WO2020238538A1 - 工件搬运***、工件定位***及其定位方法 - Google Patents

工件搬运***、工件定位***及其定位方法 Download PDF

Info

Publication number
WO2020238538A1
WO2020238538A1 PCT/CN2020/087656 CN2020087656W WO2020238538A1 WO 2020238538 A1 WO2020238538 A1 WO 2020238538A1 CN 2020087656 W CN2020087656 W CN 2020087656W WO 2020238538 A1 WO2020238538 A1 WO 2020238538A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
end position
contour
extractor
tool
Prior art date
Application number
PCT/CN2020/087656
Other languages
English (en)
French (fr)
Inventor
李大源
林志成
周超
张民奇
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2020238538A1 publication Critical patent/WO2020238538A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting

Definitions

  • the invention relates to an automated production system, in particular to an industrialized production system and a positioning method for transporting and positioning workpieces.
  • the existing manual transportation of workpieces has not only time cost considerations, but also the accuracy cannot meet the requirements.
  • automatic mechanized transportation operations are indispensable. Not only can the unit production time be reduced, the overall production time is not restricted by manual rest, but the accuracy and reliability can be improved.
  • the existing mechanical transportation relies on guided positioning or sensor feedback to obtain position information.
  • the error accumulation is also quite serious, so the obtained batch positioning information is basically of no value.
  • Some existing pick-and-place devices rely on image acquisition of a predetermined position to obtain the offset value between the predetermined position and the pick-and-place device.
  • each workpiece has a different gap to the pick and place device. Then, even if the offset value of the predetermined position is obtained, the pick and place of the workpiece is not accurate.
  • the initial position of the workpiece is manually placed, and the consistency of the initial position of the workpiece cannot be guaranteed.
  • the more accurate the location information the longer the calculation time required and the lower the transportation efficiency.
  • the shape and volume of different types of workpieces are different, and different types of handling tasks require parameter settings.
  • Existing mechanical transportation is difficult to adjust the workpiece adaptively, and manual parameter adjustment is required for each task replacement.
  • the test position of the camera module is one aspect, and more importantly, the camera module must be connected to electricity.
  • the camera module needs to be accurately connected to the test equipment to obtain the captured image.
  • the number of items to be tested is also large, and repeated extraction and access of the camera module will inevitably cause adverse effects on the camera module.
  • the separate connection and disconnection of the camera module in each test will affect the efficiency. While this brings more undesirable factors to the test, it will certainly not be able to adapt to the development trend.
  • One of the main advantages of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof.
  • the picking process and placing process of the workpiece are precisely aligned with the workpiece and the predetermined position, so that the workpiece is accurately place.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein the picking, running and placing of the workpiece will not damage the workpiece itself, and reduce the adverse effect of the handling on the workpiece.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, in which the position and angle of each workpiece are calculated and transported in a targeted manner, so that the workpiece can be placed in a predetermined position with a high degree of matching .
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, in which the placement of each workpiece can ensure that the operation is completed at one time, without subsequent adjustment or repeated picking and placing, and reducing the impact of handling. The probability of damage to the workpiece.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein the position of the workpiece to be taken is acquired, and the operation is performed according to the specific position of the workpiece to ensure the reliability of the initial operation.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method, in which the workpiece to be placed and the predetermined position are separately obtained information, and the specific operation plan is obtained according to the difference between the two information, ensuring Placement accuracy.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein different types of workpieces or different handling tasks of workpieces can be realized by adaptively adjusting parameters without changing hardware equipment or calculation procedures , Convenient for mass production.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein different types of workpieces can be distinguished from the information obtained therefrom, and then different types of workpieces can be transported to a predetermined position.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein the contour of the workpiece to be placed and the contour of the predetermined position are obtained separately, and the workpiece is determined according to the comparison of the two contours The operation of the placement process enables the workpiece to be transported accurately.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method thereof, wherein each workpiece can be electrically connected to the corresponding equipment system after being placed, so that the workpiece can be conveniently operated without manual labor Connect the ground again, saving production time and cost.
  • Another advantage of the present invention is to provide a workpiece handling system, a workpiece positioning system and a positioning method, in which the position of each workpiece can be observed in real time, and can be saved and monitored in a targeted manner, which is convenient for optimized calculation and use.
  • a workpiece positioning method of the present invention which can achieve the foregoing objectives and other objectives and advantages, is suitable for transferring a workpiece from an initial position to an end position, and includes the following steps:
  • step IV is implemented as a judgment by extracting contour information of the workpiece.
  • the contour information of the workpiece is extracted from image information.
  • step I further includes the following steps:
  • step IV further includes the steps:
  • step IV.6 If no, return to step IV.3, if yes, place the workpiece at the end position.
  • step IV.2 is implemented as pre-entry of contour data of the workpiece.
  • the calculation in step IV.4 includes processing the coordinates of the contour data of the workpiece so that it is directly compared with the contour data of the end point.
  • the calculation in step IV.4 includes processing the proportion of the contour data of the workpiece so that it is directly compared with the contour data of the end point.
  • the present invention further provides a workpiece positioning system applied to the process of transferring a workpiece from a start position to an end position, including:
  • a start position extractor and an end position extractor wherein the start position extractor is located at the start position, wherein the start position extractor is in the process of taking the workpiece from the start position Obtaining a starting position, wherein the end position extractor is located at the end position, wherein the end position extractor obtains an end position and a workpiece condition during the process of placing the workpiece to the end position, Wherein based on the starting position, the workpiece is moved to the corresponding end position, wherein based on the difference between the workpiece situation and the end position, the workpiece is adjusted and placed in the corresponding Finish position.
  • the start position situation includes information that the workpiece may exist in the start position.
  • the end position situation includes position information of the end position
  • the workpiece situation includes position information of the workpiece near the end position
  • the start bit situation is image data.
  • the end position situation and the workpiece situation are image data.
  • the difference between the situation of the workpiece and the situation of the end position is whether the contour of the workpiece is aligned with the contour of the end position.
  • the present invention further provides a workpiece handling system, which is suitable for transferring a workpiece from a starting position to an end position, including:
  • a starting position extractor wherein the starting position extractor is located at the starting position, wherein the starting position extractor obtains a starting position during the process of taking the workpiece from the starting position;
  • An end position extractor wherein the end position extractor is located at the end position, wherein the end position extractor obtains an end position condition and a workpiece condition during the process of placing the workpiece to the end position; as well as
  • a transfer unit wherein the transfer unit is communicably connected to the start position extractor and the end position extractor, wherein the transfer unit obtains the start position and takes the workpiece,
  • the transfer unit obtains the situation of the workpiece and the situation of the end position, and places the workpiece in the end position in a targeted manner.
  • the transfer unit extracts the contour of the workpiece and the contour of the end position according to the situation of the workpiece and the situation of the end position, and adjusts and places the workpiece.
  • the workpiece situation and the end position situation are image data.
  • the start position extractor is pre-fixed to the start position, wherein the end position extractor is pre-fixed to the end position, and the transfer unit is movably It is arranged between the start position extractor and the end position extractor.
  • the start position extractor and the end position extractor are pre-fixed to the transfer unit for the start position extractor and the end position extractor to follow the The transfer unit moves.
  • the start position extractor is implemented as a start camera to obtain the start position situation from above the start position, wherein the end position extractor is implemented as an end point A camera and a workpiece camera are respectively placed above and below the end position to obtain the end position and the workpiece status respectively.
  • the start camera and the end camera are implemented as the same device.
  • the rotating unit includes a grasping tool, a moving tool, a rotating tool, and a calculating tool, wherein the grasping tool is fixed to the moving tool and the rotating tool, wherein The moving tool and the rotating tool are connected to the calculating tool, and the moving tool and the rotating tool are driven by the planning guide of the calculating tool to drive the grabbing tool in the starting position The way to move between the end points.
  • the start camera and the end camera are pre-fixed to the side of the grabbing tool of the transfer unit.
  • the grabbing tool adopts a suction method to grab the workpiece.
  • the calculation tool pre-plans the transfer setting of the workpiece to the end position according to the situation of the workpiece and the situation of the end position.
  • the calculation tool extracts the contour of the workpiece and the contour of the end position to adjust the plan for placing the workpiece.
  • the grabbing tool places the workpiece at the end position.
  • Fig. 1 is a schematic diagram of an existing method of transporting workpieces.
  • Fig. 2 is an overall schematic diagram of a workpiece positioning system and a positioning method thereof according to a preferred embodiment of the present invention.
  • Fig. 3 is a preferred schematic diagram of the workpiece positioning system and the positioning method thereof according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 4 is a schematic flowchart of a workpiece positioning method according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 5 is a schematic flow chart of the retrieval process of the workpiece positioning method according to the above preferred embodiment of the present invention.
  • Fig. 6 is a schematic flow chart of the placement process of the workpiece positioning method according to the above preferred embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a specific flow of the workpiece positioning method according to the above preferred embodiment of the present invention.
  • Fig. 8 is a processing schematic diagram of the workpiece positioning system and the positioning method thereof according to the above preferred embodiment of the present invention.
