WO2020238146A1 - 柔性基板及其制作方法与柔性显示装置 - Google Patents

柔性基板及其制作方法与柔性显示装置 Download PDF

Info

Publication number
WO2020238146A1
WO2020238146A1 PCT/CN2019/124592 CN2019124592W WO2020238146A1 WO 2020238146 A1 WO2020238146 A1 WO 2020238146A1 CN 2019124592 W CN2019124592 W CN 2019124592W WO 2020238146 A1 WO2020238146 A1 WO 2020238146A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sub
substrate
flexible substrate
alignment layer
Prior art date
Application number
PCT/CN2019/124592
Other languages
English (en)
French (fr)
Inventor
王亚楠
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/626,356 priority Critical patent/US11226508B2/en
Publication of WO2020238146A1 publication Critical patent/WO2020238146A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133362Optically addressed liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy

Definitions

  • the present invention relates to the field of display technology, in particular to a flexible substrate, a manufacturing method thereof, and a flexible display device.
  • liquid crystal display devices Liquid Crystal Display, LCD
  • organic light-emitting diodes Organic Flat panel display devices such as Light-Emitting Diode (OLED) display devices
  • cathode ray tube Cathode Ray Tube, CRT
  • liquid crystal display devices which include liquid crystal display panels and backlight modules (backlight module).
  • the LCD panel is composed of a color filter (CF) substrate, thin film transistor (Thin Film Transistor, TFT) array substrate, liquid crystal (Liquid) sandwiched between the color filter substrate and the thin film transistor array substrate Crystal, LC) and sealant frame (Sealant).
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules between two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates. The liquid crystal molecules are controlled to change direction by powering on or not, and the light of the backlight module Refraction produces a picture.
  • OLED usually includes: a substrate, an anode provided on the substrate, a hole injection layer (HIL) provided on the anode, a hole transport layer (HTL) provided on the hole injection layer, and a hole transport layer (HTL) provided on the hole transport layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • HTL hole transport layer
  • HTL hole transport layer
  • HTL hole transport layer
  • the light-emitting principle of OLED display devices is that semiconductor materials and organic light-emitting materials are driven by an electric field to cause light emission through carrier injection and recombination.
  • the overall deformation characteristics of the flexible display device are uniform, which leads to differences in the deformation of different positions when receiving uneven external forces, resulting in a decrease in the brightness uniformity of different positions, and the electric drive device in the flexible display device is Features: When the display device is stretched or compressed, it will be destructively damaged, causing display abnormalities.
  • the object of the present invention is to provide a flexible substrate, which can reduce the amount of deformation of the non-display area when it is bent when applied to a flexible display device, and maintain the reliability of the flexible display device.
  • Another object of the present invention is to provide a method for manufacturing a flexible substrate.
  • the prepared flexible substrate is applied to a flexible display device, the deformation of the non-display area during bending can be reduced, and the reliability of the flexible display device can be maintained.
  • Another object of the present invention is to provide a flexible display device that can reduce the amount of deformation of the non-display area when bending, and maintain the reliability of the flexible display device.
  • the present invention provides a flexible substrate, which includes a substrate and a plurality of liquid crystal molecules arranged in the substrate; the substrate includes a plurality of sub-pixel display areas arranged in an array and arranged on the plurality of sub-pixels The non-display area outside the display area; each sub-pixel display area and the non-display area are provided with a plurality of liquid crystal molecules; the extension direction of the plurality of liquid crystal molecules in each sub-pixel display area is perpendicular to the plane where the flexible substrate is located The extension direction of the plurality of liquid crystal molecules in the non-display area is parallel to the plane where the flexible substrate is located.
  • the extension directions of the multiple liquid crystal molecules in the non-display area are all parallel to the row direction or the column direction of the multiple sub-pixel display areas.
  • the non-display area includes a first sub-region and a second sub-region sequentially arranged along a direction perpendicular to the plane where the flexible substrate is located; a plurality of liquid crystal molecules are arranged in the first sub-region and the second sub-region; The extension direction of the plurality of liquid crystal molecules in one sub-region is parallel to the row direction of the multiple sub-pixel display areas, and the extension direction of the multiple liquid crystal molecules in the second sub-region is parallel to the column direction of the multiple sub-pixel display areas.
  • the material of the substrate is a polymer.
  • the present invention also provides a method for manufacturing the above-mentioned flexible substrate, which includes the following steps:
  • Step S1 Two substrates are provided; each substrate includes a plurality of vertical alignment regions arranged in an array and a horizontal alignment region arranged outside the plurality of vertical alignment regions;
  • Step S2 An alignment layer is separately formed on each substrate; the alignment layer includes a first sub-alignment layer and a second sub-alignment layer that are sequentially arranged in a direction away from the substrate on which it is located; the first sub-alignment layer Corresponding to multiple vertical alignment areas and horizontal alignment areas; the second sub-alignment layer corresponds to multiple vertical alignment areas, the second sub-alignment layer is a vertical alignment layer and the first sub-alignment layer is a horizontal alignment layer; or The second sub-alignment layer corresponds to the horizontal alignment area, the second sub-alignment layer is a horizontal alignment layer, and the first sub-alignment layer is a vertical alignment layer;
  • Step S3 two alignment layers are arranged oppositely and a liquid crystal material layer is formed between the two alignment layers;
  • the liquid crystal material layer includes a plurality of liquid crystal molecules, and under the action of the two alignment layers, the liquid crystal material layer is aligned vertically
  • the extension direction of the liquid crystal molecules corresponding to the region is perpendicular to the plane where the substrate is located, and the extension direction of the liquid crystal molecules corresponding to the horizontal alignment region in the liquid crystal material layer is parallel to the plane where the substrate is located;
  • Step S4 curing the liquid crystal material layer to form a flexible substrate.
  • the manufacturing method of the flexible substrate further includes step S5, separating the flexible substrate from the two alignment layers;
  • the liquid crystal material layer also includes reactive monomers, intermediates and photoinitiators;
  • the step of curing the liquid crystal material layer in the step S4 specifically includes: first heating the liquid crystal material layer at a preset temperature for a preset time period, and then irradiating the liquid crystal material layer with ultraviolet light;
  • the preset temperature is 70 ⁇ 100°C, and the preset duration is 15 ⁇ 30h;
  • the second sub-alignment layer is made by inkjet printing.
  • the present invention also provides a method for manufacturing the above-mentioned flexible substrate, which includes the following steps:
  • Step S1' providing a first substrate and a second substrate;
  • the first substrate includes a plurality of vertical alignment regions arranged in an array and a horizontal alignment region arranged outside the plurality of vertical alignment regions;
  • Step S2' fabricating a first electrode on the first substrate, fabricating a second electrode on the second substrate; the first electrode corresponds to the horizontal alignment area, and the second electrode corresponds to at least the horizontal alignment area;
  • the side of the first electrode away from the first substrate and the side of the second electrode away from the second substrate are respectively fabricated into a first vertical alignment layer and a second vertical alignment layer. Both the first vertical alignment layer and the second vertical alignment layer are at least Corresponding to multiple vertical alignment areas;
