WO2020239764A1 - Procédé de fabrication additive d'une pièce métallique - Google Patents

Procédé de fabrication additive d'une pièce métallique Download PDF

Info

Publication number
WO2020239764A1
WO2020239764A1 PCT/EP2020/064574 EP2020064574W WO2020239764A1 WO 2020239764 A1 WO2020239764 A1 WO 2020239764A1 EP 2020064574 W EP2020064574 W EP 2020064574W WO 2020239764 A1 WO2020239764 A1 WO 2020239764A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
carbon dioxide
powder
base material
shielding gas
Prior art date
Application number
PCT/EP2020/064574
Other languages
English (en)
Inventor
Philippe Lefebvre
Coralie CHARPENTIER
Marc ROSAIN-GUEU
Original Assignee
L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude filed Critical L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude
Publication of WO2020239764A1 publication Critical patent/WO2020239764A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the base material 14 may be chosen from alloy steels, non-alloy steels, in particular stainless steels, carbon steels, aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de fabrication additive d'au moins une pièce métallique dans lequel ladite pièce métallique est formée par couches à partir d'un matériau de base (14) comprenant au moins une poudre métallique, plusieurs couches dudit matériau de base (14) étant déposées successivement les unes sur les autres, chaque couche étant, avant le dépôt de la couche suivante, fondue par au moins un faisceau laser (9) dans une région prédéfinie (7) qui correspond à une région de section transversale de la pièce métallique à fabriquer, ledit procédé étant opéré sous une atmosphère gazeuse protectrice formée par un gaz de protection contenant un gaz inerte et du dioxyde de carbone, le gaz inerte contenant au moins un composant inerte choisi parmi l'argon, l'hélium, l'azote. Selon l'invention, le gaz de protection contient au moins 1% en volume et au plus 20% en volume de dioxyde de carbone.