  • Fig. 9 is a schematic block diagram of a workpiece handling system and a workpiece positioning system according to the above preferred embodiment of the present invention.
  • Fig. 10 is an overall schematic diagram of a possible way of the workpiece handling system and the workpiece positioning system according to the above preferred embodiment of the present invention.
  • Fig. 11 is an overall schematic diagram of another possible way of the workpiece handling system and the workpiece positioning system according to the above preferred embodiment of the present invention.
  • Fig. 12A is an overall schematic diagram of information obtained by the workpiece handling system and the workpiece positioning system according to the above preferred embodiment of the present invention.
  • 12B is an overall schematic diagram of processed images of the workpiece handling system and the workpiece positioning system according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 13 is an overall schematic diagram of the workpiece handling system and the workpiece positioning system according to the above preferred embodiment of the present invention.
  • the present invention provides a workpiece handling system, a workpiece positioning system and a positioning method thereof, as shown in Figures 2 to 13, wherein the workpiece handling system is suitable for mass production of multiple workpieces 90 between different operating equipment 40 Circulate automatically, so that each workpiece 90 completes different operations according to the set tasks. For example, as a finished camera module, it needs to perform multiple functional tests at the end of the production process to ensure normal imaging. Generally, each camera module used as the workpiece 90 needs to go through each operation device 40, so as to ensure that the workpiece 90 that passes all the tests will be shipped after each workpiece 90 is tested. Of course, the workpiece 90 that fails in a certain link is kept and recorded accordingly, so as to avoid the passive shipment of the problematic workpiece 90, and further optimize the production process based on the record.
  • the workpiece positioning system obtains information from a start position 41 and an end position 42 of the operating device 40, as shown in FIG. 2, that is, to obtain actual information in a predetermined task of the workpiece 90.
  • the predetermined task assigned to a certain workpiece 90 is from the starting position 41 of the operating device 40 to the end position of another operating device 40 42 transfer.
  • the workpiece positioning system the basis and purpose of the transfer of the workpiece 90 can be accurately judged, so that the operation of taking and placing the workpiece 90 is effective and accurate.
  • the information acquisition of the starting position 41 by the workpiece positioning system ensures that the picking operation can indeed be aligned with the workpiece 90, so that the workpiece 90 can be picked up fully and reliably.
  • the information of the end point 42 and the workpiece 90 to be placed is acquired by the workpiece positioning system to ensure that the workpiece 90 is placed in alignment.
  • the workpiece positioning system provides information on two key positions to assist the handling process of the workpiece 90.
  • the workpiece 90 takes a camera module as an example, as shown in Figures 2 to 8.
  • the workpiece positioning system and its positioning method adopt a calculation and planning method to correct the relative position of the workpiece 90 so that The position of the transport is highly accurate. It is worth mentioning that the positioning system and its positioning method use machine vision means without adding additional debugging devices to complete the placement operation with high matching degree. Moreover, planning is performed for each of the workpieces 90 to reduce errors and improve production flow efficiency. Preferably, the positioning system and its positioning method are implemented in a monitorable manner to further assist in monitoring the production process and improve debugging efficiency.
  • the workpiece positioning system and the positioning method thereof adopt a method of extracting contour information of the workpiece 90 to complete the handling process of the workpiece 90. That is to say, the information basis of this preferred embodiment not only includes the start position 41 and the end position 42, but also includes the position acquisition and adjustment of the workpiece 90, so that each workpiece 90 is adaptable. Planning and placement operations.
  • the workpiece positioning method includes the following steps:
  • the workpiece positioning method performs information acquisition and identification from the start position 41 and the end position 42 respectively. Since the predetermined task of the workpiece 90 involves the goal of transportation, the workpiece positioning method obtains the operation plan of the workpiece 90 from the end point 42 so that the workpiece 90 is placed with a high matching, rather than Adjust the position after putting down the workpiece 90.
  • Each of the workpieces 90 is adaptively planned for a relative position, and then put down, so that the wear of the workpieces 90 is reduced. In some existing placement methods using mechanical methods such as guide chutes, multiple sliding may cause irreversible damage to the workpiece 90.
  • the electrical connection relationship of the workpiece 90 also requires extremely high placement accuracy. For example, for the camera module as the workpiece 90, repeated sliding will wear the circuit board or the connecting parts, but the workpiece positioning method can be used to place the workpiece 90 in the end position 42 at one time.
  • step I of the workpiece positioning method further includes:
  • the task of the workpiece 90 is first confirmed. For example, this time, in order to transfer a camera module from a conveyor belt to a test device, a new test is prepared for this camera module. That is, the position of the transfer direction of the workpiece 90 is confirmed to meet the production needs. Then, search for the initial position 41 where the workpiece 90 may be present. Next, identify whether there is actually the workpiece 90 on the initial position 41. Preferably, in addition to the existence of the workpiece 90, the detailed information of the workpiece 90 is also identified and acquired. For example, it is recognized that the workpiece 90 is a dual camera type camera module product.
  • the initial position 41 where the workpiece 90 may exist is returned. If the initial position 41 has the workpiece 90, the workpiece 90 is picked up from the initial position 41 according to the identified information. It is worth mentioning that during the taking process, the workpiece positioning method grasps the task situation of the workpiece 90 that needs to be put down. More preferably, it is confirmed that the required condition that the taken workpiece 90 is about to be placed is completely confirmed. For example, if the obtained workpiece 90 is a dual-camera type camera module product, it will be placed in a position to be detected in the dual-camera test equipment.
  • steps III to V of the workpiece positioning method are implemented in a manner of extracting contour information of the workpiece 90. That is, after the existence of the end point 42 is recognized, when the contour of the workpiece 90 can be aligned with the contour of the end position 42, the workpiece 90 is put down. It should be noted that the alignment or alignment of the two contours means that the contour lines do not cross, and even the contour lines remain parallel to each other.
  • Step IV of the workpiece positioning method further includes:
  • IV.5. Determine whether the contour of the end point 42 after the plan is aligned with the contour of the workpiece 90.
  • step IV.6 If not, return to step IV.3, if yes, place the workpiece 90 at the end point 42.
  • the workpiece positioning method can not only obtain the information of the end position 42 during the placement process, but also align the position of the workpiece 90 with the end position 42 in advance, so that the workpiece 90 is The placement position is matched to the end point 42.
  • the information of the end point 42 is simply obtained, and the workpiece 90 is directly placed according to a predetermined condition.
  • the workpiece positioning method specifically obtains the movement plan of the workpiece 90 according to the situation of each workpiece 90.
  • the relative situation of the workpiece 90 and the end point 42 is acquired, and the order of steps IV.1 and IV.2 can be in no particular order.
  • the difference between the workpiece 90 and the end position 42 is obtained by extracting and comparing the contours of the two. Based on the acquisition of the position of the workpiece 90, how to place the workpiece 90 can also be calculated.
  • the preferred embodiment adopts the method of extracting the contour of the workpiece 90, and uses the contour of the workpiece 90 to be aligned with the end point 42, so that the placing operation flow of the workpiece 90 is more reliable and more reliable. With precision. By comparing the contour of the workpiece 90 with the contour of the end point 42, not only the moving distance but also the placement angle can be pre-designed accurately for the way the workpiece 90 needs to be operated.
  • the relative status of the workpiece 90 and the end position 42 can be obtained by other methods, such as the relative status of multiple marking points, whether the special marking points are blocked or overlapped, or the sound wave recognition position exists. And depth, or laser positioning edge and so on. It is important to obtain the relative situation of the workpiece 90 and the end point 42 so as to further plan and design the placing operation mode of the workpiece 90, and then put down the workpiece 90 in one step. On the one hand, calculate before putting down the work piece 90, on the other hand, design the putting down operation individually for each work piece 90, so that the work piece 90 and the end point 42 have a very high degree of matching , Lay a high-precision foundation for the gripping operation.
  • the transfer task of the workpiece 90 is adjusted by preset, such as updating the model data of the workpiece 90, recalibrating the specific implementation method of the pick-and-place task, or pre-entering the contour data of the workpiece 90 , Reduce construction time.
  • the specific placement operation of the workpiece positioning method of the preferred embodiment is explained, that is, the calculation and planning operations in step IV.4.
  • the predetermined task of the workpiece 90 already includes the plan of the operating device 40 to which the workpiece 90 is going.
  • the type of the end point 42 to be placed has been obtained.
  • the contour data of the workpiece 90 is saved.
  • the end point 42 is identified, and the position information of the end point 42 is obtained.
  • the contour of the workpiece 90 is loaded on the contour of the end position 42 so as to compare the relative positions of the workpiece 90 and the end position 42 subsequently. It is worth mentioning that after the workpiece 90 is loaded into the contour of the end point 42, the contour information of the two is filtered and converted to obtain the same proportion of the workpiece 90 and the workpiece in the same coordinate system.
  • the contour data of the end point 42 is to calculate the contour information.
  • the coordinates and proportions of the contour data of the workpiece 90 are processed so as to directly compare with the contour data of the end point 42. More preferably, hardware errors, that is, the actual distance and height between the image acquisition device and the grasping device, are considered in the calculation.
  • the coordinate movement and scale conversion of the contour data of the workpiece 90 are preliminarily performed, so that the contour data of the end point 42 is in the same coordinate system. Furthermore, the relative position of the contour data of the workpiece 90 and the contour data of the end position 42 is adjusted so that the contour of the workpiece 90 is aligned with the contour of the end position 42. It is worth noting that the basis for adjusting the relative position of the two contours is the filtering and preprocessing of the image data. To prevent the proportion of the contour of the workpiece 90 from being too small, the erroneous judgment that the alignment condition is always met after being loaded into the contour of the end position 42 is prevented.
  • the adjustment of the contour data of the workpiece 90 is a virtual design, and the final result of the adjustment is transformed according to the scale of image processing, etc., and is again recorded as an actual plan for the operation of the workpiece 90.
  • the image processing has magnified the contour of the workpiece 90 by 1.5 times, moved and aligned, and the adjusted result is the enlarged distance value, which needs to be reduced to the original scale to form an operation plan. That is, when the contour data of the workpiece 90 is aligned with the contour data of the end point 42, the deviation between the two, such as recognition error, hardware error, and so on, is saved. According to the stored data deviation, the actual operation plan of the workpiece 90 is set.