  • Step S3' arranging the first vertical alignment layer and the second vertical alignment layer opposite to each other and forming a liquid crystal material layer between the first vertical alignment layer and the second vertical alignment layer, the liquid crystal material layer including a plurality of liquid crystal molecules,
  • the liquid crystal molecules are negative liquid crystal molecules;
  • Step S4' energize the first electrode and the second electrode and cure the liquid crystal material layer.
  • the liquid crystal Under the action of the first vertical alignment layer and the second vertical alignment layer and the electric field between the first electrode and the second electrode, the liquid crystal The extension direction of the liquid crystal molecules corresponding to the vertical alignment area in the material layer is perpendicular to the plane where the first substrate is located, and the extension direction of the liquid crystal molecules corresponding to the horizontal alignment area in the liquid crystal material layer is parallel to the plane where the first substrate is located, forming a flexible substrate .
  • the manufacturing method of the flexible substrate further includes step S5', separating the flexible substrate from the first vertical alignment layer and the second vertical alignment layer;
  • the liquid crystal material layer also includes reactive monomers, intermediates and photoinitiators;
  • the step of curing the liquid crystal material layer in the step S4' specifically includes: first irradiating the liquid crystal material layer with ultraviolet light, and then heating the liquid crystal material layer at a preset temperature for a preset time;
  • the preset temperature is 70-100°C, and the preset duration is 15-30h.
  • the present invention also provides a flexible display device including the above-mentioned flexible substrate.
  • the flexible display device is a liquid crystal display device or an OLED display device.
  • the flexible substrate of the present invention includes a substrate and a plurality of liquid crystal molecules arranged in the substrate.
  • the substrate includes a plurality of sub-pixel display areas arranged in an array and a plurality of sub-pixel display areas arranged outside the In the non-display area, each sub-pixel display area and the non-display area are provided with a plurality of liquid crystal molecules, the extension direction of the plurality of liquid crystal molecules in each sub-pixel display area is perpendicular to the plane where the flexible substrate is located, and the non-display area
  • the extension direction of the plurality of liquid crystal molecules in the flexible substrate is parallel to the plane where the flexible substrate is located, so that the non-display area in the flexible substrate has strong bending resistance, and the sub-pixel display area has strong flexibility, which can effectively reduce the non-display area when it is bent.
  • the deformation amount when applied to the flexible display device, can reduce the risk of the electric drive device being damaged when the flexible display device is bent, and improve the reliability of the product.
  • the flexible substrate produced by the method for manufacturing a flexible substrate of the present invention is applied to a flexible display device, the deformation amount of the non-display area during bending can be reduced, and the reliability of the flexible display device can be maintained.
  • the flexible display device of the present invention can reduce the amount of deformation of the non-display area when bending, and maintain the reliability of the flexible display device.
  • FIG. 1 is a partial top view of the first embodiment of the flexible substrate of the present invention
  • FIG. 2 is a partial perspective view of the first embodiment of the flexible substrate of the present invention.
  • FIG. 3 is a partial bending schematic diagram of the first embodiment of the flexible substrate of the present invention.
  • FIG. 4 is a partial top view of the second embodiment of the flexible substrate of the present invention.
  • FIG. 5 is a partial perspective view of the second embodiment of the flexible substrate of the present invention.
  • FIG. 6 is a partial top view of the third embodiment of the flexible substrate of the present invention.
  • FIG. 7 is a partial perspective view of the third embodiment of the flexible substrate of the present invention.
  • FIG. 8 is a flowchart of the first embodiment of the manufacturing method of the flexible substrate of the present invention.
  • step S1 and step S2 of the first embodiment of the manufacturing method of the flexible substrate of the present invention are schematic diagrams of step S1 and step S2 of the first embodiment of the manufacturing method of the flexible substrate of the present invention.
  • step S3 is a schematic diagram of step S3 of the first embodiment of the manufacturing method of the flexible substrate of the present invention.
  • step S4 is a schematic diagram of step S4 of the first embodiment of the manufacturing method of the flexible substrate of the present invention.
  • FIG. 13 is a schematic diagram of step S1' and step S2' of the second embodiment of the manufacturing method of the flexible substrate of the present invention.
  • step S3' of the second embodiment of the manufacturing method of the flexible substrate of the present invention is a schematic diagram of step S3' of the second embodiment of the manufacturing method of the flexible substrate of the present invention.
  • FIG. 15 is a schematic diagram of step S4' of the second embodiment of the manufacturing method of the flexible substrate of the present invention.
  • the flexible substrate of the first embodiment of the present invention includes a substrate 10 and a plurality of liquid crystal molecules 20 arranged in the substrate 10.
  • the substrate 10 includes a plurality of sub-pixel display areas 11 arranged in an array and a non-display area 12 arranged outside the plurality of sub-pixel display areas 11.
  • a plurality of liquid crystal molecules 20 are provided in each sub-pixel display area 11 and non-display area 12.
  • the extension direction of the plurality of liquid crystal molecules 20 in each sub-pixel display area 11 is perpendicular to the plane where the flexible substrate is located.
  • the extending direction of the plurality of liquid crystal molecules 20 in the non-display area 12 is parallel to the plane where the flexible substrate is located.
  • the flexible substrate is applied to a flexible display device.
  • the sub-pixel display area 11 of the flexible substrate corresponds to the area where each sub-pixel in the flexible display device can effectively display, and the non-display area 12 of the flexible substrate corresponds to the flexible display area.
  • the area in the display device used for electrical drive devices and wiring layout.
  • the flexible substrate can be applied to a flexible liquid crystal display device, can be used as an array substrate of a flexible liquid crystal display device or a base substrate in a color film substrate, or can be used as other substrates provided in a flexible liquid crystal display device in the prior art
  • the flexible substrate can also be used in flexible OLED display devices, and can be used as a substrate or cover for forming thin film transistor array layers and OLED devices in flexible OLED display devices, or as a flexible OLED display device in the prior art. Set other substrates.
  • the material of the substrate 10 includes a polymer formed by polymerization of a reactive monomer, an intermediate, and a photoinitiator.
  • the extending directions of the plurality of liquid crystal molecules 20 in the non-display area 12 are all parallel to the row direction of the plurality of sub-pixel display areas 11. Based on the structural characteristics of liquid crystal molecules, the deformation of the film layer with liquid crystal molecules along the extension direction of the liquid crystal molecules is relatively low, so please refer to FIG. 3.
  • the first embodiment of the present invention is suitable for more lateral bending, that is, display along multiple sub-pixels. When the flexible substrate of the first embodiment is stretched along the row direction of the multiple sub-pixel display areas 11, the extension direction of the multiple liquid crystal molecules 20 in the non-display area 12 is uniform.
