a diagram showing a third example of a cross-sectional installation form of the network structure 19.
  • the net-like structure 19G of the third example is provided at the upper end of the tubular member 18.
  • the height of the liquid level inside the tubular member 18 is higher than the height of the liquid level around the tubular member 18.
  • the liquid column W2 was formed from the upper surface of the network structure 19F
  • the liquid column W2 was formed from below the network structure 19G. It is formed and extends above the reticulated structure 19G.
  • FIG. 4A is a diagram showing a first example of the support structure of the network structure 19.
  • the reticulated structure 19H of the first example is fixed to the tubular member 18 via the adhesive 23.
  • the net-like structure 19H may be fixed to the tubular member 18 via an adhesive tape or the like.
  • FIG. 4B is a diagram showing a second example of the support structure of the network structure 19.
  • a protrusion 24 projecting inward is provided on the inner wall surface of the tubular member 18.
  • the net-like structure 19I is placed on the upper surface of the protrusion 24 and fixed by an adhesive, an adhesive tape or the like (not shown).
  • the portion on which the net-like structure 19I is placed is not limited to the protrusion 24, and may be a stepped portion or the like.
  • FIG. 4C is a diagram showing a third example of the support structure of the network structure 19.
  • the tubular member 18 is divided into two, and the upper tubular member 18A and the lower tubular member 18B are fitted to each other.
  • the net-like structure 19J is sandwiched and fixed between the upper tubular member 18A and the lower tubular member 18B. It is desirable that the network structure 19J has a thickness and flexibility sufficient to be sandwiched between the two tubular members 18A and 18B.
  • FIG. 4D is a diagram showing a fourth example of the support structure of the network structure 19. As shown in FIG. 4D, in the support structure of the fourth example, a fixing jig 25 to which the net-like structure 19K is mounted is used, and the fixing jig 25 is fitted and fixed to the upper portion of the tubular member 18.
  • Example 1 The present inventors installed two types of network structures having different pore diameters in the nozzle and performed ultrasonic atomization. Specifically, the nozzle of Example 1 having a network structure having a pore diameter of several tens of ⁇ m or more and 1 mm or less, the nozzle of Example 2 having a network structure having a pore diameter of more than 1 mm, and a pore diameter of less than 1 ⁇ m. Ultrasonic atomization was performed using each of the nozzles of Example 3 provided with the reticulated structure having the above. On the other hand, as a comparative example, ultrasonic atomization was performed using a nozzle not provided with a network structure. As the liquid, an aqueous glycerin solution having a viscosity of 6 ⁇ 10 -3 Pa ⁇ s was used. The conditions of the ultrasonic oscillator are a frequency of 2.4 MHz and an output of 15 W.
  • Example 3 When the nozzle of Example 3 provided with a network structure having a pore diameter of less than 1 ⁇ m was used, a liquid column could not be generated above the nozzle, and almost no droplet could be generated. According to the inference of the present inventors, the reason for this is considered to be that the pore diameter of the network structure is too small and the loss of injection pressure is too large when the thickness is less than 1 ⁇ m.
  • FIG. 5 is experimental data showing the number of jet injections and the values of atomization efficiency at different liquid column diameters.
  • the horizontal axis of the graph shown in FIG. 5 indicates the diameter (mm) of the liquid column, and the vertical axis indicates the number of jet injections (times / 0.05 seconds).
  • the upper part of the graph is an image of a high-speed camera at a specific time after applying ultrasonic waves.
  • the state of the liquid column and its vicinity was observed with a high-speed camera, and the number of times per 0.05 seconds was measured.
  • the number of jet injections was measured for each height by dividing the height of the liquid column into 0 to 5 mm, 5 to 10 mm, and 10 to 15 mm.
  • air for transporting the generated mist to the outside was flowed toward the liquid column at a flow rate of 5 m / sec for a certain period of time, and the weight of the entire container before and after that was measured.
  • the amount of weight loss was defined as the amount of atomization (g).
  • this atomization amount was divided by the input electric energy to calculate the atomization efficiency (g / Wh). Since the diameter of the liquid column differs between the base end side and the tip end side of the liquid column, the diameter of the liquid column was measured at a position 1 mm from the upper surface of the network structure.
  • Jet injection is one of the mechanisms by which fine droplets are generated by ultrasonic atomization.
  • the liquid surface vibrates, the liquid on the side surface of the dent formed on the liquid surface flows toward the bottom, and the flowing liquid rises in the center of the dent. After that, the bubbles burst, the tips of the raised liquid are torn off, and fine droplets are generated one after another.
  • the phenomenon in which bubbles burst when ultrasonic waves are applied through such a process is called jet injection, and the droplets generated from the swelling of the liquid surface during jet injection are called jet droplets.
  • the liquid column diameter was 1.8 mm.
  • the number of jet injections was about 160 times / 0.05 seconds, and the number of jet injections at a high position of 10 to 15 mm from the base end side of the liquid column was the largest.
  • the atomization efficiency was 3.5 g / Wh.
  • Example 1 when the nozzle of Example 1 provided with the network structure having a pore diameter of several tens of ⁇ m to 1 mm was used, the liquid column diameter was 0.6 mm.
  • the number of jet injections was about 250 times / 0.05 seconds, and the number of jet injections at a position as low as 0 to 5 mm from the base end side of the liquid column was the largest.
  • the atomization efficiency was 4.4 g / Wh. Therefore, it was found that when it is desired to increase the amount of atomization as compared with the case where the reticulated structure is not installed, it is desirable to make the reticulated structure 10 ⁇ m or more and 1 mm or less.
  • Example 2 when the nozzle of Example 2 provided with the network structure having a pore diameter exceeding 1 mm was used, the liquid column diameter was 3.0 mm.
  • the number of jet injections was 10 times / 0.05 seconds or less.
  • the atomization efficiency was 2.0 g / Wh.
  • the diameter of the liquid column can be adjusted by changing the pore diameter of the reticulated structure, and the amount of atomization (atomization efficiency) can be further controlled.
  • the ultrasonic density per unit cross-sectional area of the liquid column increases, so that jet injection is likely to occur, and when the liquid column becomes thick, the unit of the liquid column is cut off. It is thought that jet injection is less likely to occur because the ultrasonic density per area is low.
  • the ultrasonic waves propagate to the upper part of the liquid column and are consumed for jet injection at the lower part of the liquid column before the ultrasonic energy is attenuated. , It seems that the atomization efficiency will be improved as a whole.
  • Example 2 Next, the present inventors performed ultrasonic atomization using the nozzle of Example 1 provided with a network structure having a pore size of several tens of ⁇ m to 1 mm, and using three kinds of liquids having different viscosities. Specifically, ultrasonic waves are used using a liquid having a viscosity of 1 ⁇ 10 -3 Pa ⁇ s, a liquid having a viscosity of 6 ⁇ 10 -3 Pa ⁇ s, and a liquid having a viscosity of 30 ⁇ 10 -3 Pa ⁇ s. It was atomized. The other experimental conditions are the same as in Experiment 1. On the other hand, as a comparative example, ultrasonic atomization was performed using liquids having three viscosities using a nozzle not provided with a network structure.
  • FIG. 6 is a graph showing the relationship between the viscosity of the liquid and the atomization efficiency.
  • the atomization efficiency of the nozzle of the comparative example is about 9.8 g / Wh, whereas the nozzle of the first embodiment The atomization efficiency was about 11.7 g / Wh.
  • the atomization efficiency is about 3.6 g / Wh in the comparative example, whereas the atomization efficiency is about 4.4 g / Wh in this example. Met.
  • the atomization efficiency is about 2.0 g / Wh in the comparative example, whereas the atomization efficiency is about 2.4 g / Wh in this example.
  • Example 1 provided with a reticulated structure. It was found that the atomization efficiency can be improved by using the nozzle of No. 3 as compared with the case of using the nozzle of the comparative example not provided with the network structure. Therefore, it was found that the ultrasonic atomizer of the present embodiment can be applied regardless of the viscosity and type of the liquid material used. Furthermore, it is preferable to use a network structure having an appropriate pore size according to the viscosity of the liquid material to be used.
  • FIG. 7 is a cross-sectional view of the ultrasonic atomizer of the second embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the ultrasonic atomizer 30 of the second embodiment has a nozzle 31 that forms a liquid column W2 of the liquid material W above.
  • the nozzle 31 has a tubular member 18 and a net-like structure 32.
  • the net-like structure 32 has a first net 32A and a second net 32B provided at intervals in the direction along the central axis 18c of the tubular member 18, that is, in the height direction of the tubular member 18. It has multiple nets including.
  • the first net 32A is fixed at a position slightly lower than the upper end of the tubular member 18.
  • the second net 32B is fixed to the upper end of the tubular member 18.
  • Other configurations of the ultrasonic atomizer 30 are the same as those in the first embodiment.
  • the first net 32A and the second net 32B may be nets having the same pore diameter or nets having different pore diameters. Further, the first net 32A and the second net 32B may be nets made of different materials. In the second embodiment, an example in which a plurality of nets are composed of two nets 32A and 32B will be given, but the plurality of nets may be composed of three or more nets.
  • the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 32, and the amount of atomization can be controlled. The same effect as is obtained.
  • the liquid column W2 is gradually thinned so that the liquid column W2 thinned by the first net 32A is further thinned by the second net 32B. be able to.
  • the ultrasonic atomizing device 30 of the second embodiment is suitable when it is desired to increase the amount of atomization.
  • FIG. 8 is a cross-sectional view of the ultrasonic atomizer 34 of the modified example of the second embodiment.
  • the net-like structure 35 is different from the first net 35A provided at intervals in the direction along the central axis 18c of the tubular member 18. It has a plurality of nets including a second net 35B.
  • the first net 35A and the second net 35B are connected to each other via an arbitrary connecting member 35C.
  • the first net 35A is fixed to the upper end of the tubular member 18, and the second net 35B is located above the tubular member 18.
  • FIG. 9 is a perspective view of the nozzle 37 in the ultrasonic atomizer of the third embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the nozzle 37 of the third embodiment has a tubular member 38 and a net-like structure 19.
  • the tubular member 38 has a plurality of swirling flow generating members 39 inside the tubular member 38.
  • the plurality of swirling flow generating members 39 generate the swirling flow W5 of the liquid material introduced inside the tubular member 38.
  • a plurality of holes 38h for allowing a liquid substance to flow into the tubular member 38 are provided on the side surface of the tubular member 38.
  • Each of the plurality of swirling flow generating members 39 is provided corresponding to each of the plurality of holes 38h.
  • the swirling flow generating member 39 has a wall surface 39a that closes the upper side of the hole 38h and one side thereof, an inclined curved surface 39b, and an obliquely upper surface along the inner wall surface of the tubular member 38. It is composed of a guide plate having a discharge port 39c for discharging a liquid substance.
  • the swirling flow generating member 39 forms a flow in which the liquid material that has flowed into the inside of the tubular member 38 through the hole 38h is swirled upward along the inner wall surface of the tubular member 38.
  • Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
  • the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 19, and the amount of atomization can be controlled. A similar effect can be obtained.
  • the swirling flow generating member 39 forms the swirling flow W5 of the liquid material, so that the flow velocity of the liquid material increases, and the liquid material injected from the tip of the nozzle 37.
  • the injection pressure increases.
  • the ultrasonic atomizer of the third embodiment is suitable when it is desired to increase the amount of atomization.
  • FIG. 10 is a perspective view of the nozzle 41 of the modified example of the third embodiment.
  • a plurality of swirling flow generating members 43 are provided at intervals on the outer surface of the tubular member 42.
  • the swirling flow generating member 43 generates a swirling flow W5 of a liquid material introduced inside the tubular member 42.
  • the swirling flow generating member 43 has a wall portion that forms a flow path 43d that guides a liquid substance to flow along the inner wall surface of the tubular member 42. As a result, the swirling flow generating member 43 forms a flow in which the liquid material that has flowed into the inside of the tubular member 42 swirls upward along the inner wall surface of the tubular member 42.
  • the ultrasonic atomizer of this modified example also has the same actions and effects as those of the third embodiment.
  • FIG. 11 is a perspective view of the nozzle 45 in the ultrasonic atomizer of the fourth embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the nozzle 45 of the fourth embodiment has a tubular member 46 and a net-like structure 47.
  • the tubular member 46 has a narrowed portion 46b in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member 46 is narrowed.
  • the tubular member 46 has a flat shape in which the circular injection port at the tip is crushed in one direction, and this portion constitutes the throttle portion 46b. More specifically, since the tubular member has a truncated cone shape, the cross-sectional area of the flow path decreases from the bottom to the top throughout, but the flow path is cut off at the throttle portion. The area is decreasing sharply compared to other parts.
  • Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
  • the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 47, and the amount of atomization can be controlled. A similar effect can be obtained.
  • the ultrasonic atomizing device of the fourth embodiment since the tubular member 46 is provided with the throttle portion 46b, the flow velocity of the liquid material increases, and the injection pressure of the liquid material injected from the tip of the nozzle 45 increases. To increase. As a result, an effect that a finer liquid column can be easily formed as compared with the first embodiment can be obtained. Therefore, the ultrasonic atomizer of the fourth embodiment is suitable when it is desired to increase the amount of atomization.
  • FIG. 12 is a perspective view of the nozzle 49 of the modified example of the fourth embodiment.
  • the tubular member 50 has a throttle portion 50b in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member 50 is narrowed.
  • the tubular member 50 has a portion where the cross-sectional area of the flow path is sharply narrowed at a position between the lower end and the upper end, such as a Venturi pipe, and this portion constitutes the throttle portion 50b. doing.
  • the ultrasonic atomizer of this modified example also has the same actions and effects as those of the fourth embodiment.
  • FIG. 13 is a perspective view of the nozzle 52 in the ultrasonic atomizing device of the fifth embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the nozzle 52 of the fifth embodiment has a tubular member 53 and a net-like structure 54.
  • the tubular member 53 has a plurality of liquid material injection ports 53c.
  • a top plate 53t is provided at the upper end of the tubular member 53, and four liquid material injection ports 53c are formed on the top plate 53t.
  • the number of liquid material injection ports 53c is not particularly limited.
  • the network structure 54 is provided for each of the plurality of liquid material injection ports 53c in a region including at least the center of gravity point of a circle which is the outer shape of each liquid material injection port 53c when viewed from the normal direction. There is.
  • the net-like structure 54 may be provided on the entire tubular member 53, or may be provided only at a location corresponding to each liquid material injection port 53c. Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
  • the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 54, and the amount of atomization can be controlled. A similar effect can be obtained.
  • the tubular member 53 has a plurality of liquid material injection ports 53c, a plurality of thin liquid columns can be formed. As a result, the amount of atomization can be further increased.
  • FIG. 14 is a perspective view of the nozzle 56 of the modified example of the fifth embodiment.
  • the liquid substance injection port of the tubular member 57 is divided into two by crushing the central portion of the upper end in one direction, and two liquid substances are emitted.
  • the outlet 57c is formed.
  • the net-like structure 58 may be provided on the entire tubular member 57, or may be provided only at a location corresponding to each liquid material injection port 57c.
  • the ultrasonic atomizer of this modified example also has the same actions and effects as those of the fifth embodiment.
  • FIG. 15 is a cross-sectional view of the ultrasonic atomizer 60 of the sixth embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the ultrasonic atomizer 60 of the sixth embodiment includes a housing 61, an ultrasonic vibrator 12, an airflow generating unit 13, and a nozzle 14.
  • the configuration of the nozzle 14 is the same as that of the first embodiment.
  • the housing 61 has an internal space 61a for storing the liquid material W to be the mist-like droplets W1, an air supply port 61b, and an exhaust port 61c.
  • both the air supply port 11b and the exhaust port 11c are provided on the upper part of the housing 11.
  • the airflow F flowing from the air supply port 11b toward the exhaust port 11c flows at a relatively high position away from the liquid level in the housing 11.
  • the air supply port 61b is provided at a relatively low position close to the liquid level
  • the exhaust port 61c is provided at a relatively high position far from the liquid level.
  • the airflow F flowing from the air supply port 61b toward the exhaust port 61c flows from the low position to the high position in the housing 61.
  • the diameter of the liquid column W2 can be adjusted by changing the pore diameter of the network structure 19, and the atomization amount can be controlled. The same effect as the form can be obtained.
  • the ultrasonic atomizing device 60 of the sixth embodiment when a thin liquid column W2 is formed by selecting the pore size of the network structure 19, the following effects can be obtained.
  • a thin liquid column W2 is formed, as shown in FIG. 5, many mist-like droplets W1 are generated at the lower part of the liquid column W2.
  • the airflow F passes through the lower part of the liquid column W2 from a position close to the liquid level in the housing 61 and flows toward a higher position, so that the liquid column Many mist-like droplets W1 generated in the lower part of W2 can be efficiently carried on the air flow F. Therefore, according to the ultrasonic atomizing device 60 of the sixth embodiment, the transport efficiency of the atomized droplet W1 can be improved as compared with the first embodiment.
  • FIG. 16 is a cross-sectional view of the ultrasonic atomizer 63 of the modified example of the sixth embodiment.