  • the workpiece 90 is finally placed in the end position 42 in a highly matched manner in this operation.
  • the end point 42 has a device electrical connection interface.
  • the work piece 90 is directly and electrically connected to the end point 42, so that the operating device 40 is connected to the Workpiece 90.
  • the image data is visualized, which facilitates manual adjustment and inspection of the position.
  • the workpiece positioning system is implemented by a workpiece positioning system.
  • the workpiece positioning system includes a start position extractor 10 and an end position extractor 20, wherein the start position extractor 10 obtains a start position during the process of taking the workpiece 90 from the start position 41
  • the end position extractor 20 obtains an end position situation 201 and a workpiece situation 202 during the process of placing the workpiece 90 to the end position 42.
  • the start position situation 100 in the preferred embodiment includes information that the workpiece 90 may exist in the start position 41, and the end position situation 201 includes the end position. 42.
  • the workpiece situation 202 includes the position information of the workpiece 90 near the end position 42.
  • the starting position 100 is the image data of the workpiece 90 that may exist in the starting position 41
  • the ending position 201 is the image data of the ending position 42
  • the workpiece situation 202 is The image data of the workpiece 90 near the end point 42.
  • the workpiece 90 is planned to be transferred so as to be aligned with the end position 42 for placement.
  • the workpiece handling system includes the workpiece positioning system and a transfer unit 30, wherein the transfer unit 30 is communicably connected to the workpiece positioning system to obtain image data acquired by the workpiece positioning system, and
  • the work 90 performs transfer planning.
  • the plurality of the workpieces 90 are respectively referred to as the first workpiece 91, the second workpiece 92 and so on.
  • the start position 41 and the end position 42 of the operating device 40 are opposite. That is, as shown in FIG. 9, for the first workpiece 91, the transport task is to the end point 42 of the operating device 40 on the right side, so as to subsequently operate the first workpiece 91.
  • the second workpiece 92 its transport task is the end position 42 of the operating device 40 to the left.
  • the first workpiece 91 matches the end position 42 of the operating device 40 on the right
  • the second workpiece 92 matches the end position 42 of the operating device 40 on the left.
  • Sub-accurate positioning depends on the information obtained by the positioning system.
  • the workpiece positioning system is pre-fixed to the start position 41 and the end position 42 of the operating device 40, and the transfer unit is movably set Between the start position extractor 10 and the end position extractor 20, as shown in FIG.
  • the workpiece positioning system is pre-fixed to the transfer unit 30, as shown in FIG. 11.
  • the start position extractor 10 is implemented as a start camera 11 to obtain the start position situation 100 from above the start position 41.
  • the end position extractor 20 is implemented as an end point camera 21 and a workpiece camera 22, respectively placed above and below the end position 42 to obtain the end position situation 201 and the workpiece situation respectively 202.
  • the transfer unit 30 includes a grasping tool 31, a moving tool 32, a rotating tool 33, and a calculating tool 34, wherein the grasping tool 31 is fixed to the moving tool 32 and the rotating tool 33, wherein The moving tool 32 and the rotating tool 33 are connected to the computing tool 34, and the moving tool 32 and the rotating tool 33 are guided by the computing tool 34 to drive the grabbing tool. 31 moves between the start position 41 and the end position 42.
  • the calculation tool 34 obtains the starting position 100 of the starting position extractor 10 to instruct the moving tool 32 and the rotating tool 33 to direct the grasping tool 31 against the workpiece 90 Carry out the retrieval operation process.
  • the calculation tool 34 obtains the end position condition 201 and the workpiece condition 202 of the end position extractor 20 to instruct the moving tool 32 and the rotating tool 33 to face the grabbing tool 31
  • the operation process of placing the workpiece 90 is performed with the end point 42.
  • the grabbing tool 31 adopts a clamping method.
  • the grabbing tool 30 is fixed between the start position extractor 10 and the end position extractor.
  • the calculation tool 34 obtains the starting position 100 of the starting position extractor 10, so that the grasping tool 30 accurately picks up the workpiece from the starting position 41 90.
  • the workpiece 90 is transferred to the direction of the end position 42.
  • the calculation tool 34 obtains the end position situation 201 and the workpiece situation 202 of the end position extractor 20, so that the grasping tool 30 adjusts the contour of the end position 42
  • the workpiece 90 is placed at the end position 42.
  • the workpieces 90 with different appearance sizes and shapes can be placed in the corresponding end positions 42 in a targeted manner.
  • the calculation tool 34 can set a rough moving path to move the workpiece 90 to the vicinity of the ending position 42, and then proceed according to the ending position 201 and the final position.
  • Describe the workpiece situation 202 set up an accurate placement plan. More preferably, a relatively accurate movement mode is first set according to the calculation tool 34, and then fine adjustment is performed according to the end position situation 201 and the workpiece situation 202.
  • the starting position extractor 10 is fixed to the moving tool 32, so that a change in the position of the moving tool 32 will cause the start
  • the start position fetcher 10 can obtain images of the start position 41 and the end position 42. That is, the start camera 11 and the end camera 21 are implemented as the same device.
  • the start camera 11 obtains the start position 100 of the start position 41.
  • the terminal camera 21 acquires the terminal position 201 of the terminal position 42.
  • the preferred embodiment adopts a method of extracting contour information of the workpiece 90.
  • the start camera 11 and the end camera 21 are implemented as the same device, and are fixed to the side of the grasping tool 31 to obtain the starting position as the grasping tool 31 moves. 41 and the end point 42 information.
  • the grasping tool 31 adopts a suction method, for example, is implemented as a device combination of an air pump and a suction nozzle.
  • the moving tool 32 is implemented as a moving rod in the X-axis and Y-axis directions, so that the grasping tool 31 can move back and forth to a desired position.
  • the rotating tool 33 is implemented as a rotatable mechanism placed on the upper side of the grasping tool 31.
  • the grasping tool 31 holding the workpiece 90 can be moved to the end position 42 according to a predetermined task, and the grasping tool 31 relative to the end position can be adjusted according to the plan of the calculation tool 34
  • the displacement and angle of 42 finally cause the workpiece 90 to be placed at the end position 42 in a highly matched manner.
  • this preferred embodiment adopts a pre-planning method to perform calculations before placing, so that the final placing operation accurately matches the position and avoiding repeated operations to damage the workpiece 90.
  • the calculation tool 34 extracts and obtains the contour data of the workpiece 90.
  • the scheduled task of the workpiece 90 already includes the plan of the operating device 40 to which the workpiece 90 is going.
  • the calculation tool 34 has obtained the type of the end point 42 to be placed after the workpiece 90 is recognized.
  • the contour data of the workpiece 90 is saved. Then, according to the task of the workpiece 90, the moving tool 32 brings the grabbing tool 31 holding the workpiece 90 to the vicinity of the end position 42.
  • the calculation tool 34 recognizes the end position 42 and obtains the position information of the end position 42. Then, the calculation tool 34 loads the contour of the workpiece 90 into the contour of the end position 42 so as to subsequently compare the relative positions of the workpiece 90 and the end position 42. It is worth mentioning that after the workpiece 90 is loaded into the contour of the end point 42, the contour information of the two is filtered, so as to obtain the workpiece 90 and the end point of the same proportion at the same coordinates. The contour data of bit 42 is to calculate the contour information.
  • the coordinates and proportions of the contour data of the workpiece 90 are processed so as to directly compare with the contour data of the end point 42.
  • hardware errors that is, the actual distance and height between the image acquisition device and the grasping device, are considered in the calculation.
  • the height of the end point camera 21 relative to the end point 42, and the height of the workpiece camera 22 relative to the grasping tool 31, two values are predetermined.
  • the focal length of the workpiece camera 22, the proportional relationship between the contour data of the workpiece 90 and the contour data of the end position 42 can be predetermined.
  • a hardware error which is also a predetermined error, is used to preliminarily perform coordinate movement and scale conversion on the contour data of the workpiece 90, so that the contour data coordinates of the end point 42 are consistent.
  • the pre-planning method of the present invention includes preliminary adjustment of the device and parameter measurement. Specifically, in step I.1, it further includes
  • the workpiece 90 is preliminarily executed with standardized equipment, so as to grasp the predetermined error in the predetermined task and simplify the subsequent calculation.
  • the standard workpiece here is a workpiece specimen of the same type corresponding to the workpiece 90, and has the same shape as the workpiece 90, which makes the acquisition of parameters reliable. For different types of the workpiece 90, the above operations can be repeated to store the corresponding parameter values.
  • the relative position of the contour data of the workpiece 90 and the contour data of the end position 42 is adjusted so that the contour of the workpiece 90 is aligned with the contour of the end position 42.
  • the basis for adjusting the relative position of the two contours is the filtering and preprocessing of the image data. To prevent the proportion of the contour of the workpiece 90 from being too small, the erroneous judgment that the alignment condition is always met after being loaded into the contour of the end position 42 is prevented.
  • the calculation tool 34 adjusts the contour data of the workpiece 90 to a virtual design, and the final result of the adjustment is transformed according to the image processing scale and the like, and is again recorded as an actual plan for the operation of the workpiece 90.
  • the image processing has magnified the contour of the workpiece 90 by 2 times and moved it to the left by 0.01mm to align, then the adjusted result is the enlarged distance value, which needs to be reduced to the original scale to form an operation plan, that is, the left side Move 0.005mm.
  • the pre-acquired pre-determined errors in the pre-determined tasks first rough planning, and then according to the image processing results, and then fine adjustments, simplify the calculation process, and improve the processing speed. That is to say, when the contour data of the workpiece 90 is aligned with the contour data of the end position 42, the deviation between the two is saved. According to the stored data deviation, the actual operation plan of the workpiece 90 is set.
  • the moving tool 32 moves and rotates the orientation of the workpiece 90 held by the grasping tool 31, and finally makes this operation place the workpiece 90 in the end position 42 with a height matching.
  • the image data can be transmitted to the man-machine interface, as shown in FIG. 13, to facilitate manual adjustment and inspection of the position.
  • frequently occurring errors or abnormal parameters can be known and adjusted, and the edge-to-edge correspondence is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种工件搬运***,适于将一工件(90)从一起始位(41)转移至一终点位(42),包括:一起始位取材器(10),其位于起始位(41),起始位取材器(10)在工件(90)从起始位(41)拿取的过程中获得一起始位情况;一终点位取材器(20),其位于终点位(42),终点位取材器(20)在工件(90)至终点位(42)的放置的过程中获得一终点位(42)情况和一工件(90)情况;以及一转运单元(30),其被可通信地分别连接于起始位取材器(10)和终点位取材器(20),转运单元(30)获取起始位(41)情况而拿取工件(90),转运单元(30)获取工件(90)情况和终点位(42)情况而针对地放置工件(90)于终点位(42)。一工件定位***及其方法,在生产流转,工件(90)的拿取过程与放置过程均精确地对准工件(90)与预定位置,使得工件被精准地放置。