  • the deformation of the non-display area 12 is small, so that the electrical driving devices and wirings provided in the flexible display device corresponding to the non-display area 12 have small deformations, preventing bending due to This causes damage to the electric drive devices and wiring, and improves the reliability of the flexible display device.
  • the extension direction of the liquid crystal molecules 20 in the sub-pixel display area 11 is parallel to the plane where the flexible substrate is located, no matter from the multiple sub-pixel display areas 11
  • the flexible substrate is stretched in the row direction or the column direction, and the sub-pixel display area 11 has strong flexibility, so as to share the stress when bending the flexible display device to solve the abnormal alignment caused by excessive local deformation and improve the light leakage problem.
  • the first embodiment of the present invention is applied to a flexible liquid crystal display device, since the flexible liquid crystal display device is provided with a lower polarizer and an upper polarizer on the light entrance side and the light exit side, respectively, a plurality of sub-pixel display areas are needed.
  • the row direction of 11 is set to be parallel to the polarization axis of the lower polarizer, so that the extension direction of the plurality of liquid crystal molecules 20 in the non-display area 12 is parallel to the polarization axis of the lower polarizer, and matches the liquid crystal in the sub-pixel display area 11.
  • the extension direction of the molecules 20 is perpendicular to the plane where the flexible substrate is located, so that the effective phase retardation of the entire surface of the flexible substrate is 0, which will not affect the normal display.
  • the difference between the flexible substrate of the second embodiment of the present invention and the above-mentioned first embodiment is that the extension direction of the plurality of liquid crystal molecules 20 in the non-display area 12 is consistent with that of the plurality of sub-pixels.
  • the column directions of the regions 22 are parallel, and the rest are the same as the above-mentioned first embodiment, which will not be repeated here.
  • the second embodiment of the present invention is suitable for the case where there are more longitudinal curvatures, that is, more stretching along the column direction of the multiple sub-pixel display areas 11.
  • the second embodiment is stretched along the column direction of the multiple sub-pixel display areas 11
  • the extension direction of the plurality of liquid crystal molecules 20 in the non-display area 12 is parallel to the column direction of the plurality of sub-pixel display areas 11, the deformation of the non-display area 12 is small, which makes the non-display area corresponding to the non-display area 12
  • the deformation of the electric drive device and the wiring arranged in the display area 12 is small, which prevents damage to the electric drive device and wiring due to bending, and improves the reliability of the flexible display device.
  • the extension direction is parallel to the plane where the flexible substrate is located. Therefore, regardless of whether the flexible substrate is stretched from the row direction or the column direction of the multiple sub-pixel display areas 11, the sub-pixel display areas 11 have strong flexibility. To solve the abnormal alignment caused by excessive local deformation and improve the light leakage problem.
  • the column direction of the multiple sub-pixel display areas 11 needs to be set parallel to the polarization axis of the lower polarizer, so that the non-display area 12
  • the extension direction of the plurality of liquid crystal molecules 20 is parallel to the polarization axis of the lower polarizer, and the extension direction of the liquid crystal molecules 20 in the sub-pixel display area 11 is perpendicular to the plane where the flexible substrate is located, so that the effective phase retardation of the entire surface of the flexible substrate is 0, will not affect the normal display.
  • the non-display area 12 includes the first embodiment arranged in sequence along a direction perpendicular to the plane of the flexible substrate.
  • a plurality of liquid crystal molecules 20 are provided in the first sub-region 121 and the second sub-region 122.
  • the extension direction of the plurality of liquid crystal molecules 20 located in the first sub-region 121 is parallel to the row direction of the multiple sub-pixel display areas 11, and the extension direction of the multiple liquid crystal molecules 20 located in the second sub-region 121 is the same as the multiple sub-pixel display areas.
  • the column directions of 22 are parallel. The rest are the same as the first implementation, and will not be repeated here.
  • the third embodiment of the present invention is applicable to the case where the bending direction is not fixed. Since the extending direction of the plurality of liquid crystal molecules 20 in the first sub-region 121 is parallel to the row direction of the plurality of sub-pixel display regions 11, the second sub-region 122 The extending direction of the plurality of liquid crystal molecules 20 is parallel to the column direction of the plurality of sub-pixel display areas 11.
  • the non-display area 12 When the flexible substrate of the third embodiment is stretched in the column direction or the row direction of the plurality of sub-pixel display areas 11, the non-display area The deformations of 12 are small, so that the deformations of the electric driving devices and wirings provided in the flexible display device corresponding to the non-display area 12 are small, preventing the electric driving devices and wiring from being damaged due to bending, and improving the performance of the flexible display device. Reliability.
  • the sub-pixel display area 11 since the extension direction of the liquid crystal molecules 20 in the sub-pixel display area 11 is parallel to the plane where the flexible substrate is located, no matter whether the flexible substrate is stretched from the row direction or the column direction of the multiple sub-pixel display areas 11, the sub-pixel display The regions 11 all have strong flexibility, so as to share the stress when bending the flexible display device to solve the abnormal alignment caused by excessive local deformation and improve the light leakage problem.
  • the present invention also provides a method for manufacturing the above-mentioned flexible substrate, which includes the following steps:
  • Step S1 please refer to FIG. 9 to provide two substrates 91.
  • Each substrate 91 includes a plurality of vertical alignment regions 911 arranged in an array, and a horizontal alignment region 912 disposed outside the plurality of vertical alignment regions 911.
  • the plurality of vertical alignment regions 911 respectively correspond to the plurality of sub-pixel display regions 11 of the flexible substrate to be formed, and the horizontal alignment regions 912 correspond to the non-display region 12 of the flexible substrate to be formed.
  • the two substrates 91 can be made of glass.
  • Step S2 please refer to FIG. 9 to form an alignment layer 92 on each substrate 91 respectively.
  • the alignment layer 92 includes a first sub-alignment layer 921 and a second sub-alignment layer 922 that are sequentially arranged in a direction away from the substrate 91 where it is located.
  • the first sub-alignment layer 921 corresponds to a plurality of vertical alignment regions 911 and horizontal alignment regions 912.
  • the second sub-alignment layer 922 corresponds to a plurality of vertical alignment regions 911, the second sub-alignment layer 922 is a vertical alignment layer, and the first sub-alignment layer 921 is a horizontal alignment layer.
  • the second sub-alignment layer 922 corresponds to the horizontal alignment region 912, the second sub-alignment layer 922 is a horizontal alignment layer, and the first sub-alignment layer 921 is a vertical alignment layer.
  • the second sub-alignment layer 922 corresponds to a plurality of vertical alignment regions 911, the second sub-alignment layer 922 is a vertical alignment layer, and the first sub-alignment layer 921 is a horizontal alignment layer.
  • the first sub-alignment layer 921 is made by coating and is cured by heating.
  • the second sub-alignment layer 922 is made by inkjet printing and is cured by heating.
  • the materials of the first sub-alignment layer 921 and the second sub-alignment layer 922 are both polyimide (PI).
  • Step S3 referring to FIG. 10, the two alignment layers 92 are arranged opposite to each other and a liquid crystal material layer 93 is formed between the two alignment layers 92.
  • the liquid crystal material layer 93 includes a plurality of liquid crystal molecules 20.