  • the housing 64 has an internal space 64a for storing a liquid material W to be a mist-like droplet W1, an air supply port 64b, and an exhaust port 64c. And have.
  • the air supply port 64b is provided at a relatively low position of the housing 64, and the exhaust port 64c is provided on the top plate 64t of the housing 64.
  • a tubular guide pipe 65 is provided inside the housing 64 so as to surround the liquid column W2 formed when ultrasonic waves are applied and the exhaust port 64c.
  • the upper end of the guide pipe 65 is fixed to the top plate 64t, and a gap is provided between the lower end of the guide pipe 65 and the liquid level.
  • the ultrasonic atomizing device 63 of this modified example also has the same actions and effects as those of the sixth embodiment.
  • FIG. 17 is a schematic configuration diagram of the humidity control device 100 of the seventh embodiment.
  • the humidity control device 100 of the present embodiment includes a moisture absorbing unit 101, an atomization regeneration unit 102, a first liquid moisture absorbing material transport flow path 103, and a second liquid moisture absorbing material transport flow path 104.
  • the first air introduction flow path 105, the second air introduction flow path 106, the first air discharge flow path 107, the second air discharge flow path 108, and the control unit 109 are provided.
  • the humidity control device 100 includes an outer shell housing 110, and the moisture absorbing unit 101 and the atomization regeneration unit 102 are housed in the internal space 110c of the outer shell housing 110.
  • the moisture absorbing portion 101 includes a first storage tank 112, a blower 113, and a moisture absorbing portion nozzle 114.
  • the hygroscopic unit 101 causes the liquid hygroscopic material L to absorb at least a part of the moisture contained in the air A1 by bringing the liquid hygroscopic material L containing the hygroscopic substance into contact with the air A1 existing in the external space. It is desirable that the moisture absorbing portion 101 absorbs as much water as possible into the liquid moisture absorbing material L, but at least a part of the moisture contained in the air A1 may be absorbed by the liquid moisture absorbing material L.
  • the liquid moisture absorbing material L is stored inside the first storage tank 112.
  • the liquid moisture absorbing material L will be described later.
  • the first air introduction flow path 105, the first air discharge flow path 107, and the first liquid hygroscopic material transport flow path 103 are connected to the first storage tank 112.
  • the air A1 is supplied to the internal space of the first storage tank 112 by the blower 113 via the first air introduction flow path 105.
  • the moisture absorbing portion nozzle 114 is arranged in the upper part of the internal space of the first storage tank 112. After being regenerated by the atomization regeneration unit 102 described later, the liquid hygroscopic material L1 returned to the moisture absorption unit 101 via the second liquid moisture absorption material transport flow path 104 is inside the first storage tank 112 from the moisture absorption unit nozzle 114. It flows down into the space, and at this time, the liquid hygroscopic material L1 and the air A1 come into contact with each other. This type of contact between the liquid hygroscopic material L1 and the air A1 is generally referred to as a "flow-down method".
  • the contact form between the liquid moisture absorbing material L1 and the air A1 is not limited to the flow-down method, and other methods can be used.
  • a so-called bubbling method in which the air A1 is supplied in the form of bubbles in the liquid moisture absorbing material L stored in the first storage tank 112, can also be used.
  • the air A1 existing in the external space forms an air flow from the blower 113 toward the discharge port 107b of the first air discharge flow path 107, and comes into contact with the liquid moisture absorbing material L flowing down from the moisture absorbing portion nozzle 114. At this time, at least a part of the moisture contained in the air A1 is removed by being absorbed by the liquid moisture absorbing material L. Since the moisture absorbing portion 101 obtains air from which moisture has been removed from the original indoor air A1, this air is drier than the air in the external space of the humidity control device 100. In this way, the dry air A2 is discharged into the room through the first air discharge flow path 107.
  • the liquid hygroscopic material L is a liquid that exhibits a property of absorbing moisture (hygroscopicity). For example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable.
  • the liquid hygroscopic material L contains a hygroscopic substance described later. Further, the liquid hygroscopic material L may contain a hygroscopic substance and a solvent. Examples of this type of solvent include solvents that dissolve or mix with hygroscopic substances, such as water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • Examples of the organic material used as a hygroscopic substance include alcohols having a divalent value or higher, ketones, organic solvents having an amide group, sugars, known materials used as raw materials for moisturizing cosmetics, and the like.
  • an organic material preferably used as a hygroscopic substance because of its high hydrophilicity a known material used as a raw material for alcohols having a divalent value or higher, an organic solvent having an amide group, sugars, moisturizing cosmetics and the like. Can be mentioned.
  • dihydric or higher alcohols examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • organic solvent having an amide group examples include formamide and acetamide.
  • sugars examples include sucrose, pullulan, glucose, xylene, fructose, mannitol, sorbitol and the like.
  • Known materials used as raw materials for moisturizing cosmetics include, for example, 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen and the like.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen and the like.
  • inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, and pyrrolidone.
  • examples thereof include sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity, for example, when the material of the hygroscopic substance and water are mixed, the proportion of water molecules in the vicinity of the surface (liquid surface) of the liquid hygroscopic material L increases.
  • the atomization regeneration unit 102 which will be described later, generates atomized droplets W1 from the vicinity of the surface of the liquid moisture absorbing material L to separate water from the liquid moisture absorbing material L. Therefore, it is preferable that the proportion of water molecules in the vicinity of the surface of the liquid moisture absorbing material L is large in that water can be efficiently separated.
  • the proportion of water molecules in the vicinity of the surface of the liquid hygroscopic material L is large, the proportion of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material L is relatively small, so that the hygroscopic substance in the atomization regeneration unit 102 It is preferable in that loss can be suppressed.
  • the concentration of the hygroscopic substance contained in the liquid hygroscopic material L1 used for the treatment in the moisture absorbing portion 101 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material L1 can efficiently absorb water.
  • the viscosity of the liquid hygroscopic material L is preferably 25 ⁇ 10 -3 Pa ⁇ s or less.
  • the liquid column W2 of the liquid moisture absorbing material L is likely to be generated on the liquid surface of the liquid moisture absorbing material L. Therefore, water can be efficiently separated from the liquid moisture absorbing material L.
  • the atomization regeneration unit 102 since the atomization regeneration unit 102 includes the ultrasonic atomization apparatus of the first to sixth embodiments, which can obtain high atomization efficiency regardless of the viscosity of the liquid to be atomized. Even if the liquid moisture absorbing material L has a high viscosity, water can be separated more efficiently than in the conventional case.
  • the atomization regeneration unit 102 includes a second storage tank 116 (housing), a blower 117 (air flow generation unit), an ultrasonic oscillator 118, and an induction tube 119.
  • the atomization regeneration unit 102 atomizes at least a part of the water contained in the liquid hygroscopic material L2 supplied from the hygroscopic unit 101 via the first liquid hygroscopic material transport flow path 103, and at least the water from the liquid hygroscopic material L2.
  • the liquid hygroscopic material L2 is regenerated by removing a part of the material.
  • the liquid moisture absorbing material L2 to be regenerated is stored in the second storage tank 116.
  • the first liquid moisture absorbing material transport flow path 103, the second liquid moisture absorbing material transport flow path 104, the second air introduction flow path 106, and the second air discharge flow path 108 are connected to the second storage tank 116.
  • the second storage tank 116 corresponds to the housing in the ultrasonic atomizer of the first to sixth embodiments.
  • the blower 117 sends air A1 from the external space of the outer shell housing 110 into the inside of the second storage tank 116 via the second air introduction flow path 106, and the second air discharge flow from the inside of the second storage tank 116.
  • An air flow flowing to the outside of the outer shell housing 110 is generated through the path 108.
  • the ultrasonic vibrator 118 irradiates the liquid hygroscopic material L2 with ultrasonic waves to generate mist-like droplets W1 containing water from the liquid hygroscopic material L2.
  • the ultrasonic vibrator 118 is provided in contact with the bottom plate of the second storage tank 116.
  • the liquid column W2 of the liquid hygroscopic material L2 is generated on the liquid surface of the liquid hygroscopic material L2 by adjusting the generation conditions of the ultrasonic waves. Can be done.
  • Most of the mist-like droplets W1 are generated from the liquid column W2 of the liquid hygroscopic material L2 and its vicinity.
  • the guide pipe 119 guides the mist-like droplet W1 generated from the liquid moisture absorbing material L2 to the exhaust port 108b of the second air discharge flow path 108.
  • the guide pipe 119 is provided so as to surround the exhaust port 108b.
  • the second air discharge flow path 108 discharges the air A4 containing the mist-like droplets W1 into the outer space of the outer shell housing 110 and removes it from the inside of the humidity control device 100.
  • water can be separated from the liquid moisture absorbing material L2.
  • the hygroscopic performance of the liquid hygroscopic material L2 is enhanced again, and the liquid hygroscopic material L2 can be returned to the hygroscopic unit 101 and reused.
  • the air A4 contains the mist-like droplets W1 generated inside the second storage tank 116, the air A4 is moist than the air A2 in the outer space of the outer shell housing 110. In this way, the humidified air A4 is discharged into the room through the second air discharge flow path 108.
  • the exhaust port 108b overlaps the ultrasonic vibrator 118 in a plane, so that a liquid column W2 of the liquid moisture absorbing material L2 is generated below the exhaust port 108b. Therefore, the atomization regeneration unit 102 is designed so that the guide pipe 119 surrounds the liquid column W2 generated in the liquid moisture absorbing material L2. Since the exhaust port 108b, the guide pipe 119, and the liquid column W2 are in such a positional relationship, the mist-like shape generated from the liquid column W2 of the liquid hygroscopic material L2 due to the air flow upward from the liquid surface of the liquid hygroscopic material L2. The droplet W1 is guided to the exhaust port 108b.
  • the moisture absorbing unit 101 and the atomization regeneration unit 102 are connected by a first liquid hygroscopic material transport flow path 103 and a second liquid hygroscopic material transport flow path 104 that form a circulation flow path of the liquid hygroscopic material L.
  • a pump 121 for circulating the liquid moisture absorbing material L is provided in the middle of the second liquid moisture absorbing material transport flow path 104.
  • the first liquid hygroscopic material transport flow path 103 transports the liquid hygroscopic material L2, which has absorbed at least a part of water, from the moisture absorption unit 101 to the atomization regeneration unit 102.
  • One end of the first liquid moisture absorbing material transport flow path 103 is connected to the lower part of the first storage tank 112.
  • the connection point of the first liquid hygroscopic material transport flow path 103 in the first storage tank 112 is located below the liquid level of the liquid hygroscopic material L in the first storage tank 112.
  • the other end of the first liquid moisture absorbing material transport flow path 103 is connected to the lower part of the second storage tank 116.
  • the connection point of the first liquid hygroscopic material transport flow path 103 in the second storage tank 116 is located below the liquid level of the liquid hygroscopic material L2 in the second storage tank 116.
  • the second liquid hygroscopic material transport flow path 104 transports the regenerated liquid hygroscopic material L from which the moisture has been removed from the atomization regeneration unit 102 to the moisture absorption unit 101.
  • One end of the second liquid moisture absorbing material transport flow path 104 is connected to the lower part of the second storage tank 116.
  • the connection point of the second liquid hygroscopic material transport flow path 104 in the second storage tank 116 is located below the liquid level of the liquid hygroscopic material L2 in the second storage tank 116.
  • the other end of the second liquid moisture absorbing material transport flow path 104 is connected to the upper part of the first storage tank 112.
  • connection point of the second liquid hygroscopic material transport flow path 104 in the first storage tank 112 is located above the liquid level of the liquid hygroscopic material L1 in the first storage tank 112 and is connected to the above-mentioned moisture absorbing part nozzle 114. ing.
  • the dehumidified air is discharged from the hygroscopic unit 101 through the first air discharge flow path 107, and the humidified air is discharged from the atomization regeneration unit 102 through the second air discharge flow path 108. It was explained that it was discharged through.
  • the humidity control device 100 of the present embodiment is an air conditioner having only a dehumidification function, for example, the air outlet of the first air discharge flow path 107 is arranged toward the room, while the first 2
  • the air discharge port of the air discharge flow path 108 may be arranged so as to face the outdoor side.
  • the air discharge port of the second air discharge flow path 108 is arranged toward the room, while the air discharge port of the first air discharge flow path 107 is arranged outdoors.
  • the configuration may be arranged so as to face.
  • both the air outlets of the first air discharge flow path 107 and the second air discharge flow path 108 are arranged and controlled toward the room.
  • the configuration may be such that the unit 109 controls which air discharge port the air is discharged from.
  • the atomization regeneration unit 102 is composed of the ultrasonic atomization device of the above embodiment, the amount of atomization is increased by optimizing the pore size of the network structure. At the same time, the atomization efficiency can be improved. As a result, it is possible to realize the humidity control device 100 having high regeneration efficiency of the liquid moisture absorbing material L.
  • the housing is not provided with an inlet and an outlet for a liquid substance, but an inlet and an outlet are provided, and ultrasonic atomization is continuously performed. It may be configured as such.
  • the specific description of the number, shape, arrangement, material, etc. of various components of the ultrasonic atomizer and the humidity control device exemplified in the above embodiment is not limited to the above embodiment, and may be appropriately changed. Is possible.
  • the ultrasonic atomizing device of the present invention can also be applied when used in a device for controlling in a desired direction.
  • the atomizing device of the present invention can be used for various devices such as a nebulizer, a separating device, a coating device, and a liquid concentrating device, in addition to the above-mentioned humidity control device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

Provided is an ultrasonic atomization device such that atomization can be efficiently performed and such that the atomization volume can be easily adjusted. This ultrasonic atomization device comprises: a case that has an internal space for storing a liquid material to become atomized droplets and a discharge opening; an ultrasonic transducer that generates the atomized droplets by insonating the liquid material with ultrasonic waves; an airflow generation unit that generates an airflow for sending at least some of the atomized droplets to the outside via the discharge opening; and a nozzle that causes the ultrasonic waves from the ultrasonic transducer to converge toward a specific area on the liquid surface. The nozzle has a cylindrical member with a liquid material ejection opening at the top end and a mesh structure that is provided in at least an area in the internal space of the cylindrical member encompassing the center of gravity of the external shape of the ejection opening, as seen from a normal direction to the ejection opening and that forms a liquid column of the liquid material upward.

Description

超音波霧化装置および調湿装置Ultrasonic atomizer and humidity control device
 本発明は、超音波霧化装置および調湿装置に関する。
 本願は、2019年5月27日に日本で出願された特願2019-098208号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an ultrasonic atomizer and a humidity control device.
The present application claims priority based on Japanese Patent Application No. 2019-098208 filed in Japan on May 27, 2019, the contents of which are incorporated herein by reference.
 液体に超音波を照射して液面に液柱を発生させることによって液体を霧化する超音波霧化装置が従来から知られている。下記の特許文献1に、微小な貫通孔が多数形成された多孔板を容器内に備えた超音波霧化装置が開示されている。この超音波霧化装置において、多孔板は、多孔板の上面が液体に接触せず、かつ、多孔板の下面が液面から盛り上がった液柱に接触する位置に配置されている。 Conventionally, an ultrasonic atomizer that atomizes a liquid by irradiating the liquid with ultrasonic waves to generate a liquid column on the liquid surface has been known. Patent Document 1 below discloses an ultrasonic atomizer equipped with a perforated plate in which a large number of minute through holes are formed in a container. In this ultrasonic atomizer, the perforated plate is arranged at a position where the upper surface of the perforated plate does not come into contact with the liquid and the lower surface of the perforated plate comes into contact with the liquid column raised from the liquid surface.
特開2013-221633号公報Japanese Unexamined Patent Publication No. 2013-221633
 特許文献1の超音波霧化装置においては、超音波振動エネルギーが多孔板による液体の表面張力の剪断に消費されるため、霧化を効率的に行うことが難しいという課題があった。また、超音波霧化装置は、周波数等を含む超音波振動子の仕様が固定されている場合が多く、霧化を効率的に行えたとしても、霧化量の調整が難しいという課題があった。 In the ultrasonic atomizer of Patent Document 1, there is a problem that it is difficult to efficiently perform atomization because the ultrasonic vibration energy is consumed for shearing the surface tension of the liquid by the perforated plate. Further, in many cases, the specifications of the ultrasonic vibrator including the frequency and the like are fixed in the ultrasonic atomizer, and even if the atomization can be performed efficiently, there is a problem that it is difficult to adjust the atomization amount. It was.
 本発明の一つの態様は、上記の課題を解決するためになされたものであって、霧化を効率的に行えるとともに、霧化量の調整が容易に行える超音波霧化装置を提供することを目的の一つとする。また、本発明の一つの態様は、上記の霧化装置を備えた調湿装置を提供することを目的の一つとする。 One aspect of the present invention is to solve the above-mentioned problems, and to provide an ultrasonic atomizer capable of efficiently atomizing and easily adjusting the amount of atomization. Is one of the purposes. Another aspect of the present invention is to provide a humidity control device provided with the above atomization device.