Description

工件搬运***、工件定位***及其定位方法 技术领域
本发明涉及自动化生产***,尤其涉及一种对工件进行运输和定位操作的工业化生产***与定位方法。
背景技术
工业生产中必不可少对工件进行搬运、转运,工件才能历经多种加工程序,直至测试合格而出货。生产环境下,大型的设备是固定的,工件需要在不同的设备之间进行流转,以完成不同的设备的不同操作。以摄像模组为例,基于摄像模组在生产中还有很多不安定因素,制造完成的摄像模组不能直接被安装于使用设备中。那么每一个摄像模组都需要被进行不同性能指标的测试,对于不满足要求的摄像模组则不能出货。对于生产厂家而言,产品的良率非常重要,出货产品的良率更是关键。所以在摄像模组的生产中,基本是采取全部产品进行全部指标测试。这就表示了大量的工件需要历经多道程序或者多个测试设备。
现有的人工运输工件,不仅有时间成本的考虑,而且精度不能达到要求。对于高效率的生产要求,自动机械化的运输操作是必不可少的,单位生产时间不仅可以得到缩减,整体生产工作的时间不受人工休息的限制,而且精度和可靠性都可以提升。
但是现有的机械运输还是存在很多问题,如图1所示。
首先是大部分的流转线路为既定的,并不是针对每个工件而设计的。那么,对于摄像模组这样的工件来说,虽然可以达到批量的效果,但是每个工件的位置却难以掌握。特别是,摄像模组本身的体积很小,而且强硬地拿取容易损坏已经制造完成的摄像模组。尤其对于测试环节,每个工件的相对位置是很重要的,可能会影响到测试结果。另外,摄像模组的位置很难被实时地观察并调整,因为很有可能出现放置角度或左右位置轻微地偏差的情况,匹配度不高,放置不准。另外,放置的过程是不可监视的,目视检查很困难,反而会耽误更多的时间。
其次是现有的机械运输依靠引导定位或传感反馈获取位置信息。但是,误差累积也相当的可怕,那么所得到的批量的定位信息基本没有价值。有些现有的抓放装置依靠对既 定位置的图像获取,从而得到既定位置与抓放装置偏移值。但是,真正要操作的工件与抓放装置之间存在误差。而且,每个工件相对于抓放装置还具有不同的差距。那么,就算得到了既定位置的偏移值,工件的取放也不是精确的。另外,工件最初的位置为人工放置的,无法保证工件最初位置的一致性。反而,越是精确的位置信息,所需要的计算时间越长,运输效率会降低。
再次,不同类型工件的形状、体积都不相同,不同类型的搬运任务都需要进行参数设定。现有的机械运输很难对工件进行自适应设置,每次任务的更换都需要人工进行参数调整。特别地,对于工件为摄像模组的测试场合,摄像模组的测试位置是一方面,更关键的是摄像模组必须被接电。也就是说,摄像模组需要被精确地接入测试设备,才能获得所拍摄的图像。而且,需要测试项目数量也是较多的,反复地对摄像模组进行摘取和接入必然会对摄像模组造成不良影响。再考虑到时间成本,每个测试中将摄像模组单独的接入和断开都会影响效率。这给测试带来更多不良因素的同时,也必将不能适应发展的趋势。
更多地,为了适应不同类型摄像模组能进行不同的测试方法,虽然说机械较人工在精确度方面有一定的优势,但是实际中如何克服机械流转上形成的累积公差也是面临挑战之一。而且,如何在保证位置的精度的同时,降低时间成本,并提高维护的简便程度。这些都是需要进行考虑的,而且改进是具有一定难度的。
发明内容
本发明的一个主要优势在于提供一种工件搬运***、工件定位***及其定位方法,其中在生产流转,工件的拿取过程与放置过程均精确地对准工件与预定位置,使得工件被精准地放置。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中工件的拿取、运转与放置均对工件本身无损伤,减少搬运对工件的不良影响。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中对每个工件的位置与角度进行针对性地计算并搬运,使得工件可以被高度匹配地放置于预定位置。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中每个工件的放置能够保***地操作完成,无需后续的调整或者反复的取放,降低搬运产生对工件的损伤的概率。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中待拿取的工件的位置被获取,根据工件的具***置而操作,保证初期操作的可靠性。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中待放置的工件与预定位置分别地被获取信息,根据二者信息的差距而得到具体操作的规划,保证放置地精准度。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中不同类型的工件或者工件的不同搬运任务能够经过适应性地调整参数而实现,无需更改硬件设备或者计算流程,方便批量生产。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中不同类型的工件能够从其获取的信息而分辨,进而将不同类型的工件搬运至预定位置。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中待放置的工件的轮廓与预定位置的轮廓分别地被获取,根据二者轮廓的比对,进而确定工件的放置过程的操作,使得工件被精确地搬运。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中每个工件被放置后即可电连接于相对应的设备***,使得工件能够被方便地操作,无需人工地再次连接,节省生产时间成本。
本发明的另一个优势在于提供一种工件搬运***、工件定位***及其定位方法,其中对每个工件的位置可以实时地观察,并针对性地保存与监管,方便优化计算而使用。
本发明的其它优势和特点通过下述的详细说明得以充分体现并可通过所附权利要求中特地指出的手段和装置的组合得以实现。
依本发明的一个方面,能够实现前述目的和其他目的和优势的本发明的一工件定位方法,适于将一工件从一起始位转移至一终点位,包括以下步骤:
I.识别所述起始位;
II.从所述起始位拿取所述工件,使得所述工件按照既定任务运输至所述终点位;
III.识别所述终点位;
IV.基于对位于所述终点位附近的所述工件的识别,判断所述工件是否与所述终点位对准;
V.若否,则再次识别所述工件,返回上一步骤进行循环,若是,则放置所述工件于所述终点位。
根据本发明的一个实施例,步骤IV被实施为采用提取所述工件的轮廓信息的方式判断。
根据本发明的一个实施例,所述工件的轮廓信息提取自图像信息。
根据本发明的一个实施例,步骤I进一步地包括一下步骤:
I.1.确认所述工件的既定搬运任务;
I.2.寻找所述初始位;
I.3.识别所述初始位是否有所述工件的存在;
I.4.若否,则返回I.2,若是,则对应于所述工件的存在信息而拿取所述工件。
根据本发明的一个实施例,步骤IV进一步地包括步骤:
IV.1.在获得所述终点位的存在情况后,获取所述终点位的图像;
IV.2.获取所述工件的图像;
IV.3.基于所获取的图像,分别地识别所述终点位的轮廓和所述工件的轮廓;
IV.4.计算所述终点位的轮廓和所述工件的轮廓的差距,以得到所述工件的移动规划;
IV.5.判断通过规划后的所述终点位的轮廓和所述工件的轮廓是否对齐;以及
IV.6.若否,则返回步骤IV.3,若是,则放置所述工件于所述终点位。
根据本发明的一个实施例,步骤IV.2被实施为预先录入所述工件的轮廓数据。
根据本发明的一个实施例,步骤IV.4中的计算包括对所述工件的轮廓数据的坐标进行处理,使得其与所述终点位的轮廓数据直接地对比。
根据本发明的一个实施例,步骤IV.4中的计算包括对所述工件的轮廓数据的比例进行处理,使得其与所述终点位的轮廓数据直接地对比。
依本发明的另一个方面,本发明进一步提供一工件定位***,应用于一工件从一起始位转移至一终点位的过程,包括:
一起始位取材器和一终点位取材器,其中所述起始位取材器位于所述起始位,其中所述起始位取材器在所述工件从所述起始位拿取的过程中获得一起始位情况,其中所述终点位取材器位于所述终点位,其中所述终点位取材器在所述工件至所述终点位的放置的过程中获得一终点位情况和一工件情况,其中基于所述起始位情况,所述工件被移至相对应的所述终点位,其中基于所述工件情况和所述终点位情况的差异,所述工件被调整后对应地放置于所述终点位。
根据本发明的一个实施例,所述起始位情况包括所述工件可能存在于所述起始位的信息。
根据本发明的一个实施例,所述终点位情况包括所述终点位的位置信息,其中所述工件情况包括所述工件于所述终点位附近的位置信息。
根据本发明的一个实施例,所述起始位情况为图像数据。
根据本发明的一个实施例,所述终点位情况和所述工件情况为图像数据。
根据本发明的一个实施例,所述工件情况和所述终点位情况的差异为所述工件的轮廓是否对齐于所述终点位的轮廓。
依本发明的另一个方面,本发明进一步提供一工件搬运***,适于将一工件从一起始位转移至一终点位,包括:
一起始位取材器,其中所述起始位取材器位于所述起始位,其中所述起始位取材器在所述工件从所述起始位拿取的过程中获得一起始位情况;
一终点位取材器,其中所述终点位取材器位于所述终点位,其中所述终点位取材器在所述工件至所述终点位的放置的过程中获得一终点位情况和一工件情况;以及
一转运单元,其中所述转运单元被可通信地分别连接于所述起始位取材器和所述终点位取材器,其中所述转运单元获取所述起始位情况而拿取所述工件,其中所述转运单元获取所述工件情况和所述终点位情况而针对地放置所述工件于所述终点位。
根据本发明的一个实施例,所述转运单元根据所述工件情况和所述终点位情况,提取所述工件的轮廓和所述终点位轮廓而调整放置所述工件。
根据本发明的一个实施例,所述工件情况和所述终点位情况为图像数据。
根据本发明的一个实施例,所述起始位取材器被预固定于所述起始位,其中所述终点位取材器被预固定于所述终点位,其中所述转运单元可移动地被设置于所述起始位取材器和所述终点位取材器之间。
根据本发明的一个实施例,所述起始位取材器和所述终点位取材器被预固定于所述转运单元,以供所述起始位取材器和所述终点位取材器跟随所述转运单元移动。
根据本发明的一个实施例,所述起始位取材器被实施为一起始摄像,以从所述起始位上方获得所述起始位情况,其中所述终点位取材器被实施为一终点摄像和一工件摄像,分别地被置于所述终点位的上方与下方,以分别地获得所述终点位情况和所述工件情况。
根据本发明的一个实施例,所述起始摄像和所述终点摄像被实施为同一装置。
根据本发明的一个实施例,所述转动单元包括一抓取工具、一移动工具、一转动工具以及一计算工具,其中所述抓取工具被固定于所述移动工具和所述转动工具,其中所述移动工具和所述转动工具被连接于所述计算工具,以一种所述移动工具和所述转动工具受到所述计算工具的规划指导而驱动所述抓取工具在所述起始位至所述终点位之间移动的方式。
根据本发明的一个实施例,所述起始摄像和所述终点摄像被预固定于所述转运单元的所述抓取工具的侧部。
根据本发明的一个实施例,所述抓取工具采用吸取方式而拿取所述工件。
根据本发明的一个实施例,所述计算工具根据所述工件情况和所述终点位情况,预先地规划所述工件对齐所述终点位的转移设置。