Description

DESCRIPTION
Titre : Procédé de fabrication additive d’une pièce métallique
La présente invention concerne un procédé de fabrication additive par fusion laser sur lit de poudre métallique.
La fabrication additive, également appelée « impression 3D », regroupe les procédés permettant de fabriquer des pièces en trois dimensions par ajout successif de couches de matière, à partir d’un modèle numérique, sans recourir à de l’outillage. Le terme « additive » est utilisé par opposition aux principes des méthodes traditionnelles, comme l’usinage, qui reposent sur un enlèvement de la matière.
Parmi les procédés existants, on connaît du document CN107971490A un procédé de fabrication additive par projection de poudre dans lequel un jet de poudre métallique est projeté par une buse dans une zone en fusion par un faisceau laser.
Le document W02006/133034A divulgue un procédé de fabrication additive par projection de poudre utilisant comme source d’énergie hybride un arc électrique et un faisceau laser.
L’article de L. Yan « Wire and Arc Additive Manufacture (WAAM) reusable tooling investigation », XP055661698, divulgue un procédé de fabrication additive par fusion à l'arc d’un fil métallique d’apport, également dénommé en langue anglaise « Wire Arc Additive Manufacturing ». Le matériau d’apport n’est pas une poudre mais fil de soudage lui-même.
Par ailleurs, on connaît des procédés mettant en oeuvre un faisceau laser et un matériau de base sous forme de poudre, le matériau étant fondu localement, et couche par couche, grâce à un balayage sélectif du lit de poudre par le laser, suivant un modèle numérique prédéfini. On parle aussi de fusion laser sur lit de poudre.
A la différence des procédés par frittage laser, dans lesquels la poudre est chauffée de sorte que les grains de poudre se soudent entre eux sans être fondus par le faisceau laser, les procédés par fusion laser entraînent un échauffement du matériau de base à une température supérieure à la température de fusion.
Dans un procédé par fusion laser, lors de l’interaction entre le faisceau laser et le lit de poudre, il se forme dans la région fondue par le faisceau une colonne de vapeur métallique appelée capillaire, ou « keyhole » en anglais, telle qu’on la rencontre dans des procédés de soudage laser. Du fait de la détente de la vapeur métallique vers l’extérieur du capillaire, il se produit des fumées et des projections métalliques qui sont arrachées du lit de poudre et du bain de métal fondu.
Bien que le lit de poudre soit généralement protégé par un jet de gaz distribué au-dessus du lit de poudre, les vitesses d’éjection des projections sont trop importantes pour que le jet de protection puisse les dévier efficacement.
On constate alors qu’une fois leur hauteur maximale d’ascension atteinte, les projections retombent en partie sur le lit de poudre en cours de fabrication, ainsi que sur la région du lit dit « propre », c’est-à-dire la région du lit destinée à être fusionnée par la suite, sur la même couche ou après étalement de la couche suivante.
Or, les projections métalliques contiennent des oxydes et la fusion d’oxydes lors de la fabrication des pièces par fabrication additive peut générer des défauts de fabrications au sein de la pièce tels que des défauts visuels, métallurgiques, de compacité et/ou de porosités.
La présente invention a pour but de proposer un procédé de fabrication additive par fusion laser sur lit de poudre métallique permettant notamment de réduire les effets néfastes des projections provenant du lit de poudre et d’améliorer la qualité de la pièce finale.
Une solution selon la présente invention est alors un procédé de fabrication additive d’au moins une pièce métallique dans lequel ladite pièce métallique est formée par couches à partir d’un matériau de base comprenant au moins une poudre métallique, plusieurs couches dudit matériau de base étant déposées successivement les unes sur les autres, chaque couche étant, avant le dépôt de la couche suivante, fondue par au moins un faisceau laser dans une région prédéfinie qui correspond à une région de section transversale de la pièce métallique à fabriquer, ledit procédé étant opéré sous une atmosphère gazeuse protectrice formée par un gaz de protection contenant un gaz inerte et du dioxyde de carbone, le gaz inerte contenant au moins un composant inerte choisi parmi l’argon, l’hélium, l’azote, caractérisé en ce que le gaz de protection contient au moins 1 % en volume et au plus 20% en volume de dioxyde de carbone.
Selon le cas, l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes :
- le gaz de protection contient au moins 2% en volume de dioxyde de carbone.
- le gaz de protection contient au plus 10% en volume de dioxyde de carbone. - le gaz de protection contient au moins 1 % en volume et au plus 3% en volume de dioxyde de carbone, de préférence entre 1 ,5% et 2,5% en volume de dioxyde de carbone, de préférence encore environ 2% de dioxyde de carbone.