 上記の目的を達成するために、本発明の一つの態様の超音波霧化装置は、霧状液滴となる液状物を貯留する内部空間と排気口とを有する筐体と、前記筐体に設けられ、前記液状物に超音波を照射することにより前記霧状液滴を発生させる超音波振動子と、前記排気口を介して前記霧状液滴の少なくとも一部を前記内部空間から外部に送出するための気流を発生させる気流発生部と、前記超音波振動子から放射された前記超音波を前記液状物の液面の特定の領域に向けて集束させるノズルと、を備え、前記ノズルは、上端に前記液状物の射出口を有する筒状部材と、前記筒状部材の内部空間のうち、前記射出口の法線方向から見て、前記射出口の外形形状の重心点を含む領域に少なくとも設けられ、上方に前記液状物の液柱を形成する網状構造体と、を有する。 In order to achieve the above object, the ultrasonic atomizer according to one aspect of the present invention includes a housing having an internal space and an exhaust port for storing a liquid substance to be atomized droplets, and the housing. An ultrasonic vibrator that is provided and generates the atomized droplets by irradiating the liquid material with ultrasonic waves, and at least a part of the atomized droplets from the internal space to the outside through the exhaust port. The nozzle includes an airflow generating unit that generates an airflow for sending out, and a nozzle that focuses the ultrasonic waves radiated from the ultrasonic vibrator toward a specific region of the liquid surface of the liquid substance. A tubular member having an injection port for the liquid material at the upper end, and a region of the internal space of the tubular member including the center of gravity of the outer shape of the injection port when viewed from the normal direction of the injection port. It has at least a network structure provided above and forming a liquid column of the liquid material above.
 本発明の一つの態様の超音波霧化装置において、前記網状構造体は、積層された複数の網を有していてもよい。 In the ultrasonic atomizer according to one aspect of the present invention, the network structure may have a plurality of laminated networks.
 本発明の一つの態様の超音波霧化装置において、前記網状構造体は、前記筒状部材の高さ方向に間隔をおいて設けられた複数の網を有していてもよい。 In the ultrasonic atomizer according to one aspect of the present invention, the net-like structure may have a plurality of nets provided at intervals in the height direction of the tubular member.
 本発明の一つの態様の超音波霧化装置において、前記筒状部材は、前記筒状部材の内部に導入された前記液状物の旋回流を発生させる旋回流発生部材を有していてもよい。 In the ultrasonic atomizing device according to one aspect of the present invention, the tubular member may have a swirling flow generating member that generates a swirling flow of the liquid material introduced inside the tubular member. ..
 本発明の一つの態様の超音波霧化装置において、前記筒状部材は、前記筒状部材の内部を流動する前記液状物の流路断面積が絞られた絞り部を有していてもよい。 In the ultrasonic atomizer according to one aspect of the present invention, the tubular member may have a throttle portion in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member is narrowed. ..
 本発明の一つの態様の超音波霧化装置において、前記射出口が複数設けられ、複数の前記射出口のそれぞれに対して、少なくとも前記重心点を含む領域に前記網状構造体が設けられていてもよい。 In the ultrasonic atomizing device according to one aspect of the present invention, a plurality of the ejection ports are provided, and the network structure is provided in a region including at least the center of gravity of each of the plurality of ejection ports. May be good.
 本発明の一つの態様の超音波霧化装置において、前記網状構造体の孔径は、10μm以上、かつ1mm以下であってもよい。 In the ultrasonic atomizer according to one aspect of the present invention, the pore diameter of the network structure may be 10 μm or more and 1 mm or less.
 本発明の一つの態様の超音波霧化装置において、前記網状構造体の厚さは、5mm以下であってもよい。 In the ultrasonic atomizer according to one aspect of the present invention, the thickness of the network structure may be 5 mm or less.
 本発明の一つの態様の調湿装置は、吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、前記霧化再生部は、本発明の一つの態様の超音波霧化装置から構成されている。 The humidity control device according to one aspect of the present invention includes a hygroscopic portion that allows the liquid hygroscopic material to absorb at least a part of the moisture contained in the air by bringing the liquid hygroscopic material containing a hygroscopic substance into contact with air. The atomization regeneration unit includes an atomization regeneration unit that regenerates the liquid moisture absorption material by atomizing and removing at least a part of the water contained in the liquid moisture absorption material supplied from the moisture absorption unit. , Consists of an ultrasonic atomizer according to one aspect of the present invention.
 本発明の一つの態様の超音波霧化装置によれば、霧化を効率的に行うとともに、霧化量の調整を容易に行うことができる。また、本発明の一つの態様によれば、上記の霧化装置を備えた調湿装置を提供することができる。 According to the ultrasonic atomizing device according to one aspect of the present invention, atomization can be efficiently performed and the amount of atomization can be easily adjusted. Further, according to one aspect of the present invention, it is possible to provide a humidity control device including the above atomization device.
第1実施形態の超音波霧化装置の断面図である。It is sectional drawing of the ultrasonic atomizing apparatus of 1st Embodiment. 網状構造体の平面的な設置形態の第1例を示す図である。It is a figure which shows the 1st example of the planar installation form of a network structure. 網状構造体の平面的な設置形態の第2例を示す図である。It is a figure which shows the 2nd example of the planar installation form of a net structure. 網状構造体の平面的な設置形態の第3例を示す図である。It is a figure which shows the 3rd example of the planar installation form of a network structure. 網状構造体の平面的な設置形態の第4例を示す図である。It is a figure which shows the 4th example of the planar installation form of a network structure. 網状構造体の断面的な設置形態の第1例を示す図である。It is a figure which shows the 1st example of the cross-sectional installation form of a net-like structure. 網状構造体の断面的な設置形態の第2例を示す図である。It is a figure which shows the 2nd example of the cross-sectional installation form of a net-like structure. 網状構造体の断面的な設置形態の第3例を示す図である。It is a figure which shows the 3rd example of the cross-sectional installation form of a net-like structure. 網状構造体の支持構造の第1例を示す図である。It is a figure which shows the 1st example of the support structure of the net-like structure. 網状構造体の支持構造の第2例を示す図である。It is a figure which shows the 2nd example of the support structure of the net-like structure. 網状構造体の支持構造の第3例を示す図である。It is a figure which shows the 3rd example of the support structure of the net-like structure. 網状構造体の固定構造の第4例を示す図である。It is a figure which shows the 4th example of the fixed structure of a net-like structure. 複数の液柱径の各々におけるジェット噴射回数と霧化効率の値を示す実験データである。It is experimental data which shows the value of the number of jet injections and the atomization efficiency in each of a plurality of liquid column diameters. 液状物の粘度と霧化効率との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of a liquid material and atomization efficiency. 第2実施形態の超音波霧化装置の断面図である。It is sectional drawing of the ultrasonic atomizing apparatus of 2nd Embodiment. 第2実施形態の変形例の超音波霧化装置の断面図である。It is sectional drawing of the ultrasonic atomizing apparatus of the modification of 2nd Embodiment. 第3実施形態の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of 3rd Embodiment. 第3実施形態の変形例の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of the modification of 3rd Embodiment. 第4実施形態の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of 4th Embodiment. 第4実施形態の変形例の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of the modification of 4th Embodiment. 第5実施形態の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of 5th Embodiment. 第5実施形態の変形例の超音波霧化装置におけるノズルの斜視図である。It is a perspective view of the nozzle in the ultrasonic atomizing apparatus of the modification of 5th Embodiment. 第6実施形態の超音波霧化装置の断面図である。It is sectional drawing of the ultrasonic atomizing apparatus of 6th Embodiment. 第6実施形態の変形例の超音波霧化装置の断面図である。It is sectional drawing of the ultrasonic atomizing apparatus of the modification of 6th Embodiment. 第7実施形態の調湿装置を示す概略構成図である。It is a schematic block diagram which shows the humidity control apparatus of 7th Embodiment.
[第1実施形態]
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1は、第1実施形態の超音波霧化装置を示す断面図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, the first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing an ultrasonic atomizer of the first embodiment.
In each of the following drawings, in order to make each component easy to see, the scale of the dimension may be different depending on the component.
 図1に示すように、超音波霧化装置10は、筐体11と、超音波振動子12と、気流発生部13と、ノズル14と、を備えている。 As shown in FIG. 1, the ultrasonic atomizing device 10 includes a housing 11, an ultrasonic vibrator 12, an air flow generating unit 13, and a nozzle 14.
 筐体11は、霧状液滴W1となる液状物Wを貯留する内部空間11aと、給気口11bと、排気口11cと、を有している。筐体11は、例えば金属、樹脂等の材料から形成された容器であって、構成材料は特に限定されない。給気口11bには給気管15が接続され、排気口11cには排気管16が接続されている。 The housing 11 has an internal space 11a for storing a liquid material W to be a mist-like droplet W1, an air supply port 11b, and an exhaust port 11c. The housing 11 is a container made of a material such as metal or resin, and the constituent material is not particularly limited. An air supply pipe 15 is connected to the air supply port 11b, and an exhaust pipe 16 is connected to the exhaust port 11c.
 液状物Wは、例えば1×10-3Pa・s以上の粘度を有している。液状物Wの具体例として、グリセリン、エチレングリコール、ポリアクリル酸ナトリウム水溶液、ポリエチレングリコール、トリエチレングリコール、塩化カルシウム水溶液、塩化リチウム水溶液、もしくはこれらの混合液が挙げられる。 The liquid material W has a viscosity of, for example, 1 × 10 -3 Pa · s or more. Specific examples of the liquid substance W include glycerin, ethylene glycol, sodium polyacrylate aqueous solution, polyethylene glycol, triethylene glycol, calcium chloride aqueous solution, lithium chloride aqueous solution, or a mixture thereof.
 超音波振動子12は、筐体11に設けられ、液状物Wに超音波を照射することにより液状物Wから霧状液滴W1を発生させる。本実施形態において、超音波振動子12は、筐体11の底板11eに設けられている。超音波振動子12は、筐体11の底板11eに対して傾斜して設けられている。この例では、1個の超音波振動子12が用いられているが、複数個の超音波振動子12が用いられてもよい。 The ultrasonic vibrator 12 is provided in the housing 11 and generates atomized droplets W1 from the liquid material W by irradiating the liquid material W with ultrasonic waves. In the present embodiment, the ultrasonic vibrator 12 is provided on the bottom plate 11e of the housing 11. The ultrasonic vibrator 12 is provided so as to be inclined with respect to the bottom plate 11e of the housing 11. In this example, one ultrasonic oscillator 12 is used, but a plurality of ultrasonic oscillators 12 may be used.
 気流発生部13は、筐体11の排気口11cを介して霧状液滴W1の少なくとも一部を内部空間11aから外部に送出するための気流Fを発生させる。本実施形態において、気流発生部13は、給気管15に設けられたブロアから構成されている。なお、気流発生部13は、給気管15に限らず、排気管16に設けられたブロアから構成されていてもよい。 The airflow generating unit 13 generates an airflow F for sending at least a part of the mist-like droplet W1 from the internal space 11a to the outside through the exhaust port 11c of the housing 11. In the present embodiment, the airflow generating unit 13 is composed of a blower provided on the air supply pipe 15. The airflow generating unit 13 is not limited to the air supply pipe 15, and may be composed of blowers provided in the exhaust pipe 16.
 ノズル14は、超音波振動子12から放射された超音波を液状物Wの液面の特定の領域に向けて集束させる。ノズル14がなかったとしても、超音波振動子12から液状物Wに超音波を照射する際に超音波の照射条件を調整することによって、液状物Wの液面の特定の個所に超音波を集中させることができる。ところが、ノズル14を用いることによって、液状物Wの液面の特定の個所により効率良く超音波を集中させることができる。これにより、ノズル14の上方に、液状物Wが高く盛り上がった液柱W2を発生させることができる。霧状液滴W1は、液面のあらゆる個所から発生するが、液柱W2およびその近傍から特に多く発生する。 The nozzle 14 focuses the ultrasonic waves radiated from the ultrasonic vibrator 12 toward a specific region on the liquid surface of the liquid material W. Even if there is no nozzle 14, ultrasonic waves can be applied to a specific location on the liquid surface of the liquid material W by adjusting the ultrasonic wave irradiation conditions when irradiating the liquid material W with ultrasonic waves from the ultrasonic vibrator 12. You can concentrate. However, by using the nozzle 14, ultrasonic waves can be efficiently concentrated at a specific location on the liquid surface of the liquid material W. As a result, a liquid column W2 in which the liquid material W is highly raised can be generated above the nozzle 14. The mist-like droplet W1 is generated from every part of the liquid surface, but is particularly abundantly generated from the liquid column W2 and its vicinity.
 ノズル14は、筒状部材18と、網状構造体19と、を有している。
 筒状部材18は、上部および下部が開口しており、上端に液状物Wの射出口18bを有している。また、筒状部材18は、下方から上方、すなわち超音波振動子12に近い側から遠い側に向けて内部空間が狭まった、先細りの円錐台状の形状を有している。筒状部材18は、例えばアルミニウム、銅、ステンレス等の金属材料で構成されている。ただし、筒状部材18の構成材料は、特に限定されない。筒状部材18は、筒状部材18の中心軸18cが液面と交差して配置されている。なお、筒状部材18の形状は、必ずしも円錐台状でなくてもよく、例えば多角錐台状であってもよい。
The nozzle 14 has a tubular member 18 and a net-like structure 19.
The tubular member 18 has an upper portion and a lower portion open, and has an injection port 18b for the liquid substance W at the upper end. Further, the tubular member 18 has a tapered truncated cone shape in which the internal space is narrowed from the lower side to the upper side, that is, from the side closer to the ultrasonic vibrator 12 to the side farther away. The tubular member 18 is made of a metal material such as aluminum, copper, or stainless steel. However, the constituent material of the tubular member 18 is not particularly limited. The tubular member 18 is arranged such that the central axis 18c of the tubular member 18 intersects the liquid surface. The shape of the tubular member 18 does not necessarily have to be a truncated cone, and may be, for example, a truncated cone.
 本実施形態の場合、筒状部材18は、中心軸18cが液面に垂直な方向から傾いて配置されている。上述したように、超音波振動子12が液面に垂直な方向から傾いて配置されたことによって、超音波振動子12の放射軸Jも液面に垂直な方向から傾く。なお、超音波振動子12の放射軸Jは、超音波振動子12の超音波放射面12aの中心を通り、超音波放射面12aの法線方向に平行に延びる仮想的な軸として定義する。また、筒状部材18の中心軸18cは、超音波振動子12の放射軸Jに一致している。なお、筒状部材18の中心軸18cは、必ずしも超音波振動子12の放射軸Jに一致していなくてもよい。場合によっては、筒状部材18の中心軸18cは、超音波振動子12の放射軸Jから外れた位置に配置される方が望ましいこともある。 In the case of the present embodiment, the tubular member 18 is arranged so that the central axis 18c is tilted from the direction perpendicular to the liquid surface. As described above, since the ultrasonic vibrator 12 is arranged to be tilted from the direction perpendicular to the liquid surface, the radiation axis J of the ultrasonic vibrator 12 is also tilted from the direction perpendicular to the liquid surface. The radiation axis J of the ultrasonic vibrator 12 is defined as a virtual axis that passes through the center of the ultrasonic radiation surface 12a of the ultrasonic vibrator 12 and extends parallel to the normal direction of the ultrasonic radiation surface 12a. Further, the central axis 18c of the tubular member 18 coincides with the radiation axis J of the ultrasonic vibrator 12. The central axis 18c of the tubular member 18 does not necessarily have to coincide with the radiation axis J of the ultrasonic vibrator 12. In some cases, it may be desirable that the central axis 18c of the tubular member 18 is arranged at a position deviated from the radiation axis J of the ultrasonic vibrator 12.
 さらに、筒状部材18の中心軸18cが液面に垂直な方向から傾いていることによって、液柱W2は、液面に垂直な方向から傾いて形成される。これにより、液面で反射した超音波が超音波振動子12に戻りにくく、超音波振動子12自身が超音波によるダメージを受けにくい。また、液柱W2の乱れが生じにくく、液柱W2が安定して形成される。 Further, since the central axis 18c of the tubular member 18 is tilted from the direction perpendicular to the liquid surface, the liquid column W2 is formed to be tilted from the direction perpendicular to the liquid surface. As a result, the ultrasonic waves reflected by the liquid surface are less likely to return to the ultrasonic oscillator 12, and the ultrasonic oscillator 12 itself is less likely to be damaged by the ultrasonic waves. Further, the liquid column W2 is less likely to be disturbed, and the liquid column W2 is stably formed.
