WO2020239069A1 - 中低温地热工质梯级利用orc磁悬浮发电*** - Google Patents

中低温地热工质梯级利用orc磁悬浮发电*** Download PDF

Info

Publication number
WO2020239069A1
WO2020239069A1 PCT/CN2020/093239 CN2020093239W WO2020239069A1 WO 2020239069 A1 WO2020239069 A1 WO 2020239069A1 CN 2020093239 W CN2020093239 W CN 2020093239W WO 2020239069 A1 WO2020239069 A1 WO 2020239069A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
medium
orc
stage
magnetic levitation
Prior art date
Application number
PCT/CN2020/093239
Other languages
English (en)
French (fr)
Inventor
***
马举昌
周韬
阮禾
李存宝
Original Assignee
深圳大学
江苏赐福科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 江苏赐福科技有限公司 filed Critical 深圳大学
Publication of WO2020239069A1 publication Critical patent/WO2020239069A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to the technical field of geothermal energy power generation, in particular to an ORC magnetic levitation power generation system using a cascade of medium and low temperature geothermal working fluids.
  • geothermal energy With the gradual depletion of fossil energy, geothermal energy has become a competitive player in the future use of green energy due to its abundant reserves, wide distribution, good stability, and freedom from interference from external factors such as seasons, environment, climate, day and night.
  • my country is rich in geothermal energy reserves, with an annual mineable amount equivalent to 2.6 billion tons of standard coal, of which more than 70% of the mineable resources belong to medium and low temperature geothermal resources.
  • the development and utilization of medium and low temperature geothermal resources is difficult.
  • direct heat utilization is mainly used, such as hot springs and heating.
  • Organic Rankine Cycle is used in some areas to use low-boiling organic working fluids for low- and medium-temperature geothermal turbine power generation, but the low electrical efficiency (less than 10%) restricts the promotion of medium and low-temperature geothermal power generation.
  • the low power generation efficiency (less than 10%) of medium and low temperature geothermal resources restricts the promotion of its power generation utilization.
  • the purpose of the present invention is to provide an ORC magnetic levitation power generation system using a cascade of medium and low temperature geothermal working fluids, aiming to solve the problem of low efficiency of the existing medium and low temperature geothermal power generation.
  • the medium and low temperature geothermal working medium cascade use ORC magnetic levitation power generation system, which includes:
  • ORC generator set including the first level ORC generator set and the second level ORC generator set
  • the one-stage ORC generator set includes a first circulating pump for pressurizing a first working fluid, a first-stage evaporator for evaporating the first working fluid, and a first-stage generator connected to the first-stage evaporator , A secondary evaporator for evaporating a second working fluid connected to the primary generator;
  • the two-stage ORC generator set includes a second circulating pump for pressurizing a second working fluid, the two-stage evaporator, a two-stage generator connected to the two-stage evaporator, and the second The first condenser connected to the generator.
  • the medium and low temperature geothermal working medium cascade use ORC magnetic levitation power generation system, wherein, the first-stage ORC generator set further includes a second-stage cooling for the first working medium after heat exchange with the secondary evaporator and cooling The absorption refrigeration unit.
  • the absorption refrigeration device includes:
  • a generator for concentrating the third working fluid a second condenser connected to the generator, a third condenser connected to the secondary evaporator, and an absorber connected to the third condenser;
  • the first outlet of the generator is connected with the first inlet of the second condenser, the first outlet of the second condenser is connected with the first inlet of the third condenser, and the first inlet of the third condenser is connected.