- le gaz de protection contient au moins 7% en volume de dioxyde de carbone.
- le gaz de protection contient au plus 9% en volume de dioxyde de carbone.
- le gaz de protection contient au moins 7,5% en volume de dioxyde de carbone.
- le gaz de protection contient environ 8% de dioxyde de carbone.
- le gaz inerte consiste en de l’argon.
- le gaz inerte consiste en de l’azote.
- le matériau de base est choisi parmi les aciers alliés, les aciers non alliés, en particulier les aciers inoxydables, les aciers au carbone, l’aluminium, les alliages d’aluminium, le nickel, les alliages de nickel, le titane, les alliages de titane.
- le matériau de base est un alliage de nickel, le gaz de protection contenant 8% de C02.
- le matériau de base est un alliage de titane, le gaz de protection contenant 2% de C02.
- le procédé est opéré par fusion laser sur lit de poudre, les couches de matériau de base étant déposées et fondues successivement suivant une direction de fabrication de la pièce, le procédé comprenant les étapes suivantes :
a) dépôt du matériau de base sous la forme d’une couche de poudre métallique sur un plateau de fabrication et étalement de ladite couche de façon à former un lit de poudre,
b) fusion sélective du lit de poudre par au moins un faisceau laser dans une région prédéfinie correspondant à une section transversale de la pièce métallique, c) déplacement du plateau de fabrication dans une direction opposée à la direction de fabrication,
d) dépôt d’une nouvelle couche de poudre métallique et étalement sur le lit de poudre de poudre formé à l’étape a) de façon à former un nouveau lit de poudre, e) fusion sélective du nouveau lit de poudre par le faisceau laser dans une nouvelle région prédéfinie correspondant à une nouvelle section transversale de la pièce métallique.
- le procédé est opéré dans une chambre de fabrication contenant une atmosphère gazeuse protectrice, de préférence une atmosphère formée d’un gaz de protection inerte tel l’argon ou l’azote.
- le faisceau laser est généré par au moins une source laser choisie parmi un laser C02, un laser à fibres ou à disques, un laser à diodes.
- le faisceau laser a une longueur d’onde comprise entre 800 et 1100 nm, de préférence comprise entre 1050 et 1100 nm.
L’invention va maintenant être mieux décrite grâce à la figure unique ci- annexée, fournie à titre illustratif et non limitatif.
Fig. 1 représente une installation pour la mise en oeuvre d’un procédé de fabrication additive selon un mode de réalisation de l’invention.
Fig. 2 montre des images des projections générées lors de la fabrication d’une pièce, d’une part avec un gaz de protection selon l’art antérieur, et d’autre part avec un gaz de protection selon un mode de réalisation de l’invention.
Fig. 3 montre un comparatif d’analyses chimiques réalisées sur de la poudre neuve et sur des pièces fabriquées sous un gaz de protection selon l’art antérieur ou sous un gaz de protection selon l’invention.
Fig. 4 montre des images des projections générées lors de la fabrication d’une pièce, d’une part avec un gaz de protection selon l’art antérieur, et d’autre part avec un gaz de protection selon un mode de réalisation de l’invention.
La fusion d’un lit de poudre 14, formant le matériau de base, est réalisée par balayage d’un faisceau laser 9 obtenu à l’aide d’une tête 11 ou scanner, comprenant par exemple un miroir de renvoi orientable. La tête 11 est pilotée par une commande numérique qui oriente le faisceau laser vers les zones à fondre du lit de poudre 14.
Le faisceau laser 9 peut être généré par au moins une source laser choisie parmi un laser CO2, un laser à fibres ou à disques, un laser à diodes.
Avantageusement, on utilise un faisceau laser 9 ayant une longueur d’onde comprise entre 800 et 1100 nm, de préférence comprise entre 1050 et 1100 nm.
De préférence, le faisceau laser est du type monomode, une bonne qualité optique de faisceau permettant de réduire la dimension de la tache focale du faisceau qui est focalisé dans un plan de focalisation voisin du lit de poudre. De préférence, on utilise un diamètre de tache focale inférieur à 200 pm, de préférence inférieur à 100 pm, de préférence de l’ordre de 70 pm.
On pourra aussi utiliser un faisceau laser multimode et/ou un faisceau ayant une répartition de son énergie sensiblement constante dans un plan, c’est-à-dire un faisceau dit « hauts-de-forme » (également désigné par « top hat » en langue anglaise).
De préférence, le faisceau laser 9 a une puissance d’au moins 100 W, de préférence au moins 500 Watts, voire une puissance de 1000 à 2000 W.
Le procédé selon l’invention est de préférence opéré dans une enceinte appelée chambre de fabrication 8. La chambre 8 contient une atmosphère gazeuse formée, de façon habituelle, d’un gaz de protection inerte tel que l’argon ou l’azote. Le gaz de protection est distribué dans la chambre par au moins un orifice, de préférence au moins deux orifices. De préférence, au moins un premier orifice 13 distribue le gaz de protection au-dessus du lit de poudre 14, de préférence dans un plan sensiblement orthogonal à la direction de fabrication z suivant laquelle les couches de matériau de base sont déposées et fondues successivement. De préférence, le jet de gaz de protection est distribué suivant une direction d’écoulement y orthogonale à la direction z.