  • the extension direction of the liquid crystal molecules 20 corresponding to the vertical alignment region 911 in the liquid crystal material layer 93 is perpendicular to the plane where the substrate 91 is located.
  • the extension direction of the liquid crystal molecules 20 corresponding to the horizontal alignment region 912 in the material layer 93 is parallel to the plane where the substrate 91 is located.
  • the liquid crystal material layer 93 further includes a reactive monomer, an intermediate, and a photoinitiator.
  • the reactive monomer is a reactive liquid crystal monomer
  • the intermediate is n-butylamine
  • the step S3 further encapsulates the liquid crystal material layer 93 after the liquid crystal material layer 93 is formed.
  • Step S4 referring to FIG. 11, curing the liquid crystal material layer 93 to form the aforementioned flexible substrate 1.
  • the step of curing the liquid crystal material layer 93 in the step S4 specifically includes: first heating the liquid crystal material layer 93 at a preset temperature for a preset time, and then irradiating the liquid crystal material layer 93 with ultraviolet light to make the liquid crystal material layer 93
  • the reactive monomers, intermediates and photoinitiators in 93 are polymerized.
  • the preset temperature is 70-100°C, and the preset duration is 15-30h.
  • Step S5 separating the flexible substrate 1 from the two alignment layers 92.
  • the present invention also provides another method for manufacturing the above-mentioned flexible substrate, including the following steps:
  • Step S1' referring to FIG. 13, provide a first substrate 91' and a second substrate 92'.
  • the first substrate 91' includes a plurality of vertical alignment regions 911' arranged in an array and a horizontal alignment region 912' arranged outside the plurality of vertical alignment regions 911'.
  • the plurality of vertical alignment regions 911' respectively correspond to the plurality of sub-pixel display regions 11 of the flexible substrate to be formed, and the horizontal alignment regions 912' correspond to the non-display region 12 of the flexible substrate to be formed.
  • the first substrate 91' and the second substrate 92' can be made of glass.
  • Step S2' referring to FIG. 13, a first electrode 93' is formed on the first substrate 91', and a second electrode 94' is formed on the second substrate 92'.
  • the first electrode 93' corresponds to the horizontal alignment region 912'
  • the second electrode 94' at least corresponds to the horizontal alignment region 912'.
  • a first vertical alignment layer 95' and a second vertical alignment layer 96' are respectively formed on the side of the first electrode 93' away from the first substrate 91' and the side of the second electrode 94' away from the second substrate 92', Both the first vertical alignment layer 95' and the second vertical alignment layer 96' at least correspond to the plurality of vertical alignment regions 911'.
  • the second electrode 94', the first vertical alignment layer 95', and the second vertical alignment layer 96' are all whole-surface structures, and are connected to a plurality of vertical alignment regions 911' and horizontal
  • the alignment area 912' corresponds.
  • first vertical alignment layer 95' and the second vertical alignment layer 96' are made by coating and are cured by heating.
  • the materials of the first vertical alignment layer 95' and the second vertical alignment layer 96' are both polyimide.
  • Step S3' referring to FIG. 14, the first vertical alignment layer 95' and the second vertical alignment layer 96' are arranged opposite to each other, and a liquid crystal material layer is formed between the first vertical alignment layer 95' and the second vertical alignment layer 96' 97', the liquid crystal material layer 97' includes a plurality of liquid crystal molecules 20', and the liquid crystal molecules 20' are negative liquid crystal molecules.
  • the liquid crystal material layer 97' also includes reactive monomers, intermediates, and photoinitiators.
  • Step S4' referring to FIG. 15, the first electrode 93' and the second electrode 94' are energized and the liquid crystal material layer 97' is cured.
  • the extension direction of the liquid crystal molecules 20' in the liquid crystal material layer 97' corresponding to the vertical alignment region 911' is perpendicular to the plane of the first substrate 91'.
  • the extension direction of the liquid crystal molecules 20' corresponding to the horizontal alignment region 912' in the liquid crystal material layer 97' is parallel to the plane where the first substrate 91' is located, forming a flexible substrate 1'.
  • the step of curing the liquid crystal material layer 97' in the step S4' specifically includes: first irradiating the liquid crystal material layer 97' with ultraviolet light to make the reactive monomers, intermediates and the liquid crystal material layer 97' The photoinitiator polymerizes, and then the liquid crystal material layer 97' is heated at a preset temperature for a preset time.
  • the preset temperature is 70-100°C, and the preset duration is 15-30h.
  • Step S5' separating the flexible substrate 1'from the first vertical alignment layer 95' and the second vertical alignment layer 96'.
  • the present invention also provides a flexible display device including the above-mentioned flexible substrate.
  • the flexible display device may be a liquid crystal display device
  • the flexible substrate may be an array substrate of a liquid crystal display device or a base substrate in a color filter substrate, or may be used as a flexible liquid crystal display device in the prior art.
  • Other substrates may be used as a flexible liquid crystal display device in the prior art.
  • the flexible display device may also be an OLED display device, and the flexible substrate may be used as a base substrate or cover plate of the OLED display device for forming a thin film transistor array layer and an OLED device, or may be used as a flexible substrate in the prior art.
  • Other substrates provided in the OLED display device may also be an OLED display device.
  • the flexible display device of the present invention includes the above-mentioned flexible substrate. Therefore, when the flexible display device is bent, the deformation amount of the non-display area 12 of the flexible substrate is small, so that the flexible display device corresponds to the non-display area 12
  • the electric drive device and the wiring have a small amount of deformation, which prevents the electric drive device and the wiring from being damaged due to bending, and improves the reliability of the flexible display device.
  • the sub-pixel display area 11 of the flexible substrate has strong flexibility. , So as to share the stress when bending the flexible display device to solve the abnormal alignment caused by excessive local deformation and improve the light leakage problem.
  • the flexible substrate of the present invention includes a base material and a plurality of liquid crystal molecules arranged in the base material.
  • the base material includes a plurality of sub-pixel display areas arranged in an array and a non-conductive substrate arranged outside the plurality of sub-pixel display areas.
  • each sub-pixel display area and non-display area are provided with a plurality of liquid crystal molecules, and the extension direction of the plurality of liquid crystal molecules in each sub-pixel display area is perpendicular to the plane where the flexible substrate is located, and the non-display area
  • the extension direction of the plurality of liquid crystal molecules is parallel to the plane where the flexible substrate is located, so that the non-display area in the flexible substrate has strong bending resistance, and the sub-pixel display area has strong flexibility, which can effectively reduce the shape of the non-display area when it is bent.
  • the variable, when applied to the flexible display device can reduce the risk of the electric drive device being damaged when the flexible display device is bent, and improve the reliability of the product.
  • the deformation amount of the non-display area during bending can be reduced, and the reliability of the flexible display device can be maintained.
  • the flexible display device of the present invention can reduce the amount of deformation of the non-display area when bending, and maintain the reliability of the flexible display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性基板(1)及其制作方法与柔性显示装置。柔性基板(1)包括基材(10)及设于基材(10)内的多个液晶分子(20,20'),基材(10)包括呈阵列式排布的多个子像素显示区(11)及设于多个子像素显示区(11)外侧的非显示区(12),每一子像素显示区(11)及非显示区(12)内均设有多个液晶分子(20,20'),每一子像素显示区(11)内的多个液晶分子(20,20')的延伸方向垂直于柔性基板(1)所在平面,非显示区(12)内的多个液晶分子(20,20')的延伸方向平行于柔性基板(1)所在平面,从而柔性基板(1)中非显示区(12)的抗弯折性强,子像素显示区(11)的柔性强,能够有效降低非显示区(12)在弯曲时的形变量,应用于柔性显示装置中时能够降低电驱动器件在柔性显示装置弯折时被损坏的风险,提升产品的可靠性。