 網状構造体19は、筒状部材18の内部空間のうち、射出口18bの法線方向から見て、射出口18bの外形形状の重心点、すなわち、本実施形態では射出口18bの外形形状である円の中心点を含む領域に少なくとも設けられ、上方に液状物Wの液柱W2を形成する。重心点を含む領域は、図2A~図2Dに示すように、重心点Gを中心とする円形の領域Rである。領域Rの直径は、例えば1mmである。網状構造体19は、例えばポリエステル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ナイロン、フッ素繊維、ポリウレタン等の樹脂材料、ステンレス、アルミニウム等の金属材料から構成されているが、構成材料は特に限定されない。網状構造体19は、所定の範囲の孔径を有するメッシュを有している。網状構造体19は、概ね均等な孔径を有することが好ましいが、孔径に所定の分布を有していてもよい。 The network structure 19 is the center of gravity of the outer shape of the injection port 18b when viewed from the normal direction of the injection port 18b in the internal space of the tubular member 18, that is, the outer shape of the injection port 18b in the present embodiment. It is provided at least in the region including the center point of a certain circle, and forms a liquid column W2 of the liquid material W above. As shown in FIGS. 2A to 2D, the region including the center of gravity point is a circular region R centered on the center of gravity point G. The diameter of the region R is, for example, 1 mm. The network structure 19 is made of, for example, a resin material such as polyester, polyethylene, polypropylene, polytetrafluoroethylene, nylon, fluorine fiber, polyurethane, and a metal material such as stainless steel and aluminum, but the constituent material is not particularly limited. The reticulated structure 19 has a mesh having a pore diameter in a predetermined range. The network structure 19 preferably has substantially uniform pore diameters, but may have a predetermined distribution in pore diameters.
 本実施形態の超音波霧化装置10においては、網状構造体19の孔径を調整することによって液柱W2の太さを調節することができ、網状構造体19を用いない場合と比べて霧化量を増加させたり、減少させたりすることができる。この効果については、後で詳しく説明する。 In the ultrasonic atomizing device 10 of the present embodiment, the thickness of the liquid column W2 can be adjusted by adjusting the pore diameter of the network structure 19, and atomization is performed as compared with the case where the network structure 19 is not used. The amount can be increased or decreased. This effect will be described in detail later.
 上述したように、網状構造体19が、筒状部材18の内部空間のうち、射出口18bの外形形状である円の重心点Gを含む領域に少なくとも設けられているという形態には、以下に示す形態が考えられる。以下の図2A~図2Dにおいて、上記の重心点Gを含む領域Rを2点鎖線の円で示す。本実施形態では、射出口18bの外形形状が円であるため、重心点Gは円の中心点と一致する。射出口18bの外形形状が明確な中心点を持たない形状の場合には、網状構造体が重心点Gを含む領域に設けられていればよい。 As described above, the form in which the net-like structure 19 is provided at least in the region including the center of gravity point G of the circle, which is the outer shape of the injection port 18b, in the internal space of the tubular member 18, is described below. The form shown is conceivable. In FIGS. 2A to 2D below, the region R including the center-of-gravity point G is indicated by a two-dot chain line circle. In the present embodiment, since the outer shape of the injection port 18b is a circle, the center of gravity point G coincides with the center point of the circle. When the outer shape of the injection port 18b does not have a clear center point, the net-like structure may be provided in the region including the center of gravity point G.
 図2Aは、網状構造体19の平面的な設置形態の第1例を示す図である。
 図2Aに示すように、第1例の網状構造体19Aは、筒状部材18の内部空間の全域を塞ぐように設けられている。
FIG. 2A is a diagram showing a first example of a planar installation form of the network structure 19.
As shown in FIG. 2A, the network structure 19A of the first example is provided so as to block the entire internal space of the tubular member 18.
 図2Bは、網状構造体19の平面的な設置形態の第2例を示す図である。
 図2Bに示すように、第2例の網状構造体19Bは、筒状部材18の内部空間のうち、領域Rを含み、直径方向に延びる直線状の領域に設けられている。
FIG. 2B is a diagram showing a second example of a two-dimensional installation form of the network structure 19.
As shown in FIG. 2B, the reticulated structure 19B of the second example is provided in a linear region extending in the diameter direction including the region R in the internal space of the tubular member 18.
 図2Cは、網状構造体19の平面的な設置形態の第3例を示す図である。
 図2Cに示すように、第3例の網状構造体19Cは、筒状部材18の内部空間のうち、領域Rを含み、互いに直交する2つの直線状の領域に設けられている。
FIG. 2C is a diagram showing a third example of a planar installation form of the network structure 19.
As shown in FIG. 2C, the network structure 19C of the third example is provided in two linear regions including the region R and orthogonal to each other in the internal space of the tubular member 18.
 図2Dは、網状構造体19の平面的な設置形態の第4例を示す図である。
 図2Dに示すように、第4例の網状構造体19Dは、筒状部材18の内部空間のうち、領域Rを含む矩形状の領域に設けられている。網状構造体19Dは、任意の支持部材21によって筒状部材18に支持されている。
FIG. 2D is a diagram showing a fourth example of a planar installation form of the network structure 19.
As shown in FIG. 2D, the reticulated structure 19D of the fourth example is provided in a rectangular region including the region R in the internal space of the tubular member 18. The network structure 19D is supported by the tubular member 18 by an arbitrary support member 21.
 筒状部材18における網状構造体19の高さ方向の位置と、網状構造体19と液面との位置関係については、例えば図3A~図3Cに示す3つの例が採用可能である。網状構造体19の厚さtは、5mm以下とすることが好ましい。網状構造体19の厚さtが5mmを超えると、液柱W2が形成されにくくなる。 Regarding the positional relationship between the network structure 19 in the height direction and the network structure 19 and the liquid level in the tubular member 18, for example, the three examples shown in FIGS. 3A to 3C can be adopted. The thickness t of the reticulated structure 19 is preferably 5 mm or less. If the thickness t of the reticulated structure 19 exceeds 5 mm, the liquid column W2 is less likely to be formed.
 また、網状構造体19は、互いに接触するように積層された複数の網から構成されていてもよい。複数の網のそれぞれは、同一の孔径を有する網であってもよいし、互いに異なる孔径を有する網であってもよい。また、複数の網のそれぞれは、互いに異なる材質からなる網であってもよい。 Further, the net-like structure 19 may be composed of a plurality of nets laminated so as to be in contact with each other. Each of the plurality of nets may be a net having the same pore diameter or a net having different pore diameters. Further, each of the plurality of nets may be a net made of different materials.
 複数の網は、網を構成する上下の線材同士がずれることなく重なっていてもよいし、上下の線材同士がずれた状態で重なっていてもよい。上下の線材同士がずれた状態で重なっていた場合、網状構造体19の孔径は、筒状部材18の中心軸18cに沿う方向から網状構造体19を見たときの複数の孔径の平均値と定義すればよい。したがって、複数の網を積層し、上下の線材同士を意図的にずれた状態で重ねることによって、網状構造体19の孔径を1枚の網の孔径よりも小さくすることができる。 The plurality of nets may be overlapped with each other without shifting the upper and lower wires constituting the net, or may be overlapped with the upper and lower wires being displaced from each other. When the upper and lower wires are overlapped with each other in a displaced state, the hole diameter of the network structure 19 is the average value of the plurality of hole diameters when the network structure 19 is viewed from the direction along the central axis 18c of the tubular member 18. Just define it. Therefore, the hole diameter of the net-like structure 19 can be made smaller than the hole diameter of one net by laminating a plurality of nets and stacking the upper and lower wire rods in a state of being intentionally displaced from each other.
 図3Aは、網状構造体19の断面的な設置形態の第1例を示す図である。
 図3Aに示すように、第1例の網状構造体19Eは、筒状部材18の上端よりも低い位置に設けられている。筒状部材18の内部の液面の高さは、筒状部材18の周囲の液面の高さと略等しい。また、網状構造体19Eの下面の高さは、筒状部材18の周囲の液面の高さと略等しい。網状構造体19Eの上面の高さは、筒状部材18の周囲の液面の高さよりも0.5~3cm程度高くなっている。
FIG. 3A is a diagram showing a first example of a cross-sectional installation form of the network structure 19.
As shown in FIG. 3A, the net-like structure 19E of the first example is provided at a position lower than the upper end of the tubular member 18. The height of the liquid level inside the tubular member 18 is substantially equal to the height of the liquid level around the tubular member 18. Further, the height of the lower surface of the net-like structure 19E is substantially equal to the height of the liquid level around the tubular member 18. The height of the upper surface of the reticulated structure 19E is about 0.5 to 3 cm higher than the height of the liquid level around the tubular member 18.
 図3Bは、網状構造体19の断面的な設置形態の第2例を示す図である。
 図3Bに示すように、第2例の網状構造体19Fは、筒状部材18の上端に設けられている。筒状部材18の内部の液面の高さは、筒状部材18の周囲の液面の高さよりも高くなっている。また、網状構造体19Fの下面の高さは、筒状部材18の周囲の液面の高さよりも0.5~3cm程度高くなっている。
FIG. 3B is a diagram showing a second example of a cross-sectional installation form of the network structure 19.
As shown in FIG. 3B, the net-like structure 19F of the second example is provided at the upper end of the tubular member 18. The height of the liquid level inside the tubular member 18 is higher than the height of the liquid level around the tubular member 18. Further, the height of the lower surface of the net-like structure 19F is about 0.5 to 3 cm higher than the height of the liquid level around the tubular member 18.
 図3Cは、網状構造体19の断面的な設置形態の第3例を示す図である。
 図3Cに示すように、第3例の網状構造体19Gは、筒状部材18の上端に設けられている。筒状部材18の内部の液面の高さは、筒状部材18の周囲の液面の高さよりも高くなっている。また、図3Bに示す第2例では、網状構造体19Fの上面から液柱W2が形成されていたのに対し、図3Cに示す第3例では、網状構造体19Gの下方から液柱W2が形成され、網状構造体19Gの上方に延びている。
FIG. 3C is a diagram showing a third example of a cross-sectional installation form of the network structure 19.
As shown in FIG. 3C, the net-like structure 19G of the third example is provided at the upper end of the tubular member 18. The height of the liquid level inside the tubular member 18 is higher than the height of the liquid level around the tubular member 18. Further, in the second example shown in FIG. 3B, the liquid column W2 was formed from the upper surface of the network structure 19F, whereas in the third example shown in FIG. 3C, the liquid column W2 was formed from below the network structure 19G. It is formed and extends above the reticulated structure 19G.
 筒状部材18に網状構造体19を支持する形態については、例えば図4A~図4Dに示す4つの例が採用可能である。 As for the form in which the net-like structure 19 is supported on the tubular member 18, for example, four examples shown in FIGS. 4A to 4D can be adopted.
 図4Aは、網状構造体19の支持構造の第1例を示す図である。
 図4Aに示すように、第1例の網状構造体19Hは、接着剤23を介して筒状部材18に固定されている。もしくは、網状構造体19Hは、粘着テープ等を介して筒状部材18に固定されていてもよい。
FIG. 4A is a diagram showing a first example of the support structure of the network structure 19.
As shown in FIG. 4A, the reticulated structure 19H of the first example is fixed to the tubular member 18 via the adhesive 23. Alternatively, the net-like structure 19H may be fixed to the tubular member 18 via an adhesive tape or the like.
 図4Bは、網状構造体19の支持構造の第2例を示す図である。
 図4Bに示すように、第2例の支持構造では、筒状部材18の内壁面に内側に突出する突起24が設けられている。網状構造体19Iは、突起24の上面に載置された状態で接着剤、粘着テープ等(図示略)により固定されている。なお、網状構造体19Iを載置する部分は、突起24に限らず、段差部等であってもよい。
FIG. 4B is a diagram showing a second example of the support structure of the network structure 19.
As shown in FIG. 4B, in the support structure of the second example, a protrusion 24 projecting inward is provided on the inner wall surface of the tubular member 18. The net-like structure 19I is placed on the upper surface of the protrusion 24 and fixed by an adhesive, an adhesive tape or the like (not shown). The portion on which the net-like structure 19I is placed is not limited to the protrusion 24, and may be a stepped portion or the like.
 図4Cは、網状構造体19の支持構造の第3例を示す図である。
 図4Cに示すように、第3例の支持構造では、筒状部材18が2分割され、上部筒状部材18Aと下部筒状部材18Bとが嵌合し合う構成を有している。網状構造体19Jは、上部筒状部材18Aと下部筒状部材18Bとの間に挟み込まれて固定される。網状構造体19Jは、2つの筒状部材18A,18Bの間に挟み込まれるだけの厚さや柔軟性を有することが望ましい。
FIG. 4C is a diagram showing a third example of the support structure of the network structure 19.
As shown in FIG. 4C, in the support structure of the third example, the tubular member 18 is divided into two, and the upper tubular member 18A and the lower tubular member 18B are fitted to each other. The net-like structure 19J is sandwiched and fixed between the upper tubular member 18A and the lower tubular member 18B. It is desirable that the network structure 19J has a thickness and flexibility sufficient to be sandwiched between the two tubular members 18A and 18B.
 図4Dは、網状構造体19の支持構造の第4例を示す図である。
 図4Dに示すように、第4例の支持構造では、網状構造体19Kが装着された固定治具25が用いられ、固定治具25が筒状部材18の上部に嵌め込まれて固定される。
FIG. 4D is a diagram showing a fourth example of the support structure of the network structure 19.
As shown in FIG. 4D, in the support structure of the fourth example, a fixing jig 25 to which the net-like structure 19K is mounted is used, and the fixing jig 25 is fitted and fixed to the upper portion of the tubular member 18.
 超音波霧化技術において、超音波振動子の直上にノズルを配置し、ノズルを用いて液柱の発生個所に超音波を効率的に集中させることによって、霧化量を増大させる試みが従来からなされてきた。本発明者らは、液体を透過する際に適度な流動抵抗となる網状構造体をノズルの内部に設置することにより、網状構造体を設置しない場合に比べて液柱の径(太さ)を変えられることを見出した。さらに、本発明者らは、霧化量を制御する方法を検討する過程において、液柱の径と霧化量との間に相関関係があるとの知見を得た。 In ultrasonic atomization technology, attempts have been made to increase the amount of atomization by arranging a nozzle directly above the ultrasonic transducer and efficiently concentrating ultrasonic waves at the location where the liquid column is generated using the nozzle. It has been done. By installing a network structure inside the nozzle that provides an appropriate flow resistance when the liquid is permeated, the present inventors can increase the diameter (thickness) of the liquid column as compared with the case where the network structure is not installed. I found that it could be changed. Furthermore, the present inventors have found that there is a correlation between the diameter of the liquid column and the amount of atomization in the process of examining a method for controlling the amount of atomization.
[実験1]
 本発明者らは、異なる孔径を有する2種類の網状構造体をノズルに設置し、超音波霧化を行った。具体的には、数十μm以上、1mm以下の孔径を有する網状構造体を備えた実施例1のノズル、1mmを超える孔径を有する網状構造体を備えた実施例2のノズル、1μm未満の孔径を有する網状構造体を備えた実施例3のノズルのそれぞれを用いて超音波霧化を行った。一方、比較例として、網状構造体を備えていないノズルを用いて超音波霧化を行った。液体としては、粘度が6×10-3Pa・sのグリセリン水溶液を用いた。超音波振動子の条件は、周波数が2.4MHz、出力が15Wである。
[Experiment 1]
The present inventors installed two types of network structures having different pore diameters in the nozzle and performed ultrasonic atomization. Specifically, the nozzle of Example 1 having a network structure having a pore diameter of several tens of μm or more and 1 mm or less, the nozzle of Example 2 having a network structure having a pore diameter of more than 1 mm, and a pore diameter of less than 1 μm. Ultrasonic atomization was performed using each of the nozzles of Example 3 provided with the reticulated structure having the above. On the other hand, as a comparative example, ultrasonic atomization was performed using a nozzle not provided with a network structure. As the liquid, an aqueous glycerin solution having a viscosity of 6 × 10 -3 Pa · s was used. The conditions of the ultrasonic oscillator are a frequency of 2.4 MHz and an output of 15 W.
 1μm未満の孔径を有する網状構造体を備えた実施例3のノズルを用いた場合、ノズルの上方に液柱を生じさせることができず、ほとんど液滴を発生させることができなかった。本発明者らの推察によれば、この理由は、1μm未満では網状構造体の孔径が小さ過ぎて、噴射圧力の損失が大き過ぎたためと思われる。 When the nozzle of Example 3 provided with a network structure having a pore diameter of less than 1 μm was used, a liquid column could not be generated above the nozzle, and almost no droplet could be generated. According to the inference of the present inventors, the reason for this is considered to be that the pore diameter of the network structure is too small and the loss of injection pressure is too large when the thickness is less than 1 μm.
 図5は、異なる液柱径におけるジェット噴射回数と霧化効率の値を示す実験データである。図5に示すグラフの横軸は液柱の径(mm)を示し、縦軸はジェット噴射の回数(回/0.05秒)を示す。グラフの上部は、超音波印加後の特定の時刻におけるハイスピードカメラの画像である。 FIG. 5 is experimental data showing the number of jet injections and the values of atomization efficiency at different liquid column diameters. The horizontal axis of the graph shown in FIG. 5 indicates the diameter (mm) of the liquid column, and the vertical axis indicates the number of jet injections (times / 0.05 seconds). The upper part of the graph is an image of a high-speed camera at a specific time after applying ultrasonic waves.
