WO2020238856A1 - 显示面板、其制作方法及显示装置 - Google Patents

显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2020238856A1
WO2020238856A1 PCT/CN2020/092123 CN2020092123W WO2020238856A1 WO 2020238856 A1 WO2020238856 A1 WO 2020238856A1 CN 2020092123 W CN2020092123 W CN 2020092123W WO 2020238856 A1 WO2020238856 A1 WO 2020238856A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
guide plate
light guide
light extraction
Prior art date
Application number
PCT/CN2020/092123
Other languages
English (en)
French (fr)
Inventor
孟宪东
谭纪风
董水浪
王维
刘文渠
赵文卿
凌秋雨
孟宪芹
田依杉
康昭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/264,027 priority Critical patent/US11835751B2/en
Publication of WO2020238856A1 publication Critical patent/WO2020238856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0063Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0093Means for protecting the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133368Cells having two substrates with different characteristics, e.g. different thickness or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/07Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 buffer layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the embodiments of the present disclosure relate to a display panel, a manufacturing method thereof, and a display device.
  • the backlight module of the display device takes out the light from the light guide plate through a light extraction grating, thereby providing a backlight for the display panel source.
  • Embodiments of the present disclosure provide a display panel, a manufacturing method thereof, and a display device.
  • the display panel includes a light guide plate, an array substrate disposed opposite to the light guide plate, a liquid crystal layer located between the light guide plate and the array substrate, and a plurality of light extraction gratings located on one side of the light exit surface of the light guide plate , And a transparent protective layer located between the film layer where the light extraction grating is located and the light guide plate; wherein, the light guide plate includes: a plurality of light extraction port areas, and other than each light extraction port area Transparent area; in each of the light extraction opening area is provided with a light extraction grating, the light extraction grating is configured to take out the light in the light guide plate; the transparent area is configured to make the light guide plate The light is totally reflected and transmitted; and the protective layer is at least arranged in the transparent area.
  • the protective layer is an etching stop layer, and the etching selection ratio of the etching stop layer is greater than that of the light extraction grating.
  • the display panel further includes: a flat layer covering each of the light extraction grating and the area outside the light extraction grating, the flat layer is a resin layer; the refractive index of the protective layer is greater than that of the light guide plate And the refractive index of the flat layer is less than the refractive index of the light guide plate.
  • the thickness of the protective layer is in the range of 0 to 400 nm.
  • the thickness of the protective layer is in the range of 0-60 nm.
  • the protective layer is a resin layer; the display panel further includes: a flat layer covering each of the light extraction gratings and areas outside each of the light extraction gratings; the refractive index of the flat layer is smaller than that of the guide The refractive index of the light plate; and the refractive index of the protective layer is the same as the refractive index of the flat layer.
  • the material of the protective layer is the same as the material of the flat layer.
  • the refractive index of the protective layer is in the range of 1.2 to 1.3.
  • the thickness of the protective layer is in the range of 0-10 nm.
  • the display panel further includes: a light shielding layer; the light shielding layer is located on a side of the array substrate close to the liquid crystal layer; the light shielding layer includes a plurality of light shielding units; the light shielding unit and the light extraction
  • the gratings have a one-to-one correspondence, and are configured to block the light emitted by the light extraction grating on the light exit surface when no voltage is applied to the liquid crystal layer.
  • At least one embodiment of the present disclosure further provides a manufacturing method of the display panel, including: providing a light guide plate; the light guide plate includes: a plurality of light extraction port areas, and a light guide A transparent area; a protective layer covering at least the transparent area is formed on the side of the light-emitting surface of the light guide plate; a grating is formed in the light extraction port area and the transparent area on the side of the protective layer facing away from the light guide plate The film layer; and the grating film layer is patterned, the grating film layer located in the transparent area is removed, and the grating film layer located only in the light extraction port area is retained as a light extraction grating.
  • Forming a grating film layer on the light extraction port area and the transparent area on the side of the protective layer away from the light guide plate includes: the light extraction port on the side of the etching barrier layer away from the light guide plate The area and the transparent area form a grating film layer; the grating film layer is patterned, the grating film layer located in the transparent area is removed, and the grating film layer located only in the light extraction port area is retained as
  • the light extraction grating includes: using a mask plate to shield the grating film layer located in the light extraction port area, and using an etching process to remove the grating film layer located in the transparent area; the manufacturing method further includes: After the grating film layer is patterned, a resin material is used to form the etching stop layer covering the transparent area and the flat layer of each light extraction grating.
  • the protective layer is a resin layer; forming a protective layer on the light-emitting surface side of the light guide plate to cover at least the transparent area includes: using a resin material to form a layer on the light-emitting surface side of the light guide plate The layer covers at least the resin layer in the transparent area; the formation of the grating film layer between the light extraction port area on the side of the protective layer facing away from the light guide plate and the transparent area includes: The light extraction port area and the transparent area on one side of the light guide plate form a grating film layer; the grating film layer is patterned to remove the grating film layer located in the transparent area, leaving only
  • the use of the grating film layer in the light extraction port area as the light extraction grating includes: using a mask plate to shield the grating film layer located at the light extraction port, and removing the grating film layer located in the transparent area by an etching process; And forming a plurality of grooves on the surface of the resin layer during the etching process; the manufacturing
  • At least one embodiment of the present disclosure also provides a display device including the display panel.
  • FIGS. 1A and 1B are partial schematic diagrams of a corresponding display panel in the manufacturing process of a light extraction grating
  • 1C is a schematic diagram showing the relationship between the contrast CR and the etching depth h of the pit T;
  • FIG. 2A is one of the schematic diagrams of the display panel provided by the embodiment of the disclosure.
  • 2B is the second schematic diagram of the display panel provided by the embodiment of the disclosure.
  • FIG 3 is the third schematic diagram of the display panel provided by the embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the relationship curve between the brightness change ratio of the display panel and the thickness H 1 of the protective layer 203a;
  • FIG. 5 is a fourth schematic diagram of the display panel provided by the embodiments of the disclosure.
  • FIG. 6 is a schematic diagram of the relationship curve between the brightness change ratio of the display panel and the thickness H 2 of the protective layer 203b;
  • FIG. 7 is a flowchart of a manufacturing method of the above-mentioned display panel provided by an embodiment of the disclosure.
  • 8A to 8D are structural schematic diagrams of each step in the manufacturing method corresponding to mode one;
  • 9A to 9D are structural schematic diagrams of each step in the manufacturing method corresponding to the second method.
  • the entire grating film layer 102 is first formed on the light guide plate 101, as shown in FIG. 1A, and then a mask is used to block the light extraction port area P, and the grating film The part of the layer 102 located in the transparent area Q is etched away, thereby patterning the grating film layer 102.
  • a light extraction grating 103 is formed in the light extraction port area P. Due to the grating preparation process, in the process of forming the grating film layer 102 or in the process of patterning the grating film layer 102, the light guide plate 101 in the transparent area Q is inevitably etched, as shown in FIG. 1B, The light guide plate 101 in the transparent area Q will be etched into a plurality of pits T, so that part of the light in the light guide plate 101 will be emitted from the transparent area Q, which directly causes the display contrast of the display device to decrease.
  • FIG. 1C shows the relationship curve between the display contrast CR and the etching depth h of the pit T. Refer to 1C, it can be clearly seen that when the depth h of the pit T is in the range of 0-5 nm, the display contrast CR decreases rapidly, and when the depth h of the pit T exceeds 5 nm, the display contrast CR decreases to about 1. Therefore, the pits T etched in the transparent region Q of the light guide plate 101 greatly affect the display contrast CR.
