WO2020235534A1 - Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film - Google Patents

Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film Download PDF

Info

Publication number
WO2020235534A1
WO2020235534A1 PCT/JP2020/019675 JP2020019675W WO2020235534A1 WO 2020235534 A1 WO2020235534 A1 WO 2020235534A1 JP 2020019675 W JP2020019675 W JP 2020019675W WO 2020235534 A1 WO2020235534 A1 WO 2020235534A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
power storage
storage device
base material
exterior material
Prior art date
Application number
PCT/JP2020/019675
Other languages
French (fr)
Japanese (ja)
Inventor
寛典 上所
天野 真
立沢 雅博
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN202080036390.1A priority Critical patent/CN113825638B/en
Priority to JP2020547255A priority patent/JP6809657B1/en
Publication of WO2020235534A1 publication Critical patent/WO2020235534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, a power storage device, and a polyamide film.
  • an exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • a metal exterior material has been widely used as an exterior material for a power storage device.
  • recesses are generally formed by cold forming, and storage device elements such as electrodes and electrolytic solutions are arranged in the space formed by the recesses to form a thermosetting resin.
  • storage device elements such as electrodes and electrolytic solutions are arranged in the space formed by the recesses to form a thermosetting resin.
  • the power storage device In various products such as electrical equipment, the power storage device is firmly fixed to the product housing with double-sided tape or adhesive. Therefore, when the power storage device is removed from the housing of the product, a large external force is applied to the power storage device. Specifically, in general, the power storage device is removed from the housing by using a metal spatula or the like, and a large external force is applied to the power storage device. If a large external force is applied to the exterior material for the energy storage device made of a film-like laminate when the energy storage device is removed, the exterior material for the energy storage device may be damaged.
  • the present disclosure discloses an exterior material for a power storage device in which damage to the exterior material for the power storage device is suppressed when the power storage device fixed to the housing with double-sided tape or the like is peeled off from the housing.
  • the main purpose is to provide.
  • the inventors of the present disclosure have made diligent studies to solve the above problems.
  • it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in order from the outside, and the base material layer contains a polyamide film, and Fourier transform infrared spectroscopy.
  • the exterior material for a power storage device in which the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of the method is equal to or higher than a predetermined value covers the power storage device fixed to the housing with double-sided tape or the like. It has been found that damage to the exterior material for the power storage device is suppressed when the material is peeled off from the body.
  • the present disclosure has been completed by further studies based on these findings. That is, the present disclosure provides the inventions of the following aspects. From the outside, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer.
  • the base material layer contains a polyamide film and An exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • Exterior materials can be provided. Further, according to the present disclosure, a method for manufacturing an exterior material for a power storage device, a power storage device using the exterior material for the power storage device, and a polyamide film suitable for use as a base material layer for the exterior material for the power storage device are provided. It can also be provided.
  • the exterior material for a power storage device of the present disclosure is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the base material layer contains a polyamide film.
  • the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • the exterior material for a power storage device of the present disclosure is prevented from being damaged when the power storage device fixed to the housing with double-sided tape or the like is peeled off from the housing.
  • the exterior material for the power storage device of the present disclosure will be described in detail.
  • the numerical range indicated by “-” means “greater than or equal to” and “less than or equal to”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the exterior material 10 for power storage device of the present disclosure is, for example, as shown in FIG. 1, in order from the outside, a base material layer 1, a barrier layer 3, and a thermosetting resin layer 4. It is composed of a laminated body comprising.
  • the base material layer 1 is on the outermost layer side
  • the thermosetting resin layer 4 is on the innermost layer.
  • the peripheral portion is heat-sealed with the thermosetting resin layers 4 of the power storage device exterior material 10 facing each other.
  • the power storage device element is housed in the space formed by.
  • the heat-sealing resin layer 4 side is inside the barrier layer 3 and the base material layer 1 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
  • the exterior material 10 for a power storage device is used as necessary for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, for example, as shown in FIGS. 3 and 4, the adhesive layer 5 is required between the barrier layer 3 and the thermosetting resin layer 4 for the purpose of enhancing the adhesiveness between the layers. May have. Further, as shown in FIG. 5, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the thermosetting resin layer 4 side), if necessary.