 ジェット噴射については、液柱とその近傍の様子をハイスピードカメラによって観察し、0.05秒あたりの回数を計測した。ジェット噴射の回数は、液柱の高さを0~5mm、5~10mm、10~15mmに分け、高さ毎に計測した。また、発生した霧を外部に搬送するための空気を、5m/秒の流速で液柱に向けて一定時間流し、その前後における容器全体の重量を測定した。その重量の減少量を霧化量(g)とした。また、この霧化量を投入電力量で除算し、霧化効率(g/Wh)を算出した。液柱の径は液柱の基端側と先端側とで異なるため、網状構造体の上面から1mmの位置での液柱の径を測定した。 For jet injection, the state of the liquid column and its vicinity was observed with a high-speed camera, and the number of times per 0.05 seconds was measured. The number of jet injections was measured for each height by dividing the height of the liquid column into 0 to 5 mm, 5 to 10 mm, and 10 to 15 mm. In addition, air for transporting the generated mist to the outside was flowed toward the liquid column at a flow rate of 5 m / sec for a certain period of time, and the weight of the entire container before and after that was measured. The amount of weight loss was defined as the amount of atomization (g). Further, this atomization amount was divided by the input electric energy to calculate the atomization efficiency (g / Wh). Since the diameter of the liquid column differs between the base end side and the tip end side of the liquid column, the diameter of the liquid column was measured at a position 1 mm from the upper surface of the network structure.
 超音波霧化により微小液滴が発生するメカニズムの一つにジェット噴射がある。液体に超音波を印加した際に液面が振動し、液面に生じた窪みの側面の液体が底部に向けて流れ込み、流れ込んだ液体が窪みの中央で盛り上がる。その後、気泡が破裂して、盛り上がった液体の先端が引きちぎられ、微小液滴が次々と生成される。このような過程を経て超音波印加時に気泡が破裂する現象をジェット噴射と称し、ジェット噴射時に液面の盛り上がりから生成される液滴をジェット液滴と称する。 Jet injection is one of the mechanisms by which fine droplets are generated by ultrasonic atomization. When ultrasonic waves are applied to the liquid, the liquid surface vibrates, the liquid on the side surface of the dent formed on the liquid surface flows toward the bottom, and the flowing liquid rises in the center of the dent. After that, the bubbles burst, the tips of the raised liquid are torn off, and fine droplets are generated one after another. The phenomenon in which bubbles burst when ultrasonic waves are applied through such a process is called jet injection, and the droplets generated from the swelling of the liquid surface during jet injection are called jet droplets.
 図5に示すように、網状構造体を設置していない比較例のノズルを用いた場合、液柱径は1.8mmであった。ジェット噴射の回数は約160回/0.05秒であり、液柱の基端側から10~15mmの高い位置でのジェット噴射の回数が最も多かった。霧化効率は、3.5g/Whであった。 As shown in FIG. 5, when the nozzle of the comparative example in which the network structure was not installed was used, the liquid column diameter was 1.8 mm. The number of jet injections was about 160 times / 0.05 seconds, and the number of jet injections at a high position of 10 to 15 mm from the base end side of the liquid column was the largest. The atomization efficiency was 3.5 g / Wh.
 これに対して、数十μm~1mmの孔径を有する網状構造体を備えた実施例1のノズルを用いた場合、液柱径は0.6mmであった。ジェット噴射の回数は約250回/0.05秒であり、液柱の基端側から0~5mmの低い位置でのジェット噴射の回数が最も多かった。霧化効率は、4.4g/Whであった。したがって、網状構造体を設置しない場合に比べて霧化量を増やしたい場合には、網状構造体を10μm以上、かつ1mm以下程度とすることが望ましいことが判った。 On the other hand, when the nozzle of Example 1 provided with the network structure having a pore diameter of several tens of μm to 1 mm was used, the liquid column diameter was 0.6 mm. The number of jet injections was about 250 times / 0.05 seconds, and the number of jet injections at a position as low as 0 to 5 mm from the base end side of the liquid column was the largest. The atomization efficiency was 4.4 g / Wh. Therefore, it was found that when it is desired to increase the amount of atomization as compared with the case where the reticulated structure is not installed, it is desirable to make the reticulated structure 10 μm or more and 1 mm or less.
 また、1mmを超える孔径を有する網状構造体を備えた実施例2のノズルを用いた場合、液柱径は3.0mmであった。ジェット噴射の回数は10回/0.05秒以下であった。霧化効率は、2.0g/Whであった。 Further, when the nozzle of Example 2 provided with the network structure having a pore diameter exceeding 1 mm was used, the liquid column diameter was 3.0 mm. The number of jet injections was 10 times / 0.05 seconds or less. The atomization efficiency was 2.0 g / Wh.
 以上の実験結果から、網状構造体の孔径を変えることで液柱の径を調節することができ、さらに霧化量(霧化効率)を制御することができることが判った。本発明者らの推察によれば、液柱が細くなると、液柱の単位断面積あたりの超音波密度が高くなるためにジェット噴射が発生しやすく、液柱が太くなると、液柱の単位断面積あたりの超音波密度が低くなるためにジェット噴射が発生しにくくなると思われる。また、液柱が細い場合には、超音波が液柱の上部まで伝播して超音波エネルギーが減衰する前に液柱の下部でジェット噴射に消費されるため、超音波エネルギーの減衰が少ない分、全体として霧化効率が向上すると思われる。 From the above experimental results, it was found that the diameter of the liquid column can be adjusted by changing the pore diameter of the reticulated structure, and the amount of atomization (atomization efficiency) can be further controlled. According to the inference of the present inventors, when the liquid column becomes thin, the ultrasonic density per unit cross-sectional area of the liquid column increases, so that jet injection is likely to occur, and when the liquid column becomes thick, the unit of the liquid column is cut off. It is thought that jet injection is less likely to occur because the ultrasonic density per area is low. In addition, when the liquid column is thin, the ultrasonic waves propagate to the upper part of the liquid column and are consumed for jet injection at the lower part of the liquid column before the ultrasonic energy is attenuated. , It seems that the atomization efficiency will be improved as a whole.
[実験2]
 次に、本発明者らは、数十μm~1mmの孔径を有する網状構造体を備えた実施例1のノズルを用い、粘度が異なる3種類の液体を用いて超音波霧化を行った。具体的には、粘度が1×10-3Pa・sの液体、粘度が6×10-3Pa・sの液体、粘度が30×10-3Pa・sの液体のそれぞれを用い、超音波霧化を行った。なお、その他の実験条件は、実験1と同様である。一方、比較例として、網状構造体を備えていないノズルを用い、3種類の粘度の液体を用いて超音波霧化を行った。
[Experiment 2]
Next, the present inventors performed ultrasonic atomization using the nozzle of Example 1 provided with a network structure having a pore size of several tens of μm to 1 mm, and using three kinds of liquids having different viscosities. Specifically, ultrasonic waves are used using a liquid having a viscosity of 1 × 10 -3 Pa · s, a liquid having a viscosity of 6 × 10 -3 Pa · s, and a liquid having a viscosity of 30 × 10 -3 Pa · s. It was atomized. The other experimental conditions are the same as in Experiment 1. On the other hand, as a comparative example, ultrasonic atomization was performed using liquids having three viscosities using a nozzle not provided with a network structure.
 図6は、液体の粘度と霧化効率との関係を示すグラフである。
 図6に示すように、液体の粘度が1×10-3Pa・sの液体の場合、比較例のノズルでは霧化効率が約9.8g/Whであるのに対し、実施例1のノズルでは霧化効率が約11.7g/Whであった。液体の粘度が6×10-3Pa・sの液体の場合、比較例では霧化効率が約3.6g/Whであるのに対し、本実施例では霧化効率が約4.4g/Whであった。液体の粘度が30×10-3Pa・sの液体の場合、比較例では霧化効率が約2.0g/Whであるのに対し、本実施例では霧化効率が約2.4g/Whであった。
FIG. 6 is a graph showing the relationship between the viscosity of the liquid and the atomization efficiency.
As shown in FIG. 6, in the case of a liquid having a viscosity of 1 × 10 -3 Pa · s, the atomization efficiency of the nozzle of the comparative example is about 9.8 g / Wh, whereas the nozzle of the first embodiment The atomization efficiency was about 11.7 g / Wh. In the case of a liquid having a viscosity of 6 × 10 -3 Pa · s, the atomization efficiency is about 3.6 g / Wh in the comparative example, whereas the atomization efficiency is about 4.4 g / Wh in this example. Met. In the case of a liquid having a viscosity of 30 × 10 -3 Pa · s, the atomization efficiency is about 2.0 g / Wh in the comparative example, whereas the atomization efficiency is about 2.4 g / Wh in this example. Met.
 以上の実験結果から、液体の粘度が低い場合に比べて、液体の粘度が高くなる程、霧化効率は低下する傾向にあるが、いずれの粘度においても、網状構造体を備えた実施例1のノズルを用いることにより、網状構造体を備えていない比較例のノズルを用いた場合に比べて、霧化効率を高められることが判った。したがって、本実施形態の超音波霧化装置は、使用する液状物の粘度や種類に依らずに、適用可能であることが判った。さらには、使用する液状物の粘度に応じて、適切な孔径を有する網状構造体を用いることが好ましい。 From the above experimental results, the atomization efficiency tends to decrease as the viscosity of the liquid increases as compared with the case where the viscosity of the liquid is low. However, in any of the viscosities, Example 1 provided with a reticulated structure. It was found that the atomization efficiency can be improved by using the nozzle of No. 3 as compared with the case of using the nozzle of the comparative example not provided with the network structure. Therefore, it was found that the ultrasonic atomizer of the present embodiment can be applied regardless of the viscosity and type of the liquid material used. Furthermore, it is preferable to use a network structure having an appropriate pore size according to the viscosity of the liquid material to be used.
[第2実施形態]
 以下、第2実施形態の超音波霧化装置について、図7および図8を用いて説明する。
 第2実施形態の超音波霧化装置の基本構成は第1実施形態と同一であり、網状構造体の構成が第1実施形態と異なる。
 図7は、第2実施形態の超音波霧化装置の断面図である。
 図7において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Second Embodiment]
Hereinafter, the ultrasonic atomizer of the second embodiment will be described with reference to FIGS. 7 and 8.
The basic configuration of the ultrasonic atomizer of the second embodiment is the same as that of the first embodiment, and the configuration of the network structure is different from that of the first embodiment.
FIG. 7 is a cross-sectional view of the ultrasonic atomizer of the second embodiment.
In FIG. 7, the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図7に示すように、第2実施形態の超音波霧化装置30は、上方に液状物Wの液柱W2を形成するノズル31を有している。ノズル31は、筒状部材18と、網状構造体32と、を有している。 As shown in FIG. 7, the ultrasonic atomizer 30 of the second embodiment has a nozzle 31 that forms a liquid column W2 of the liquid material W above. The nozzle 31 has a tubular member 18 and a net-like structure 32.
 網状構造体32は、筒状部材18の中心軸18cに沿った方向、すなわち、筒状部材18の高さ方向に間隔をおいて設けられた第1の網32Aと第2の網32Bとを含む複数の網を有している。第1の網32Aは、筒状部材18の上端から少し下がった位置に固定されている。第2の網32Bは、筒状部材18の上端に固定されている。
 超音波霧化装置30のその他の構成は、第1実施形態と同様である。
The net-like structure 32 has a first net 32A and a second net 32B provided at intervals in the direction along the central axis 18c of the tubular member 18, that is, in the height direction of the tubular member 18. It has multiple nets including. The first net 32A is fixed at a position slightly lower than the upper end of the tubular member 18. The second net 32B is fixed to the upper end of the tubular member 18.
Other configurations of the ultrasonic atomizer 30 are the same as those in the first embodiment.
 第1の網32Aと第2の網32Bとは、同一の孔径を有する網であってもよいし、互いに異なる孔径を有する網であってもよい。また、第1の網32Aと第2の網32Bとは、互いに異なる材質からなる網であってもよい。第2実施形態では、複数の網が2枚の網32A,32Bから構成される例を挙げるが、複数の網が3枚以上の網から構成されていてもよい。 The first net 32A and the second net 32B may be nets having the same pore diameter or nets having different pore diameters. Further, the first net 32A and the second net 32B may be nets made of different materials. In the second embodiment, an example in which a plurality of nets are composed of two nets 32A and 32B will be given, but the plurality of nets may be composed of three or more nets.
 第2実施形態の超音波霧化装置30においても、網状構造体32の孔径を変えることで液柱の径を調節することができ、霧化量を制御することができる、という第1実施形態と同様の効果が得られる。 Also in the ultrasonic atomizing device 30 of the second embodiment, the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 32, and the amount of atomization can be controlled. The same effect as is obtained.
 さらに、第2実施形態の超音波霧化装置30においては、第1の網32Aによって細くした液柱W2を第2の網32Bによってさらに細くするというように、液柱W2を段階的に細くすることができる。これにより、第1実施形態に比べてさらに細い液柱W2を形成しやすいという効果が得られる。したがって、第2実施形態の超音波霧化装置30は、霧化量を増やしたい場合に好適である。 Further, in the ultrasonic atomizing device 30 of the second embodiment, the liquid column W2 is gradually thinned so that the liquid column W2 thinned by the first net 32A is further thinned by the second net 32B. be able to. As a result, an effect that a thinner liquid column W2 can be easily formed as compared with the first embodiment can be obtained. Therefore, the ultrasonic atomizing device 30 of the second embodiment is suitable when it is desired to increase the amount of atomization.
[変形例]
 第2実施形態の超音波霧化装置30は、以下のような変形例が適用可能である。
 図8は、第2実施形態の変形例の超音波霧化装置34の断面図である。
 図8に示すように、変形例の超音波霧化装置34において、網状構造体35は、筒状部材18の中心軸18cに沿った方向に間隔をおいて設けられた第1の網35Aと第2の網35Bとを含む複数の網を有している。第1の網35Aと第2の網35Bとは、任意の連結部材35Cを介して互いに連結されている。第1の網35Aは筒状部材18の上端に固定され、第2の網35Bは筒状部材18の上方に位置している。
[Modification example]
The following modifications can be applied to the ultrasonic atomizer 30 of the second embodiment.
FIG. 8 is a cross-sectional view of the ultrasonic atomizer 34 of the modified example of the second embodiment.
As shown in FIG. 8, in the ultrasonic atomizing device 34 of the modified example, the net-like structure 35 is different from the first net 35A provided at intervals in the direction along the central axis 18c of the tubular member 18. It has a plurality of nets including a second net 35B. The first net 35A and the second net 35B are connected to each other via an arbitrary connecting member 35C. The first net 35A is fixed to the upper end of the tubular member 18, and the second net 35B is located above the tubular member 18.
 本変形例の超音波霧化装置34においても、第2実施形態と同様の効果が得られる。 The same effect as that of the second embodiment can be obtained in the ultrasonic atomizer 34 of this modified example.
[第3実施形態]
 以下、第3実施形態の超音波霧化装置について、図9および図10を用いて説明する。
 第3実施形態の超音波霧化装置の基本構成は第1実施形態と同一であり、ノズルの構成が第1実施形態と異なる。
 図9は、第3実施形態の超音波霧化装置におけるノズル37の斜視図である。
 図9において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Third Embodiment]
Hereinafter, the ultrasonic atomizer of the third embodiment will be described with reference to FIGS. 9 and 10.
The basic configuration of the ultrasonic atomizer of the third embodiment is the same as that of the first embodiment, and the nozzle configuration is different from that of the first embodiment.
FIG. 9 is a perspective view of the nozzle 37 in the ultrasonic atomizer of the third embodiment.
In FIG. 9, the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図9に示すように、第3実施形態のノズル37は、筒状部材38と、網状構造体19と、を有している。筒状部材38は、筒状部材38の内部に複数の旋回流発生部材39を有している。複数の旋回流発生部材39は、筒状部材38の内部に導入された液状物の旋回流W5を発生させる。 As shown in FIG. 9, the nozzle 37 of the third embodiment has a tubular member 38 and a net-like structure 19. The tubular member 38 has a plurality of swirling flow generating members 39 inside the tubular member 38. The plurality of swirling flow generating members 39 generate the swirling flow W5 of the liquid material introduced inside the tubular member 38.
 筒状部材38の側面には、筒状部材38の内部に液状物を流入させるための複数の孔38hが設けられている。複数の旋回流発生部材39の各々は、複数の孔38hの各々に対応して設けられている。旋回流発生部材39は、筒状部材38の内部において、孔38hの上方および一方の側方を閉塞する壁面39aと、傾斜した湾曲面39bと、筒状部材38の内壁面に沿って斜め上方に液状物を排出する排出口39cと、を有する誘導板から構成されている。これにより、旋回流発生部材39は、孔38hを通して筒状部材38の内部に流入した液状物を筒状部材38の内壁面に沿って上方に向かって旋回させる流れを形成する。
 超音波霧化装置のその他の構成は、第1実施形態と同様である。
On the side surface of the tubular member 38, a plurality of holes 38h for allowing a liquid substance to flow into the tubular member 38 are provided. Each of the plurality of swirling flow generating members 39 is provided corresponding to each of the plurality of holes 38h. Inside the tubular member 38, the swirling flow generating member 39 has a wall surface 39a that closes the upper side of the hole 38h and one side thereof, an inclined curved surface 39b, and an obliquely upper surface along the inner wall surface of the tubular member 38. It is composed of a guide plate having a discharge port 39c for discharging a liquid substance. As a result, the swirling flow generating member 39 forms a flow in which the liquid material that has flowed into the inside of the tubular member 38 through the hole 38h is swirled upward along the inner wall surface of the tubular member 38.
Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
 第3実施形態の超音波霧化装置においても、網状構造体19の孔径を変えることで液柱の径を調節することができ、霧化量を制御することができる、という第1実施形態と同様の効果が得られる。 Also in the ultrasonic atomizing device of the third embodiment, the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 19, and the amount of atomization can be controlled. A similar effect can be obtained.
 さらに、第3実施形態の超音波霧化装置においては、旋回流発生部材39が液状物の旋回流W5を形成することによって液状物の流速が上がり、ノズル37の先端から噴射される液状物の噴射圧力が増加する。これにより、第1実施形態に比べてさらに細い液柱を形成しやすいという効果が得られる。したがって、第3実施形態の超音波霧化装置は、霧化量を増やしたい場合に好適である。 Further, in the ultrasonic atomizing device of the third embodiment, the swirling flow generating member 39 forms the swirling flow W5 of the liquid material, so that the flow velocity of the liquid material increases, and the liquid material injected from the tip of the nozzle 37. The injection pressure increases. As a result, an effect that a finer liquid column can be easily formed as compared with the first embodiment can be obtained. Therefore, the ultrasonic atomizer of the third embodiment is suitable when it is desired to increase the amount of atomization.
[変形例]
 第3実施形態の超音波霧化装置は、以下のような変形例が適用可能である。
 図10は、第3実施形態の変形例のノズル41の斜視図である。
 図10に示すように、変形例のノズル41において、筒状部材42の外面には、複数の旋回流発生部材43が間隔をおいて設けられている。旋回流発生部材43は、筒状部材42の内部に導入された液状物の旋回流W5を発生させる。
[Modification example]
The following modifications can be applied to the ultrasonic atomizer of the third embodiment.
FIG. 10 is a perspective view of the nozzle 41 of the modified example of the third embodiment.
As shown in FIG. 10, in the modified nozzle 41, a plurality of swirling flow generating members 43 are provided at intervals on the outer surface of the tubular member 42. The swirling flow generating member 43 generates a swirling flow W5 of a liquid material introduced inside the tubular member 42.
 旋回流発生部材43は、液状物を筒状部材42の内壁面に沿って流入させるように誘導する流路43dを形成する壁部を有している。これにより、旋回流発生部材43は、筒状部材42の内部に流入した液状物を筒状部材42の内壁面に沿って上方に向かって旋回させる流れを形成する。 The swirling flow generating member 43 has a wall portion that forms a flow path 43d that guides a liquid substance to flow along the inner wall surface of the tubular member 42. As a result, the swirling flow generating member 43 forms a flow in which the liquid material that has flowed into the inside of the tubular member 42 swirls upward along the inner wall surface of the tubular member 42.
 本変形例の超音波霧化装置においても、第3実施形態と同様の作用および効果が得られる。 The ultrasonic atomizer of this modified example also has the same actions and effects as those of the third embodiment.
[第4実施形態]
 以下、第4実施形態の超音波霧化装置について、図11および図12を用いて説明する。
 第4実施形態の超音波霧化装置の基本構成は第1実施形態と同一であり、ノズルの構成が第1実施形態と異なる。
 図11は、第4実施形態の超音波霧化装置におけるノズル45の斜視図である。
 図11において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Fourth Embodiment]
Hereinafter, the ultrasonic atomizer of the fourth embodiment will be described with reference to FIGS. 11 and 12.
The basic configuration of the ultrasonic atomizer of the fourth embodiment is the same as that of the first embodiment, and the nozzle configuration is different from that of the first embodiment.
FIG. 11 is a perspective view of the nozzle 45 in the ultrasonic atomizer of the fourth embodiment.
In FIG. 11, the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図11に示すように、第4実施形態のノズル45は、筒状部材46と、網状構造体47と、を有している。筒状部材46は、筒状部材46の内部を流動する液状物の流路断面積が絞られた絞り部46bを有している。具体的に、筒状部材46は、先端の円形の噴射口が一方向に潰された扁平形状を有し、この部分が絞り部46bを構成している。さらに詳細に言えば、筒状部材は、円錐台状の形状を有しているため、全体にわたって流路断面積が下方から上方に向けて減少しているが、絞り部においては、流路断面積が他の部分に比べて急激に減少している。
 超音波霧化装置のその他の構成は、第1実施形態と同様である。
As shown in FIG. 11, the nozzle 45 of the fourth embodiment has a tubular member 46 and a net-like structure 47. The tubular member 46 has a narrowed portion 46b in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member 46 is narrowed. Specifically, the tubular member 46 has a flat shape in which the circular injection port at the tip is crushed in one direction, and this portion constitutes the throttle portion 46b. More specifically, since the tubular member has a truncated cone shape, the cross-sectional area of the flow path decreases from the bottom to the top throughout, but the flow path is cut off at the throttle portion. The area is decreasing sharply compared to other parts.
Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
 第4実施形態の超音波霧化装置においても、網状構造体47の孔径を変えることで液柱の径を調節することができ、霧化量を制御することができる、という第1実施形態と同様の効果が得られる。 Also in the ultrasonic atomizing device of the fourth embodiment, the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 47, and the amount of atomization can be controlled. A similar effect can be obtained.
 さらに、第4実施形態の超音波霧化装置においては、筒状部材46に絞り部46bが設けられたことによって液状物の流速が上がり、ノズル45の先端から噴射される液状物の噴射圧力が増加する。これにより、第1実施形態に比べてさらに細い液柱を形成しやすいという効果が得られる。したがって、第4実施形態の超音波霧化装置は、霧化量を増やしたい場合に好適である。 Further, in the ultrasonic atomizing device of the fourth embodiment, since the tubular member 46 is provided with the throttle portion 46b, the flow velocity of the liquid material increases, and the injection pressure of the liquid material injected from the tip of the nozzle 45 increases. To increase. As a result, an effect that a finer liquid column can be easily formed as compared with the first embodiment can be obtained. Therefore, the ultrasonic atomizer of the fourth embodiment is suitable when it is desired to increase the amount of atomization.
[変形例]
 第4実施形態の超音波霧化装置は、以下のような変形例が適用可能である。
 図12は、第4実施形態の変形例のノズル49の斜視図である。
 図12に示すように、変形例のノズル49において、筒状部材50は、筒状部材50の内部を流動する液状物の流路断面積が絞られた絞り部50bを有している。具体的には、筒状部材50は、例えばベンチュリー管のように、下端と上端との間の位置で流路断面積が急激に絞られた部分を有し、この部分が絞り部50bを構成している。
[Modification example]
The following modifications can be applied to the ultrasonic atomizer of the fourth embodiment.
FIG. 12 is a perspective view of the nozzle 49 of the modified example of the fourth embodiment.
As shown in FIG. 12, in the nozzle 49 of the modified example, the tubular member 50 has a throttle portion 50b in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member 50 is narrowed. Specifically, the tubular member 50 has a portion where the cross-sectional area of the flow path is sharply narrowed at a position between the lower end and the upper end, such as a Venturi pipe, and this portion constitutes the throttle portion 50b. doing.
 本変形例の超音波霧化装置においても、第4実施形態と同様の作用および効果が得られる。 The ultrasonic atomizer of this modified example also has the same actions and effects as those of the fourth embodiment.
[第5実施形態]
 以下、第5実施形態の超音波霧化装置について、図13および図14を用いて説明する。
 第5実施形態の超音波霧化装置の基本構成は第1実施形態と同一であり、ノズルの構成が第1実施形態と異なる。
 図13は、第5実施形態の超音波霧化装置におけるノズル52の斜視図である。
 図13において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Fifth Embodiment]
Hereinafter, the ultrasonic atomizer of the fifth embodiment will be described with reference to FIGS. 13 and 14.
The basic configuration of the ultrasonic atomizer of the fifth embodiment is the same as that of the first embodiment, and the nozzle configuration is different from that of the first embodiment.
FIG. 13 is a perspective view of the nozzle 52 in the ultrasonic atomizing device of the fifth embodiment.
In FIG. 13, the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図13に示すように、第5実施形態のノズル52は、筒状部材53と、網状構造体54と、を有している。筒状部材53は、複数の液状物射出口53cを有している。筒状部材53の上端に頂板53tが設けられ、頂板53tに4個の液状物射出口53cが形成されている。本実施形態の場合、ノズル52が4個の液状物射出口53cを有する例を挙げたが、液状物射出口53cの個数は特に限定されない。網状構造体54は、複数の液状物射出口53cのそれぞれに対して、各液状物射出口53cを法線方向から見たときの外形形状である円の重心点を少なくとも含む領域に設けられている。網状構造体54は、筒状部材53の全体に設けられていてもよいし、各液状物射出口53cに対応する個所だけに設けられていてもよい。
 超音波霧化装置のその他の構成は、第1実施形態と同様である。
As shown in FIG. 13, the nozzle 52 of the fifth embodiment has a tubular member 53 and a net-like structure 54. The tubular member 53 has a plurality of liquid material injection ports 53c. A top plate 53t is provided at the upper end of the tubular member 53, and four liquid material injection ports 53c are formed on the top plate 53t. In the case of the present embodiment, the example in which the nozzle 52 has four liquid material injection ports 53c is given, but the number of liquid material injection ports 53c is not particularly limited. The network structure 54 is provided for each of the plurality of liquid material injection ports 53c in a region including at least the center of gravity point of a circle which is the outer shape of each liquid material injection port 53c when viewed from the normal direction. There is. The net-like structure 54 may be provided on the entire tubular member 53, or may be provided only at a location corresponding to each liquid material injection port 53c.
Other configurations of the ultrasonic atomizer are the same as those of the first embodiment.
 第5実施形態の超音波霧化装置においても、網状構造体54の孔径を変えることで液柱の径を調節することができ、霧化量を制御することができる、という第1実施形態と同様の効果が得られる。 Also in the ultrasonic atomizing device of the fifth embodiment, the diameter of the liquid column can be adjusted by changing the pore diameter of the network structure 54, and the amount of atomization can be controlled. A similar effect can be obtained.
 さらに、第5実施形態の超音波霧化装置においては、筒状部材53が複数の液状物射出口53cを有しているため、細い液柱を複数本形成することができる。これにより、霧化量をさらに増やすことができる。 Further, in the ultrasonic atomizing device of the fifth embodiment, since the tubular member 53 has a plurality of liquid material injection ports 53c, a plurality of thin liquid columns can be formed. As a result, the amount of atomization can be further increased.
[変形例]
 第5実施形態の超音波霧化装置は、以下のような変形例が適用可能である。
 図14は、第5実施形態の変形例のノズル56の斜視図である。
 図14に示すように、変形例のノズル56において、筒状部材57は、上端の中央部が一方向に潰されたことによって液状物射出口が2つに分断され、2個の液状物射出口57cが形成されている。網状構造体58は、筒状部材57の全体に設けられていてもよいし、各液状物射出口57cに対応する個所だけに設けられていてもよい。
[Modification example]
The following modifications can be applied to the ultrasonic atomizer of the fifth embodiment.
FIG. 14 is a perspective view of the nozzle 56 of the modified example of the fifth embodiment.
As shown in FIG. 14, in the nozzle 56 of the modified example, the liquid substance injection port of the tubular member 57 is divided into two by crushing the central portion of the upper end in one direction, and two liquid substances are emitted. The outlet 57c is formed. The net-like structure 58 may be provided on the entire tubular member 57, or may be provided only at a location corresponding to each liquid material injection port 57c.
 本変形例の超音波霧化装置においても、第5実施形態と同様の作用および効果が得られる。 The ultrasonic atomizer of this modified example also has the same actions and effects as those of the fifth embodiment.
[第6実施形態]
 以下、第6実施形態の超音波霧化装置について、図15および図16を用いて説明する。
 第6実施形態の超音波霧化装置の基本構成は第1実施形態と同一であり、霧状液滴を外部に排出する気流の位置が第1実施形態と異なる。
 図15は、第6実施形態の超音波霧化装置60の断面図である。
 図15において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
[Sixth Embodiment]
Hereinafter, the ultrasonic atomizer of the sixth embodiment will be described with reference to FIGS. 15 and 16.
The basic configuration of the ultrasonic atomizer of the sixth embodiment is the same as that of the first embodiment, and the position of the air flow for discharging the mist-like droplets to the outside is different from that of the first embodiment.
FIG. 15 is a cross-sectional view of the ultrasonic atomizer 60 of the sixth embodiment.
In FIG. 15, the same components as those in FIG. 1 used in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図15に示すように、第6実施形態の超音波霧化装置60は、筐体61と、超音波振動子12と、気流発生部13と、ノズル14と、を備えている。ノズル14の構成は、第1実施形態と同様である。 As shown in FIG. 15, the ultrasonic atomizer 60 of the sixth embodiment includes a housing 61, an ultrasonic vibrator 12, an airflow generating unit 13, and a nozzle 14. The configuration of the nozzle 14 is the same as that of the first embodiment.
 筐体61は、霧状液滴W1となる液状物Wを貯留する内部空間61aと、給気口61bと、排気口61cと、を有している。第1実施形態では、給気口11bおよび排気口11cは、ともに筐体11の上部に設けられていた。これにより、給気口11bから排気口11cに向けて流れる気流Fは、筐体11内の液面から離れた比較的高い位置を流れるようになっていた。これに対して、第6実施形態では、給気口61bは、液面に近く、比較的低い位置に設けられ、排気口61cは、液面から遠く、比較的高い位置に設けられている。これにより、給気口61bから排気口61cに向けて流れる気流Fは、筐体61内の低い位置から高い位置に向けて流れるようになっている。 The housing 61 has an internal space 61a for storing the liquid material W to be the mist-like droplets W1, an air supply port 61b, and an exhaust port 61c. In the first embodiment, both the air supply port 11b and the exhaust port 11c are provided on the upper part of the housing 11. As a result, the airflow F flowing from the air supply port 11b toward the exhaust port 11c flows at a relatively high position away from the liquid level in the housing 11. On the other hand, in the sixth embodiment, the air supply port 61b is provided at a relatively low position close to the liquid level, and the exhaust port 61c is provided at a relatively high position far from the liquid level. As a result, the airflow F flowing from the air supply port 61b toward the exhaust port 61c flows from the low position to the high position in the housing 61.
 第6実施形態の超音波霧化装置60においても、網状構造体19の孔径を変えることで液柱W2の径を調節することができ、霧化量を制御することができる、という第1実施形態と同様の効果が得られる。 Also in the ultrasonic atomizing device 60 of the sixth embodiment, the diameter of the liquid column W2 can be adjusted by changing the pore diameter of the network structure 19, and the atomization amount can be controlled. The same effect as the form can be obtained.
 さらに、第6実施形態の超音波霧化装置60において、網状構造体19の孔径の選択によって細い液柱W2を形成した場合には、以下のような効果が得られる。
 細い液柱W2を形成した場合、図5に示したように、液柱W2の下部で多くの霧状液滴W1が発生する。ここで、第6実施形態の超音波霧化装置60においては、気流Fが筐体61内の液面に近い位置から液柱W2の下部を通過し、高い位置に向けて流れるため、液柱W2の下部で発生した多くの霧状液滴W1を効率良く気流Fに乗せて搬送することができる。そのため、第6実施形態の超音波霧化装置60によれば、霧状液滴W1の搬送効率を第1実施形態に比べて高めることができる。
Further, in the ultrasonic atomizing device 60 of the sixth embodiment, when a thin liquid column W2 is formed by selecting the pore size of the network structure 19, the following effects can be obtained.
When a thin liquid column W2 is formed, as shown in FIG. 5, many mist-like droplets W1 are generated at the lower part of the liquid column W2. Here, in the ultrasonic atomizing device 60 of the sixth embodiment, the airflow F passes through the lower part of the liquid column W2 from a position close to the liquid level in the housing 61 and flows toward a higher position, so that the liquid column Many mist-like droplets W1 generated in the lower part of W2 can be efficiently carried on the air flow F. Therefore, according to the ultrasonic atomizing device 60 of the sixth embodiment, the transport efficiency of the atomized droplet W1 can be improved as compared with the first embodiment.
[変形例]
 第6実施形態の超音波霧化装置60は、以下のような変形例が適用可能である。
 図16は、第6実施形態の変形例の超音波霧化装置63の断面図である。
 図16に示すように、変形例の超音波霧化装置63において、筐体64は、霧状液滴W1となる液状物Wを貯留する内部空間64aと、給気口64bと、排気口64cと、を有している。給気口64bは、筐体64の比較的低い位置に設けられ、排気口64cは、筐体64の頂板64tに設けられている。
[Modification example]
The following modifications can be applied to the ultrasonic atomizer 60 of the sixth embodiment.
FIG. 16 is a cross-sectional view of the ultrasonic atomizer 63 of the modified example of the sixth embodiment.