根据本发明的一个实施例,所述计算工具提取所述工件的轮廓和所述终点位轮廓而调整放置所述工件的规划。
根据本发明的一个实施例,在所述移动工具和所述转动工具根据所述计算工具的规划而调整所述工件后,所述抓取工具放置所述工件于所述终点位。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是现有工件运输方式的示意图。
图2是根据本发明的一个优选实施例的工件定位***及其定位方法的整体示意图。
图3是根据本发明的上述优选实施例的工件定位***及其定位方法的优选示意图。
图4是根据本发明的上述优选实施例的工件定位方法的流程示意图。
图5是根据本发明的上述优选实施例的工件定位方法的拿取过程流程示意图。
图6是根据本发明的上述优选实施例的工件定位方法的放置过程流程示意图。
图7是根据本发明的上述优选实施例的工件定位方法的具体流程示意图。
图8是根据本发明的上述优选实施例的工件定位***及其定位方法的处理示意图。
图9是根据本发明的上述优选实施例工件搬运***和工件定位***的框图示意图。
图10是根据本发明的上述优选实施例工件搬运***和工件定位***的一种可行方式的整体示意图。
图11是根据本发明的上述优选实施例工件搬运***和工件定位***另一种可行方式的整体示意图。
图12A是根据本发明的上述优选实施例工件搬运***和工件定位***的获取信息整体示意图。
图12B是根据本发明的上述优选实施例工件搬运***和工件定位***的处理图像整体示意图。
图13是根据本发明的上述优选实施例工件搬运***和工件定位***的整体示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明提供一种工件搬运***、工件定位***及其定位方法,如图2至图13所示,其中所述工件搬运***适用于批量生产中对多个工件90在不同的操作设备40之间进行自动地流转,使得每个工件90按照既定的任务完成不同的操作。举例来说,作为成品的摄像模组,其需要在生产过程的尾端进行多项功能性测试,保证成像正常。一般地,每个作为所述工件90的摄像模组都需要历经每项操作设备40,从而保障每个所述工件90测试后将通过所有测试的所述工件90出货。当然,对于在某一环节中未通过的所述工件90相应地留存并记录,避免有问题的所述工件90被动地出货,并根据记录进一步地优化生产流程。
所述工件定位***针对所述操作设备40的一起始位41和一终点位42进行信息取材,如图2所示,也就是获取所述工件90的既定任务中的实际信息。本优选实施例中,应用于在生产过程中,某一所述工件90被赋予的既定任务为从所述操作设备40所述起始位41至另一所述操作设备40的所述终点位42转移。通过所述工件定位***,对所述工件90转移的基础和目的进行精确地判断,从而使得对所述工件90的拿取操作和放置操作有效且准确。具体地,通过所述工件定位***对所述起始位41的信息获取,保证拿取操作确实能对准所述工件90,使得所述工件90被充分可靠地拿取。通过所述工件定位***对所述终点位42和待放置所述工件90的信息获取,保证所述工件90对准地被放置。也就是说,所述工件定位***提供两个关键位置的信息,辅助所述工件90的搬运过程。
本优选实施例中,所述工件90以摄像模组为例,如图2至图8,所述工件定位***及其定位方法采用计算并规划的方式,矫正所述工件90的相对位置,使得搬运的位置精度高。值得一提的是,所述定位***及其定位方法利用机器视觉的手段,无需增加额外的调试装置,完成高匹配度地放置操作。而且,针对每个所述工件90进行规划,降低误差,提高生产流转效率。优选地,所述定位***及其定位方法被实施为可监视的方式,进一步辅助监管生产流程,提升调试效率。
优选地,如图3所示,所述工件定位***及其定位方法采用提取所述工件90的轮廓信息的方式,完成所述工件90的搬运过程。也就是说,本优选实施例的信息基础除了包括所述起始位41和所述终点位42,还包括对所述工件90的位置获取和调整,使得每个所述工件90都获得适应性的规划和放置操作。
更多地,所述工件定位方法包括以下步骤:
I.识别所述起始位41;
II.从所述起始位41拿取所述工件90,使得所述工件90按照既定任务运输;
III.识别所述终点位42;
IV.基于对位于所述终点位42附近的所述工件90的识别,判断所述工件90是否与所述终点位42对准;
V.若否,则再次识别所述工件90,返回上一步骤进行循环,若是,则放置所述工件90于所述终点位42,从而完成既定位置。
值得一提的是,所述工件定位方法从所述起始位41和所述终点位42分别地进行信息获取识别。由于所述工件90的既定任务中涉及了搬运的目标,所述工件定位方法从所述终点位42处获得所述工件90的操作规划,使得所述工件90以高匹配地被放置,而不是 放下所述工件90后再调整位置。每个所述工件90均适应性地被规划好相对位置,再被放下,使得所述工件90受到的磨损降低。现有的一些利用引导滑槽等等机械方法而放置的方式,多次的滑动可能对所述工件90造成不可逆的伤害。而且,所述工件90的电连接关系也需要极高的放置精度。例如,对于摄像模组作为所述工件90而言,反复的滑动会磨损电路板或者连接部件,但是利用所述工件定位方法可以一次性地将所述工件90放置于所述终点位42。
具体地,如图5和图6所示,所述工件定位方法的步骤I进一步地包括:
I.1.确认所述工件90的既定搬运任务;
I.2.寻找所述初始位41;
I.3.识别所述初始位41是否有所述工件90的存在;
I.4.若否,则返回I.2,若是,则对应于所述工件90的存在信息而拿取所述工件90。
更多地,对于一次的搬运,首先地针对所述工件90的任务进行确认。例如,本次为将一个摄像模组从一个传送带上转移至一台测试设备上,准备对这个摄像模组进行新的一项测试。也就是对所述工件90转移方向的位置进行确认,满足生产需要。然后,寻找可能有所述工件90的所述初始位41。接着,对所述初始位41上是否有真的有所述工件90进行识别。优选地,除了所述工件90的存在,对所述工件90的详细信息也进行识别获取。例如,识别得到所述工件90为一个双摄类型的摄像模组产品。若这个所述初始位41上没有所述工件90,即可认定任务无法实施,则返回存在可能存在所述工件90的所述初始位41。若这个所述初始位41有所述工件90,则根据所识别的信息,从所述起始位41拿起所述工件90。值得一提的是,在拿取过程中,所述工件定位方法掌握了所述工件90所需要被放下的任务情况。更优选地,对于所拿取的所述工件90即将被放置的所需情况被确认完全。例如,对于拿到的所述工件90为双摄类型的摄像模组产品,其即将被放置于双摄测试设备中的待检测位置。
更具体地,所述工件定位方法的步骤III至V被实施为采用提取所述工件90的轮廓信息的方式。也就是说,在识别到所述终点位42的存在后,当所述工件90的轮廓能够对准所述终点位42的轮廓的情况下,所述工件90被放下。需要说明的是,二者轮廓的对齐或者对准指的是轮廓线无交叉,甚至轮廓线部分相互保持平行的情况。
所述工件定位方法的步骤IV进一步地包括:
IV.1.在获得所述终点位42的存在情况后,获取所述终点位42的图像;
IV.2.获取所述工件90的图像;
IV.3.基于所获取的图像,分别地识别所述终点位42的轮廓和所述工件90的轮廓;
IV.4.计算所述终点位42的轮廓和所述工件90的轮廓的差距,以得到所述工件90的移动规划;
IV.5.判断通过规划后的所述终点位42的轮廓和所述工件90的轮廓是否对齐;以及
IV.6.若否,则返回步骤IV.3,若是,则放置所述工件90于所述终点位42。
值得一提的是,所述工件定位方法在放置过程中不仅可以获得所述终点位42的信息,而且将所述工件90的位置预先地对准所述终点位42,使得所述工件90被放置的位置是匹配于所述终点位42的。很多现有技术中,单纯地获得所述终点位42的信息,根据既定条件直接地放置所述工件90。但是,所述工件90被拿取的情况和相对于所述终点位42的情况都是未知的。所述工件定位方法根据每个所述工件90的情况,针对性地得到所述工件90的移动规划。也就是说,步骤IV.1和IV.2之后,所述工件90与所述终点位42的相对情况被获取,而步骤IV.1和IV.2顺序可以不分先后。再得到所述工件90与所述终点位42的相对情况后,本优选实施例中,通过对二者的轮廓进行提取和对比,获得所述工件90距离所述终点位42的差距。基于对所述工件90的位置获取,如何放置所述工件90也可以被计算。更多地,本优选实施例采用对所述工件90的轮廓进行提取的方式,利用所述工件90的轮廓对准于所述终点位42,使得所述工件90的放置操作流程更可靠、更具有精准度。通过对比所述工件90的轮廓与所述终点位42的轮廓,不仅从移动距离上,而且从摆放角度上都可以对所述工件90需要操作的方式进行预先的精准的设计。
在其他可行的实施例中,获取所述工件90与所述终点位42的相对情况可以通过其他方式,例如多个标记点的相对情况,是否遮挡或者重合特别标志点,又例如声波识别位置存在与深度,或者激光定位边缘等等。重要的是,获取所述工件90与所述终点位42的相对情况,从而进一步地规划设计所述工件90的放置操作方式,再一步地放下所述工件90。一方面,在放下所述工件90之前进行计算,另一方面,针对每个所述工件90的情况个性化地设计放下操作,使得所述工件90与所述终点位42具有极高的匹配度,奠定夹取操作的高精度基础。
另外,利用所述工件定位方法可以针对所述工件90的不同类型而进行搬运。在其他可行的方式中,通过预设调整所述工件90的转移任务,例如更新所述工件90的型号数据,重新地校准取放任务的具体实行方式,或者预先录入所述工件90的轮廓数据,减少构建时间。
如图7和图8所示,本优选实施例的所述工件定位方法具体的放置操作被阐释,也就是步骤IV.4中的计算与规划操作。首先地,根据获取的所述工件90的任务和图像,提取而得到所述工件90的轮廓数据。所述工件90的预定任务中已经包括所述工件90即将前往的所述操作设备40的计划。优选地,识别所述工件90后已经得到其即将放置的所述终点位42的类型。得到所述工件90的轮廓后,所述工件90的轮廓数据被保存。然后,对所述终点位42进行识别,得到所述终点位42的位置信息。接着,将所述工件90的轮廓加载于所述终点位42的轮廓,以便后续将所述工件90和所述终点位42的相对位置进行对比。值得一提的是,在将所述工件90加载入所述终点位42的轮廓后,将二者的轮廓信息进行过滤处理和转换,以得到同一坐标系下的同比例的所述工件90和所述终点位42的轮廓数据,也就是对轮廓信息进行计算。优选地,将所述工件90的轮廓数据的坐标、比例进行处理,使得与所述终点位42的轮廓数据直接地对比。更优选地,在计算中考虑硬件误差,也就是图像获取设备与抓取设备之间的实际距离和高度。利用硬件误差,也是既定误差,初步地对所述工件90的轮廓数据做坐标移动与比例转换,使得与所述终点位42的轮廓数据处于同一坐标系下。再进一步地,调整所述工件90的轮廓数据与所述终点位42轮廓数据的相对位置,使得所述工件90的轮廓对齐于所述终点位42的轮廓。值得注意的是,调整二者轮廓的相对位置的基础为对图像数据的过滤与预处理。防止所述工件90的轮廓比例过小,加载入所述终点位42的轮廓后一直满足对齐条件的失误判断。而且,对于所述工件90的轮廓数据的调整为虚拟设计的,调整的最终结果根据图像处理的比例等转化,再次被记录为对所述工件90操作的实际规划。例如,图像处理已经将所述工件90的轮廓放大1.5倍,进行移动而对齐,那么得到调整结果为放大后的距离值,需要缩小为原比例而形成操作规划。也就是说,当所述工件90的轮廓数据对齐于所述终点位42的轮廓数据后,保存二者的偏差,例如识别误差,硬件误差等等。根据所保存的数据偏差,设定所述工件90实际的操作规划。按照规划操作,例如移动和转动所述工件90的方位,最终使得本次操作将所述工件90高度匹配地放置于所述终点位42。优选地,所述终点位42具有设备电连接接口,当所述工件90被高度匹配地放置后,所述工件90直接地电连接于所述终点位42,使得所述操作设备40连通所述工件90。