  • the thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but the upper limit is preferably about 180 ⁇ m or less, about 155 ⁇ m or less, about 120 ⁇ m or less from the viewpoint of cost reduction, energy density improvement, and the like. From the viewpoint of maintaining the function of the exterior material for the power storage device, which is to protect the power storage device element, the lower limit is preferably about 35 ⁇ m or more, about 45 ⁇ m or more, and about 60 ⁇ m or more, and the preferable range is about 60 ⁇ m or more.
  • 60 to 120 ⁇ m is particularly preferable.
  • the ratio of the total thickness of the adhesive layer 5, the thermosetting resin layer 4, and the surface coating layer 6 provided as needed is preferably 90% or more, more preferably 95% or more. More preferably, it is 98% or more.
  • the exterior material 10 for a power storage device of the present disclosure includes a base material layer 1, an adhesive layer 2, a barrier layer 3, an adhesive layer 5, and a thermosetting resin layer 4, the exterior for the power storage device
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the base material layer 1 of the exterior material 10 for a power storage device of the present disclosure contains a polyamide film, and the crystallization index of the polyamide film measured from the outside of the base material layer 1 by the ATR method of Fourier transform infrared spectroscopy. However, it is 1.50 or more.
  • the method for measuring the crystallization index of the base material layer 1 of the exterior material 10 for a power storage device of the present disclosure is as follows.
  • a sample is prepared by cutting the exterior material for a power storage device into a square of 100 mm ⁇ 100 mm.
  • the surface of the polyamide film located on the outside of the obtained sample is subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% by using the ATR measurement mode of FT-IR.
  • Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 can be used as the apparatus.
  • the peak intensity P around 1200 cm -1 derived from the absorption of ⁇ crystals of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystals were measured, and the peak intensity Q was measured.
  • the intensity ratio X P / Q of the peak intensity P with respect to the crystallization index is calculated.
  • the power storage device exterior material 10 When the outer surface of the power storage device exterior material 10 is made of the polyamide film of the base material layer 1, the power storage device exterior material 10 can be used as it is as a measurement target of the crystallization index. Further, when the base material layer 1 has a multilayer structure as described later and a resin film (for example, polyester film) different from the polyamide film is located outside the polyamide film, or when the base material layer 1 has a multilayer structure.
  • the outer surface of the exterior material 10 for a power storage device is not composed of the polyamide film of the base material layer 1, such as when the surface coating layer 6 described later is laminated on the outside, the position is located outside the polyamide film.
  • the crystallization index can be measured in a state where the layer is removed from the exterior material 10 for a power storage device and the surface of the polyamide film is exposed.
  • the crystallization index may be 1.50 or more, but from the viewpoint of more effectively suppressing damage to the power storage device exterior material during the above-mentioned peeling. Therefore, it is more preferably 1.55 or more, further preferably 1.60 or more, and particularly preferably 1.65 or more.
  • the upper limit of the crystallization index is not particularly limited, and examples thereof include 2.50 or less and 1.80 or less.
  • Preferred ranges of the crystallization index include, for example, 1.50 to 2.50, 1.60 to 2.50, 1.65 to 2.50, 1.50 to 1.80, and 1.60 to 1. 80, 1.65 to 1.80 and the like can be mentioned.
  • the draw ratio, the heat fixing temperature, and the post-heating in the manufacturing process of the polyamide film are used.
  • a method of promoting crystallization (promoting the formation of ⁇ -crystals) depending on the temperature and time of the film can be mentioned.
  • the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device.
  • the base material layer 1 is located on the outer layer side of the exterior material for the power storage device.
  • the base material layer 1 contains a polyamide film.
  • the crystallization index of the polyamide film measured from the outside of the base material layer 1 by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • the polyamide forming the polyamide film may be any polyamide having ⁇ crystals, and specifically, nylon 6, nylon 66, nylon 46, an aliphatic polyamide such as a copolymer of nylon 6 and nylon 66, or the like may be used. Can be mentioned. These polyamides may be used alone or in combination of two or more.