Description

柔性基板及其制作方法与柔性显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性基板及其制作方法与柔性显示装置。
背景技术
在显示技术领域,液晶显示装置(Liquid Crystal Display,LCD) 、有机发光二极管(Organic Light-Emitting Diode,OLED)显示装置等平板显示装置已经逐步取代阴极射线管(Cathode Ray Tube,CRT)显示装置,得到了广泛的应用。
现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。通常液晶显示面板由彩膜(Color Filter,CF)基板、薄膜晶体管(Thin Film Transistor,TFT)阵列基板、夹于彩膜基板与薄膜晶体管阵列基板之间的液晶(Liquid Crystal,LC)及密封胶框(Sealant)组成。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
OLED通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层(HIL)、设于空穴注入层上的空穴传输层(HTL)、设于空穴传输层上的发光层、设于发光层上的电子传输层(ETL)、设于电子传输层上的电子注入层(EIL)及设于电子注入层上的阴极。OLED显示器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。
随着显示技术的不断发展,柔性显示装置越来越受到消费者的青睐。通常柔性显示装置整体的形变特性是均匀的,这就导致其在接受不均匀的外力时,不同位置形变量存在差异,导致不同位置的亮度均匀性降低,并且柔性显示装置中的电驱动器件的特性在显示装置受到拉伸或者压缩时也会受到破坏性的损伤,导致显示异常。
技术问题
本发明的目的在于提供一种柔性基板,应用于柔性显示装置时能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。
本发明的另一目的在于提供一种柔性基板的制作方法,制得的柔性基板应用于柔性显示装置时能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。
本发明的另一目的在于提供一种柔性显示装置,能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。
技术解决方案
为实现上述目的,本发明提供一种柔性基板,包括基材及设于基材内的多个液晶分子;所述基材包括呈阵列式排布的多个子像素显示区及设于多个子像素显示区外侧的非显示区;每一子像素显示区及非显示区内均设有多个液晶分子;每一子像素显示区内的多个液晶分子的延伸方向垂直于所述柔性基板所在平面;所述非显示区内的多个液晶分子的延伸方向平行于所述柔性基板所在平面。
所述非显示区内的多个液晶分子的延伸方向均与多个子像素显示区的行方向或列方向平行。
所述非显示区包括沿垂直于所述柔性基板所在平面的方向依次设置的第一子区域及第二子区域;第一子区域及第二子区域内均设有多个液晶分子;位于第一子区域内多个的液晶分子的延伸方向与多个子像素显示区的行方向平行,位于第二子区域内的多个液晶分子的延伸方向与多个子像素显示区的列方向平行。
所述基材的材料为聚合物。
本发明还提供一种上述柔性基板的制作方法,包括如下步骤:
步骤S1、提供两个衬底;每一衬底均包括呈阵列式排布的多个垂直配向区及设于多个垂直配向区外侧的水平配向区;
步骤S2、分别在每一衬底上制作配向层;所述配向层包括沿远离其所在的衬底的方向依次设置的第一子配向层及第二子配向层;所述第一子配向层与多个垂直配向区及水平配向区对应;所述第二子配向层与多个垂直配向区对应,第二子配向层为垂直配向层且第一子配向层为水平配向层;或者,所述第二子配向层与水平配向区对应,第二子配向层为水平配向层且第一子配向层为垂直配向层;
步骤S3、将两个配向层相对设置并在两个配向层之间形成液晶材料层;所述液晶材料层包括多个液晶分子,在两个配向层的作用下,液晶材料层中与垂直配向区对应的液晶分子的延伸方向与衬底所在平面垂直,液晶材料层中与水平配向区对应的液晶分子的延伸方向与衬底所在平面平行;
步骤S4、对液晶材料层进行固化,形成柔性基板。
所述柔性基板的制作方法还包括步骤S5、将柔性基板与两个配向层分离;
所述液晶材料层还包括反应性单体、中间体及光起始剂;
所述步骤S4中对液晶材料层进行固化的步骤具体为:先将液晶材料层以预设温度加热预设时长,而后利用紫外光对液晶材料层进行照射;
所述预设温度为70~100℃,所述预设时长为15~30h;
所述第二子配向层采用喷墨打印的方式制作。
本发明还提供一种上述柔性基板的制作方法,包括如下步骤:
步骤S1’、提供第一衬底及第二衬底;所述第一衬底包括呈阵列式排布的多个垂直配向区及设于多个垂直配向区外侧的水平配向区;
步骤S2’、在第一衬底上制作第一电极,在第二衬底上制作第二电极;所述第一电极与水平配向区对应,所述第二电极至少与水平配向区对应;在第一电极远离第一衬底的一侧及第二电极远离第二衬底的一侧分别制作第一垂直配向层及第二垂直配向层,第一垂直配向层及第二垂直配向层均至少与多个垂直配向区对应;
步骤S3’、将第一垂直配向层及第二垂直配向层相对设置并在第一垂直配向层及第二垂直配向层之间形成液晶材料层,所述液晶材料层包括多个液晶分子,所述液晶分子为负性液晶分子;
步骤S4’、向第一电极及第二电极通电并对液晶材料层进行固化,在第一垂直配向层及第二垂直配向层以及第一电极及第二电极之间的电场的作用下,液晶材料层中与垂直配向区对应的液晶分子的延伸方向与第一衬底所在平面垂直,液晶材料层中与水平配向区对应的液晶分子的延伸方向与第一衬底所在平面平行,形成柔性基板。
所述柔性基板的制作方法还包括步骤S5’、将柔性基板与第一垂直配向层及第二垂直配向层分离;
所述液晶材料层还包括反应性单体、中间体及光起始剂;
所述步骤S4’中对液晶材料层进行固化的步骤具体为:先利用紫外光对液晶材料层进行照射,而后将液晶材料层以预设温度加热预设时长;
所述预设温度为70~100℃,所述预设时长为15~30h。
本发明还提供一种柔性显示装置,包括上述的柔性基板。
所述柔性显示装置为液晶显示装置或OLED显示装置。
有益效果
本发明的有益效果:本发明的柔性基板包括基材及设于基材内的多个液晶分子,基材包括呈阵列式排布的多个子像素显示区及设于多个子像素显示区外侧的非显示区,每一子像素显示区及非显示区内均设有多个液晶分子,每一子像素显示区内的多个液晶分子的延伸方向垂直于所述柔性基板所在平面,非显示区内的多个液晶分子的延伸方向平行于所述柔性基板所在平面,从而柔性基板中非显示区的抗弯折性强,子像素显示区的柔性强,能够有效降低非显示区在弯曲时的形变量,应用于柔性显示装置中时能够降低电驱动器件在柔性显示装置弯折时被损坏的风险,提升产品的可靠性。本发明的柔性基板的制作方法制得的柔性基板应用于柔性显示装置时能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。本发明的柔性显示装置能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的柔性基板的第一实施例的局部俯视图;
图2为本发明的柔性基板的第一实施例的局部立体图;
图3为本发明的柔性基板的第一实施例的局部弯折示意图;
图4为本发明的柔性基板的第二实施例的局部俯视图 ;
图5为本发明的柔性基板的第二实施例的局部立体图;
图6为本发明的柔性基板的第三实施例的局部俯视图;
图7为本发明的柔性基板的第三实施例的局部立体图;
图8为本发明的柔性基板的制作方法的第一实施例的流程图;
图9为本发明的柔性基板的制作方法的第一实施例的步骤S1及步骤S2的示意图;
图10为本发明的柔性基板的制作方法的第一实施例的步骤S3的示意图;
图11为本发明的柔性基板的制作方法的第一实施例的步骤S4的示意图;
图12为本发明的柔性基板的制作方法的第二实施例的流程图;
图13为本发明的柔性基板的制作方法的第二实施例的步骤S1’及步骤S2’的示意图;
图14为本发明的柔性基板的制作方法的第二实施例的步骤S3’的示意图;
图15为本发明的柔性基板的制作方法的第二实施例的步骤S4’的示意图。
本发明的实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1至图3,本发明的第一实施例的柔性基板包括基材10及设于基材10内的多个液晶分子20。所述基材10包括呈阵列式排布的多个子像素显示区11及设于多个子像素显示区11外侧的非显示区12。每一子像素显示区11及非显示区12内均设有多个液晶分子20。每一子像素显示区11内的多个液晶分子20的延伸方向垂直于所述柔性基板所在平面。所述非显示区12内的多个液晶分子20的延伸方向平行于所述柔性基板所在平面。