  • the embodiments of the present disclosure provide a display panel, a manufacturing method of the display panel, and a display device, which can solve the problem of reduced contrast of the display device.
  • FIG. 2A is a schematic structural diagram of a display panel provided by an embodiment of the present disclosure
  • FIG. 2B is a partial schematic diagram of FIG. 2A
  • the display panel includes: a light guide plate 201, an array substrate 402 disposed opposite to the light guide plate 201, a liquid crystal layer 403 between the light guide plate 201 and the array substrate 402, and a light emitting surface of the light guide plate 201 (The upper side in the figure is the light exit surface as an example)
  • the light guide plate 201 includes: a plurality of light extraction port areas P, and a transparent area Q except for each light extraction port area P; each light extraction port area P is provided with a light extraction grating 202, the light extraction grating 202 is configured to The light in the light guide plate 201 is taken out; the transparent area Q is configured to allow total reflection and transmission of light in the light guide plate; at least the transparent area Q is provided with a protective layer 203 configured to prevent over-etching.
  • a protective layer is provided between the film layer where the light-extracting grating is located and the light guide plate.
  • the protective layer will The light guide plate plays a protective role, thereby avoiding the loss of light energy caused by the light guide plate being etched and improving the contrast of the display.
  • the protective layer is transparent, it will not affect the normal light output of the display panel.
  • a light source 205 can also be provided on the side surface of the light guide plate 201 (opposite to the end surface facing the light exit surface of the array substrate), and the light source 205 can provide light of a certain angle for the light guide plate 201.
  • the light source 205 may be a monochromatic light emitting diode (Light Emitting Diode, LED).
  • LED Light Emitting Diode
  • a smaller size LED may be used, for example, a micro-LED or a micro-OLED may be used, or a laser light source may also be used, but the embodiments of the present disclosure are not limited thereto.
  • a reflective cover 206 may also be provided on the side of the light guide plate 201, and the reflective cover 206 is provided at a position corresponding to the light source 205.
  • the reflective cover 206 can couple the light emitted by the light source 205 into the light guide plate 201.
  • the light guide plate 201 is a total reflection transmission structure, and the light that meets the total reflection condition can be totally reflected and propagated in the light guide plate 201.
  • the incident angle of the light provided by the light guide plate 201 can be set by setting the light source 205, so that most of the light guide plate 201 is incident The light can satisfy the condition of total reflection.
  • the light guide plate 201 needs to have high transparency, and in order to prevent the light from being scattered or absorbed, the light guide plate 201 needs to have low haze, and it is also necessary to ensure that the light guide plate 201 is up and down.
  • the flatness of the surface, for example, the light guide plate can be made of glass material.
  • a plurality of light extraction gratings 202 are respectively located at the position of each light extraction port area P, and the plurality of light extraction gratings 202 are arranged in a dot matrix, so that light is emitted in a dot matrix form on the light exit surface side of the light guide plate 201.
  • the exit angle of the light emitted at the light extraction port area P can be adjusted.
  • the grating parameters of the light-extracting grating 202 the light can be collimated and emitted at the light-extracting grating 202.
  • the light extraction grating 202 can be made of a transparent material, for example, the light extraction grating 202 can be made of a material with a higher refractive index.
  • the protective layer 203 is provided between the film layer where the light extraction grating 202 is located and the light guide plate 201, so as to prevent the light guide plate 201 from being etched during the etching process, at least in the transparent region Q
  • a protective layer 203 for preventing over-etching is provided.
  • the protective layer 203 can also be made as a whole layer, thereby saving the process of patterning the protective layer 203 and saving costs.
  • the protective layer 203 is provided as an entire layer for description.
  • the protective layer 203 can be implemented in various ways, but the protective layer 203 can protect the light guide plate 201 from being etched.
  • the protective layer in mode one is represented by 203a.
  • the protective layer 203 a is an etching stop layer, and the etching selection ratio of the etching stop layer is greater than that of the light extraction grating 202.
  • the etching selection ratio indicates the relative etching rate of one material to another under the same etching conditions. The higher the etching selection ratio of a certain material, the less easily the material is etched. Therefore, the use of an etching barrier layer with a high etching selection ratio relative to the light extraction grating 202 can prevent the etching barrier layer from being etched more easily than the light extraction grating 202 during the etching process.
  • the etching selection ratio of the etching barrier layer can be set to be much larger than the etching selection ratio of the light extraction grating 202.
  • the light extraction grating 202 can be made of silicon nitride (SiNx) material.
  • the etching barrier layer can be made of indium tin oxide (ITO), indium gallium zinc oxide (IGZO) and other materials.
  • the above-mentioned display panel provided by an embodiment of the present disclosure may further include: a flat layer 204 covering each light-extracting grating 202 and an area outside the light-extracting grating 202, and the flat layer 204 is a resin layer;
  • the refractive index of the protective layer 203 a is greater than the refractive index of the light guide plate 201.
  • the refractive index of the flat layer 204 is smaller than the refractive index of the light guide plate 201.
  • the protective layer 203a can further prevent the protective layer 203a from being etched.
  • the refractive index of the flat layer 204 is smaller than the refractive index of the light guide plate 201, so that the light transmitted from the light guide plate 201 can meet the total reflection transmission condition from light density to light density, so that the light can pass between the protective layer 203a and the flat layer. Total reflection occurs at the interface between 204.
  • the protective layer 203a may be a transparent material, for example, a transparent metal oxide material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the flat layer 204 is located on the side of the light extraction grating 202 away from the light guide plate 201, can cover each light extraction grating 202, and fill the area except for each light extraction grating 202, can fill each transparent area Q, and the light extraction port area The light-transmitting area of the light-trapping grating 202 in P, so as to realize the planarization of the film layer where the light-trapping grating 202 is located.
  • the thickness of the protective layer 203a cannot be too large, and the thickness of the protective layer 203a can be in the range of 0-400 nm.
  • Fig. 4 is a graph showing the relationship between the brightness change ratio of the display panel and the thickness H 1 of the protective layer 203a. It can be clearly seen from Fig. 4 that the protective layer 203a of different thicknesses affects the light extraction effect of the light extraction port area, for example, protection
  • the thickness of the layer 203a can be in the range of 0-60 nm, which has no effect on the brightness of the light extraction port area, and when the thickness of the protective layer 203a is greater than 60 nm, the brightness of the light extraction port area decreases to a small degree, thus proving the feasibility of the first solution
  • the protective layer 203a is provided between the light guide plate 201 and the film layer where the light extraction grating 202 is located, and the light guide plate 201 can be protected without affecting the light extraction effect, so that the non-light extraction port area Q
  • the light guide plate 201 is not etched.
  • the protective layer in the second method is represented by 203b in FIG. 5.
  • the protective layer 203b is a resin layer; the above-mentioned display panel may also include: a flat layer 204 covering the light-extracting grating 202 and the area outside the light-extracting grating 202 ;
  • the refractive index of the flat layer 204 is smaller than the refractive index of the light guide plate 201.
  • the refractive index of the protective layer 203b is the same as the refractive index of the flat layer 204.
  • the refractive index of the flat layer 204 is smaller than the refractive index of the light guide plate 201, so that the light transmitted from the light guide plate 201 can satisfy the total reflection transmission condition from light density to light density.
  • the flat layer 204 is located on the side of the light extraction grating 202 away from the light guide plate 201, and can cover the light extraction gratings 202 and fill the areas other than the light extraction gratings 202, and can fill the transparent areas Q and the light extraction port area.
  • the light-transmitting area of the light-trapping grating 202 in P so as to realize the planarization of the film layer where the light-trapping grating 202 is located.