  • the outlet is connected with the first inlet of the absorber;
  • the first outlet of the two-stage evaporator is connected with the second inlet of the third condenser; the second outlet of the third condenser is connected with the inlet of the first-stage evaporator through the first circulating pump;
  • the first outlet of the absorber is connected with the inlet of the generator, and the second outlet of the generator is connected with the second inlet of the absorber.
  • the medium and low temperature geothermal working fluid cascade utilizes ORC magnetic levitation power generation system, wherein the boiling point of the first working fluid is higher than the boiling point of the second working fluid.
  • the medium and low temperature geothermal working fluid cascade utilizes ORC magnetic levitation power generation system, wherein the second working fluid is R123 or R124.
  • the medium and low temperature geothermal working medium cascade use ORC magnetic levitation power generation system, wherein a throttle valve is arranged between the second condenser and the third condenser.
  • the medium and low temperature geothermal working medium cascade uses ORC magnetic levitation power generation system, wherein a third circulation pump is arranged between the outlet of the absorber and the generator.
  • the medium and low temperature geothermal working fluid cascade utilizes ORC magnetic levitation power generation system, wherein the third working fluid is a binary working fluid.
  • the medium and low temperature geothermal working medium cascade uses the ORC magnetic levitation power generation system, wherein the third working medium is a lithium bromide solution.
  • the medium and low temperature geothermal working medium cascade utilization ORC magnetic levitation power generation system provided by the present invention effectively improves the medium and low temperature geothermal heat utilization efficiency through the working medium and the geothermal energy cascade utilization, and increases the total amount of geothermal power generation.
  • Fig. 1 is a block diagram of a first medium-low temperature geothermal working medium cascade utilization ORC magnetic levitation power generation system provided by an embodiment of the present invention.
  • Fig. 2 is a block diagram of a second medium-low temperature geothermal working medium cascade utilization ORC magnetic levitation power generation system provided by an embodiment of the present invention.
  • the ORC generator set includes two groups, namely a first-stage ORC generator set and a second-stage ORC generator set, wherein the first-stage ORC
  • the generator set includes a primary evaporator 10, a primary generator 101 connected to the primary evaporator 10, and a secondary evaporator 20 connected to the primary generator 101.
  • the primary generator 101 is a magnetic suspension A turbo generator, a first circulating pump 102 connected to the two-stage evaporator 20 and the one-stage evaporator 10.
  • the power generation process of the first-stage ORC generator set involves a first-stage organic Rankine cycle, that is, the medium and low-temperature geothermal water passes through the first-stage evaporator 10, so that the first working fluid passing through the first-stage evaporator absorbs heat and evaporates. High-temperature and high-pressure steam is formed. The high-temperature and high-pressure steam enters the first-stage maglev turbine generator 101 to expand and do work to drive the first-stage maglev generator to generate electricity.
  • the exhaust steam at the outlet of the first-stage maglev generator then enters the second-stage evaporator 20 to condense and become a second-stage organic
  • the Ken cycle provides heat, and the liquid working fluid after condensation passes through the first circulating pump 102 and returns to the first-stage evaporator 10.
  • the two-stage ORC generator set includes, the two-stage evaporator 20, a two-stage generator 201 connected to the two-stage evaporator 20, and the two-stage evaporator 20 and the two-stage generator 201 respectively.