另外,在对齐所述工件90的轮廓数据于所述终点位42的轮廓数据的过程中,图像数据为可视化的,方便人工地对位置进行调整和检查。
当然,对所述终点位42的轮廓加载于所述工件90的轮廓的操作也是可行的。本优选实施例中,所述工件定位***藉由一工件定位***而实现。所述工件定位***包括一起 始位取材器10和一终点位取材器20,其中所述起始位取材器10在所述工件90从所述起始位41拿取的过程中获得一起始位情况100,其中所述终点位取材器20在所述工件90至所述终点位42的放置的过程中获得一终点位情况201和一工件情况202。如图2和图3所示,本优选实施例中的所述起始位情况100包括所述工件90可能存在于所述起始位41的信息,所述终点位情况201包括所述终点位42的位置信息,所述工件情况202包括所述工件90于所述终点位42附近的位置信息。优选地,所述起始位情况100为所述工件90可能存在于所述起始位41的图像数据,所述终点位情况201为所述终点位42的图像数据,所述工件情况202为所述工件90于所述终点位42附近的图像数据。进一步地,根据所述工件定位***所获取的图像数据,对所述工件90进行转移规划,以对齐于所述终点位42而放置。
所述工件搬运***包括所述工件定位***和一转运单元30,其中所述转运单元30被可通信地连接于所述工件定位***,以获得所述工件定位***所获取的图像数据,对所述工件90进行转移规划。为方便说明,这里将多个所述工件90分别称为第一工件91、第二工件92等等。针对每个所述工件90,所述操作设备40的所述起始位41和所述终点位42为相对的。也就是说,如图9所示,针对所述第一工件91,其搬运任务为向右侧的所述操作设备40的所述终点位42,以便后续对所述第一工件91进行操作。针对所述第二工件92,其搬运任务为向左侧的所述操作设备40的所述终点位42。具体的,所述第一工件91匹配于右侧的所述操作设备40的所述终点位42,所述第二工件92匹配于左侧的所述操作设备40的所述终点位42,两次精确定位依靠于所述定位***的获取信息。
在本优选实施例中的一种可行方式中,所述工件定位***被预固定于所述操作设备40的所述起始位41和所述终点位42,所述转运单元被可移动地设置于所述起始位取材器10和所述终点位取材器20之间,如图10所示。在本优选实施例的另外一种可行的方式中,所述工件定位***被预固定于所述转运单元30,如图11所示。具体地,所述起始位取材器10被实施为一起始摄像11,以从所述起始位41上方获得所述起始位情况100。所述终点位取材器20被实施为一终点摄像21和一工件摄像22,分别地被置于所述终点位42的上方与下方,以分别地获得所述终点位情况201和所述工件情况202。所述转运单元30包括一抓取工具31、一移动工具32、一转动工具33以及一计算工具34,其中所述抓取工具31被固定于所述移动工具32和所述转动工具33,其中所述移动工具32和所述转动工具33被连接于所述计算工具34,以一种所述移动工具32和所述转动工具33受到所述计算工具34的规划指导而驱动所述抓取工具31在所述起始位41至所述终点位 42之间移动的方式。所述计算工具34获得所述起始位取材器10的所述起始位情况100,以指导所述移动工具32和所述转动工具33将所述抓取工具31对着所述工件90而进行拿取操作过程。所述计算工具34获得所述终点位取材器20的所述终点位情况201和所述工件情况202,以指导所述移动工具32和所述转动工具33将所述抓取工具31对着所述终点位42而进行放置所述工件90的操作过程。
具体地,如图10所示,所述抓取工具31采用夹取的方式。所述抓取工具30被固定于所述起始位取材器10与所述终点位取材器之间。在拿取过程中,所述计算工具34获得所述起始位取材器10的所述起始位情况100,使得所述抓取工具30准确地从所述起始位41拿起所述工件90。根据所述工件90的既定任务,将所述工件90转移至所述终点位42的方向。在放置过程中,所述计算工具34获得所述终点位取材器20的所述终点位情况201和所述工件情况202,使得所述抓取工具30针对所述终点位42的轮廓,而将所述工件90放置于所述终点位42。也就是说,对于不同外观尺寸与形状的所述工件90,都可以针对性的放置于相对应的所述终点位42。优选地,根据所述起始位情况100,所述计算工具34可以设置粗略的移动路径,将所述工件90移至所述终点位42附近,然后再行根据所述终点位情况201和所述工件情况202,设置精确的放置规划。更优选地,根据所述计算工具34先设置相对精确的移动方式,再根据所述终点位情况201和所述工件情况202进行微调。
具体地,如图11所示,本发明的另一种实施方式中,所述起始位取材器10被固定于所述移动工具32,使得所述移动工具32的位置变化将使得所述起始位取材器10能够得到所述起始位41和所述终点位42的图像。也就是说,所述起始摄像11和所述终点摄像21被实施为同一设备。当所述转运单元30执行拿取过程时,所述起始摄像11获取所述起始位41的所述起始位情况100。当所述转运单元30执行放置过程时,所述终点摄像21获取所述终点位42的所述终点位情况201。
更多地,如图12A至图12B所示,本优选实施例采用提取所述工件90的轮廓信息的方式。所述起始摄像11和所述终点摄像21被实施为同一设备,而被固定于所述抓取工具31的侧方,以随着所述抓取工具31的移动而获取所述起始位41和所述终点位42的信息。优选地,所述抓取工具31采用吸取方式,例如被实施为气泵与吸嘴的装置组合。所述移动工具32被实施为X轴Y轴方向上的移动杆,使得所述抓取工具31能够来回地移动至所需位置。所述转动工具33被实施为可旋机构被置于所述抓取工具31上侧。因此,拿取着所述工件90的所述抓取工具31能够按照预定任务移动至所述终点位42,根 据所述计算工具34的规划而调整所述抓取工具31相对于所述终点位42的位移与角度,最终使得所述工件90被高度匹配地放置于所述终点位42。
值得一提的是,本优选实施例采用预先规划的方式,在放置以前进行计算,使得最终的放置操作精准地匹配位置,避免反复操作对所述工件90带来损伤。
更具体地,根据所述起始摄像11获取的所述起始位情况100中的所述工件90的任务和图像,所述计算工具34提取而得到所述工件90的轮廓数据。所述工件90的预定任务中已经包括所述工件90即将前往的所述操作设备40的计划。优选地,所述计算工具34识别所述工件90后已经得到其即将放置的所述终点位42的类型。所述计算工具34得到所述工件90的轮廓后,所述工件90的轮廓数据被保存。然后,根据所述工件90的任务,所述移动工具32将拿取着所述工件90的所述抓取工具31带到所述终点位42附近。这时,不仅所述工件90能够被所述工件摄像22获取所述工件情况202,而且所述终点摄像21可以获得所述终点位42的所述终点位情况201。根据所述终点位情况201,所述计算工具34对所述终点位42进行识别,得到所述终点位42的位置信息。接着,所述计算工具34将所述工件90的轮廓加载入所述终点位42的轮廓,以便后续将所述工件90和所述终点位42的相对位置进行对比。值得一提的是,在将所述工件90加载入所述终点位42的轮廓后,将二者的轮廓信息进行过滤处理,以得到同样坐标下的同比例的所述工件90和所述终点位42的轮廓数据,也就是对轮廓信息进行计算。优选地,将所述工件90的轮廓数据的坐标、比例进行处理,使得与所述终点位42的轮廓数据直接地对比。更优选地,在计算中考虑硬件误差,也就是图像获取设备与抓取设备之间的实际距离和高度。例如,所述终点摄像21相对所述终点位42的高度,与所述工件摄像22相对于所述抓取工具31的高度,两个数值是既定的,通过核算所述终点摄像21与所述工件摄像22的焦距,所述工件90的轮廓数据和所述终点位42的轮廓数据的比例关系可以被预先地确定。又例如,利用硬件误差,也是既定误差,初步地对所述工件90的轮廓数据做坐标移动与比例转换,使得与所述终点位42的轮廓数据坐标保持一致。
更多地,在另外一种实施例中,本发明的预先规划方式中包括初步地对设备进行调整和参数测量。具体地,在步骤I.1中,进一步地包括
I.11识别所述起始位;
I.12从所述起始位拿取一标准工件,使得所述标准工件按照既定任务运输至所述终点位;
I.13识别所述终点位;
I.14基于对位于所述终点位附近的所述标准工件的识别,判断所述标准工件是否与所述终点位对准;
I.15若否,则再次识别所述工件,返回上一步骤进行循环,若是,则存储调整所述标准工件的参数数值。
也就是说,在实现整体的所述工件90的搬运工作之前,预先地对所述工件90进行标准化的设备执行,从而掌握既定任务中的既定误差,简化后续的运算。值得一提的是,这里的标准工件为对应于所述工件90的同类型工件标本,具有与所述工件90相同的外形,使得对参数的获取具有可靠性。对于不同类型的所述工件90,都可以重复执行上述操作来储存相对应的参数数值。
再进一步地,调整所述工件90的轮廓数据与所述终点位42轮廓数据的相对位置,使得所述工件90的轮廓对齐于所述终点位42的轮廓。值得注意的是,调整二者轮廓的相对位置的基础为对图像数据的过滤与预处理。防止所述工件90的轮廓比例过小,加载入所述终点位42的轮廓后一直满足对齐条件的失误判断。而且,所述计算工具34对于所述工件90的轮廓数据的调整为虚拟设计的,调整的最终结果根据图像处理的比例等转化,再次被记录为对所述工件90操作的实际规划。例如,图像处理已经将所述工件90的轮廓放大2倍,进行左侧移动0.01mm而对齐,那么得到调整结果为放大后的距离值,需要缩小为原比例而形成操作规划,即为左侧移动0.005mm。这里需要说明的是,根据预先获得的既定任务中的既定误差,先粗略规划,再根据图像处理结果,后细微调整,简化计算流程,提升处理速度。也就是说,当所述工件90的轮廓数据对齐于所述终点位42的轮廓数据后,保存二者的偏差。根据所保存的数据偏差,设定所述工件90实际的操作规划。按照规划操作,所述移动工具32移动和转动所述抓取工具31所拿取着的所述工件90的方位,最终使得本次操作将所述工件90高度匹配地放置于所述终点位42。另外,在对齐所述工件90的轮廓数据于所述终点位42的轮廓数据的过程中,图像数据可以被传输至人机界面,如图13所示,方便人工地对位置进行调整和检查。优选地,通过轮廓对齐数据的显示,对经常出现的错误或者异常参数可以知晓和调整,而且边对边的对应性高。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (26)