La chambre est équipée d’un système d’aspiration des fumées et des projections. Ce système est agencé de préférence sur un côté de la chambre situé à l’opposé du premier orifice 13. La direction d’écoulement y est orientée du premier orifice 13 vers au moins un orifice d’aspiration du système d’aspiration.
Un second orifice 12 distribue le gaz de protection en-dessous du hublot de protection 10 de manière à éviter l’encrassement de celui-ci par les fumées issues du processus de fusion des couches.
De préférence, la fabrication de la pièce débute après une étape de purge de la chambre de fabrication permettant d’obtenir une atmosphère gazeuse dont la teneur en oxygène est inférieure à 0, 1 % en volume. La chambre de fabrication comprend des capteurs, par exemple de type électrochimique ou zircone, configurés pour mesurer la teneur en oxygène dans la chambre de fabrication et ainsi autoriser ou stopper la fabrication.
Pendant la fabrication des pièces, le lit de poudre 14 est étalé par un racleur 2 sur un plateau de fabrication 4. La poudre est alimentée par un bac 1 qui remonte grâce à un piston 3. Le surplus de poudre tombe dans le réservoir 6. Après chaque fabrication de couche, le plateau de fabrication 4 descend, dans une direction opposée à la direction de fabrication z, d’une hauteur correspond à la hauteur de la nouvelle couche de poudre déposée sur la couche précédente. Après le dépôt de chaque couche, un balayage sélectif du lit de poudre est opéré avec le faisceau laser, suivant le modèle numérique déterminant la forme tridimensionnelle de la pièce. La couche de poudre métallique est fondue sélectivement dans une région prédéfinie correspondant à une section transversale de la pièce métallique que l’on souhaite fabriquer, cette section transversale étant orthogonale à la direction de fabrication z. Les étapes de dépôt et de fusion de lit et déplacement de plateau sont réitérées au moins une fois, jusqu’à la construction complète de la pièce par superposition, suivant la direction z, des différentes sections fondues. Notons que de préférence, le dépôt d’une nouvelle couche se fait après solidification de la couche précédente.
Il est ainsi possible de contrôler finement le dépôt de la matière dans les zones souhaitées et de réaliser des pièces en trois dimensions de forme plus complexes qu’avec les méthodes de fabrication classiques.
A noter que la fusion de la poudre s’effectue de préférence suivant des directions globales de fusion opposées à la direction d’écoulement y.
Sur le plateau de fabrication 4, une quantité de poudre non fondue 5 subsiste autour de la pièce 7 en cours de fabrication. De manière générale, l'épaisseur de chaque couche fabriquée est comprise entre 10 à 120 pm, suivant la qualité et la rapidité de fabrication de la pièce ou des pièces à réaliser. Cette épaisseur de couche dépend également de la granulométrie des poudres. De préférence, la poudre métallique utilisée est formée de grains d’un diamètre compris entre 10 et 70 pm.
Selon l’invention, le procédé de fabrication additive est opéré sous une atmosphère gazeuse protectrice formée par le gaz de protection, ledit gaz de compression contenant un gaz inerte et du dioxyde de carbone.
Le gaz inerte contient au moins un composant inerte choisi parmi l’argon, l’hélium, l’azote.
Le gaz de protection contient en outre au moins 1 % en volume et au plus 20% en volume de dioxyde de carbone.
En effet, les inventeurs de la présente invention ont mis en évidence que l’ajout de dioxyde de carbone dans les teneurs spécifiées permettent de réduire significativement les vitesses d'éjections des projections générées par le laser lors du processus de fusion. La vitesse d'éjection des particules étant réduite, le jet de gaz de protection peut orienter plus efficacement les projections vers le système d’aspiration de la chambre de fabrication. On constate également une diminution de l’encrassement des parois internes de la chambre de fabrication.
En fait, l’ajout du dioxyde de carbone conduirait, toutes conditions étant égales par ailleurs, à une ouverture plus importante du keyhole. Le keyhole étant plus large, la pression dans le capillaire est réduite et la vapeur métallique est détendue à une pression plus faible. Il y a moins de métal fondu arraché autour du capillaire et la vitesse des projections est réduite. En outre, le dioxyde de carbone pourrait avoir un effet oxydant sur le métal fondu, ce qui augmente son coefficient d’absorption. Au vu des fortes densités de puissance mises en jeu, typiquement une dizaine de MW/cm2 au niveau du point de focalisation du faisceau laser, l’augmentation du coefficient d’absorption produite par l’ajout de dioxyde de carbone dans le gaz de protection conduit à augmenter la profondeur de pénétration, et donc à réduire la pression de vapeur dans le capillaire.