  • the first condenser 202 is connected; the secondary generator 201 is a magnetic levitation turbine generator.
  • the second organic Rankine cycle that is, the second organic working medium absorbs the heat energy in the exhaust steam discharged from the outlet of the primary magnetic levitation generator 101 in the second evaporator 20 and evaporates into the second organic working medium
  • the steam, and then the second organic working fluid steam with higher temperature and pressure enters the secondary magnetic levitation generator 201 to expand and do work to drive the secondary magnetic levitation generator to generate electricity.
  • the exhaust steam at the outlet of the secondary magnetic levitation generator 201 enters the first condenser 202 After condensing and finally condensing, the liquid second organic working fluid is returned to the secondary evaporator 20 through the second working fluid pump 203.
  • an absorption refrigeration device is added to the first-stage ORC generator set, which is the first working fluid after heat exchange and cooling with the second-stage evaporator Perform a second cooling.
  • the absorption refrigeration device includes a third condenser 30, an absorber 303, a third circulating pump 304, a generator 40, a second condenser 301, and a throttle valve 302 that are cyclically connected in sequence.
  • the generator includes a first outlet for discharging steam, a second outlet for discharging concentrated working fluid, and an inlet for diluting liquid working fluid.
  • the first working fluid outlet of the two-stage evaporator 20 is connected to the second inlet of the third condenser; the second outlet of the third condenser is connected to the first-stage evaporator 10 via the first circulating pump 102 The entrance connection.
  • first”, second”, “outlet”, and “entry” are only used for convenience of expression, and do not have special meanings, nor are they used for limitation.
  • the geothermal water with residual temperature discharged from the primary evaporator 10 is passed into the generator 40, and the binary working fluid in the generator 40 is concentrated (the binary working fluid is two working fluids with different boiling points).
  • the binary working medium is separated in the generator 40, the low-boiling working medium is gasified and then enters the second condenser 301, and the remaining high-concentration binary working medium concentrate is passed to the absorber 303 in.
  • the low boiling point working fluid vapor is liquefied in the second condenser 301, and the liquefied low boiling point working fluid is reduced in pressure by the throttle valve 302 and then passed into the third condenser 30.
  • the two-stage evaporator is not only the condenser of the first-stage organic Rankine cycle, but also the evaporator of the second-stage organic Rankine cycle.
  • the traditional generator system is transferred to the atmosphere.
  • the heat of the waste steam will continue to be used for power generation to increase the utilization rate of medium and low temperature geothermal energy, thereby improving power generation efficiency and increasing power generation.
  • the absorption refrigeration cycle can use the cold energy generated by the absorption refrigeration cycle to reduce the condensation temperature and condensation pressure of the organic Rankine cycle, thereby increasing the temperature and pressure difference between the inlet and outlet of the magnetic levitation generator, and increasing the power generation of the generator. This will increase power generation and improve the efficiency of low- and medium-temperature geothermal energy utilization.
  • the turbo-generator in the present invention is not a traditional steam turbine generator, but a magnetic levitation turbine generator, which is referred to as a magnetic levitation generator in this text.
  • the magnetic levitation generator uses magnetic levitation bearings, and the rotor and the bearing do not contact each other, so the mechanical friction is small and the generator speed is high, thereby improving the power generation efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