  • the polyamide film is preferably a nylon film.
  • the polyamide film may be an unstretched film or a stretched film.
  • the base material layer 1 contains an unstretched film
  • a resin polyamide
  • Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
  • the base material layer 1 is a stretched film, a stretched film prepared in advance is bonded when laminating the layers of the exterior material 10 for a power storage device.
  • Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable.
  • Examples of the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • the polyamide film is particularly preferably a biaxially stretched nylon film.
  • a polyamide film having a crystallization index of 1.50 or more measured by the ATR method of Fourier transform infrared spectroscopy can be produced as the base material layer 1.
  • the crystallization index can be increased by applying heat to the polyamide film in the manufacturing process of the exterior material 10 for the power storage device, and the crystallization index can be set to 1.50 or more.
  • the crystallization index measured by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more. It is preferably produced by using a certain polyamide film as the base material layer 1.
  • the present disclosure is made by using a polyamide film whose crystallization index has been adjusted to 1.50 or more in advance for the base material layer 1 and laminating it with each layer such as the barrier layer 3 and the thermosetting resin layer 4. It is preferable to manufacture the exterior material 10 for a power storage device. As shown in Examples described later, the polyamide film that is laminated on the exterior material 10 for the power storage device and contained in the base material layer 1 is more than the polyamide film before being applied to the exterior material 10 for the power storage device. The crystallization index of the film can be increased.
  • the thickness of the polyamide film is preferably about 3 ⁇ m or more, more preferably about 10 ⁇ m or more, and more preferably about 10 ⁇ m or more, from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. It is preferably about 50 ⁇ m or less, more preferably about 35 ⁇ m or less, and preferred ranges include about 3 to 50 ⁇ m, about 3 to 35 ⁇ m, about 10 to 50 ⁇ m, and about 10 to 35 ⁇ m, among which 10 to 35 ⁇ m. The degree is particularly preferable.
  • the base material layer 1 may further have a resin film different from the polyamide film.
  • the resin that forms a resin film different from the polyamide film include resins such as polyester, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. .. Further, the resin may be a copolymer of these resins, or may be a modified product of the copolymer. Further, it may be a mixture of these resins. Among these, polyester is preferable.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolymerized polyester examples include a copolymerized polyester containing ethylene terephthalate as a repeating unit.
  • copolymer polyester (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / terephthalate / (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like.
  • These polyesters may be used alone or in combination of two or more. Of these, polyethylene terephthalate and polybutylene terephthalate are preferable.
  • the polyester film is preferably a stretched polyester film, and more preferably a biaxially stretched polyester film.
  • the polyester film is particularly preferably a biaxially stretched polyethylene terephthalate film or a biaxially stretched polybutylene terephthalate film.
  • the thickness of the other resin film is not particularly limited as long as it does not interfere with the effect of the present invention, and is preferably about 3 ⁇ m or more. It is preferably about 10 ⁇ m or more, preferably about 50 ⁇ m or less, more preferably about 35 ⁇ m or less, and the preferred range is about 3 to 50 ⁇ m, about 3 to 35 ⁇ m, about 10 to 50 ⁇ m, and about 10 to 35 ⁇ m. Among these, about 10 to 35 ⁇ m is particularly preferable.
  • the base material layer 1 may be a single layer or may be composed of two or more layers as long as it contains a polyamide film, and from the viewpoint of thinning the exterior material 10 for a power storage device, the polyamide film It is preferably a single layer.
  • the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
  • the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and the like, preferably stretched nylon.
  • a laminate of a film and a stretched polyester film, and a laminate of two or more layers of stretched nylon film are preferable.
  • the base material layer 1 is a laminate of two layers of resin film
  • a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film is preferable, and nylon film and nylon film.
  • a laminate or a laminate of a polyethylene terephthalate film and a nylon film is more preferable.
  • the polyester resin film is the base material layer 1. It is preferably located in the outermost layer.