  1. 一工件定位方法,适于将一工件从一起始位转移至一终点位,包括以下步骤:
    I.识别所述起始位;
    II.从所述起始位拿取所述工件,使得所述工件按照既定任务运输至所述终点位;
    III.识别所述终点位;
    IV.基于对位于所述终点位附近的所述工件的识别,判断所述工件是否与所述终点位对准;
    V.若否,则再次识别所述工件,返回上一步骤进行循环,若是,则放置所述工件于所述终点位。
  2. 根据权利要求1所述的工件定位方法,其中步骤IV被实施为采用提取所述工件的轮廓信息的方式判断。
  3. 根据权利要求2所述的工件定位方法,其中所述工件的轮廓信息提取自图像信息。
  4. 根据权利要求1所述的工件定位方法,其中步骤I进一步地包括一下步骤:
    I.1.确认所述工件的既定搬运任务;
    I.2.寻找所述初始位;
    I.3.识别所述初始位是否有所述工件的存在;
    I.4.若否,则返回I.2,若是,则对应于所述工件的存在信息而拿取所述工件。
  5. 根据权利要求1或2中所述的工件定位方法,其中步骤IV进一步地包括步骤:
    IV.1.在获得所述终点位的存在情况后,获取所述终点位的图像;
    IV.2.获取所述工件的图像;
    IV.3.基于所获取的图像,分别地识别所述终点位的轮廓和所述工件的轮廓;
    IV.4.计算所述终点位的轮廓和所述工件的轮廓的差距,以得到所述工件的移动规划;
    IV.5.判断通过规划后的所述终点位的轮廓和所述工件的轮廓是否对齐;以及
    IV.6.若否,则返回步骤IV.3,若是,则放置所述工件于所述终点位。
  6. 根据权利要求5所述的工件定位方法,其中步骤IV.2被实施为预先录入所述工件的轮廓数据。
  7. 根据权利要求5所述的工件定位方法,其中步骤IV.4中的计算包括对所述工件的轮廓数据的坐标进行处理,使得其与所述终点位的轮廓数据直接地对比。
  8. 根据权利要求5所述的工件定位方法,其中步骤IV.4中的计算包括对所述工件的轮廓数据的比例进行处理,使得其与所述终点位的轮廓数据直接地对比。
  9. 一工件定位***,应用于一工件从一起始位转移至一终点位的过程,包括:
    一起始位取材器和一终点位取材器,其中所述起始位取材器位于所述起始位,其中所述起始位取材器在所述工件从所述起始位拿取的过程中获得一起始位情况,其中所述终点位取材器位于所述终点位,其中所述终点位取材器在所述工件至所述终点位的放置的过程中获得一终点位情况和一工件情况,其中基于所述起始位情况,所述工件被移至相对应的所述终点位,其中基于所述工件情况和所述终点位情况的差异,所述工件被调整后对应地放置于所述终点位。
  10. 根据权利要求9所述的工件定位***,其中所述起始位情况包括所述工件可能存在于所述起始位的信息。
  11. 根据权利要求9所述的工件定位***,其中所述终点位情况包括所述终点位的位置信息,其中所述工件情况包括所述工件于所述终点位附近的位置信息。
  12. 根据权利要求10所述的工件定位***,其中所述起始位情况为图像数据。
  13. 根据权利要求11所述的工件定位***,其中所述终点位情况和所述工件情况为图像数据。
  14. 根据权利要求11所述的工件定位***,其中所述工件情况和所述终点位情况的差异为所述工件的轮廓是否对齐于所述终点位的轮廓。
  15. 一工件搬运***,适于将一工件从一起始位转移至一终点位,包括:
    一起始位取材器,其中所述起始位取材器位于所述起始位,其中所述起始位取材器在所述工件从所述起始位拿取的过程中获得一起始位情况;
    一终点位取材器,其中所述终点位取材器位于所述终点位,其中所述终点位取材器在所述工件至所述终点位的放置的过程中获得一终点位情况和一工件情况;以及
    一转运单元,其中所述转运单元被可通信地分别连接于所述起始位取材器和所述终点位取材器,其中所述转运单元获取所述起始位情况而拿取所述工件,其中所述转运单元获取所述工件情况和所述终点位情况而针对地放置所述工件于所述终点位。
  16. 根据权利要求15所述的工件搬运***,其中所述转运单元根据所述工件情况和 所述终点位情况,提取所述工件的轮廓和所述终点位轮廓而调整放置所述工件。
  17. 根据权利要求15或16中所述的工件搬运***,其中所述工件情况和所述终点位情况为图像数据。
  18. 根据权利要求15所述的工件搬运***,其中所述起始位取材器被预固定于所述起始位,其中所述终点位取材器被预固定于所述终点位,其中所述转运单元可移动地被设置于所述起始位取材器和所述终点位取材器之间。
  19. 根据权利要求15所述的工件搬运***,其中所述起始位取材器和所述终点位取材器被预固定于所述转运单元,以供所述起始位取材器和所述终点位取材器跟随所述转运单元移动。
  20. 根据权利要求19所述的工件搬运***,其中所述起始位取材器被实施为一起始摄像,以从所述起始位上方获得所述起始位情况,其中所述终点位取材器被实施为一终点摄像和一工件摄像,分别地被置于所述终点位的上方与下方,以分别地获得所述终点位情况和所述工件情况。
  21. 根据权利要求20所述的工件搬运***,其中所述起始摄像和所述终点摄像被实施为同一装置。
  22. 根据权利要求20所述的工件搬运***,其中所述转动单元包括一抓取工具、一移动工具、一转动工具以及一计算工具,其中所述抓取工具被固定于所述移动工具和所述转动工具,其中所述移动工具和所述转动工具被连接于所述计算工具,以一种所述移动工具和所述转动工具受到所述计算工具的规划指导而驱动所述抓取工具在所述起始位至所述终点位之间移动的方式。
  23. 根据权利要求22所述的工件搬运***,其中所述抓取工具采用吸取方式而拿取所述工件。
  24. 根据权利要求22所述的工件搬运***,其中所述计算工具根据所述工件情况和所述终点位情况,预先地规划所述工件对齐所述终点位的转移设置。
  25. 根据权利要求24所述的工件搬运***,其中所述计算工具提取所述工件的轮廓和所述终点位轮廓而调整放置所述工件的规划。
  26. 根据权利要求24或25中所述的工件搬运***,其中在所述移动工具和所述转动工具根据所述计算工具的规划而调整所述工件后,所述抓取工具放置所述工件于所述终点位。
PCT/CN2020/087656 2019-05-31 2020-04-29 工件搬运***、工件定位***及其定位方法 WO2020238538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910470291.3A CN112010021B (zh) 2019-05-31 2019-05-31 工件搬运***、工件定位***及其定位方法
CN201910470291.3 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020238538A1 true WO2020238538A1 (zh) 2020-12-03