  • the protective layer 203b located in the transparent area Q may be etched into some grooves.
  • the flat layer 204 fills the grooves on the protective layer 203b, so that the surface of the protective layer 203b is flat again, thereby ensuring the light-locking ability of the transparent area Q.
  • the material of the protective layer 203b and the material of the flat layer 204 may be the same.
  • the protective layer 203b may have the same refractive index as the flat layer 204 and have different materials.
  • the protective layer 203b and the flat layer 204 may use organic materials such as organosiloxane, but the embodiments of the present disclosure are not limited thereto.
  • the refractive index of the protective layer 203b may be in the range of 1.2 to 1.3, and the refractive index of the light guide plate 201 may be in the range of 1.5 to 2.0.
  • the protective layer 203b between the light guide plate 201 and the film layer where the light extraction grating 202 is located needs to be very thin, for example, the protective layer 203b
  • the thickness is in the range of 0-10nm.
  • the protective layer 203b is less than about 10nm, the interface between the light guide plate 201 and the protective layer 203b located in the transparent area Q does not have the light-locking ability.
  • the light in the light guide plate 201 may be emitted in the transparent area Q. Therefore, it is necessary to A flat layer 204 with the same refractive index as that of the protective layer 203b is formed on the protective layer 203b, and the thickness of the flat layer 204 must be greater than about 1 ⁇ m, so that the interface between the light guide plate 201 and the protective layer 203b located in the transparent region Q has light-locking ability In the transparent area Q, the light is totally reflected at the interface between the light guide plate 201 and the protective layer 203b and cannot be emitted.
  • the protective layer 203b in the second method can protect the light guide plate 201 on the basis of ensuring the light extraction brightness of the light extraction port area P and the light-locking ability in the transparent area, and prevent the light guide plate 201 from being engraved. It is etched during the etching process.
  • Fig. 6 is the relationship curve between the brightness change ratio of the display panel and the thickness H 2 of the protective layer 203b. It can be clearly seen from Fig. 6 that the protective layer 203b of different thicknesses affects the light extraction effect of the light extraction port area, for example, protection The thickness of the layer 203b is less than 10nm, and the brightness change of the light extraction port area is less than 10%. Therefore, it can be proved that the protective layer 203b has less influence on the light extraction effect of the light extraction port area, which proves that the protective layer in the second method The feasibility of 203b.
  • the above-mentioned display panel provided by an embodiment of the present disclosure further includes a light shielding layer 404; the light shielding layer 404 is located on the side of the array substrate 402 close to the liquid crystal layer 403.
  • the light shielding layer 404 includes a plurality of light shielding units 4041; the light shielding units 4041 correspond to the light extraction grating 202 in a one-to-one relationship, and are configured to shield the light emitted by the light extraction grating 202 on the light exit surface when the liquid crystal layer 403 is not applied with voltage.
  • the light shielding layer 404 may be a black matrix.
  • the liquid crystal layer 403 when no voltage is applied to the liquid crystal layer 403, the liquid crystal layer 403 has no deflection effect on light, and the light emitted to the liquid crystal layer 403 can be transmitted in the original direction. Therefore, when no voltage is applied to the liquid crystal layer 403, each The light emitted by the light extraction grating 202 directly hits the corresponding light-shielding unit 4041, and the light will be absorbed by the light-shielding unit 4041 and cannot be emitted, such as the light-exiting grating 202 on the left and the middle of the figure, so as to achieve complete darkness of zero gray scale L0 state.
  • the light extraction grating 202 is generally set to emit collimated light.
  • the light shielding unit 4041 is installed on the light guide plate 201
  • the above orthographic projection should be able to cover the orthographic projection of the light exit of the light extraction grating 202 on the light guide plate 201.
  • the liquid crystal in the liquid crystal layer 403 is deflected to form a liquid crystal grating.
  • the liquid crystal grating can disperse the light emitted by the light extraction grating 202, so that the light can deviate from the light shielding unit 4041 and be emitted, thereby achieving bright
  • the light extraction grating 202 on the right side of the figure is the bright state of gray scale L255.
  • the different driving voltage the light effect of the liquid crystal grating is different, so that the light energy of the light shielding unit 4041 at the deviation is different, and the gray-scale modulation display is realized.
  • the driving voltage can be applied to the liquid crystal layer by setting the pixel electrode layer and the common electrode layer.
  • the Advanced Super Dimension Switch (ADS) mode can be used to combine the pixel electrode layer and the common electrode layer.
  • the two layers (the darker two layers of the electrode layer 401 in the figure) are arranged on the same side of the liquid crystal layer 403, and the fringe field effect is used to realize the control of the liquid crystal grating.
  • other driving modes can also be used to change the pixel electrode
  • the layer and the common electrode layer are disposed on both sides of the liquid crystal layer, and the embodiments of the present disclosure are not limited thereto.
  • film layers such as a pixel electrode layer and a common electrode layer can be directly formed on the flat layer 204.
  • the above-mentioned liquid crystal layer may be composed of liquid crystal with a high refractive index difference ( ⁇ n).
  • the above-mentioned counter substrate 402 can be a glass substrate with high transparency, and the surface is required to be flat.
  • the embodiments of the present disclosure also provide a manufacturing method of the above-mentioned display panel. Since the principle of the manufacturing method to solve the problem is similar to the above-mentioned display panel, the implementation of the manufacturing method can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • the manufacturing method of the above-mentioned display panel provided by the embodiment of the present disclosure includes:
  • the light guide plate includes: a plurality of light extraction areas and transparent areas other than each light extraction area;
  • the grating film layer is patterned, the grating film layer located in the transparent area is removed, and the grating film layer located in the light extraction area is retained as the light extraction grating.
  • a protective layer is formed on the light-emitting surface side of the light guide plate. Therefore, in the process of patterning the grating film layer, The protective layer will protect each area of the light guide plate, so as to avoid the loss of light energy caused by the light guide plate being etched, and improve the contrast of the display. Moreover, because the protective layer is transparent, it will not emit light to the display panel normally Make an impact.
  • the above step S301 may include: using a material with an etching selection ratio greater than the light extraction grating, and forming an etching stop layer 203a covering at least the transparent area on the light exit surface side of the light guide plate 201.
  • the above step S302 may include: forming a grating film layer 202 ′ in the light extraction area and the transparent area on the side of the etching stop layer 203 a away from the light guide plate 201.
  • a multi-step process such as nanoimprinting and etching can be used to fabricate the grating film layer.
  • the protective layer 203a is not easily etched, so that the surface of the protective layer 203a can be kept flat.
  • the above step S303 may include: using a mask M to shield the grating film layer 202 ′ located in the light extraction port area P, and using an etching process to remove the grating film layer 202 ′ located in the transparent area Q. Since the etching selection of the protective layer 203a is relatively high, and the refractive index of the protective layer 203a is relatively high, the surface of the protective layer 203a is not easily etched during the etching process, so that the structure shown in FIG. 8D is obtained.
  • the protective effect of 203a prevents the light guide plate 201 from being etched, and the protective layer 203a is not easily etched during the etching process, so that the flatness of the surface of the light guide plate 201 and the protective layer 203a can be higher, and the optical The effect is better.
  • the foregoing manufacturing method may further include: using a resin material to form an etching barrier layer covering the transparent area and a flat layer 204 of each light-trapping grating 202, to obtain the structure shown in FIG. 3.
  • the above step S301 may include: using a resin material to form a resin layer 203b covering at least the transparent area on the side of the light emitting surface of the light guide plate 201.
  • the above-mentioned step S302 may include: forming a grating film layer 202' on the light extraction area and the transparent area on the side of the resin layer 203b away from the light guide plate 201.