  • the two or more layers of resin films may be laminated via an adhesive.
  • Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later.
  • the method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable.
  • the laminating method can be mentioned.
  • the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
  • the lubricant is present on the surface of the base material layer 1.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable.
  • Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amide examples include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like.
  • unsaturated fatty acid amides include oleic acid amides and erucic acid amides.
  • substituted amide examples include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucate amide and the like.
  • methylolamide examples include methylolstearic acid amide.
  • saturated fatty acid bisamide examples include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearic.
  • saturated fatty acid bisamide examples include acid amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distearyl adipate amides, and N, N'-distearyl sebacic acid amides.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N'-diorail adipic acid amide, and N, N'-diorail sebacic acid amide. And so on.
  • Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like.
  • Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
  • the lubricant existing on the surface of the base material layer 1 may be one in which the lubricant contained in the resin constituting the base material layer 1 is exuded, or one in which the lubricant is applied to the surface of the base material layer 1. You may.
  • the total thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, and examples thereof include about 3 to 50 ⁇ m, preferably about 10 to 35 ⁇ m.
  • the exterior material for a power storage device of the present disclosure is placed on the base material layer 1 (opposite to the barrier layer 3 side of the base material layer 1) as necessary for the purpose of improving printability and moldability.
  • a coat layer (not shown) may be provided.
  • the coat layer is provided so as to be in contact with the base material layer 1.
  • the thickness of the coat layer is not particularly limited as long as it exhibits the above-mentioned function as the coat layer, and is, for example, about 0.01 to 0.40 ⁇ m, preferably about 0.01 to 0.30 ⁇ m, and more preferably 0.1. The range is about 0.30 ⁇ m. When the thickness is 0.01 ⁇ m or more, a layer having a uniform film thickness can be formed on the base material layer 1. As a result, it is possible to enable uniform printing without causing unevenness in the printability of the exterior material for the power storage device of the present disclosure, and to obtain uniform moldability.
  • the resin forming the coat layer examples include polyvinylidene chloride, vinylidene chloride-vinyl chloride copolymer, polyolefin, acid-modified polyolefin, polyester, epoxy resin, phenol resin, fluororesin, cellulose ester, polyurethane, acrylic resin, and polyamide. And various synthetic resins such as. Among these, polyurethane, polyester and acrylic resin are preferable.
  • the coat layer may contain a lubricant or an additive, if necessary, in order to improve the slipperiness.
  • a lubricant include the same lubricants as those described above.
  • the additive the same additives as those exemplified in the surface coating layer 6 described later are exemplified. The content and particle size of these lubricants and additives are appropriately adjusted according to the thickness of the coat layer.
  • the exterior material for a power storage device of the present disclosure has, if necessary, one side of the base material layer 1 (the barrier layer 3 side of the base material layer 1) for the purpose of improving the adhesiveness with the layer adjacent to the base material layer.
  • a coat layer (not shown) may be provided on both sides of the base material layer 1 on the side opposite to the barrier layer 3). That is, the coat layer provided on the base material layer may be a layer for the purpose of improving printability, moldability, etc., or a layer for the purpose of improving the adhesiveness of the base material layer. May be good.
  • the resin forming the coat layer and the thickness similar to the resin and the thickness of the coat layer described above are exemplified. Further, although the above-mentioned lubricants and additives may be included, it is preferable not to include the lubricants and additives when there is a layer adjacent to the base material layer of the coat layer.
  • the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness.
  • the adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3.
  • the adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
  • the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; Polyolefin such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; Polyvinyl acetate; Cellulose; (meth) acrylic resin; Polyethylene; Polyolefin; Amino resin such as urea resin and melamine resin; Rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; Silicone resin and the like.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, poly
  • adhesive components may be used alone or in combination of two or more.
  • a polyurethane adhesive is preferable.
  • the resin as an adhesive component can be used in combination with an appropriate curing agent to increase the adhesive strength.
  • An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
  • polyurethane adhesive examples include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound.