Par ailleurs, l’ajout de dioxyde de carbone dans le gaz de protection tend à augmenter la pression dynamique du jet de gaz de protection, du fait de sa masse molaire plus importante que celle de l’argon ou de l’azote, ce qui renforce son action sur les projections et les fumées.
De préférence, le gaz de protection contient au moins 2% en volume de dioxyde de carbone. L’effet néfaste des projections est alors significativement réduit.
De préférence, le gaz de protection contient au plus 10% en volume de dioxyde de carbone. On limite ainsi le risque d’augmenter la teneur en carbone du matériau constitutif de la pièce fabriquée, ce qui pourrait la fragiliser.
Avantageusement, le gaz de protection contient au moins 1 % en volume et au plus 3% en volume de dioxyde de carbone, de préférence entre 1 ,5% et 2,5% en volume de dioxyde de carbone, de préférence encore environ 2% de dioxyde de carbone.
Avantageusement, le gaz de protection contient au moins 7% en volume et au plus 9% en volume de dioxyde de carbone, de préférence entre 7,5% et 8,5% en volume de dioxyde de carbone, de préférence encore environ 8% de dioxyde de carbone.
Selon un mode de réalisation avantageux, le gaz inerte consiste en de l’argon.
Selon une variante, le gaz inerte consiste en de l’azote. On pourra préférer l’argon à l’azote lorsque l’on souhaite limiter, dans certaines applications, le risque métallurgique associé et la nitruration non désirée de la pièce fabriquée.
Dans le cadre de l’invention, le matériau de base 14 peut être choisi parmi les aciers alliés, les aciers non alliés, en particulier les aciers inoxydables, les aciers au carbone, l’aluminium, les alliages d’aluminium, le nickel, les alliages de nickel, le titane, les alliages de titane.
En particulier, lorsque le matériau de base 14 est un alliage de nickel, en particulier un alliage du type « Inconel® » 625, l’utilisation d’un gaz de protection contenant 8% de CO2 dans de l’argon conduit à de bonnes performances de fabrication.
Par ailleurs, lorsque le matériau de base 14 est un alliage de titane, en particulier du type TÎAI6V4 (ou TÎ-6AI-4), l’utilisation d’un gaz de protection contenant 2% CO2 dans de l’argon conduit à de bonnes performances de fabrication.
Afin de démontrer l’efficacité d’un procédé selon l’invention, des essais comparatifs de fabrication additive ont été réalisés sur différents matériaux de base avec différents gaz de protection.
Les pièces fabriquées pour ces essais comparatifs comprenaient une série de structures de forme parallélépipédique érigées suivant la direction de fabrication z. Les structures avaient une hauteur de l’ordre de 15 mm, une largeur de l’ordre de 15 mm et une longueur de l’ordre de 15 mm. Les couches successives déposées avaient des épaisseurs de 30 pm, 60 pm et 100 pm. Des pièces comprenant des parois d’une épaisseur de l’ordre de 0,5 mm ont été fabriqués. Lors de la fabrication des pièces, une caméra rapide a été utilisée pour filmer les projections métalliques avec une cadence d’acquisition de 2500 images par seconde.
Dans un premier essai, le matériau de base était de G « Inconel® » 625.
Fig. 2 montre des images des projections générées lors de la fabrication de la pièce, d’une part avec un gaz de protection constitué d’argon, en (a), et d’autre part avec un gaz de protection formé de 8% de dioxyde de carbone et d’argon pour le reste, en (b). On observe des traînées lumineuses en (a), ce qui indique que la vitesse d'éjection des projections est plus importante qu’en (b). Il y a également moins de projections visibles en (b) qu’en (a) car celles-ci sont dirigées plus efficacement vers le système d’aspiration. Fig. 3 montre les résultats d’analyses chimiques réalisées sur de la poudre neuve, n’ayant pas été utilisée en chambre. La mesure de la teneur en carbone de cette poudre (mesure 1 ) sert de valeur de référence à laquelle comparer les analyses réalisées sur des pièces fabriquées sous argon (mesure 2) et sous argon avec 8% de dioxyde de carbone (mesure 3). On constate que les teneurs en carbone, exprimées en % en poids, sont sensiblement les mêmes et que l’ajout de dioxyde de carbone dans l’argon n’occasionne pas d’augmentation indésirable du taux de carbone dans les pièces. Le gaz de protection selon l’invention préserve donc l’intégrité structurelle des pièces fabriquées.
Dans un deuxième essai, le matériau de base était un alliage de titane dénommé TÎAI6V4, également désigné par la référence TÎ-6AI-4V, et comprenant de l'aluminium (environ 7 % en poids) et du vanadium (environ 4,5 % en poids), des traces de carbone, de fer, d'oxygène et d'azote, et du titane pour le reste.
Ce deuxième essai a confirmé les résultats du premier et mis en évidence des traînées lumineuses plus importantes sous argon seul (en (c)) que sous gaz de protection formé de 8% de dioxyde de carbone dans de l’argon (en (d)), comme montré sur Fig. 4.