  • a multi-step process such as nanoimprinting and etching can be used to make the grating film layer.
  • the protective layer 203b at the gaps between the grating stripes of the grating film layer 202' may be Is etched.
  • the above step S303 may include: using a mask M to shield the grating film layer 202' located in the light extraction area P, and using an etching process to remove the grating film layer 202' located in the transparent area Q, and may A plurality of grooves are formed on the surface of the layer 203b.
  • FIG. 9D during the etching process, the surface of the protective layer 203b is easily etched, so that multiple grooves U may be formed on the surface of the protective layer 203b.
  • the foregoing manufacturing method may further include: using a material with the same refractive index as the resin layer 203b, and forming a flat layer 204 on the side of the light extraction grating 202 away from the light guide plate 201 to fill the grooves U to obtain The structure shown in Figure 5.
  • the flat layer 204 can fill the groove U on the protection layer 203b, the surface of the protection layer 203b is flat again, thereby ensuring the light-locking ability of the transparent area Q.
  • the protective layer 203 needs to be very thin. However, if the protective layer 203b is very thin, the light-locking ability of the transparent region Q will be weaker.
  • a flat layer 204 with the same refractive index as the protective layer 203b is formed, which on the one hand can achieve a flattening effect, on the other hand, it can also improve the light-locking ability of the interface between the light guide plate 201 and the protective layer 203b in the transparent region Q , To ensure that the light in the light guide plate 201 cannot be emitted in the transparent area Q.
  • an embodiment of the present disclosure also provides a display device, which includes the display panel. Since the principle of solving the problems of the display device is similar to that of the above-mentioned display panel, the implementation of the display device can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • the display device can be applied to any products or components with display functions such as mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, and navigators.
  • virtual reality (VR) display augmented reality (Augmented Reality, AR) display, transparent display, directional display, color display and other fields can also be applied.
  • a protective layer is provided between the film layer where the light extraction grating is located and the light guide plate, during the process of forming a patterned light extraction grating by an etching process .
  • the protective layer will protect the light guide plate, so as to avoid the loss of light energy caused by the light guide plate being etched, and improve the contrast of the display.
  • the protective layer is transparent, it will not cause normal light emission of the display panel. influences.
  • a display panel, a manufacturing method thereof, and a display device provided by the embodiments of the present disclosure include: a light guide plate, an array substrate disposed opposite to the light guide plate, a liquid crystal layer located between the light guide plate and the array substrate, and a light source of the light guide plate Multiple light extraction gratings on one side of the surface, and a transparent protective layer located between the film layer where the light extraction grating is located and the light guide plate;
  • the light guide plate includes: multiple light extraction opening areas, and transparent except for each light extraction opening area Area; in each light-exit area is provided with a light-taking grating, which is used to take out the light in the light guide plate; the transparent area is used to transmit the light in the light guide plate by total reflection; at least in the transparent area is provided Protective layer to prevent photolithography.
  • a protective layer is provided between the film layer where the light extraction grating is located and the light guide plate.
  • the protective layer will lift the light guide plate. In order to protect, it can avoid the loss of light energy caused by the etching of the light guide plate, and improve the contrast of the display.