  • a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • the adhesive layer 2 is formed of the polyurethane adhesive, excellent electrolyte resistance is imparted to the exterior material for the power storage device, and even if the electrolyte adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
  • the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, etc., as long as the adhesiveness is not hindered, the addition of other components is permitted. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isowearnine-based, and benzimidazolone-based pigments, which are inorganic.
  • pigments include carbon black pigments, titanium oxide pigments, cadmium pigments, lead pigments, chromium oxide pigments, iron pigments, copper pigments, and other pigments such as mica (mica) fine powder and fish scale foil. Be done.
  • the pigment can be used alone, but two or more kinds can be mixed and used, for example, a mixture of an organic pigment and an inorganic pigment may be used.
  • colorants for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
  • the average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 8 to 40% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, but the lower limit is, for example, about 1 ⁇ m or more and about 2 ⁇ m or more, and the upper limit is about 10 ⁇ m or less. , About 5 ⁇ m or less, and preferred ranges include about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown).
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the coloring layer, the exterior material for the power storage device can be colored.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1, the surface of the adhesive layer 2, or the surface of the barrier layer 3.
  • a colorant known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
  • the barrier layer 3 is at least a layer that suppresses the infiltration of water.
  • the barrier layer 3 examples include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like.
  • the vapor deposition film examples include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like
  • the resin layer includes polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE).
  • CTFE chlorotrifluoroethylene
  • TFE fluoroethylene
  • TFE fluoroethylene
  • TFE fluoroalkyl group
  • fluorine-containing resins such as polymers containing a fluoroalkyl unit as a main component
  • ethylene vinyl alcohol copolymers examples include ethylene vinyl alcohol copolymers.
  • examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material.
  • Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate.
  • the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the moldability. Therefore, it is preferable that the aluminum alloy foil contains iron.
  • the iron-containing aluminum alloy foil (100% by mass) the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass.
  • the iron content is 0.1% by mass or more, an exterior material for a power storage device having more excellent moldability can be obtained.
  • the iron content is 9.0% by mass or less, a more flexible exterior material for a power storage device can be obtained.
  • the soft aluminum alloy foil for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
  • stainless steel foils examples include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of providing an exterior material for a power storage device having excellent moldability, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 ⁇ m.
  • the thickness of the barrier layer 3 is, for example, preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, particularly preferably about 35 ⁇ m or less, and the lower limit is preferably about about.
  • 10 ⁇ m or more, more preferably about 20 ⁇ m or more, more preferably about 25 ⁇ m or more, and preferable ranges of the thickness are about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, and about 20 to.
  • the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable.
  • the upper limit of the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less. More preferably, it is about 30 ⁇ m or less, particularly preferably about 25 ⁇ m or less, and the lower limit is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more, and the preferred thickness range is about 10 to 60 ⁇ m, 10 Examples thereof include about 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, about 15 to 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m.
  • the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the base material layer in order to prevent dissolution and corrosion.
  • the barrier layer 3 may be provided with a corrosion-resistant film on both sides.
  • the corrosion-resistant film is, for example, a hot-water transformation treatment such as boehmite treatment, a chemical conversion treatment, anodizing treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer.
  • This is a thin film that makes the barrier layer corrosive.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be combined.
  • the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by a treatment agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of chemical conversion process.
  • the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
  • the corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the barrier layer surface from melting and corroding, and the adhesiveness (wetness) of the barrier layer surface. The effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding is shown.
  • the barrier layer for example, aluminum alloy foil
  • Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples include a corrosion-resistant film containing.
  • Examples of the chemical conversion treatment using a phosphate or a chromate include a chromate chromate treatment, a phosphoric chromate treatment, a phosphoric acid-chromate treatment, a chromate treatment, and the like, and chromium used in these treatments.
  • Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium dichromate, acetylacetate chromate, chromium chloride, and chromium potassium sulfate.
  • examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like.
  • examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable.
  • At least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like.
  • Degreasing treatment is performed by the treatment method, and then, a metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zyroxide) salt, Zn (zinc) phosphate, etc. is applied to the degreased surface.