具体地,所述柔性基板应用于柔性显示装置中,该柔性基板的子像素显示区11即对应柔性显示装置中每个子像素能够进行有效显示的区域,而柔性基板的非显示区12即对应柔性显示装置中用于进行电驱动器件及走线布置的区域。
进一步地,该柔性基板可应用于柔性液晶显示装置中,可作为柔性液晶显示装置的阵列基板或彩膜基板中的衬底基板,也可以作为现有技术中柔性液晶显示装置中设置的其他基板,该柔性基板也可以应用于柔性OLED显示装置中,可作为柔性OLED显示装置用于形成薄膜晶体管阵列层及OLED器件的衬底基板或者盖板,也可以作为现有技术中柔性OLED显示装置中设置的其他基板。
具体地,所述基材10的材料包括由反应性单体、中间体及光引发剂聚合形成的聚合物。
具体地,请结合图1及图2,在本发明的第一实施例中,所述非显示区12内的多个液晶分子20的延伸方向均与多个子像素显示区11的行方向平行,基于液晶分子的结构特性,具有液晶分子的膜层沿液晶分子延伸方向的形变量较低,从而请参阅图3,本发明的第一实施例适用于横向弯曲较多也即沿多个子像素显示区11的行方向拉伸较多的情况,当沿多个子像素显示区11的行方向拉伸第一实施例的柔性基板时,由于非显示区12内的多个液晶分子20的延伸方向均与多个子像素显示区11的行方向平行,因此非显示区12的形变量较小,使得柔性显示装置中对应非显示区12设置的电驱动器件及走线的形变量较小,防止由于弯曲造成电驱动器件及走线发生损坏,提升柔性显示装置的可靠性,同时由于子像素显示区11内液晶分子20的延伸方向与柔性基板所在平面平行,因此不论是从多个子像素显示区11的行方向还是列方向对柔性基板进行拉伸,子像素显示区11均具有很强的柔性,从而分担弯曲柔性显示装置时的应力以解决局部形变过大导致的对位异常,改善漏光问题。进一步地,若本发明的第一实施例应用于柔性液晶显示装置中时,由于柔性液晶显示装置分别在入光侧及出光侧设置下偏光片及上偏光片,因此需要将多个子像素显示区11的行方向设置为与下偏光片的偏光轴平行,从而使得非显示区12内的多个液晶分子20的延伸方向均与下偏光片的偏光轴平行,搭配子像素显示区11内的液晶分子20的延伸方向垂直于柔性基板所在平面,使得柔性基板整面的有效相位延迟量为0,不会影响正常的显示。
请参阅图4及图5,本发明的第二实施例的柔性基板与上述第一实施例的区别在于,所述非显示区12内的多个液晶分子20的延伸方向均与多个子像素显示区22的列方向平行,其余均与上述第一实施相同,在此不再进行赘述。
本发明的第二实施例适用于纵向弯曲较多也即沿多个子像素显示区11的列方向拉伸较多的情况,当沿多个子像素显示区11的列方向拉伸第二实施例的柔性基板时,由于非显示区12内的多个液晶分子20的延伸方向均与多个子像素显示区11的列方向平行,因此非显示区12的形变量较小,使得柔性显示装置中对应非显示区12设置的电驱动器件及走线的形变量较小,防止由于弯曲造成电驱动器件及走线发生损坏,提升柔性显示装置的可靠性,同时由于子像素显示区11内液晶分子20的延伸方向与柔性基板所在平面平行,因此不论是从多个子像素显示区11的行方向还是列方向对柔性基板进行拉伸,子像素显示区11均具有很强的柔性,从分担弯曲柔性基板时的应力以解决局部形变过大导致的对位异常,改善漏光问题。进一步地,若本发明的第二实施例应用于柔性液晶显示装置中时,需要将多个子像素显示区11的列方向设置为与下偏光片的偏光轴平行,从而使得非显示区12内的多个液晶分子20的延伸方向均与下偏光片的偏光轴平行,搭配子像素显示区11内的液晶分子20的延伸方向垂直于柔性基板所在平面,使得柔性基板整面的有效相位延迟量为0,不会影响正常的显示。
请参阅图6及图7,本发明的第三实施例的柔性基板与上述第一实施例的区别在于,所述非显示区12包括沿垂直于所述柔性基板所在平面的方向依次设置的第一子区域121及第二子区域122。第一子区域121及第二子区域122内均设有多个液晶分子20。位于第一子区域121内的多个液晶分子20的延伸方向与多个子像素显示区11的行方向平行,位于第二子区域121内的多个液晶分子20的延伸方向与多个子像素显示区22的列方向平行。其余均与第一实施相同,在此不再赘述。
本发明的第三实施例适用于弯曲方向不固定的情况,由于第一子区域121内的多个液晶分子20的延伸方向与多个子像素显示区11的行方向平行,第二子区域122内的多个液晶分子20的延伸方向与多个子像素显示区11的列方向平行,无论是沿多个子像素显示区11的列方向还是行方向拉伸第三实施例的柔性基板时,非显示区12的形变量均较小,使得柔性显示装置中对应非显示区12设置的电驱动器件及走线的形变量较小,防止由于弯曲造成电驱动器件及走线发生损坏,提升柔性显示装置的可靠性,同时由于子像素显示区11内液晶分子20的延伸方向与柔性基板所在平面平行,因此不论是从多个子像素显示区11的行方向还是列方向对柔性基板进行拉伸,子像素显示区11均具有很强的柔性,从而分担弯曲柔性显示装置时的应力以解决局部形变过大导致的对位异常,改善漏光问题。
基于同一发明构思,请参阅图8,本发明还提供一种上述柔性基板的制作方法,包括如下步骤:
步骤S1、请参阅图9,提供两个衬底91。每一衬底91均包括呈阵列式排布的多个垂直配向区911及设于多个垂直配向区911外侧的水平配向区912。多个垂直配向区911分别与待形成的柔性基板的多个子像素显示区11对应,水平配向区912与待形成的柔性基板的非显示区12对应。
具体地,该两个衬底91可以采用玻璃材质。
步骤S2、请参阅图9,分别在每一衬底91上制作配向层92。所述配向层92包括沿远离其所在的衬底91的方向依次设置的第一子配向层921及第二子配向层922。所述第一子配向层921与多个垂直配向区911及水平配向区912对应。所述第二子配向层922与多个垂直配向区911对应,第二子配向层922为垂直配向层且第一子配向层921为水平配向层。或者,所述第二子配向层922与水平配向区912对应,第二子配向层922为水平配向层且第一子配向层921为垂直配向层。在图9所示的实施例中,所述第二子配向层922与多个垂直配向区911对应,第二子配向层922为垂直配向层且第一子配向层921为水平配向层。
具体地,第一子配向层921采用涂布的方式制作并经过加热固化。
具体地,所述第二子配向层922采用喷墨打印的方式制作并经过加热固化。
具体地,第一子配向层921及第二子配向层922的材料均为聚酰亚胺(PI)。
步骤S3、请参阅图10,将两个配向层92相对设置并在两个配向层92之间形成液晶材料层93。所述液晶材料层93包括多个液晶分子20,在两个配向层92的作用下,液晶材料层93中与垂直配向区911对应的液晶分子20的延伸方向与衬底91所在平面垂直,液晶材料层93中与水平配向区912对应的液晶分子20的延伸方向与衬底91所在平面平行。
具体地,所述液晶材料层93还包括反应性单体、中间体及光起始剂。
进一步地,所述反应性单体为反应性液晶单体,中间体为正丁胺。
具体地,所述步骤S3在形成液晶材料层93后还对液晶材料层93进行封装。
步骤S4、请参阅图11,对液晶材料层93进行固化,形成上述的柔性基板1。
具体地,所述步骤S4中对液晶材料层93进行固化的步骤具体为:先将液晶材料层93以预设温度加热预设时长,而后利用紫外光对液晶材料层93进行照射使液晶材料层93中的反应性单体、中间体及光起始剂发生聚合。
优选地,所述预设温度为70~100℃,所述预设时长为15~30h。
步骤S5、将柔性基板1与两个配向层92分离。
请参阅图12,本发明还提供另一种上述柔性基板的制作方法,包括如下步骤:
步骤S1’、请参阅图13,提供第一衬底91’及第二衬底92’。所述第一衬底91’包括呈阵列式排布的多个垂直配向区911’及设于多个垂直配向区911’外侧的水平配向区912’。
多个垂直配向区911’分别与待形成的柔性基板的多个子像素显示区11对应,水平配向区912’与待形成的柔性基板的非显示区12对应。
具体地,该第一衬底91’及第二衬底92’可以采用玻璃材质。
步骤S2’、请参阅图13,在第一衬底91’上制作第一电极93’,在第二衬底92’上制作第二电极94’。所述第一电极93’与水平配向区912’对应,所述第二电极94’至少与水平配向区912’对应。在第一电极93’远离第一衬底91’的一侧及第二电极94’远离第二衬底92’的一侧分别制作第一垂直配向层95’及第二垂直配向层96’,第一垂直配向层95’及第二垂直配向层96’均至少与多个垂直配向区911’对应。在图13所示的实施例中,所述第二电极94’、第一垂直配向层95’及第二垂直配向层96’均为整面结构,均与多个垂直配向区911’及水平配向区912’对应。