  • the protective layer is transparent, it will not affect the normal light output of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板、其制作方法及显示装置。显示面板包括:导光板(201),阵列基板(402),位于导光板(201)与阵列基板(402)之间的液晶层(403),位于导光板(201)的出光面一侧的多个取光光栅(202),以及位于取光光栅(202)所在膜层与导光板(201)之间的透明的保护层(203)。导光板(201)包括:多个取光口区域(P),以及除取光口区域(P)以外的透明区域(Q);在每一个取光口区域(P)设有一个取光光栅(202);至少在透明区域(Q)设有保护层(203),保护层(203)配置为防止在透明区域(Q)内的导光板(201)被过度刻蚀出多个凹坑(T),从而防止导光板(201)内的部分光线在透明区域(Q)处射出,防止显示装置的显示对比度降低。

Description

显示面板、其制作方法及显示装置
相关申请的交叉引用
本申请要求于2019年05月30日向CNIPA提交的名称为“一种显示面板、其制作方法及显示装置”的中国专利申请No.201910461203.3的优先权,其全文通过引用为所有目的合并于本文。
技术领域
本公开的实施例涉及一种显示面板、其制作方法及显示装置。
背景技术
随着显示技术的不断发展,在液晶显示(LCD)技术中出现了一种新型的显示装置,该显示装置的背光模组通过取光光栅将导光板中的光线取出,从而为显示面板提供背光源。
发明内容
本公开的实施例提供一种显示面板、其制作方法及显示装置。
本公开的至少一个实施里提供一种显示面板。该显示面板包括导光板,与所述导光板相对设置的阵列基板,位于所述导光板与所述阵列基板之间的液晶层,位于所述导光板的出光面一侧的多个取光光栅,以及位于所述取光光栅所在膜层与所述导光板之间的透明的保护层;其中,所述导光板包括:多个取光口区域,以及除各所述取光口区域以外的透明区域;在每一个所述取光口区域设有一个所述取光光栅,所述取光光栅配置来将所述导光板内的光线取出;所述透明区域配置来使所述导光板内的光线全反射传输;以及所述保护层至少设置在所述透明区域。
例如,所述保护层为刻蚀阻挡层,所述刻蚀阻挡层的刻蚀选择比大于所述取光光栅的刻蚀选择比。
例如,所述显示面板还包括:覆盖各所述取光光栅和所述取光光栅之外的区域的平坦层,所述平坦层为树脂层;所述保护层的折射率大于所述导光板的折射率;以及所述平坦层的折射率小于所述导光板的折射率。
例如,所述保护层的厚度在0~400nm的范围内。
例如,所述保护层的厚度在0~60nm的范围内。
例如,所述保护层为树脂层;所述显示面板还包括:覆盖各所述取光光栅和各所述取光光栅之外的区域的平坦层;所述平坦层的折射率小于所述导光板的折射率;以及所述保护层的折射率与所述平坦层的折射率相同。
例如,所述保护层的材料与所述平坦层的材料相同。
例如,所述保护层的折射率在1.2~1.3的范围内。
例如,所述保护层的厚度在0~10nm的范围内。
例如,所述显示面板还包括:遮光层;所述遮光层位于所述阵列基板上靠近所述液晶层的一侧;所述遮光层包括多个遮光单元;所述遮光单元与所述取光光栅一一对应,配置来在所述液晶层未施加电压时遮挡所述取光光栅在出光面出射的光线。
本公开的至少一个实施例还提供一种所述显示面板的制作方法,包括:提供一导光板;所述导光板包括:多个取光口区域,以及除各所述取光口区域以外的透明区域;在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层;在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;以及对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅。
例如,所述保护层为刻蚀阻挡层;所述在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层包括:采用刻蚀选择比大于所述取光光栅的材料,在所述导光板的出光面一侧形成至少覆盖所述透明区域的刻蚀阻挡层;
在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层包括:在所述刻蚀阻挡层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅包括:采用掩模板遮挡位于取光口区域的所述光栅膜层,采用刻蚀工艺去除位于所述透明区域的所述光栅膜层;所述制作方法还包括:在所述对所述光栅膜层进行图形化之后,采用树脂材料,形成覆盖所述透明区域的所述刻蚀阻挡层和各取光光栅的平坦层。
例如,所述保护层为树脂层;所述在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层包括:采用树脂材料,在所述导光板的出光面一侧形成一层至少覆盖所述透明区域的树脂层;所述在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层包括:在所述树 脂层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;所述对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅包括:采用掩模板遮挡位于取光口的所述光栅膜层,采用刻蚀工艺去除位于所述透明区域的所述光栅膜层,并在刻蚀工艺过程中在所述树脂层的表面形成多个凹槽;所述制作方法还包括:在所述对所述光栅膜层进行图形化之后,采用与所述树脂层折射率相同的材料,在所述取光光栅背离所述导光板的一侧形成平坦层,以填充各所述凹槽。
本公开的至少一个实施例还提供一种显示装置,包括所述显示面板。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1A和图1B为一种取光光栅制作过程中对应的显示面板的局部示意图;
图1C为显示对比度CR与凹坑T的刻蚀深度h的关系曲线示意图;
图2A为本公开实施例提供的显示面板的示意图之一;
图2B为本公开实施例提供的显示面板的示意图之二;
图3为本公开实施例提供的显示面板的示意图之三;
图4为显示面板的亮度变化比例与保护层203a的厚度H 1的关系曲线示意图;
图5为本公开实施例提供的显示面板的示意图之四;
图6为显示面板的亮度变化比例与保护层203b的厚度H 2的关系曲线示意图;
图7为本公开实施例提供的上述显示面板的制作方法流程图;
图8A至图8D为对应于方式一的制作方法中各步骤的结构示意图;
图9A至图9D为对应于方式二的制作方法中各步骤的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需做出 创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
一种取光光栅的制作过程中,是先在导光板101上形成整面的光栅膜层102,如图1A所示,然后采用掩模板遮挡取光口区域P,通过刻蚀工艺将光栅膜层102位于透明区域Q内的部分刻蚀掉,从而将光栅膜层102图形化,如图1B所示,在取光口区域P中形成取光光栅103。由于光栅制备工艺原因,在形成光栅膜层102的过程中,或者在光栅膜层102图形化的过程中,不可避免的导致透明区域Q内的导光板101被刻蚀,如图1B所示,在透明区域Q内的导光板101会被刻蚀出多个凹坑T,从而导致导光板101内的部分光线会在透明区域Q处射出,直接导致显示装置的显示对比度降低。
导光板101在透明区域Q被刻蚀出的凹坑T的深度值h越大,显示装置的显示对比度越低,图1C为显示对比度CR与凹坑T的刻蚀深度h的关系曲线,参照1C,可以明显看出,凹坑T的深度值h在0~5nm的范围内时,显示对比度CR迅速下降,凹坑T的深度值h超过5nm后,显示对比度CR降低至1左右。因此,导光板101在透明区域Q被刻蚀出的凹坑T对显示对比度CR影响很大。
本公开实施例提供了一种显示面板、显示面板的制作方法及显示装置,可以解决显示装置对比度降低的问题。
下面结合附图,对本公开实施例提供的显示面板、显示面板的制作方法及显示装置的示例实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本公开的内容。
本公开的实施例提供了一种显示面板,图2A为本公开实施例提供的显示面板的结构示意图,图2B为图2A的局部示意图。如图2A和图2B所示,显示面板包括:导光板201,与导光板201相对设置的阵列基板402,位于导光板201与阵列基板402之间的液晶层403,位于导光板201的出光面(图中以上侧为出光面为例)一侧的多个取光光栅202,以及位于取光光栅202所在膜 层与导光板201之间的透明的保护层203。
导光板201包括:多个取光口区域P,以及除各取光口区域P以外的透明区域Q;在每一个取光口区域P设有一个取光光栅202,取光光栅202配置来将导光板201内的光线取出;透明区域Q配置来使导光板内的光线全反射传输;至少在透明区域Q设有配置来防止过刻的保护层203。
本公开实施例提供的显示面板中,通过在取光光栅所在膜层与导光板之间设置保护层,在采用刻蚀工艺形成图形(pattern)化的取光光栅的过程中,保护层会对导光板起到保护作用,从而可以避免导光板被刻蚀而导致的光能损失,提高显示的对比度,而且,由于保护层为透明的,不会对显示面板的正常出光产生影响。
例如,还可以在导光板201的侧面(相对于朝向阵列基板的出光面的端面)设置光源205,光源205可以为导光板201提供一定角度的光线。例如,光源205可以为单色发光二极管(Light Emitting Diode,LED)。为了使光源205具有较高的准直度,可以采用尺寸较小的LED,例如可以采用micro-LED或micro-OLED,或者也可以采用激光光源,但是,本公开的实施例并不限于此。在导光板201的侧面处还可以设置反射罩206,且该反射罩206设置于对应于光源205的位置处,反射罩206可以将光源205出射的光线耦合到导光板201内。