中低温地热工质梯级利用ORC磁悬浮发电***,其包括一级ORC发电机组以及二级ORC发电机组;一级ORC发电机组包括,用于对第一工质加压的第一循环泵(102),用于蒸发第一工质的一级蒸发器(10),与一级蒸发器(10)连接的一级磁悬浮发电机(101),与一级磁悬浮发电机(101)连接的用于蒸发第二工质的二级蒸发器(20);二级ORC发电机组包括,用于对第二工质加压的第二工质泵(203),二级蒸发器(20),与二级蒸发器(20)连接的二级磁悬浮发电机(201),分别与二级蒸发器(20)以及二级磁悬浮发电机(201)连接的第一冷凝器(202)。

Description

中低温地热工质梯级利用ORC磁悬浮发电*** 技术领域
本发明涉及地热能发电技术领域,尤其涉及中低温地热工质梯级利用ORC磁悬浮发电***。
背景技术
随着化石能源的逐渐枯竭,地热能因其储量丰富、分布广泛、稳定性好、不受季节、环境、气候、昼夜等外界因素干扰等优点成为未来绿色能源利用中颇具竞争力的一员。我国地热能储量丰富,年可开采量折合相当于标准煤26亿吨,其中超过70%可开采资源属于中低温地热资源。但是,中低温地热资源作为低品位能源,开发利用难度大,目前主要以直接热利用为主,如温泉、供暖等。部分地区采用有机朗肯循环(ORC),利用低沸点的有机工质进行中低温地热汽轮机发电,但是电效率低下(不足10%)制约着中低温地热发电利用的推广。中低温地热资源发电效率低下(不足10%)制约着其发电利用的推广。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供中低温地热工质梯级利用ORC磁悬浮发电***,旨在解决现有利用中低温地热发电效率低下的问题。
本发明为解决上述技术问题所采用的技术方案如下:
中低温地热工质梯级利用ORC磁悬浮发电***,其中,包括:
ORC发电机组,包括一级ORC发电机组以及二级ORC发电机组;
所述一级ORC发电机组包括,用于对第一工质加压的第一循环泵,用于蒸发第一工质的一级蒸发器,与所述一级蒸发器连接的一级发电机,与所述一级发电机连接的用于蒸发第二工质的二级蒸发器;
所述二级ORC发电机组包括,用于对第二工质加压的第二循环泵,所述二级蒸发器,与所述二级蒸发器连接的二级发电机,与所述二级发电机连接的第一冷凝器。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述一级ORC发电机组还包括,用于给经与二级蒸发器换热降温后的第一工质进行第二级降温的吸收式制冷装置。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述吸收式制冷装置包括:
用于第三工质浓缩的发生器,与所述发生器连接的第二冷凝器、与所述二级蒸发器连接 的第三冷凝器以及与所述第三冷凝器连接的吸收器;
所述发生器第一出口与所述第二冷凝器第一入口连接,所述第二冷凝器第一出口与所述第三冷凝器的第一入口连接,所述第三冷凝器的第一出口与所述吸收器第一入口连接;
所述二级蒸发器第一出口与所述第三冷凝器第二入口连接;所述第三冷凝器第二出口经所述第一循环泵与所述一级蒸发器入口连接;
所述吸收器第一出口与所述发生器入口连接,所述发生器第二出口与所述吸收器第二入口连接。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述一级发电机以及所述二级发电机均为磁悬浮透平发电机。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述第一工质的沸点高于所述第二工质的沸点。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述第二工质为R123或R124。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述第二冷凝器与所述第三冷凝器之间设置有节流阀。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述吸收器出口与发生器之间设置有第三循环泵。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述第三工质为二元工质。
所述的中低温地热工质梯级利用ORC磁悬浮发电***,其中,所述第三工质为溴化锂溶液。
有益效果:本发明所提供的中低温地热工质梯级利用ORC磁悬浮发电***,通过工质以及地热能梯级利用有效提高了中低温地热热量利用效率,提升了地热发电总量。
附图说明
图1是本发明实施实例提供的第一种中低温地热工质梯级利用ORC磁悬浮发电***框图。