Family

ID=73502018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087656 WO2020238538A1 (zh) 2019-05-31 2020-04-29 工件搬运***、工件定位***及其定位方法

Country Status (2)

Country Link
CN (1) CN112010021B (zh)
WO (1) WO2020238538A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503527A (en) * 1967-05-08 1970-03-31 George C Devol Article transfer and orienting means
CN1970413A (zh) * 2005-11-21 2007-05-30 日产自动车株式会社 工件转移方法、工件转移***及工件转移装置
JP2010152664A (ja) * 2008-12-25 2010-07-08 Nissei Corp 画像を利用したセンサレスモータ駆動ロボット
CN102837316A (zh) * 2011-06-20 2012-12-26 株式会社安川电机 拾取***
CN105645010A (zh) * 2014-12-02 2016-06-08 发那科株式会社 物品转运装置和物品转运方法
CN106429257A (zh) * 2016-08-31 2017-02-22 中山市博道工业自动化设备有限公司 一种成品开关自动化下线装置
CN109335672A (zh) * 2018-09-30 2019-02-15 珠海市运泰利自动化设备有限公司 一种高精密取放料的过程控制与智能分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227305A (ja) * 2007-03-14 2008-09-25 Seiko Epson Corp 液滴吐出装置、電気光学装置の製造方法、電気光学装置および電子機器
CN103706568B (zh) * 2013-11-26 2015-11-18 中国船舶重工集团公司第七一六研究所 基于机器视觉的机器人分拣方法
CN207600390U (zh) * 2017-12-29 2018-07-10 法雷奥市光(中国)车灯有限公司 工件自动化分拣设备
CN109132526B (zh) * 2018-10-26 2023-09-08 苏州富强科技有限公司 一种工件上料装置及工件上料方法
CN109692825B (zh) * 2019-01-11 2021-07-06 上海卓畅信息技术有限公司 一种零件的分拣方法及分拣设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503527A (en) * 1967-05-08 1970-03-31 George C Devol Article transfer and orienting means
CN1970413A (zh) * 2005-11-21 2007-05-30 日产自动车株式会社 工件转移方法、工件转移***及工件转移装置
JP2010152664A (ja) * 2008-12-25 2010-07-08 Nissei Corp 画像を利用したセンサレスモータ駆動ロボット
CN102837316A (zh) * 2011-06-20 2012-12-26 株式会社安川电机 拾取***
CN105645010A (zh) * 2014-12-02 2016-06-08 发那科株式会社 物品转运装置和物品转运方法
CN106429257A (zh) * 2016-08-31 2017-02-22 中山市博道工业自动化设备有限公司 一种成品开关自动化下线装置
CN109335672A (zh) * 2018-09-30 2019-02-15 珠海市运泰利自动化设备有限公司 一种高精密取放料的过程控制与智能分析方法

Also Published As

Publication number Publication date
CN112010021A (zh) 2020-12-01
CN112010021B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US9782896B2 (en) Robot system and control method for robot system
CN106514201B (zh) 一种自动接插件装配机器人***及其控制方法
CN104690551B (zh) 一种机器人自动化装配***
CN108380509B (zh) 基于机器视觉的led灯盘分拣与检测***
US10031515B2 (en) Production system including robot with position correction function that supplies or ejects workpieces to or from a machine tool
JP6411028B2 (ja) 管理装置
US20190054617A1 (en) Robotic arm processing method and system based on 3d image
US20090046921A1 (en) Pick and place machine with improved component pick up inspection
US20220241982A1 (en) Work robot and work system
US8954183B2 (en) Aircraft component manufacturing method and apparatus
CN104663016A (zh) 基板作业机用的识别装置
CN110293559B (zh) 一种自动识别定位对准的安装方法
JPH03228591A (ja) ワーク把持装置、ワーク及びその収納ケース
CN105609457A (zh) 对齐电子元件的方法和装置
CN106239487B (zh) 激光对射式工业机械手工作点坐标示教工具及其示教方法
WO2020238538A1 (zh) 工件搬运***、工件定位***及其定位方法
US20160054723A1 (en) Robot controller of robot used with machine tool, and processing system
CN113625659B (zh) 制孔机构的控制方法、装置、电子设备和制孔机构
CN206643574U (zh) 一种自动接插件装配机器人***
JP7133017B2 (ja) エンドエフェクタの選択方法および選択システム
EP4144494A1 (en) Image processing method, image processing device, robot mounted-type conveyance device, and system
JP2020197436A (ja) 形状測定システム
JP2011173188A (ja) 自動面取り加工装置
CN111031686B (zh) 一种抓取pcb板的定位方法及pcb板的定位孔除胶装置
US7444850B2 (en) Method and device for shaping workpieces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813829

Country of ref document: EP

Kind code of ref document: A1