导光板201为全反射传导结构,满足全反射条件的光线可以在导光板201内全反射传播,可以通过设置光源205向导光板201提供的光线的入射角度,使射入到导光板201的大部分光线能够满足全反射条件。此外,为了保证显示面板的透光率,需要导光板201具有较高的透明度,而且,为了防止光线被散射或者吸收,需要导光板201具有较低的雾度,同时还需要保证导光板201上下表面的平整度,例如导光板可以采用玻璃材料制作。
通过在导光板201的出光面一侧设置取光光栅202,导光板201内全反射传播的光线射向取光光栅202时,能够在取光光栅202处以特定角度衍射取出,光线在除取光口区域P以外的区域(即透明区域Q)内,仍能够全反射传输。多个取光光栅202分别位于各取光口区域P的位置处,且多个取光光栅202呈点阵排布,从而在导光板201的出光面一侧以点阵形式出光。例如,可以通过设置取光光栅202的光学参数来调节在取光口区域P处出射的光线的出射角度。例如,可以通过设置取光光栅202的光栅参数,使光线在取光光栅202处准直出射。例如,取光光栅202可以采用透明材料制作,例如取 光光栅202可以采用折射率较高的材料制作。
在本公开的实施例中,通过在取光光栅202所在膜层与导光板201之间设置保护层203,从而可以避免导光板201在刻蚀工艺过程中被刻蚀,至少在透明区域Q内设有用于防止过刻的保护层203。例如,在不影响取光口区域P的取光性能的情况下,也可以将保护层203制作为整层设置,从而节省对保护层203进行图形化的工艺,节约成本。在本公开实施例中均以保护层203为整层设置为例进行说明。例如,保护层203可以采用多种方式实现,但是保护层203能够保护导光板201不被刻蚀。
以下结合附图,对其中实现方式进行详细说明。
在图3中以203a表示方式一中的保护层。如图3所示,保护层203a为刻蚀阻挡层,刻蚀阻挡层的刻蚀选择比大于取光光栅202的刻蚀选择比。刻蚀选择比表示在同一刻蚀条件下一种材料与另一种材料相对刻蚀速率的快慢。某种材料的刻蚀选择比越高,表示该材料越不容易被刻蚀。因而,采用相对于取光光栅202具有高刻蚀选择比的刻蚀阻挡层,可以在刻蚀过程中,刻蚀阻挡层相比于取光光栅202更不容易被刻蚀,从而起到防止过刻的作用,避免导光板201的透明区域Q被刻蚀,充分保证位于透明区域Q的导光板201的锁光能力。为了保证刻蚀阻挡层不被刻蚀,可以将刻蚀阻挡层的刻蚀选择比设置为远大于取光光栅202的刻蚀选择比,例如取光光栅202可以采用氮化硅(SiNx)材料,刻蚀阻挡层可以采用氧化铟锡(Indium tin oxide,ITO),铟镓锌氧化物(indium gallium zinc oxide,IGZO)等材料。
例如,本公开实施例提供的上述显示面板,如图3所示,还可以包括:覆盖各取光光栅202和取光光栅202之外的区域的平坦层204,平坦层204为树脂层;
保护层203a的折射率大于导光板201的折射率。平坦层204的折射率小于导光板201的折射率。
采用具有高刻蚀选择比的高折射率材料作为保护层203a,能够进一步使得保护层203a不被刻蚀。此外,平坦层204的折射率小于导光板201的折射率,能够使得从导光板201向外传输的光线能够满足光密到光疏的全反射传输条件,使光线能够在保护层203a与平坦层204之间的界面处发生全反射。
例如,为了不影响显示面板的取光效果,保护层203a可以采用透明材料,例如可以为氧化铟锡(Indium tin oxide,ITO)等透明金属氧化物材料。
例如,平坦层204位于取光光栅202背离导光板201的一侧,可以覆盖 各取光光栅202,并填充除各取光光栅202以外的区域,可以填充各透明区域Q,以及取光口区域P内取光光栅202的透光区域,从而实现对取光光栅202所在膜层的平坦化。
例如,为了不影响显示面板的取光效果,保护层203a的厚度不能太大,保护层203a的厚度可以在0~400nm的范围内。
图4为显示面板的亮度变化比例与保护层203a的厚度H 1的关系曲线,从图4可以明显看出,不同厚度的保护层203a对取光口区域的取光效果的影响,例如,保护层203a的厚度可以在0~60nm范围内,对取光口区域的亮度没有影响,且保护层203a的厚度大于60nm时,取光口区域的亮度下降程度较小,从而证明了方案一的可行性,即通过在导光板201与取光光栅202所在膜层之间设置保护层203a,可以在不影响取光效果的基础上,对导光板201起到保护作用,使非取光口区域Q的导光板201不被刻蚀。
为了与方式一中的保护层进行区分,在图5中以203b表示方式二中的保护层。如图5所示,本公开实施例提供的上述显示面板中,保护层203b为树脂层;上述显示面板也可以包括:覆盖各取光光栅202和取光光栅202之外的区域的平坦层204;
平坦层204的折射率小于导光板201的折射率。
保护层203b的折射率与平坦层204的折射率相同。
平坦层204的折射率小于导光板201的折射率,能够使得从导光板201向外传输的光线能够满足光密到光疏的全反射传输条件。而且,平坦层204位于取光光栅202背离导光板201的一侧,可以覆盖各取光光栅202,并填充除各取光光栅202以外的区域,可以填充各透明区域Q,以及取光口区域P内取光光栅202的透光区域,从而实现对取光光栅202所在膜层的平坦化。
采用与平坦层204折射率相同的保护层203b,采用刻蚀工艺形成各取光光栅202后,位于透明区域Q的保护层203b可能被刻蚀出一些凹槽,在形成平坦层204时,平坦层204填充保护层203b上的凹槽,使保护层203b的表面再次平坦,从而保证透明区域Q的锁光能力。
例如,保护层203b的材料与平坦层204的材料可以相同。此外,保护层203b可以与平坦层204折射率相同且材料不同,例如保护层203b和平坦层204可以采用有机硅氧烷等有机材料,但是本公开的实施例并不限于此。
例如,本公开实施例提供的上述显示面板中,保护层203b的折射率可以在1.2~1.3的范围内,导光板201的折射率可以在1.5~2.0的范围内。
为了使得取光口区域P处的取光亮度不降低,保证显示面板的整体出光亮度,导光板201与取光光栅202所在膜层之间的保护层203b需要很薄,例如,保护层203b的厚度在0~10nm的范围内。
但是,由于保护层203b小于约10nm,位于透明区域Q的导光板201与保护层203b之间的界面不具备锁光能力,导光板201内的光线可能会在透明区域Q射出,因此,需要在保护层203b之上形成与保护层203b折射率相同的平坦层204,平坦层204的厚度需大于约1μm,以使位于透明区域Q的导光板201与保护层203b之间的界面具备锁光能力,在透明区域Q,光线在导光板201与保护层203b之间的界面处发生全反射而无法射出。因此,方式二中的保护层203b能够在保证取光口区域P的取光亮度,并且能够保证在透明区域的锁光能力的基础上,对导光板201起保护作用,避免导光板201在刻蚀过程中被刻蚀。
图6为显示面板的亮度变化比例与保护层203b的厚度H 2的关系曲线,从图6可以明显看出,不同厚度的保护层203b对取光口区域的取光效果的影响,例如,保护层203b的厚度小于10nm的范围内,取光口区域的亮度变化小于10%,因此,可以证明保护层203b对取光口区域的取光效果的影响较小,从而证明了方式二中保护层203b的可行性。
例如,本公开实施例提供的上述显示面板,如图2A所示,还包括遮光层404;遮光层404位于阵列基板402上靠近液晶层403的一侧。遮光层404包括:多个遮光单元4041;遮光单元4041与取光光栅202一一对应,配置来在液晶层403未施加电压时遮挡取光光栅202在出光面出射的光线。
例如,遮光层404可以为黑矩阵。
参照图2A,在液晶层403未被施加电压时,液晶层403对光线没有偏折作用,射向液晶层403的光线能够沿着原来的方向传输,因而在液晶层403未施加电压时,各取光光栅202出射的光线直接射向对应的遮光单元4041上,光线会被遮光单元4041吸收而无法射出,例如图中左侧和中间的取光光栅202,从而实现零灰阶L0的完全暗态。为了使显示装置的正前方具有足够的亮度,一般会将取光光栅202设置为出射准直光线,为了保证遮光单元4041能够遮挡对应的取光光栅202出射的光线,遮光单元4041在导光板201上的正投影应该能够覆盖取光光栅202的出光口在导光板201上的正投影。
向液晶层403施加驱动电压后,液晶层403中的液晶发生偏转,形成液晶光栅,液晶光栅能够将取光光栅202出射的光线打散,从而使光线能够偏 离遮光单元4041而射出,从而实现亮态,如图中右侧的取光光栅202处为灰阶L255的亮态。根据驱动电压的不同,液晶光栅的光效不同,从而使偏离处遮光单元4041的光的能量不同,实现灰阶调制显示。
例如,可以通过设置像素电极层和公共电极层来向液晶层施加驱动电压,如图2A所示,可以采用高级超维场转换(Advanced Super Dimension Switch,ADS)模式,将像素电极层和公共电极层(如图中电极层401中颜色较深的两层膜层)设置在液晶层403的同一侧,利用边缘场效应实现对液晶光栅的控制,此外,也可以采用其他驱动模式,将像素电极层和公共电极层设置在液晶层的两侧,本公开的实施例不限于此。另外,为了减小显示装置的厚度,可以直接在平坦层204之上形成像素电极层和公共电极层等膜层。
例如,为了提高光效,上述液晶层可以采用高折射率差(△n)的液晶构成。上述对向基板402可以采用透明度较高的玻璃基板,要求表面平整性较好。
基于同一构思,本公开的实施例还提供了一种上述显示面板的制作方法。由于该制作方法解决问题的原理与上述显示面板相似,因此该制作方法的实施可以参见上述显示面板的实施,重复之处不再赘述。
如图7所示,本公开的实施例提供的上述显示面板的制作方法,包括:
S300、提供一导光板;导光板包括:多个取光区域,以及除各取光区域以外的透明区域;
S301、在导光板的出光面一侧形成一层至少覆盖透明区域的保护层;
S302、在保护层背离导光板的一面的取光区域和透明区域形成光栅膜层;