  • a treatment liquid for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable.
  • examples of the resin component used at this time include polymers such as phenolic resin and acrylic resin, and an amination phenol polymer having a repeating unit represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good.
  • the acrylic resin shall be polyacrylic acid, acrylic acid methacrylate copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives of these sodium salts, ammonium salts, amine salts, etc. Is preferable.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt, a sodium salt, or a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride.
  • it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl groups.
  • Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group and 3-. Linear or branched chain with 1 to 4 carbon atoms in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted.
  • Alkyl groups can be mentioned.
  • the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred.
  • the amination phenol polymer for example, polycondenses a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then formsaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using amine (R 1 R 2 NH).
  • the aminated phenol polymer is used alone or in combination of two or more.
  • the corrosion resistant film it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied.
  • the thin film to be used is mentioned.
  • the coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer.
  • fine particles of rare earth element oxide for example, particles having an average particle size of 100 nm or less
  • the rare earth element oxide examples include cerium oxide, yttrium oxide, neodymium oxide, lanthanum oxide and the like, and cerium oxide is preferable from the viewpoint of further improving adhesion.
  • the rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more.
  • various solvents such as water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester solvent, ether solvent and the like can be used, and water is preferable.
  • the cationic polymer examples include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable.
  • the anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent.
  • the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
  • a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
  • the corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary.
  • a cationic polymer and an anionic polymer include those described above.
  • composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating type chromate treatment, a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the thermosetting resin layer. The degree, more preferably about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy.
  • the time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
  • secondary ion consisting Ce and P and O e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species
  • secondary ion of Cr and P and O e.g., CrPO 2 +, CrPO 4 - peak derived from at least one
  • a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C.
  • the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer.
  • an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment it is possible to form not only the degreasing effect of the metal foil but also the fluoride of the metal which is immobile. In this case, only the degreasing treatment may be performed.
  • thermosetting resin layer 4 In the exterior material for a power storage device of the present disclosure, the thermosetting resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
  • the resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • the fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the thermosetting resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • thermosetting resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene).
  • Polypropylene such as (block copolymer of ethylene), random copolymer of polypropylene (for example, random copolymer of propylene and ethylene); propylene- ⁇ -olefin copolymer; terpolymer of ethylene-butene-propylene and the like.
  • polypropylene is preferable.
  • the polyolefin resin may be a block copolymer or a random copolymer.
  • One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
  • the polyolefin may be a cyclic polyolefin.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done.
  • cyclic monomer which is a constituent monomer of the cyclic polyolefin examples include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
  • the acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component.
  • the acid-modified polyolefin the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used.
  • the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • the acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. is there.
  • the acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin.
  • Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • thermosetting resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the thermosetting resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
  • thermosetting resin layer 4 may contain a lubricant or the like, if necessary.
  • a lubricant is not particularly limited, and a known lubricant can be used.
  • the lubricant may be used alone or in combination of two or more.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for the power storage device. , More preferably about 15 to 40 mg / m 2 .
  • the lubricant existing on the surface of the thermosetting resin layer 4 may be one in which the lubricant contained in the resin constituting the thermosetting resin layer 4 is exuded, or the lubricant contained in the thermosetting resin layer 4 may be exuded.
  • the surface may be coated with a lubricant.
  • the thickness of the thermosetting resin layer 4 is not particularly limited as long as the thermosetting resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 ⁇ m or less, preferably. It is about 85 ⁇ m or less, more preferably about 15 to 85 ⁇ m.
  • the thickness of the thermosetting resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m, for example.
  • the thickness of the thermosetting resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. The degree can be mentioned.
  • the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the thermosetting resin layer 4 as necessary in order to firmly bond them. It is a layer to be corroded.
  • the adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the thermosetting resin layer 4 to each other.
  • the resin used for forming the adhesive layer 5 for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used.
  • the resin used for forming the adhesive layer 5 preferably contains a polyolefin skeleton, and examples thereof include the polyolefins exemplified in the above-mentioned heat-sealing resin layer 4 and acid-modified polyolefins.