As shown in FIG. 16, in the ultrasonic atomizing device 63 of the modified example, the housing 64 has an internal space 64a for storing a liquid material W to be a mist-like droplet W1, an air supply port 64b, and an exhaust port 64c. And have. The air supply port 64b is provided at a relatively low position of the housing 64, and the exhaust port 64c is provided on the top plate 64t of the housing 64.
 筐体64の内部には、超音波印加時に形成される液柱W2と排気口64cとを囲むように、筒状の誘導管65が設けられている。誘導管65の上端は頂板64tに固定され、誘導管65の下端と液面との間には隙間が設けられている。この構成により、給気口64bから排気口64cに向けて流れる気流Fは、筐体64内の低い位置から誘導管65と液面との間の隙間を通って誘導管65の内部に流入し、上方に向けて流れる。 Inside the housing 64, a tubular guide pipe 65 is provided so as to surround the liquid column W2 formed when ultrasonic waves are applied and the exhaust port 64c. The upper end of the guide pipe 65 is fixed to the top plate 64t, and a gap is provided between the lower end of the guide pipe 65 and the liquid level. With this configuration, the airflow F flowing from the air supply port 64b to the exhaust port 64c flows into the inside of the guide pipe 65 from a low position in the housing 64 through the gap between the guide pipe 65 and the liquid level. , Flows upwards.
 本変形例の超音波霧化装置63においても、第6実施形態と同様の作用および効果が得られる。 The ultrasonic atomizing device 63 of this modified example also has the same actions and effects as those of the sixth embodiment.
[第7実施形態]
 以下、本発明の第7実施形態について、図17を用いて説明する。
 第7実施形態では、第6実施形態で例示した超音波霧化装置を備えた調湿装置について説明する。ただし、調湿装置は、第1~第5実施形態で例示した超音波霧化装置を備えていてもよい。
 図17は、第7実施形態の調湿装置100の概略構成図である。
[7th Embodiment]
Hereinafter, the seventh embodiment of the present invention will be described with reference to FIG.
In the seventh embodiment, the humidity control device including the ultrasonic atomizing device exemplified in the sixth embodiment will be described. However, the humidity control device may include the ultrasonic atomization device exemplified in the first to fifth embodiments.
FIG. 17 is a schematic configuration diagram of the humidity control device 100 of the seventh embodiment.
 図17に示すように、本実施形態の調湿装置100は、吸湿部101と、霧化再生部102と、第1液体吸湿材輸送流路103と、第2液体吸湿材輸送流路104と、第1空気導入流路105と、第2空気導入流路106と、第1空気排出流路107と、第2空気排出流路108と、制御部109と、を備える。調湿装置100は、外殻筐体110を備えており、吸湿部101および霧化再生部102は、外殻筐体110の内部空間110cに収容されている。 As shown in FIG. 17, the humidity control device 100 of the present embodiment includes a moisture absorbing unit 101, an atomization regeneration unit 102, a first liquid moisture absorbing material transport flow path 103, and a second liquid moisture absorbing material transport flow path 104. The first air introduction flow path 105, the second air introduction flow path 106, the first air discharge flow path 107, the second air discharge flow path 108, and the control unit 109 are provided. The humidity control device 100 includes an outer shell housing 110, and the moisture absorbing unit 101 and the atomization regeneration unit 102 are housed in the internal space 110c of the outer shell housing 110.
 吸湿部101は、第1貯留槽112と、ブロア113と、吸湿部ノズル114と、を備えている。吸湿部101は、吸湿性物質を含む液体吸湿材Lと外部空間に存在する空気A1とを接触させることにより、空気A1に含まれる水分の少なくとも一部を液体吸湿材Lに吸収させる。吸湿部101は、できるだけ多くの水分を液体吸湿材Lに吸収させることが望ましいが、空気A1に含まれる水分のうちの少なくとも一部の水分を液体吸湿材Lに吸収させればよい。 The moisture absorbing portion 101 includes a first storage tank 112, a blower 113, and a moisture absorbing portion nozzle 114. The hygroscopic unit 101 causes the liquid hygroscopic material L to absorb at least a part of the moisture contained in the air A1 by bringing the liquid hygroscopic material L containing the hygroscopic substance into contact with the air A1 existing in the external space. It is desirable that the moisture absorbing portion 101 absorbs as much water as possible into the liquid moisture absorbing material L, but at least a part of the moisture contained in the air A1 may be absorbed by the liquid moisture absorbing material L.
 第1貯留槽112の内部には、液体吸湿材Lが貯留されている。液体吸湿材Lについては後述する。第1貯留槽112には、第1空気導入流路105、第1空気排出流路107、および第1液体吸湿材輸送流路103が接続されている。空気A1は、ブロア113によって第1空気導入流路105を介して第1貯留槽112の内部空間に供給される。 The liquid moisture absorbing material L is stored inside the first storage tank 112. The liquid moisture absorbing material L will be described later. The first air introduction flow path 105, the first air discharge flow path 107, and the first liquid hygroscopic material transport flow path 103 are connected to the first storage tank 112. The air A1 is supplied to the internal space of the first storage tank 112 by the blower 113 via the first air introduction flow path 105.
 吸湿部ノズル114は、第1貯留槽112の内部空間の上部に配置されている。後述する霧化再生部102によって再生された後、第2液体吸湿材輸送流路104を介して吸湿部101に戻された液体吸湿材L1は、吸湿部ノズル114から第1貯留槽112の内部空間に流下し、この際に液体吸湿材L1と空気A1とが接触する。この種の液体吸湿材L1と空気A1との接触の形態は、一般に「流下方式」と呼ばれる。なお、液体吸湿材L1と空気A1との接触形態は、流下方式に限らず、他の方式を用いることができる。例えば第1貯留槽112に貯留された液体吸湿材Lの中に空気A1を泡状にして供給する方式、いわゆるバブリング方式を用いることもできる。 The moisture absorbing portion nozzle 114 is arranged in the upper part of the internal space of the first storage tank 112. After being regenerated by the atomization regeneration unit 102 described later, the liquid hygroscopic material L1 returned to the moisture absorption unit 101 via the second liquid moisture absorption material transport flow path 104 is inside the first storage tank 112 from the moisture absorption unit nozzle 114. It flows down into the space, and at this time, the liquid hygroscopic material L1 and the air A1 come into contact with each other. This type of contact between the liquid hygroscopic material L1 and the air A1 is generally referred to as a "flow-down method". The contact form between the liquid moisture absorbing material L1 and the air A1 is not limited to the flow-down method, and other methods can be used. For example, a so-called bubbling method, in which the air A1 is supplied in the form of bubbles in the liquid moisture absorbing material L stored in the first storage tank 112, can also be used.
 外部空間に存在する空気A1は、ブロア113から第1空気排出流路107の排出口107bに向かう気流を形成し、吸湿部ノズル114から流下する液体吸湿材Lと接触する。このとき、空気A1中に含まれる水分の少なくとも一部は、液体吸湿材Lに吸収されることによって除去される。吸湿部101では、元々の室内の空気A1から水分が除去された空気が得られるため、この空気は調湿装置100の外部空間の空気よりも乾燥している。このように、乾燥した空気A2が第1空気排出流路107を介して室内に排出される。 The air A1 existing in the external space forms an air flow from the blower 113 toward the discharge port 107b of the first air discharge flow path 107, and comes into contact with the liquid moisture absorbing material L flowing down from the moisture absorbing portion nozzle 114. At this time, at least a part of the moisture contained in the air A1 is removed by being absorbed by the liquid moisture absorbing material L. Since the moisture absorbing portion 101 obtains air from which moisture has been removed from the original indoor air A1, this air is drier than the air in the external space of the humidity control device 100. In this way, the dry air A2 is discharged into the room through the first air discharge flow path 107.
 液体吸湿材Lは、水分を吸収する性質(吸湿性)を示す液体であり、例えば温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。液体吸湿材Lは、後述する吸湿性物質を含んでいる。また、液体吸湿材Lは、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる、または吸湿性物質と混和する溶媒が挙げられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。 The liquid hygroscopic material L is a liquid that exhibits a property of absorbing moisture (hygroscopicity). For example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable. The liquid hygroscopic material L contains a hygroscopic substance described later. Further, the liquid hygroscopic material L may contain a hygroscopic substance and a solvent. Examples of this type of solvent include solvents that dissolve or mix with hygroscopic substances, such as water. The hygroscopic substance may be an organic material or an inorganic material.
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。 Examples of the organic material used as a hygroscopic substance include alcohols having a divalent value or higher, ketones, organic solvents having an amide group, sugars, known materials used as raw materials for moisturizing cosmetics, and the like. Among them, as an organic material preferably used as a hygroscopic substance because of its high hydrophilicity, a known material used as a raw material for alcohols having a divalent value or higher, an organic solvent having an amide group, sugars, moisturizing cosmetics and the like. Can be mentioned.
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。 Examples of dihydric or higher alcohols include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。 Examples of the organic solvent having an amide group include formamide and acetamide.
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。 Examples of sugars include sucrose, pullulan, glucose, xylene, fructose, mannitol, sorbitol and the like.
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。 Known materials used as raw materials for moisturizing cosmetics include, for example, 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen and the like.
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。 Examples of inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, and pyrrolidone. Examples thereof include sodium carboxylate.
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、液体吸湿材Lの表面(液面)近傍における水分子の割合が多くなる。後述する霧化再生部102では、液体吸湿材Lの表面近傍から霧状液滴W1を発生させて、液体吸湿材Lから水分を分離する。そのため、液体吸湿材Lの表面近傍における水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、液体吸湿材Lの表面近傍における水分子の割合が多いと、液体吸湿材Lの表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生部102での吸湿性物質の損失を抑えられる点で好ましい。 If the hygroscopic substance has high hydrophilicity, for example, when the material of the hygroscopic substance and water are mixed, the proportion of water molecules in the vicinity of the surface (liquid surface) of the liquid hygroscopic material L increases. The atomization regeneration unit 102, which will be described later, generates atomized droplets W1 from the vicinity of the surface of the liquid moisture absorbing material L to separate water from the liquid moisture absorbing material L. Therefore, it is preferable that the proportion of water molecules in the vicinity of the surface of the liquid moisture absorbing material L is large in that water can be efficiently separated. Further, when the proportion of water molecules in the vicinity of the surface of the liquid hygroscopic material L is large, the proportion of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material L is relatively small, so that the hygroscopic substance in the atomization regeneration unit 102 It is preferable in that loss can be suppressed.
 液体吸湿材Lのうち、吸湿部101での処理に用いられる液体吸湿材L1に含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、液体吸湿材L1は、効率良く水分を吸収することができる。 Of the liquid hygroscopic material L, the concentration of the hygroscopic substance contained in the liquid hygroscopic material L1 used for the treatment in the moisture absorbing portion 101 is not particularly limited, but is preferably 40% by mass or more. When the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material L1 can efficiently absorb water.
 液体吸湿材Lの粘度は、25×10-3Pa・s以下であることが好ましい。これにより、後述する霧化再生部102において、液体吸湿材Lの液面に液体吸湿材Lの液柱W2を生じさせやすい。そのため、液体吸湿材Lから効率良く水分を分離することができる。ただし、本実施形態では、霧化再生部102として、霧化させる液体の粘度に依らずに高い霧化効率が得られる第1~第6実施形態の超音波霧化装置を備えているため、たとえ液体吸湿材Lの粘度が高くても、従来に比べて効率良く水分を分離することができる。 The viscosity of the liquid hygroscopic material L is preferably 25 × 10 -3 Pa · s or less. As a result, in the atomization regeneration unit 102 described later, the liquid column W2 of the liquid moisture absorbing material L is likely to be generated on the liquid surface of the liquid moisture absorbing material L. Therefore, water can be efficiently separated from the liquid moisture absorbing material L. However, in the present embodiment, since the atomization regeneration unit 102 includes the ultrasonic atomization apparatus of the first to sixth embodiments, which can obtain high atomization efficiency regardless of the viscosity of the liquid to be atomized. Even if the liquid moisture absorbing material L has a high viscosity, water can be separated more efficiently than in the conventional case.
 霧化再生部102は、第2貯留槽116(筐体)と、ブロア117(気流発生部)と、超音波振動子118と、誘導管119と、を備えている。霧化再生部102は、第1液体吸湿材輸送流路103を介して吸湿部101から供給された液体吸湿材L2に含まれる水分の少なくとも一部を霧化し、液体吸湿材L2から水分の少なくとも一部を除去することにより液体吸湿材L2を再生する。第2貯留槽116の内部には、再生すべき液体吸湿材L2が貯留されている。第2貯留槽116には、第1液体吸湿材輸送流路103、第2液体吸湿材輸送流路104、第2空気導入流路106、および第2空気排出流路108が接続されている。第2貯留槽116は、第1~第6実施形態の超音波霧化装置における筐体に相当する。 The atomization regeneration unit 102 includes a second storage tank 116 (housing), a blower 117 (air flow generation unit), an ultrasonic oscillator 118, and an induction tube 119. The atomization regeneration unit 102 atomizes at least a part of the water contained in the liquid hygroscopic material L2 supplied from the hygroscopic unit 101 via the first liquid hygroscopic material transport flow path 103, and at least the water from the liquid hygroscopic material L2. The liquid hygroscopic material L2 is regenerated by removing a part of the material. The liquid moisture absorbing material L2 to be regenerated is stored in the second storage tank 116. The first liquid moisture absorbing material transport flow path 103, the second liquid moisture absorbing material transport flow path 104, the second air introduction flow path 106, and the second air discharge flow path 108 are connected to the second storage tank 116. The second storage tank 116 corresponds to the housing in the ultrasonic atomizer of the first to sixth embodiments.
 ブロア117は、外殻筐体110の外部空間から、第2空気導入流路106を介して第2貯留槽116の内部に空気A1を送り込み、第2貯留槽116の内部から第2空気排出流路108を介して外殻筐体110の外部に流れる気流を発生させる。 The blower 117 sends air A1 from the external space of the outer shell housing 110 into the inside of the second storage tank 116 via the second air introduction flow path 106, and the second air discharge flow from the inside of the second storage tank 116. An air flow flowing to the outside of the outer shell housing 110 is generated through the path 108.
 超音波振動子118は、液体吸湿材L2に超音波を照射することにより、液体吸湿材L2から水分を含む霧状液滴W1を発生させる。超音波振動子118は、第2貯留槽116の底板に接して設けられている。超音波振動子118から液体吸湿材L2に超音波が照射される際、超音波の発生条件を調整することによって、液体吸湿材L2の液面に液体吸湿材L2の液柱W2を生じさせることができる。霧状液滴W1の多くは、液体吸湿材L2の液柱W2およびその近傍から発生する。 The ultrasonic vibrator 118 irradiates the liquid hygroscopic material L2 with ultrasonic waves to generate mist-like droplets W1 containing water from the liquid hygroscopic material L2. The ultrasonic vibrator 118 is provided in contact with the bottom plate of the second storage tank 116. When ultrasonic waves are applied to the liquid hygroscopic material L2 from the ultrasonic vibrator 118, the liquid column W2 of the liquid hygroscopic material L2 is generated on the liquid surface of the liquid hygroscopic material L2 by adjusting the generation conditions of the ultrasonic waves. Can be done. Most of the mist-like droplets W1 are generated from the liquid column W2 of the liquid hygroscopic material L2 and its vicinity.
 誘導管119は、液体吸湿材L2から発生した霧状液滴W1を第2空気排出流路108の排気口108bに誘導する。調湿装置100を上方から見たとき、誘導管119は、排気口108bの周囲を囲むように設けられている。 The guide pipe 119 guides the mist-like droplet W1 generated from the liquid moisture absorbing material L2 to the exhaust port 108b of the second air discharge flow path 108. When the humidity control device 100 is viewed from above, the guide pipe 119 is provided so as to surround the exhaust port 108b.
 第2空気排出流路108は、霧状液滴W1を含む空気A4を外殻筐体110の外部空間に放出し、調湿装置100の内部から除去する。これにより、液体吸湿材L2から水分を分離することができる。これにより、液体吸湿材L2の吸湿性能が再び高まり、液体吸湿材L2を吸湿部101に戻して再利用することができる。空気A4は、第2貯留槽116の内部で発生した霧状液滴W1を含んでいるため、外殻筐体110の外部空間の空気A2よりも湿っている。このように、加湿された空気A4が第2空気排出流路108を介して室内に排出される。 The second air discharge flow path 108 discharges the air A4 containing the mist-like droplets W1 into the outer space of the outer shell housing 110 and removes it from the inside of the humidity control device 100. As a result, water can be separated from the liquid moisture absorbing material L2. As a result, the hygroscopic performance of the liquid hygroscopic material L2 is enhanced again, and the liquid hygroscopic material L2 can be returned to the hygroscopic unit 101 and reused. Since the air A4 contains the mist-like droplets W1 generated inside the second storage tank 116, the air A4 is moist than the air A2 in the outer space of the outer shell housing 110. In this way, the humidified air A4 is discharged into the room through the second air discharge flow path 108.