S303、对光栅膜层进行图形化,去除位于透明区域的光栅膜层,保留位于取光区域的光栅膜层作为取光光栅。
本公开实施例提供的上述制作方法中,在对光栅膜层进行图形化之前,在导光板的出光面一侧形成了一层保护层,因而,在对光栅膜层进行图形化的过程中,保护层会对导光板各区域起到保护作用,从而可以避免导光板被刻蚀而导致的光能损失,提高显示的对比度,而且,由于保护层为透明的,不会对显示面板的正常出光产生影响。
以下结合附图,对上述方式一对应的制作方法进行详细说明,也就是对保护层为刻蚀阻挡层对应的制作方法进行说明。
如图8A所示,上述步骤S301可以包括:采用刻蚀选择比大于取光光栅的材料,在导光板201的出光面一侧形成至少覆盖透明区域的刻蚀阻挡层 203a。
如图8B所示,上述步骤S302可以包括:在刻蚀阻挡层203a背离导光板201的一面的取光区域和透明区域形成光栅膜层202′。例如,可以采用纳米压印、刻蚀等多步工艺制作光栅膜层。在制作光栅膜层202′的过程中,由于保护层203a的刻蚀选择比较高,保护层203a不容易被刻蚀,从而可以保持保护层203a的表面平整性较好。
如图8C所示,上述步骤S303可以包括:采用掩模板M遮挡位于取光口区域P的光栅膜层202′,采用刻蚀工艺去除位于透明区域Q中的光栅膜层202′。由于保护层203a的刻蚀选择比较高,且保护层203a的折射率较高,在刻蚀过程中保护层203a的表面不容易被刻蚀,从而得到如图8D所示的结构,由于保护层203a的保护作用,使导光板201不会被刻蚀,而且保护层203a在刻蚀过程中也不容易被刻蚀,因而可以使导光板201和保护层203a的表面的平整度较高,光学效果较好。
在上述步骤S303之后,上述制作方法还可以包括:采用树脂材料,形成覆盖透明区域的刻蚀阻挡层和各取光光栅202的平坦层204,即可得到如图3所示的结构。
以下结合附图,对上述方式一对应的制作方法进行详细说明,也就是对保护层为树脂层对应的制作方法进行说明。
如图9A所示,上述步骤S301,可以包括:采用树脂材料,在导光板201的出光面一侧形成一层至少覆盖透明区域的树脂层203b。
如图9B所示,上述步骤S302,可以包括:在树脂层203b背离导光板201的一面的取光区域和透明区域形成光栅膜层202′。例如,可以采用纳米压印、刻蚀等多步工艺制作光栅膜层,在制作光栅膜层202′的过程中,在光栅膜层202′的光栅条纹之间的间隙处的保护层203b可能会被刻蚀。
如图9C所示,上述步骤S303此可以包括:采用掩模板M遮挡位于取光区域P的光栅膜层202′,采用刻蚀工艺去除位于透明区域Q的光栅膜层202′,并可能在树脂层203b的表面形成多个凹槽。如图9D所示,在刻蚀过程中,保护层203b的表面容易被刻蚀,从而可能在保护层203b的表面形成了多个凹槽U。
在上述步骤S303之后,上述制作方法还可以包括:采用与树脂层203b折射率相同的材料,在取光光栅202背离导光板201的一侧形成平坦层204,以填充各凹槽U,以得到如图5所示的结构。
由于平坦层204能够填充保护层203b上的凹槽U,使保护层203b的表面再次平坦,从而保证透明区域Q的锁光能力。此外,为了保证取光口区域P的取光亮度不降低,保护层203需要很薄,但如果保护层203b很薄,又会使透明区域Q的锁光能力较弱,因此,在刻蚀工艺后,形成与保护层203b折射率相同的平坦层204,一方面能够起到平坦化的作用,另一方面还能够提高透明区域Q的导光板201与保护层203b之间的界面的锁光能力,保证导光板201内的光线无法在透明区域Q射出。
基于同一构思,本公开的实施例还提供了一种显示装置,该显示装置包括所述显示面板。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。此外,还可以应用虚拟现实(Virtual Reality,VR)显示、增强现实(Augmented Reality,AR)显示、透明显示、指向式显示以及彩色化显示等领域中。
本公开的实施例提供的显示面板、其制作方法及显示装置中,通过在取光光栅所在膜层与导光板之间设置保护层,在采用刻蚀工艺形成图形化的取光光栅的过程中,保护层会对导光板起到保护作用,从而可以避免导光板被刻蚀而导致的光能损失,提高显示的对比度,而且,由于保护层为透明的,不会对显示面板的正常出光产生影响。
本公开实施例提供的显示面板、其制作方法及显示装置,该显示面板包括:导光板,与导光板相对设置的阵列基板,位于导光板与阵列基板之间的液晶层,位于导光板的出光面一侧的多个取光光栅,以及位于取光光栅所在膜层与导光板之间的透明的保护层;导光板包括:多个取光口区域,以及除各取光口区域外的透明区域;在每一个取光口区域设有一个取光光栅,取光光栅用于将导光板内的光线取出;透明区域用于使导光板内的光线全反射传输;至少在透明区域设有用于防止光刻的保护层。本公开实施例提供的显示面板中,通过在取光光栅所在膜层与导光板之间设置保护层,在采用刻蚀工艺形成图形化的取光光栅的过程中,保护层会对导光板起到保护作用,从而可以避免导光板被刻蚀而导致的光能损失,提高显示的对比度,而且,由于保护层为透明的,不会对显示面板的正常出光产生影响。
以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结 构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例,而这些新的实施例都应属于本公开的范围。
以上所述,仅为本公开的示例实施例,本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。

Claims (14)

  1. 一种显示面板,包括:
    导光板,
    与所述导光板相对设置的阵列基板,
    位于所述导光板与所述阵列基板之间的液晶层,
    位于所述导光板的出光面一侧的多个取光光栅,以及
    位于所述取光光栅所在膜层与所述导光板之间的透明的保护层;
    其中,所述导光板包括:多个取光口区域,以及除各所述取光口区域以外的透明区域;
    在每一个所述取光口区域设有一个所述取光光栅,所述取光光栅配置来将所述导光板内的光线取出;所述透明区域配置来使所述导光板内的光线全反射传输;以及
    所述保护层至少设置在所述透明区域。
  2. 如权利要求1所述的显示面板,其中,所述保护层为刻蚀阻挡层,所述刻蚀阻挡层的刻蚀选择比大于所述取光光栅的刻蚀选择比。
  3. 如权利要求1或2所述的显示面板,还包括:覆盖各所述取光光栅和所述取光光栅之外的区域的平坦层,所述平坦层为树脂层;
    所述保护层的折射率大于所述导光板的折射率;以及所述平坦层的折射率小于所述导光板的折射率。
  4. 如权利要求1-3任一项所述的显示面板,其中,所述保护层的厚度在0~400nm的范围内。
  5. 如权利要求1-4任一项所述的显示面板,其中,所述保护层的厚度在0~60nm的范围内。
  6. 如权利要求1或2所述的显示面板,其中,所述保护层为树脂层;所述显示面板还包括:覆盖各所述取光光栅和各所述取光光栅之外的区域的平坦层;
    所述平坦层的折射率小于所述导光板的折射率;以及
    所述保护层的折射率与所述平坦层的折射率相同。
  7. 如权利要求6所述的显示面板,其中,所述保护层的材料与所述平坦层的材料相同。
  8. 如权利要求6所述的显示面板,其中,所述保护层的折射率在1.2~1.3 的范围内。
  9. 如权利要求6所述的显示面板,其中,所述保护层的厚度在0~10nm的范围内。
  10. 如权利要求1-9任一项所述的显示面板,还包括:遮光层;
    所述遮光层位于所述阵列基板上靠近所述液晶层的一侧;
    所述遮光层包括多个遮光单元;以及
    所述遮光单元与所述取光光栅一一对应,配置来在所述液晶层未施加电压时遮挡所述取光光栅在出光面出射的光线。
  11. 一种如权利要求1-10任一项所述的显示面板的制作方法,包括:
    提供一导光板;所述导光板包括:多个取光口区域,以及除各所述取光口区域以外的透明区域;
    在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层;
    在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;以及
    对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅。
  12. 如权利要求11所述的制作方法,其中,所述保护层为刻蚀阻挡层;
    所述在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层包括:
    采用刻蚀选择比大于所述取光光栅的材料,在所述导光板的出光面一侧形成至少覆盖所述透明区域的刻蚀阻挡层;
    在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层包括:
    在所述刻蚀阻挡层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;
    对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅包括:
    采用掩模板遮挡位于取光口区域的所述光栅膜层,采用刻蚀工艺去除位于所述透明区域的所述光栅膜层;
    所述制作方法还包括:在所述对所述光栅膜层进行图形化之后,采用树脂材料,形成覆盖所述透明区域的所述刻蚀阻挡层和各取光光栅的平坦层。
  13. 如权利要求11所述的制作方法,其中,所述保护层为树脂层;
    所述在导光板的出光面一侧形成一层至少覆盖所述透明区域的保护层包括:
    采用树脂材料,在所述导光板的出光面一侧形成一层至少覆盖所述透明区域的树脂层;
    所述在所述保护层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层包括:
    在所述树脂层背离所述导光板的一面的所述取光口区域和所述透明区域形成光栅膜层;