Claims

REVENDICATIONS
1 . Procédé de fabrication additive d’au moins une pièce métallique dans lequel ladite pièce métallique est formée par couches à partir d’un matériau de base (14) comprenant au moins une poudre métallique, plusieurs couches dudit matériau de base (14) étant déposées successivement les unes sur les autres, chaque couche étant, avant le dépôt de la couche suivante, fondue par au moins un faisceau laser (9) dans une région prédéfinie (7) qui correspond à une région de section transversale de la pièce métallique à fabriquer, ledit procédé étant opéré sous une atmosphère gazeuse protectrice formée par un gaz de protection contenant un gaz inerte et du dioxyde de carbone, le gaz inerte contenant au moins un composant inerte choisi parmi l’argon, l’hélium, l’azote, caractérisé en ce que le gaz de protection contient au moins 1 % en volume et au plus 20% en volume de dioxyde de carbone.
2. Procédé selon la revendication 1 , caractérisé en ce que le gaz de protection contient au moins 2% en volume de dioxyde de carbone.
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que le gaz de protection contient au plus 10% en volume de dioxyde de carbone.
4. Procédé selon l’une des revendications précédentes, caractérisé en ce que le gaz inerte consiste en de l’argon.
5. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que le gaz inerte consiste en de l’azote.
6. Procédé selon l’une des revendications précédentes, caractérisé en ce que le matériau de base (14) est choisi parmi les aciers alliés, les aciers non alliés, en particulier les aciers inoxydables, les aciers au carbone, l’aluminium, les alliages d’aluminium, le nickel, les alliages de nickel, le titane, les alliages de titane.
7. Procédé selon l’une des revendications précédentes, caractérisé en ce que le gaz de protection contient au moins 1 % en volume et au plus 3% en volume de dioxyde de carbone, de préférence entre 1 ,5% et 2,5% en volume de dioxyde de carbone, de préférence encore environ 2% de dioxyde de carbone.
8. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que le gaz de protection contient au moins 7% en volume et au plus 9% en volume de dioxyde de carbone, de préférence entre 7,5% et 8,5% en volume de dioxyde de carbone, de préférence encore environ 8% de dioxyde de carbone.
9. Procédé selon l’une des revendications 1 à 6 ou selon la revendication 8, caractérisé en ce que le matériau de base (14) est un alliage de nickel, le gaz de protection contenant 8% en volume de CO2.
10. Procédé selon l’une des revendications 1 à 7, caractérisé en ce que le matériau de base (14) est un alliage de titane, le gaz de protection contenant 2% en volume de C02.
11. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il est opéré par fusion laser sur lit de poudre, les couches de matériau de base (14) étant déposées les unes sur les autres suivant une direction de fabrication (z) de la pièce, le procédé comprenant les étapes suivantes :
a) dépôt du matériau de base (14) sous la forme d’une couche de poudre métallique sur un plateau de fabrication (4) et étalement de ladite couche de façon à former un lit de poudre,
b) fusion sélective du lit de poudre formé à l’étape b) par au moins un faisceau laser (9) dans une région prédéfinie (7) correspondant à une section transversale de la pièce métallique,
c) déplacement du plateau de fabrication (4) dans une direction parallèle et opposée à la direction de fabrication (z),
d) dépôt d’une nouvelle couche de poudre métallique et étalement sur le lit de poudre formé à l’étape a) de façon à former un nouveau lit de poudre, e) fusion sélective du nouveau lit de poudre par le faisceau laser (9) dans une nouvelle région prédéfinie (7) correspondant à une nouvelle section transversale de la pièce métallique.
12. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il est opéré dans une chambre de fabrication (8) contenant une atmosphère gazeuse protectrice, de préférence une atmosphère formée d’un gaz de protection inerte tel l’argon ou l’azote.
13. Procédé selon l’une des revendications précédentes, caractérisé en ce que le faisceau laser (9) est généré par au moins une source laser choisie parmi un laser CO2, un laser à fibres ou à disques, un laser à diodes.
14. Procédé selon l’une des revendications précédentes, caractérisé en ce que le faisceau laser (9) a une longueur d’onde comprise entre 800 et 1 100 nm, de préférence comprise entre 1050 et 1000 nm.
PCT/EP2020/064574 2019-05-28 2020-05-26 Procédé de fabrication additive d'une pièce métallique WO2020239764A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905654A FR3096592B1 (fr) 2019-05-28 2019-05-28 Procédé de fabrication additive d’une pièce métallique
FRFR1905654 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020239764A1 true WO2020239764A1 (fr) 2020-12-03