图2是本发明实施实例提供的第二种中低温地热工质梯级利用ORC磁悬浮发电***框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明公开的中低温地热工质梯级利用ORC磁悬浮发电***,所述ORC发电机组包括两组即一级ORC发电机组和二级ORC发电机组,其中,所述一级ORC发电机组包括一级蒸发器10、与所述一级蒸发器10连接的一级发电机101、与所述一级发电机101连接的二级蒸发器20,所述一级发电机101为磁悬浮透平发电机,与所述二级蒸发器20以及所述一级蒸发器10连接的第一循环泵102。
具体来说,所述一级ORC发电机组发电过程涉及一级有机朗肯循环,即中低温地热水经过一级蒸发器10,使经过一级蒸发器的第一工质吸收热量后蒸发,形成高温高压蒸汽,高温高压蒸汽进入一级磁悬浮透平发电机101中膨胀做功带动一级磁悬浮发电机发电,一级磁悬浮发电机出口乏汽随后进入二级蒸发器20冷凝并为二级有机朗肯循环提供热量,冷凝后液态工质通过第一循环泵102,回到一级蒸发器10。
所述二级ORC发电机组包括,所述二级蒸发器20,与所述二级蒸发器20连接的二级发电机201,分别与所述二级蒸发器20以及所述二级发电机201连接的第一冷凝器202;所述二级发电机201为磁悬浮透平发电机。
具体来说,所述二级有机朗肯循环,即第二有机工质在所述二级蒸发器20中吸收从一级磁悬浮发电机101出口排出乏汽中的热能蒸发为第二有机工质蒸汽,随后具有较高温度和压力的第二有机工质蒸汽进入二级磁悬浮发电机201中膨胀做功带动二级磁悬浮发电机发电,二级磁悬浮发电机201出口乏汽进入第一冷凝器202中冷凝最终冷凝后液态第二有机工质,通过第二工质泵203回到所述二级蒸发器20中。通过增设二级ORC发电机组,使一级ORC发电机组中发电后的蒸汽再次利用,提高了热量的利用效率。
请参阅图2,在一些实施方式中,为了提高热量的利用率,在一级ORC发电机组中增加一个吸收式制冷装置,为所述经过与二级蒸发器换热降温后的第一工质进行二次降温。所述吸收式制冷装置包括依次循环连接的第三冷凝器30、吸收器303、第三循环泵304、发生器40、第二冷凝器301、以及节流阀302。所述发生器包括用于蒸汽排出的第一出口,用于浓缩后的工质浓缩液排出的第二出口,用于稀释后的液态工质进入的入口。所述第二冷凝器为水冷冷凝器,其包括工质管路以及冷水管路,所述工质管路包括第一入口和第一出口。所述第三冷凝器包括用于第一工质的流通的第一工质管道,用于第三工质蒸汽的流通的第三工质管道,所述第三工质管道,包括第一入口和第一出口,所述第一工质管道包括第二入口和第二出口。所述吸收器包括供从第三冷凝器冷凝后的液态工质进入的第一入口,供从所述发生器浓缩后的浓缩液进入的第二入口。
所述发生器40的第一出口与所述第二冷凝器301第一入口连接,所述发生器40的第二 出口与所述吸收器303的第二入口连接;所述第二冷凝器301第一出口通过节流阀302与所述第三冷凝器的第一入口连接,所述第三冷凝器30的第一出口与所述吸收器303第一入口连接;所述吸收器303的出口通过第三循环泵304与所述发生器40的入口连接;
所述二级蒸发器20的第一工质出口与所述第三冷凝器第二入口连接;所述第三冷凝器第二出口经所述第一循环泵102与所述一级蒸发器10的入口连接。需要说明的是上述所述的“第一”、“第二”、“出口”、“入口”仅用于表述的方便,并不具有特殊含义,也不用于限定。
具体来说,从一级蒸发器10中排出的具有余温的地热水通入发生器40,将发生器40中的二元工质浓缩(所述二元工质为两种不同沸点工质的混合溶液,例如溴化锂溶液),二元工质在发生器40中分离,低沸点的工质气化后进入第二冷凝器301,剩余高浓度的二元工质浓缩液通入吸收器303中。低沸点的工质蒸汽在第二冷凝器301中液化,液化后的低沸点工质经节流阀302降压后通入所述第三冷凝器30,此时第三冷凝器30中的压力低于所述低沸点工质的饱和压力而蒸发吸热,冷却一级ORC循环中经与二级蒸发器换热降温后的第一工质。随后低沸点工质蒸汽被送入所述吸收器303中,在吸收器303中与所述高浓度浓缩液混合,混合后的溶液经第三循环泵304加压后被送到所述发生器40。通过增设吸收式制冷装置,不但使一级ORC循环中的第一工质做功前后的温差增大,还能利用从一级蒸发器排出的地热水的余热,提高了地热发电的发电功率和地热能的利用效率。
需要说明的是上述三个循环之间并非孤立运行,而是相互耦合、相互联系。所述二级蒸发器不仅是一级有机朗肯循环的冷凝器,同时也是二级有机朗肯循环的蒸发器,通过二级蒸发器将传统发电机***中本该传递到大气环境中的具有余温乏汽的热量继续用于发电,提高中低温地热能的利用率,进而提高发电效率,增加发电量。吸收式制冷循环可以使吸收式制冷循环产生的冷量用于降低有机朗肯循环的冷凝温度和冷凝压力,从而增大磁悬浮发电机进出口两端的温差和压差,提高发电机的发电功率,进而增加发电量以及提高中低温地热能的利用效率。