  • the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited. Further, when the resin constituting the adhesive layer 5 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • an acid-modified polyolefin a polyolefin modified with a carboxylic acid or an anhydride thereof, a polypropylene modified with a carboxylic acid or an anhydride thereof, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene are particularly preferable.
  • the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferable that it is a cured product of.
  • the acid-modified polyolefin the above-mentioned ones are preferably exemplified.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an amide ester resin is preferable.
  • the amide ester resin is generally produced by the reaction of a carboxyl group and an oxazoline group.
  • the adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin.
  • a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the curing agent having a C—C bond examples include a curing agent having an oxazoline group, a curing agent having an epoxy group, and polyurethane.
  • the fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
  • GCMS gas chromatograph mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • -SIMS X-ray photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers.
  • an adduct body, a burette body, an isocyanate body and the like can be mentioned.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • Examples of the compound having an epoxy group include an epoxy resin.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
  • epoxy resin examples include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the polyurethane is not particularly limited, and known polyurethane can be used.
  • the adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
  • the proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
  • the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the upper limit of the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, about 5 ⁇ m or less, and the lower limit is preferably about 0.1 ⁇ m or more.
  • the thickness range is preferably about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, 0. 1.
  • the thickness is preferably about 1 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the resin exemplified in the thermosetting resin layer 4 it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. As a result, the adhesive layer 5 can be formed. Further, when the resin exemplified in the thermosetting resin layer 4 is used, it can be formed by, for example, extrusion molding of the thermosetting resin layer 4 and the adhesive layer 5.
  • the exterior material for a power storage device of the present disclosure is above the base material layer 1 (base material layer 1), if necessary, for the purpose of improving at least one of designability, electrolyte resistance, scratch resistance, moldability, and the like.
  • the surface coating layer 6 may be provided on the side opposite to the barrier layer 3 of the above.
  • the surface coating layer 6 is a layer located on the outermost layer side of the exterior material for the power storage device when the power storage device is assembled using the exterior material for the power storage device.
  • the surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
  • the resin forming the surface coating layer 6 is a curable resin
  • the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type.
  • the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
  • Examples of the two-component curable polyurethane include polyurethane containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound.
  • a polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Since the surface coating layer 6 is made of polyurethane, excellent electrolyte resistance is imparted to the exterior material for the power storage device.
  • the surface coating layer 6 is provided with the above-mentioned lubricant or antistatic agent, if necessary, depending on the surface coating layer 6 and the functionality to be provided on the surface thereof. It may contain additives such as a blocking agent, a matting agent, a flame retardant, an antioxidant, a tackifier, and an antistatic agent.
  • additives such as a blocking agent, a matting agent, a flame retardant, an antioxidant, a tackifier, and an antistatic agent.
  • the additive include fine particles having an average particle diameter of about 0.5 nm to 5 ⁇ m.
  • the average particle size of the additive shall be the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the additive may be either an inorganic substance or an organic substance.
  • the shape of the additive is also not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, and scaly shapes.
  • additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodium oxide, and antimony oxide.
  • Titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, refractory nylon, acrylate resin examples thereof include crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper and nickel.
  • the additive may be used alone or in combination of two or more.
  • silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the additive may be subjected to various surface treatments such as an insulation treatment and a highly dispersible treatment on the surface.
  • the method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin for forming the surface coating layer 6.
  • a resin mixed with the additive may be applied.
  • the thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions as the surface coating layer 6, and examples thereof include about 0.5 to 10 ⁇ m, preferably about 1 to 5 ⁇ m.
  • the method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present disclosure is laminated can be obtained, and the method is not particularly limited. At least, a method including a step of laminating the base material layer 1, the barrier layer 3, and the thermosetting resin layer 4 in this order can be mentioned.
  • the method for producing an exterior material for a power storage device of the present disclosure includes a step of obtaining a laminate in which at least a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside.
  • the base material layer contains a polyamide film, and the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50. That is all.