Family

ID=68806834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/064574 WO2020239764A1 (fr) 2019-05-28 2020-05-26 Procédé de fabrication additive d'une pièce métallique

Country Status (2)

Country Link
FR (1) FR3096592B1 (fr)
WO (1) WO2020239764A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116752131A (zh) * 2023-08-22 2023-09-15 中国科学院宁波材料技术与工程研究所 冷喷涂增材制造方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115026305B (zh) * 2022-05-20 2023-03-21 华南理工大学 一种4Cr5Mo2SiV模具钢的增材制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133034A1 (fr) 2005-06-06 2006-12-14 Mts Systems Corporation Procede de depot direct de metal utilisant un rayonnement et un arc electrique
CN107971490A (zh) 2017-11-10 2018-05-01 南京航空航天大学 一种表面高熵合金梯度冶金层的增材制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133034A1 (fr) 2005-06-06 2006-12-14 Mts Systems Corporation Procede de depot direct de metal utilisant un rayonnement et un arc electrique
CN107971490A (zh) 2017-11-10 2018-05-01 南京航空航天大学 一种表面高熵合金梯度冶金层的增材制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEKKER ANNE C M ET AL: "Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel", JOURNAL OF CLEANER PRODUCTION, ELSEVIER, AMSTERDAM, NL, vol. 177, 28 December 2017 (2017-12-28), pages 438 - 447, XP085412706, ISSN: 0959-6526, DOI: 10.1016/J.JCLEPRO.2017.12.148 *
FILOMENO MARTINA ET AL: "Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel", ADDITIVE MANUFACTURING, vol. 25, 1 January 2019 (2019-01-01), NL, pages 545 - 550, XP055660386, ISSN: 2214-8604, DOI: 10.1016/j.addma.2018.11.022 *
LIHAO YAN: "Wire and Arc Additive Manufacture (WAAM) reusable tooling investigation", 1 October 2013 (2013-10-01), XP055661698, Retrieved from the Internet <URL:https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/12308/Yan_Lihao_2013.pdf?sequence=1&isAllowed=y> [retrieved on 20200124] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116752131A (zh) * 2023-08-22 2023-09-15 中国科学院宁波材料技术与工程研究所 冷喷涂增材制造方法及应用
CN116752131B (zh) * 2023-08-22 2023-10-31 中国科学院宁波材料技术与工程研究所 冷喷涂增材制造方法及应用