    所述对所述光栅膜层进行图形化,去除位于所述透明区域的所述光栅膜层,保留仅位于所述取光口区域的所述光栅膜层作为取光光栅包括:
    采用掩模板遮挡位于取光口的所述光栅膜层,采用刻蚀工艺去除位于所述透明区域的所述光栅膜层,并在刻蚀工艺过程中在所述树脂层的表面形成多个凹槽;以及
    所述制作方法还包括:在所述对所述光栅膜层进行图形化之后,
    采用与所述树脂层折射率相同的材料,在所述取光光栅背离所述导光板的一侧形成平坦层,以填充各所述凹槽。
  14. 一种显示装置,包括:如权利要求1-10任一项所述的显示面板。
PCT/CN2020/092123 2019-05-30 2020-05-25 显示面板、其制作方法及显示装置 WO2020238856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,027 US11835751B2 (en) 2019-05-30 2020-05-25 Display panel and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910461203.3A CN112014919B (zh) 2019-05-30 2019-05-30 一种显示面板、其制作方法及显示装置
CN201910461203.3 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020238856A1 true WO2020238856A1 (zh) 2020-12-03

Family

ID=73500849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092123 WO2020238856A1 (zh) 2019-05-30 2020-05-25 显示面板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US11835751B2 (zh)
CN (1) CN112014919B (zh)
WO (1) WO2020238856A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042265A1 (zh) * 2019-09-03 2021-03-11 京东方科技集团股份有限公司 导光基板及其制备方法、对向基板、液晶显示装置
CN112928146B (zh) * 2021-02-03 2024-03-15 京东方科技集团股份有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189259B1 (en) * 2006-04-28 2012-05-29 Ibsen Photonics A/S Polarization independent grating
US20130343524A1 (en) * 2012-06-26 2013-12-26 Canon Kabushiki Kaisha Method for producing structure
CN106959481A (zh) * 2017-04-25 2017-07-18 武汉华星光电技术有限公司 裸眼立体显示光栅及制造方法、显示装置
CN107664783A (zh) * 2016-07-29 2018-02-06 朗美通经营有限责任公司 用于单极化或双极化的薄膜全内反射衍射光栅
US20180252845A1 (en) * 2015-07-14 2018-09-06 Lumentum Operations Llc Zoned optical waveplate
CN109031496A (zh) * 2018-07-19 2018-12-18 深圳市华星光电技术有限公司 一种纳米金属光栅的制作方法及纳米金属光栅
CN109683230A (zh) * 2019-02-18 2019-04-26 京东方科技集团股份有限公司 导光结构、透明显示装置、导光结构的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3283923B1 (en) * 2015-03-30 2020-05-13 LEIA Inc. 2d/3d mode-switchable electronic display with dual layer backlight
US10459239B2 (en) 2017-04-25 2019-10-29 Wuhan China Star Optoelectronics Technology Co., Ltd Naked-eye stereoscopic display grating, manufacturing method and display device
CN207882620U (zh) * 2018-02-12 2018-09-18 京东方科技集团股份有限公司 显示装置
CN110389469B (zh) * 2018-04-20 2021-03-30 京东方科技集团股份有限公司 显示装置及其显示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189259B1 (en) * 2006-04-28 2012-05-29 Ibsen Photonics A/S Polarization independent grating
US20130343524A1 (en) * 2012-06-26 2013-12-26 Canon Kabushiki Kaisha Method for producing structure
US20180252845A1 (en) * 2015-07-14 2018-09-06 Lumentum Operations Llc Zoned optical waveplate
CN107664783A (zh) * 2016-07-29 2018-02-06 朗美通经营有限责任公司 用于单极化或双极化的薄膜全内反射衍射光栅
CN106959481A (zh) * 2017-04-25 2017-07-18 武汉华星光电技术有限公司 裸眼立体显示光栅及制造方法、显示装置
CN109031496A (zh) * 2018-07-19 2018-12-18 深圳市华星光电技术有限公司 一种纳米金属光栅的制作方法及纳米金属光栅
CN109683230A (zh) * 2019-02-18 2019-04-26 京东方科技集团股份有限公司 导光结构、透明显示装置、导光结构的制造方法

Also Published As

Publication number Publication date
US20210173137A1 (en) 2021-06-10
CN112014919B (zh) 2022-04-29
US11835751B2 (en) 2023-12-05
CN112014919A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US11950449B2 (en) Display panel with a display function layer and display device
US10833294B2 (en) Display panel and display device
CN113629208B (zh) 显示面板及显示装置
KR100753257B1 (ko) 광학 디바이스 및 유기 el 디스플레이
CN110400821B (zh) 显示设备
CN105929590B (zh) 显示基板、显示装置
CN108123055B (zh) 发光装置
WO2020238856A1 (zh) 显示面板、其制作方法及显示装置
KR102485577B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
CN106405921A (zh) 一种显示装置
CN111983852A (zh) 显示面板
WO2023246492A1 (zh) 显示面板、显示装置和车载显示***
US20230367149A1 (en) Optical element and method for producing same
TWI778203B (zh) 具有光反射層而用於防止網格效應的顯示器
EP1489454A1 (en) Illumination device, tablet, and liquid crystal display
CN113594215A (zh) 透明显示基板及透明显示装置
CN111025742B (zh) 一种显示面板及显示装置
JP2016136484A (ja) 面発光装置
WO2004112435A1 (ja) El装置及びその製造方法並びにel装置を用いた液晶表示装置
WO2004112434A1 (ja) El装置及びその製造方法並びにel装置を用いた液晶表示装置
TW200411231A (en) Light guide plate and back light system with the same
KR20200135130A (ko) 표시패널 및 기판의 제조방법
WO2021103000A1 (zh) 光开关及其控制方法、显示装置
WO2004112442A1 (ja) El装置及びその製造方法並びにel装置を用いた液晶表示装置
CN110634915A (zh) 一种oled面板及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815337

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20815337

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20815337

Country of ref document: EP

Kind code of ref document: A1