 霧化再生部102を上方から見たとき、排気口108bが超音波振動子118と平面的に重なっていることから、排気口108bの下方に液体吸湿材L2の液柱W2が生じる。そのため、霧化再生部102においては、液体吸湿材L2に生じる液柱W2の周囲を誘導管119が囲む設計とされている。排気口108bと誘導管119と液柱W2とがこのような位置関係にあることで、液体吸湿材L2の液面から上方に向かう気流によって、液体吸湿材L2の液柱W2から発生した霧状液滴W1が排気口108bへと誘導される。 When the atomization regeneration unit 102 is viewed from above, the exhaust port 108b overlaps the ultrasonic vibrator 118 in a plane, so that a liquid column W2 of the liquid moisture absorbing material L2 is generated below the exhaust port 108b. Therefore, the atomization regeneration unit 102 is designed so that the guide pipe 119 surrounds the liquid column W2 generated in the liquid moisture absorbing material L2. Since the exhaust port 108b, the guide pipe 119, and the liquid column W2 are in such a positional relationship, the mist-like shape generated from the liquid column W2 of the liquid hygroscopic material L2 due to the air flow upward from the liquid surface of the liquid hygroscopic material L2. The droplet W1 is guided to the exhaust port 108b.
 吸湿部101と霧化再生部102とは、液体吸湿材Lの循環流路を構成する第1液体吸湿材輸送流路103と第2液体吸湿材輸送流路104とによって接続されている。第2液体吸湿材輸送流路104の途中には、液体吸湿材Lを循環させるためのポンプ121が設けられている。 The moisture absorbing unit 101 and the atomization regeneration unit 102 are connected by a first liquid hygroscopic material transport flow path 103 and a second liquid hygroscopic material transport flow path 104 that form a circulation flow path of the liquid hygroscopic material L. A pump 121 for circulating the liquid moisture absorbing material L is provided in the middle of the second liquid moisture absorbing material transport flow path 104.
 第1液体吸湿材輸送流路103は、水分の少なくとも一部が吸収された液体吸湿材L2を吸湿部101から霧化再生部102に輸送する。第1液体吸湿材輸送流路103の一端は、第1貯留槽112の下部に接続されている。第1貯留槽112における第1液体吸湿材輸送流路103の接続箇所は、第1貯留槽112内の液体吸湿材Lの液面よりも下方に位置している。一方、第1液体吸湿材輸送流路103の他端は、第2貯留槽116の下部に接続されている。第2貯留槽116における第1液体吸湿材輸送流路103の接続箇所は、第2貯留槽116内の液体吸湿材L2の液面よりも下方に位置している。 The first liquid hygroscopic material transport flow path 103 transports the liquid hygroscopic material L2, which has absorbed at least a part of water, from the moisture absorption unit 101 to the atomization regeneration unit 102. One end of the first liquid moisture absorbing material transport flow path 103 is connected to the lower part of the first storage tank 112. The connection point of the first liquid hygroscopic material transport flow path 103 in the first storage tank 112 is located below the liquid level of the liquid hygroscopic material L in the first storage tank 112. On the other hand, the other end of the first liquid moisture absorbing material transport flow path 103 is connected to the lower part of the second storage tank 116. The connection point of the first liquid hygroscopic material transport flow path 103 in the second storage tank 116 is located below the liquid level of the liquid hygroscopic material L2 in the second storage tank 116.
 第2液体吸湿材輸送流路104は、水分が除去されて再生された液体吸湿材Lを霧化再生部102から吸湿部101に輸送する。第2液体吸湿材輸送流路104の一端は、第2貯留槽116の下部に接続されている。第2貯留槽116における第2液体吸湿材輸送流路104の接続箇所は、第2貯留槽116内の液体吸湿材L2の液面よりも下方に位置している。一方、第2液体吸湿材輸送流路104の他端は、第1貯留槽112の上部に接続されている。第1貯留槽112における第2液体吸湿材輸送流路104の接続箇所は、第1貯留槽112内の液体吸湿材L1の液面よりも上方に位置し、上述の吸湿部ノズル114に接続されている。 The second liquid hygroscopic material transport flow path 104 transports the regenerated liquid hygroscopic material L from which the moisture has been removed from the atomization regeneration unit 102 to the moisture absorption unit 101. One end of the second liquid moisture absorbing material transport flow path 104 is connected to the lower part of the second storage tank 116. The connection point of the second liquid hygroscopic material transport flow path 104 in the second storage tank 116 is located below the liquid level of the liquid hygroscopic material L2 in the second storage tank 116. On the other hand, the other end of the second liquid moisture absorbing material transport flow path 104 is connected to the upper part of the first storage tank 112. The connection point of the second liquid hygroscopic material transport flow path 104 in the first storage tank 112 is located above the liquid level of the liquid hygroscopic material L1 in the first storage tank 112 and is connected to the above-mentioned moisture absorbing part nozzle 114. ing.
 上記では、調湿装置100において、除湿された空気が吸湿部101から第1空気排出流路107を介して排出され、加湿された空気が霧化再生部102から第2空気排出流路108を介して排出される、と説明した。湿度調整機能について、本実施形態の調湿装置100を除湿機能のみを備えた空調装置とする場合には、例えば第1空気排出流路107の空気排出口を室内に向けて配置する一方、第2空気排出流路108の空気排出口を室外に向けて配置した構成とすればよい。もしくは、加湿機能のみを備えた空調装置とする場合には、例えば第2空気排出流路108の空気排出口を室内に向けて配置する一方、第1空気排出流路107の空気排出口を室外に向けて配置した構成とすればよい。また、除湿機能と加湿機能の双方を備えた空調装置とする場合には、第1空気排出流路107および第2空気排出流路108の双方の空気排出口を室内に向けて配置し、制御部109がいずれの空気排出口から空気を排出するかを制御する構成とすればよい。 In the above, in the humidity control device 100, the dehumidified air is discharged from the hygroscopic unit 101 through the first air discharge flow path 107, and the humidified air is discharged from the atomization regeneration unit 102 through the second air discharge flow path 108. It was explained that it was discharged through. Regarding the humidity adjustment function, when the humidity control device 100 of the present embodiment is an air conditioner having only a dehumidification function, for example, the air outlet of the first air discharge flow path 107 is arranged toward the room, while the first 2 The air discharge port of the air discharge flow path 108 may be arranged so as to face the outdoor side. Alternatively, in the case of an air conditioner having only a humidifying function, for example, the air discharge port of the second air discharge flow path 108 is arranged toward the room, while the air discharge port of the first air discharge flow path 107 is arranged outdoors. The configuration may be arranged so as to face. Further, in the case of an air conditioner having both a dehumidifying function and a humidifying function, both the air outlets of the first air discharge flow path 107 and the second air discharge flow path 108 are arranged and controlled toward the room. The configuration may be such that the unit 109 controls which air discharge port the air is discharged from.
 本実施形態の調湿装置100においては、霧化再生部102が上記実施形態の超音波霧化装置から構成されているため、網状構造体の孔径を最適化することによって霧化量を増加させるとともに、霧化効率を高めることができる。これにより、液体吸湿材Lの再生効率が高い調湿装置100を実現することができる。 In the humidity control device 100 of the present embodiment, since the atomization regeneration unit 102 is composed of the ultrasonic atomization device of the above embodiment, the amount of atomization is increased by optimizing the pore size of the network structure. At the same time, the atomization efficiency can be improved. As a result, it is possible to realize the humidity control device 100 having high regeneration efficiency of the liquid moisture absorbing material L.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態の超音波霧化装置においては、筐体に液状物の流入口および流出口が設けられていなかったが、流入口および流出口が設けられ、超音波霧化が連続的に行われる構成としてもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the ultrasonic atomizing device of the above embodiment, the housing is not provided with an inlet and an outlet for a liquid substance, but an inlet and an outlet are provided, and ultrasonic atomization is continuously performed. It may be configured as such.
 また、上記実施形態で例示した超音波霧化装置および調湿装置の各種構成要素の数、形状、配置、材料等の具体的な記載については、上記実施形態に限定されることなく、適宜変更が可能である。 Further, the specific description of the number, shape, arrangement, material, etc. of various components of the ultrasonic atomizer and the humidity control device exemplified in the above embodiment is not limited to the above embodiment, and may be appropriately changed. Is possible.
 また、上記第7実施形態では、超音波霧化装置の適用例として、霧化量を増加させたい用途に用いる調湿装置の場合を挙げたが、これとは逆に、霧化量を減少させたい方向に制御する装置に用いる場合にも、本発明の超音波霧化装置が適用可能である。 Further, in the seventh embodiment, as an application example of the ultrasonic atomizing device, the case of a humidity control device used for an application in which the atomizing amount is desired to be increased has been mentioned, but conversely, the atomizing amount is reduced. The ultrasonic atomizing device of the present invention can also be applied when used in a device for controlling in a desired direction.
 本発明の霧化装置は、上記の調湿装置の他、例えばネブライザー、分離装置、塗布装置、液体濃縮装置等の各種装置に利用が可能である。 The atomizing device of the present invention can be used for various devices such as a nebulizer, a separating device, a coating device, and a liquid concentrating device, in addition to the above-mentioned humidity control device.

Claims (9)

  1.  霧状液滴となる液状物を貯留する内部空間と排気口とを有する筐体と、
     前記筐体に設けられ、前記液状物に超音波を照射することにより前記霧状液滴を発生させる超音波振動子と、
     前記排気口を介して前記霧状液滴の少なくとも一部を前記内部空間から外部に送出するための気流を発生させる気流発生部と、
     前記超音波振動子から放射された前記超音波を前記液状物の液面の特定の領域に向けて集束させるノズルと、
     を備え、
     前記ノズルは、上端に前記液状物の射出口を有する筒状部材と、前記筒状部材の内部空間のうち、前記射出口の法線方向から見て、前記射出口の外形形状の重心点を含む領域に少なくとも設けられ、上方に前記液状物の液柱を形成する網状構造体と、を有する、超音波霧化装置。
    A housing having an internal space and an exhaust port for storing liquid substances that become mist droplets,
    An ultrasonic vibrator provided in the housing and generating the mist-like droplets by irradiating the liquid material with ultrasonic waves.
    An airflow generating unit that generates an airflow for sending at least a part of the mist-like droplets from the internal space to the outside through the exhaust port.
    A nozzle that focuses the ultrasonic waves radiated from the ultrasonic transducer toward a specific region of the liquid surface of the liquid material, and
    With
    The nozzle has a tubular member having an injection port for the liquid substance at the upper end and a center of gravity point of the outer shape of the injection port in the internal space of the tubular member when viewed from the normal direction of the injection port. An ultrasonic atomizer having at least a network structure provided in a region including the liquid material and forming a liquid column of the liquid substance above.
  2.  前記網状構造体は、積層された複数の網を有する、請求項1に記載の超音波霧化装置。 The ultrasonic atomizing device according to claim 1, wherein the network structure has a plurality of laminated networks.
  3.  前記網状構造体は、前記筒状部材の高さ方向に間隔をおいて設けられた複数の網を有する、請求項1または請求項2に記載の超音波霧化装置。 The ultrasonic atomizing device according to claim 1 or 2, wherein the net-like structure has a plurality of nets provided at intervals in the height direction of the tubular member.
  4.  前記筒状部材は、前記筒状部材の内部に導入された前記液状物の旋回流を発生させる旋回流発生部材を有する、請求項1から請求項3までのいずれか一項に記載の超音波霧化装置。 The ultrasonic wave according to any one of claims 1 to 3, wherein the tubular member has a swirling flow generating member that generates a swirling flow of the liquid material introduced into the tubular member. Atomizer.
  5.  前記筒状部材は、前記筒状部材の内部を流動する前記液状物の流路断面積が絞られた絞り部を有する、請求項1から請求項4までのいずれか一項に記載の超音波霧化装置。 The ultrasonic wave according to any one of claims 1 to 4, wherein the tubular member has a narrowed portion in which the cross-sectional area of the flow path of the liquid material flowing inside the tubular member is narrowed. Atomizer.
  6.  前記射出口が複数設けられ、
     複数の前記射出口のそれぞれに対して、少なくとも前記重心点を含む領域に前記網状構造体が設けられている、請求項1から請求項5までのいずれか一項に記載の超音波霧化装置。
    A plurality of the injection ports are provided,
    The ultrasonic atomizing apparatus according to any one of claims 1 to 5, wherein the network structure is provided in a region including at least the center of gravity of each of the plurality of injection ports. ..
  7.  前記網状構造体の孔径は、10μm以上、かつ1mm以下である、請求項1から請求項6までのいずれか一項に記載の超音波霧化装置。 The ultrasonic atomizing apparatus according to any one of claims 1 to 6, wherein the pore diameter of the network structure is 10 μm or more and 1 mm or less.
  8.  前記網状構造体の厚さは、5mm以下である、請求項1から請求項7までのいずれか一項に記載の超音波霧化装置。 The ultrasonic atomizer according to any one of claims 1 to 7, wherein the thickness of the reticulated structure is 5 mm or less.
  9.  吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、
     前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、
     前記霧化再生部は、請求項1から請求項8までのいずれか一項に記載の超音波霧化装置から構成されている、調湿装置。
    A hygroscopic portion that allows the liquid hygroscopic material to absorb at least a part of the moisture contained in the air by bringing the liquid hygroscopic material containing a hygroscopic substance into contact with air.
    The liquid moisture absorbing material is provided with an atomizing regeneration unit that regenerates the liquid moisture absorbing material by atomizing and removing at least a part of the water contained in the liquid moisture absorbing material supplied from the moisture absorbing unit.
    The atomization regeneration unit is a humidity control device including the ultrasonic atomization device according to any one of claims 1 to 8.
PCT/JP2020/017961 2019-05-27 2020-04-27 Ultrasonic atomization device and humidification device WO2020241150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522725A JP7169443B2 (en) 2019-05-27 2020-04-27 Ultrasonic atomizer and humidity controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-098208 2019-05-27
JP2019098208 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020241150A1 true WO2020241150A1 (en) 2020-12-03

Family

ID=73554041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017961 WO2020241150A1 (en) 2019-05-27 2020-04-27 Ultrasonic atomization device and humidification device

Country Status (2)

Country Link
JP (1) JP7169443B2 (en)
WO (1) WO2020241150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893985A (en) * 2021-11-02 2022-01-07 广州大学 Ultrasonic atomization device
US20220111412A1 (en) * 2020-01-17 2022-04-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic atomization apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490706U (en) * 1977-12-10 1979-06-27
JPS54181009U (en) * 1978-06-12 1979-12-21
JPS57148626U (en) * 1982-02-24 1982-09-18
JP2007330940A (en) * 2006-06-19 2007-12-27 Matsushita Electric Works Ltd Ultrasonic fog generating apparatus
JP2016221460A (en) * 2015-06-01 2016-12-28 株式会社良品計画 Ultrasonic atomizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622911B2 (en) 2007-10-26 2014-01-07 University Of Virginia Patent Foundation System for treatment and imaging using ultrasonic energy and microbubbles and related method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490706U (en) * 1977-12-10 1979-06-27
JPS54181009U (en) * 1978-06-12 1979-12-21
JPS57148626U (en) * 1982-02-24 1982-09-18
JP2007330940A (en) * 2006-06-19 2007-12-27 Matsushita Electric Works Ltd Ultrasonic fog generating apparatus
JP2016221460A (en) * 2015-06-01 2016-12-28 株式会社良品計画 Ultrasonic atomizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111412A1 (en) * 2020-01-17 2022-04-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic atomization apparatus
CN113893985A (en) * 2021-11-02 2022-01-07 广州大学 Ultrasonic atomization device

Also Published As

Publication number Publication date
JP7169443B2 (en) 2022-11-10
JPWO2020241150A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US6883724B2 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
WO2020241150A1 (en) Ultrasonic atomization device and humidification device
CN107735184B (en) Super-fine particle spraying device
JP6932237B2 (en) Atomizer and humidity control device
KR100975264B1 (en) Electrostatically atomizing device and electrostatically atomizing system
JP5395423B2 (en) Ultrasonic atomizer
EP3274101B1 (en) An aerosol generator
JP2008149316A (en) Method of atomizing solution and ultrasonic atomizer used for the method
JP2005502463A5 (en)
JP2019526023A (en) Floating humidifier with improved humidification
KR20100035708A (en) Portable ultrasonic mist generating device
US20210107027A1 (en) Atomizer and humidity controller
JP5091924B2 (en) Atomizer
EA037458B1 (en) Device for producing special effect fog
JP2006003066A (en) Spraying apparatus of humidifier
WO2019235411A1 (en) Humidity regulating device
JPWO2019138794A1 (en) Humidity control device and separation device
KR102118324B1 (en) Filter and humidifier having the same
US20220049861A1 (en) Humidity control system
JP5864704B2 (en) Mist generating device, mist generating mechanism and mist generating method
WO2022190670A1 (en) Ultrasonic atomization separation device and humidity control system
JP2000033295A (en) Process and device for atomizing liquid
WO2022049949A1 (en) Ultrafine mist supply system
KR200388417Y1 (en) Wet-type Air Cleaner with Vibrators
JP2022188321A (en) Ultrasonic atomization separation unit and humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813318

Country of ref document: EP

Kind code of ref document: A1