Also Published As

Publication number Publication date
FR3096592A1 (fr) 2020-12-04
FR3096592B1 (fr) 2021-07-23

Similar Documents

Publication Publication Date Title
CA2892840C (fr) Procede de fabrication additive d&#39;une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
EP3622095B1 (fr) Piece en alliage d&#39;aluminium et son procédé de fabrication
CA2892848C (fr) Procede de fabrication d&#39;une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain
EP3393706B1 (fr) Procede de preparation d&#39;une tole pre-revetue, avec enlevement du revetement a l&#39;aide d&#39;un faisceau laser incline ; tôle correspondante
EP4039403A1 (fr) Procédé de fabrication d&#39;un flanc soudé ; flan soudé ; dispositif de fabrication de flans soudés ; et utilisation d&#39;une pièce en acier fabriqué à partir d&#39;un tel flan soudé
WO2020239764A1 (fr) Procédé de fabrication additive d&#39;une pièce métallique
FR2892328A1 (fr) Procede de soudage par faisceau laser avec controle de la formation du capillaire de vapeurs metalliques
FR3092119A1 (fr) Procédé de fabrication d&#39;une pièce en alliage d&#39;aluminium, l&#39;alliage comportant au moins du zirconium et du magnésium
FR2600568A1 (fr) Ameliorations aux methodes de decoupe de pieces metalliques au laser
EP1923165A1 (fr) Procédé de soudage par faisceau laser à pénétration améliorée
FR2998497A1 (fr) Procede de fusion selective de lits de poudre par faisceau de haute energie sous une depression de gaz
EP1591187A2 (fr) Procédé de soudage de tôles revêtues par un faisceau d&#39;énergie, tel qu&#39;un faisceau laser
FR3110095A1 (fr) Procédé de fabrication d&#39;une pièce en alliage d&#39;aluminium
EP3509774A1 (fr) Procede de fabrication d&#39;une piece en materiau electroconducteur par fabrication additive
EP3481570A2 (fr) Procédé de fabrication additive avec enlèvement de matière entre deux couches
EP4149703B1 (fr) Procédé de fabrication d&#39;une pièce en alliage d&#39;aluminium
EP4061563B1 (fr) Procédé de fabrication d&#39;une pièce en alliage d&#39;aluminium
FR3082763A1 (fr) Procede de fabrication d une piece en alliage d aluminium
Kaplan et al. CYCLAM-Recycling by a Laser-driven Drop Jet from Waste that Feeds AM
FR3054462A1 (fr) Procede d&#39;atomisation de gouttes metalliques en vue de l&#39;obtention d&#39;une poudre metallique
WO2021032923A1 (fr) Procede de fabrication additive d&#39;une piece de turbomachine
WO2022208037A1 (fr) Procede de fabrication d&#39;une piece en alliage d&#39;aluminium mettant en œuvre une technique de fabrication additive avec prechauffage
EP3572168A1 (fr) Piece intermediaire obtenue par fabrication additive, ensemble comprenant la piece intermediaire et procede de fabrication d&#39;une piece
CA3008072A1 (fr) Procede de preparation d&#39;une tole pre-revetue, avec enlevement du revetement a l&#39;aide d&#39;un faisceau laser incline; tole correspondante
FR3095974A1 (fr) Dispositif et procede de fabrication additive par fusion laser sur lit de poudre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20727315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20727315

Country of ref document: EP

Kind code of ref document: A1