具体地,第一垂直配向层95’及第二垂直配向层96’均采用涂布的方式制作并经过加热固化。
具体地,第一垂直配向层95’及第二垂直配向层96’的材料均为聚酰亚胺。
步骤S3’、请参阅图14,将第一垂直配向层95’及第二垂直配向层96’相对设置并在第一垂直配向层95’及第二垂直配向层96’之间形成液晶材料层97’,所述液晶材料层97’包括多个液晶分子20’,所述液晶分子20’为负性液晶分子。
具体地,所述液晶材料层97’还包括反应性单体、中间体及光起始剂。
步骤S4’、请参阅图15,向第一电极93’及第二电极94’通电并对液晶材料层97’进行固化,在第一垂直配向层95’及第二垂直配向层96’以及第一电极93’及第二电极94’之间的电场的作用下,液晶材料层97’中与垂直配向区911’对应的液晶分子20’的延伸方向与第一衬底91’所在平面垂直,液晶材料层97’中与水平配向区912’对应的液晶分子20’的延伸方向与第一衬底91’所在平面平行,形成柔性基板1’。
具体地,所述步骤S4’中对液晶材料层97’进行固化的步骤具体为:先利用紫外光对液晶材料层97’进行照射使液晶材料层97’中的反应性单体、中间体及光起始剂发生聚合,而后将液晶材料层97’以预设温度加热预设时长。
优选地,所述预设温度为70~100℃,所述预设时长为15~30h。
步骤S5’、将柔性基板1’与第一垂直配向层95’及第二垂直配向层96’分离。
基于同一发明构思,本发明还提供一种柔性显示装置,包括上述的柔性基板。
具体地,所述柔性显示装置可以为液晶显示装置,所述柔性基板可以为液晶显示装置的阵列基板或彩膜基板中的衬底基板,也可以作为现有技术中柔性液晶显示装置中设置的其他基板。
具体地,所述柔性显示装置还可以为OLED显示装置,所述柔性基板可以作为OLED显示装置用于形成薄膜晶体管阵列层及OLED器件的衬底基板或者盖板,也可以作为现有技术中柔性OLED显示装置中设置的其他基板。
需要说明的是,本发明的柔性显示装置包括上述的柔性基板,因此在对柔性显示装置进行弯曲时,柔性基板的非显示区12的形变量较小,使得柔性显示装置中对应非显示区12设置的电驱动器件及走线的形变量较小,防止由于弯曲造成电驱动器件及走线发生损坏,提升柔性显示装置的可靠性,同时柔性基板的子像素显示区11均具有很强的柔性,从而分担弯曲柔性显示装置时的应力以解决局部形变过大导致的对位异常,改善漏光问题。
综上所述,本发明的柔性基板包括基材及设于基材内的多个液晶分子,基材包括呈阵列式排布的多个子像素显示区及设于多个子像素显示区外侧的非显示区,每一子像素显示区及非显示区内均设有多个液晶分子,每一子像素显示区内的多个液晶分子的延伸方向垂直于所述柔性基板所在平面,非显示区内的多个液晶分子的延伸方向平行于所述柔性基板所在平面,从而柔性基板中非显示区的抗弯折性强,子像素显示区的柔性强,能够有效降低非显示区在弯曲时的形变量,应用于柔性显示装置中时能够降低电驱动器件在柔性显示装置弯折时被损坏的风险,提升产品的可靠性。本发明的柔性基板的制作方法制得的柔性基板应用于柔性显示装置时能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。本发明的柔性显示装置能够降低非显示区在弯曲时的形变量,保持柔性显示装置的可靠性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种柔性基板,包括基材及设于基材内的多个液晶分子;所述基材包括呈阵列式排布的多个子像素显示区及设于多个子像素显示区外侧的非显示区;每一子像素显示区及非显示区内均设有多个液晶分子;每一子像素显示区内的多个液晶分子的延伸方向垂直于所述柔性基板所在平面;所述非显示区内的多个液晶分子的延伸方向平行于所述柔性基板所在平面。
  2. 如权利要求1所述的柔性基板,其中,所述非显示区内的多个液晶分子的延伸方向均与多个子像素显示区的行方向或列方向平行。
  3. 如权利要求1所述的柔性基板,其中,所述非显示区包括沿垂直于所述柔性基板所在平面的方向依次设置的第一子区域及第二子区域;第一子区域及第二子区域内均设有多个液晶分子;位于第一子区域内的多个液晶分子的延伸方向与多个子像素显示区的行方向平行,位于第二子区域内的多个液晶分子的延伸方向与多个子像素显示区的列方向平行。
  4. 如权利要求1所述的柔性基板,其中,所述基材的材料为聚合物。
  5. 一种如权利要求1所述的柔性基板的制作方法,包括如下步骤:
    步骤S1、提供两个衬底;每一衬底均包括呈阵列式排布的多个垂直配向区及设于多个垂直配向区外侧的水平配向区(912);
    步骤S2、分别在每一衬底上制作配向层;所述配向层包括沿远离其所在的衬底的方向依次设置的第一子配向层及第二子配向层;所述第一子配向层与多个垂直配向区及水平配向区对应;所述第二子配向层与多个垂直配向区对应,第二子配向层为垂直配向层且第一子配向层为水平配向层;或者,所述第二子配向层与水平配向区对应,第二子配向层为水平配向层且第一子配向层为垂直配向层;
    步骤S3、将两个配向层相对设置并在两个配向层之间形成液晶材料层;所述液晶材料层包括多个液晶分子,在两个配向层的作用下,液晶材料层中与垂直配向区对应的液晶分子的延伸方向与衬底所在平面垂直,液晶材料层中与水平配向区对应的液晶分子的延伸方向与衬底所在平面平行;
    步骤S4、对液晶材料层进行固化,形成柔性基板。
  6. 如权利要求5所述的柔性基板的制作方法,还包括步骤S5、将柔性基板与两个配向层分离;
    所述液晶材料层还包括反应性单体、中间体及光起始剂;
    所述步骤S4中对液晶材料层进行固化的步骤具体为:先将液晶材料层以预设温度加热预设时长,而后利用紫外光对液晶材料层进行照射;
    所述预设温度为70~100℃,所述预设时长为15~30h;
    所述第二子配向层采用喷墨打印的方式制作。
  7. 一种如权利要求1所述的柔性基板的制作方法,包括如下步骤:
    步骤S1’、提供第一衬底及第二衬底;所述第一衬底包括呈阵列式排布的多个垂直配向区及设于多个垂直配向区外侧的水平配向区;
    步骤S2’、在第一衬底上制作第一电极,在第二衬底上制作第二电极;所述第一电极与水平配向区对应,所述第二电极至少与水平配向区对应;在第一电极远离第一衬底的一侧及第二电极远离第二衬底的一侧分别制作第一垂直配向层及第二垂直配向层,第一垂直配向层及第二垂直配向层均至少与多个垂直配向区对应;
    步骤S3’、将第一垂直配向层及第二垂直配向层相对设置并在第一垂直配向层及第二垂直配向层之间形成液晶材料层,所述液晶材料层包括多个液晶分子,所述液晶分子为负性液晶分子;
    步骤S4’、向第一电极及第二电极通电并对液晶材料层进行固化,在第一垂直配向层及第二垂直配向层以及第一电极及第二电极之间的电场的作用下,液晶材料层中与垂直配向区对应的液晶分子的延伸方向与第一衬底所在平面垂直,液晶材料层中与水平配向区对应的液晶分子的延伸方向与第一衬底所在平面平行,形成柔性基板。
  8. 如权利要求7所述的柔性基板的制作方法,还包括步骤S5’、将柔性基板与第一垂直配向层及第二垂直配向层分离;
    所述液晶材料层还包括反应性单体、中间体及光起始剂;
    所述步骤S4’中对液晶材料层进行固化的步骤具体为:先利用紫外光对液晶材料层进行照射,而后将液晶材料层以预设温度加热预设时长;
    所述预设温度为70~100℃,所述预设时长为15~30h。
  9. 一种柔性显示装置,包括如权利要求1所述的柔性基板。
  10. 如权利要求9所述的柔性显示装置,为液晶显示装置或OLED显示装置。
PCT/CN2019/124592 2019-05-27 2019-12-11 柔性基板及其制作方法与柔性显示装置 WO2020238146A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,356 US11226508B2 (en) 2019-05-27 2019-12-11 Flexible substrate, manufacturing method thereof, and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910448195.9 2019-05-27
CN201910448195.9A CN110161738B (zh) 2019-05-27 2019-05-27 柔性基板及其制作方法与柔性显示装置