综上所述,本发明提供了一种中低温地热工质梯级利用ORC磁悬浮发电***,所述中低温地热工质梯级利用ORC磁悬浮发电***,其包括ORC发电机组,以及吸收式制冷装置,所述ORC发电机组包括一级ORC发电机组和二级ORC发电机组。本发明中中低温地热水依次经过一级有机朗肯循环的蒸发器和吸收式制冷的发生器。其中吸收式制冷发生器利用从一级有机郎肯循环的蒸发器排放的具有余温地热水中获得的热量用于吸收式制冷来提升发电循环效率,实现了地热能的梯级利用。
本发明中的透平发电机并非传统的汽轮发电机,而是磁悬浮汽轮发电机,在本文中简称 磁悬浮发电机。磁悬浮发电机采用的是磁悬浮轴承,转子与轴承之间不相互接触,因此机械摩擦小,发电机的转速高,从而提高发电效率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,包括:
    ORC发电机组,包括一级ORC发电机组以及二级ORC发电机组;
    所述一级ORC发电机组包括,用于对第一工质加压的第一循环泵,用于蒸发第一工质的一级蒸发器,与所述一级蒸发器连接的一级发电机,与所述一级发电机连接的用于蒸发第二工质的二级蒸发器;
    所述二级ORC发电机组包括,用于对第二工质加压的第二循环泵,所述二级蒸发器,与所述二级蒸发器连接的二级发电机,与所述二级发电机连接的第一冷凝器。
  2. 根据权利要求1所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述一级ORC发电机组还包括,用于给经与二级蒸发器换热降温后的第一工质进行第二级降温的吸收式制冷装置。
  3. 根据权利要求2所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述吸收式制冷装置包括:
    用于第三工质浓缩的发生器,与所述发生器连接的第二冷凝器、与所述二级蒸发器连接的第三冷凝器以及与所述第三冷凝器连接的吸收器;
    所述发生器第一出口与所述第二冷凝器第一入口连接,所述第二冷凝器第一出口与所述第三冷凝器的第一入口连接,所述第三冷凝器的第一出口与所述吸收器第一入口连接;
    所述二级蒸发器第一出口与所述第三冷凝器第二入口连接;所述第三冷凝器第二出口经所述第一循环泵与所述一级蒸发器入口连接;
    所述吸收器第一出口与所述发生器入口连接,所述发生器第二出口与所述吸收器第二入口连接。
  4. 根据权利要求1-3任一所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述一级发电机以及所述二级发电机均为磁悬浮透平发电机。
  5. 根据权利要求1所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述第一工质的沸点高于所述第二工质的沸点。
  6. 根据权利要求1所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述第二工质为R123或R124。
  7. 根据权利要求3所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述第二冷凝器与所述第三冷凝器之间设置有节流阀。
  8. 根据权利要求3所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述吸收器出口与发生器之间设置有第三循环泵。
  9. 根据权利要求3所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述第三工质为二元工质。
  10. 根据权利要求9所述的中低温地热工质梯级利用ORC磁悬浮发电***,其特征在于,所述第三工质为溴化锂溶液。
PCT/CN2020/093239 2019-05-31 2020-05-29 中低温地热工质梯级利用orc磁悬浮发电*** WO2020239069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910472764.3A CN110159377A (zh) 2019-05-31 2019-05-31 中低温地热工质梯级利用orc磁悬浮发电***
CN201910472764.3 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020239069A1 true WO2020239069A1 (zh) 2020-12-03