Publications (1)

Publication Number Publication Date
WO2020238146A1 true WO2020238146A1 (zh) 2020-12-03

Family

ID=67629190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124592 WO2020238146A1 (zh) 2019-05-27 2019-12-11 柔性基板及其制作方法与柔性显示装置

Country Status (3)

Country Link
US (1) US11226508B2 (zh)
CN (1) CN110161738B (zh)
WO (1) WO2020238146A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161738B (zh) * 2019-05-27 2021-01-29 深圳市华星光电技术有限公司 柔性基板及其制作方法与柔性显示装置
CN111524946A (zh) * 2020-04-27 2020-08-11 武汉华星光电半导体显示技术有限公司 Oled显示面板及制备方法与显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093686A (zh) * 2015-02-06 2015-11-25 深圳市华星光电技术有限公司 液晶配向膜制作方法及反应机台
CN105652505A (zh) * 2014-12-02 2016-06-08 乐金显示有限公司 光控制装置及其制造方法
US20160291228A1 (en) * 2015-04-01 2016-10-06 Samsung Display Co., Ltd. Organic light emitting diode display
CN106201087A (zh) * 2016-07-13 2016-12-07 厦门天马微电子有限公司 一种显示面板和显示装置
CN108107637A (zh) * 2017-11-23 2018-06-01 深圳市华星光电技术有限公司 一种薄膜晶体管液晶显示器阵列基板及其制作方法
CN108333838A (zh) * 2018-03-06 2018-07-27 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN110161738A (zh) * 2019-05-27 2019-08-23 深圳市华星光电技术有限公司 柔性基板及其制作方法与柔性显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037668A (ko) * 2001-11-07 2003-05-14 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 제조방법
CN102081250A (zh) * 2010-11-23 2011-06-01 深圳市华星光电技术有限公司 显示面板及显示装置的制造方法
CN104280953A (zh) * 2014-10-24 2015-01-14 京东方科技集团股份有限公司 一种显示面板及其制作方法
KR20160087031A (ko) * 2015-01-12 2016-07-21 삼성디스플레이 주식회사 곡면 액정 표시 장치 및 그 제조 방법
CN104950525B (zh) * 2015-07-29 2018-01-02 厦门天马微电子有限公司 液晶显示面板及其制作方法、显示装置
CN106707636A (zh) * 2017-03-30 2017-05-24 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板制备方法
CN108398821B (zh) * 2018-03-22 2020-01-31 深圳市华星光电技术有限公司 柔性液晶显示面板的制作方法
CN109143653A (zh) * 2018-11-07 2019-01-04 深圳秋田微电子股份有限公司 柔性液晶显示装置及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652505A (zh) * 2014-12-02 2016-06-08 乐金显示有限公司 光控制装置及其制造方法
CN105093686A (zh) * 2015-02-06 2015-11-25 深圳市华星光电技术有限公司 液晶配向膜制作方法及反应机台
US20160291228A1 (en) * 2015-04-01 2016-10-06 Samsung Display Co., Ltd. Organic light emitting diode display
CN106201087A (zh) * 2016-07-13 2016-12-07 厦门天马微电子有限公司 一种显示面板和显示装置
CN108107637A (zh) * 2017-11-23 2018-06-01 深圳市华星光电技术有限公司 一种薄膜晶体管液晶显示器阵列基板及其制作方法
CN108333838A (zh) * 2018-03-06 2018-07-27 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN110161738A (zh) * 2019-05-27 2019-08-23 深圳市华星光电技术有限公司 柔性基板及其制作方法与柔性显示装置

Also Published As

Publication number Publication date
US11226508B2 (en) 2022-01-18
CN110161738A (zh) 2019-08-23
US20210333609A1 (en) 2021-10-28
CN110161738B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
KR100785147B1 (ko) 액정 표시 장치의 제조 방법
US7963217B2 (en) Apparatus and method for producing display panel
US8189167B2 (en) Mask holder for irradiating UV-rays
CN104570498B (zh) 可挠曲液晶面板及其制作方法
KR101799937B1 (ko) 경량 박형의 액정표시장치의 제조 방법
EP3367438B1 (en) Flexible electronic device and manufacturing method therefor
JPH10115833A (ja) 液晶表示素子の製造方法
US10394087B2 (en) Display panel and manufacturing method thereof
KR101605410B1 (ko) 디스플레이용 응력 부여 필름, 및 이를 포함하는 편광판 및 디스플레이 장치
US20130016308A1 (en) Liquid crystal display element, method for manufacturing same, and liquid crystal display device comprising the liquid crystal display element
WO2020238146A1 (zh) 柔性基板及其制作方法与柔性显示装置
US20100053535A1 (en) Display apparatus and method of fabrication the same
US20210231846A1 (en) Display panel, manufacturing method therefor and display device
US8325320B2 (en) Method for repairing LCD device and LCD device with using the same method
US11930687B2 (en) Organic light emitting diode display device with a blocking member
CN109765730B (zh) 配向膜的制作方法及配向膜
WO2020077751A1 (zh) 柔性基板、该柔性基板的制备方法及显示面板
WO2019127880A1 (zh) 柔性电路板保护层及oled显示装置
US10330986B2 (en) Exposure system and exposure method
JP2015055873A (ja) 液晶表示装置及びその製造方法
WO2020181601A1 (zh) 显示母板及显示面板
US20130021572A1 (en) Liquid crystal display device element, method for manufacturing same, and liquid crystal display device
WO2020113832A1 (zh) 一种有源矩阵有机发光二极管面板
CN109407411A (zh) 配向膜涂布方法及液晶面板
CN111295618A (zh) 液晶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930351

Country of ref document: EP

Kind code of ref document: A1