Family

ID=67630617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093239 WO2020239069A1 (zh) 2019-05-31 2020-05-29 中低温地热工质梯级利用orc磁悬浮发电***

Country Status (2)

Country Link
CN (1) CN110159377A (zh)
WO (1) WO2020239069A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US12049875B2 (en) 2023-07-21 2024-07-30 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159377A (zh) * 2019-05-31 2019-08-23 深圳大学 中低温地热工质梯级利用orc磁悬浮发电***
CN115076056A (zh) * 2022-06-15 2022-09-20 等熵循环(北京)新能源科技有限公司 一种利用中深层低温地能实现低温差多级发电***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216020A (zh) * 2007-12-28 2008-07-09 天津大学 多级太阳能中低温朗肯循环***
CN102562496A (zh) * 2012-01-17 2012-07-11 天津大学 基于有机朗肯循环的中低温地热高效热电耦合联供***
CN102834590A (zh) * 2010-03-25 2012-12-19 科斯坦佐·佩里科 基于有机郎肯循环的能量生产设备
CN105736263A (zh) * 2016-04-01 2016-07-06 上海开山能源装备有限公司 一种地热井口电站***及其发电方法
CN110159377A (zh) * 2019-05-31 2019-08-23 深圳大学 中低温地热工质梯级利用orc磁悬浮发电***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248253B (zh) * 2005-03-29 2010-12-29 Utc电力公司 利用废热的级联有机兰金循环
CN102128513B (zh) * 2011-04-02 2013-01-30 深圳大学 车载溴化锂吸收式制冷设备
CN202381129U (zh) * 2011-11-01 2012-08-15 北京科技大学 动力供给***
CN103061835B (zh) * 2012-12-28 2015-06-17 东南大学 一种复叠式有机朗肯循环高效热机
CN103542597B (zh) * 2013-11-05 2015-10-21 中国科学院工程热物理研究所 一种适于回收变温热源的功冷联供***
CN109386326A (zh) * 2018-11-27 2019-02-26 翁志远 一种气体冷凝及低温工质发电***和工艺
CN210033553U (zh) * 2019-05-31 2020-02-07 深圳大学 中低温地热工质梯级利用orc磁悬浮发电***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216020A (zh) * 2007-12-28 2008-07-09 天津大学 多级太阳能中低温朗肯循环***
CN102834590A (zh) * 2010-03-25 2012-12-19 科斯坦佐·佩里科 基于有机郎肯循环的能量生产设备
CN102562496A (zh) * 2012-01-17 2012-07-11 天津大学 基于有机朗肯循环的中低温地热高效热电耦合联供***
CN105736263A (zh) * 2016-04-01 2016-07-06 上海开山能源装备有限公司 一种地热井口电站***及其发电方法
CN110159377A (zh) * 2019-05-31 2019-08-23 深圳大学 中低温地热工质梯级利用orc磁悬浮发电***

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11255315B1 (en) 2021-04-02 2022-02-22 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production
US11274663B1 (en) 2021-04-02 2022-03-15 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic rankine cycle operation during hydrocarbon production
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11359612B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US12049875B2 (en) 2023-07-21 2024-07-30 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Also Published As

Publication number Publication date
CN110159377A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020239069A1 (zh) 中低温地热工质梯级利用orc磁悬浮发电***
WO2020239068A1 (zh) 中低温地热orc磁悬浮复合梯级发电***
WO2020239067A1 (zh) 中低温地热余压梯级利用orc磁悬浮发电***
CN107630726B (zh) 一种基于超临界二氧化碳循环的多能混合发电***及方法
US10247050B2 (en) Energy tower of multi-energy-form output for stepwise recovering waste heat of a gas engine
CN107940789B (zh) 一种基于可移动太阳能集热器的冷热电联合发电***
CN109519243B (zh) 超临界co2和氨水联合循环***及发电***
CN202851099U (zh) 改进型吸收式热泵型抽汽式汽轮发电***
CN103089356A (zh) 闪蒸-双工质联合发电装置
CN111735237B (zh) 一种中低温热能利用功冷联供***
CN104481619A (zh) 能实现热能高效利用的郎肯循环发电***
CN210106078U (zh) 中低温地热余压梯级利用orc磁悬浮发电***
CN112431644B (zh) 一种通过调节工质流量分配比的供冷联供***
CN210033553U (zh) 中低温地热工质梯级利用orc磁悬浮发电***
CN109707472B (zh) 一种利用干熄焦余热的分布式能源***
CN210033546U (zh) 中低温地热梯级利用orc磁悬浮发电***
CN210033736U (zh) 中低温地热orc磁悬浮复合梯级发电***
CN110159368B (zh) 中低温地热梯级利用orc磁悬浮发电***及方法
CN112880230B (zh) 一种发电制冷联合***
CN204371436U (zh) 能实现热能高效利用的郎肯循环发电***
CN112412560A (zh) 一种基于单螺杆膨胀机的卡琳娜循环***
CN112459857A (zh) 一种双压有机朗肯循环发电***
CN112096473A (zh) 一种集成褐煤真空预干燥的超临界co2发电***及方法
TWI399512B (zh) 利用低階熱能產生電力及冷凍之裝置與方法
CN106440468B (zh) 热动联供***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815036

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20815036

Country of ref document: EP

Kind code of ref document: A1