  • a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter, may be referred to as “laminate A”) is formed.
  • the layered body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being coated and dried by a coating method such as a roll coating method.
  • thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A.
  • the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it.
  • the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A.
  • a method of laminating 4 by extruding (co-extrusion laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and this is laminated.
  • a laminated body in which the adhesive layer 5 is laminated on the barrier layer 3 of the laminated body A is formed by a method of laminating on the barrier layer 3 of the above, and this is formed by a heat-sealing resin layer 4 and a thermal laminating method.
  • Method of Laminating (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 formed into a sheet in advance, the adhesive layer 5 is passed through.
  • a method of laminating the laminate A and the heat-sealing resin layer 4 (sandwich lamination method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminate A is performed.
  • Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 having a sheet-like film formed in advance on the adhesive layer 5.
  • the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above resin that forms the surface coating layer 6 to the surface of the base material layer 1.
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
  • each layer constituting the laminated body may be subjected to surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc., if necessary, to improve processing suitability. ..
  • surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc.
  • a corona treatment to the surface of the base material layer 1 opposite to the barrier layer 3, the printability of ink on the surface of the base material layer 1 can be improved.
  • exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
  • a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward in the exterior material for the power storage device of the present disclosure.
  • the peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed.
  • thermosetting resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). ) To form a package.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
  • the power storage device is generally fixed to the housing of various products via double-sided tape or an adhesive. That is, the exterior material 10 for a power storage device of the present disclosure is fixed to the housing of various products via double-sided tape or an adhesive.
  • the material of the housing varies depending on the type of product, and includes, for example, metals such as stainless steel, aluminum alloys and nickel alloys, plastics such as polyolefins, polyamides, polyesters, polyimides and polystyrenes, and glass.
  • the adhesive strength between the power storage device and the housing is adjusted to such an extent that the power storage device can be peeled off from the housing, for example.
  • a double-sided tape having a peel strength of about 5 to 15 N / 7.5 mm with respect to the stainless steel plate measured by (measurement of the peel strength of the double-sided tape) described later is used. It is preferable that it is fixed.
  • the exterior material 10 for a power storage device can be suitably used for a power storage device fixed to the housing with a double-sided tape having a peel strength with respect to the housing of about 5 to 15 N / 7.5 mm.
  • polyamide film of the present disclosure is a polyamide film for use as a base material layer of an exterior material for a power storage device composed of a laminate including at least a base material layer, a barrier layer, and a thermosetting resin layer. Therefore, the crystallization index measured by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • the details of the exterior material 10 for the power storage device are as described above.
  • the crystallization index is preferably set to 1.50 or more for the polyamide film of the base material layer 1 of the exterior material 10 for a power storage device. This makes it possible to effectively prevent damage to the exterior material for the power storage device during the above-mentioned peeling. That is, the polyamide film of the present disclosure whose crystallization index has been adjusted to 1.50 or more in advance is used as the base material layer 1 and laminated with each layer such as the barrier layer 3 and the thermosetting resin layer 4. It is preferable to manufacture the exterior material 10 for the power storage device of the present disclosure.
  • the crystallization index of the polyamide film laminated on the power storage device exterior material 10 and contained in the base material layer 1 can be increased as compared with the polyamide film before being applied to the power storage device exterior material 10.
  • the crystallization index can be increased by applying heat to the polyamide film in the manufacturing process of the exterior material 10 for a power storage device.
  • the method for measuring the crystallization index of the polyamide film disclosed in the present disclosure is as follows.
  • a sample is prepared by cutting a polyamide film into a square of 100 mm ⁇ 100 mm.
  • the surface of the obtained sample is subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% using the ATR measurement mode of FT-IR.
  • the apparatus for example, Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 can be used. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of ⁇ crystals of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystals were measured, and the peak intensity Q was measured.
  • the intensity ratio X P / Q of the peak intensity P with respect to the crystallization index is calculated. (Measurement condition) Method: Macro ATR method Wavenumber resolution: 8 cm -1 Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge Incident angle: 45 ° Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1. Absorption peak intensity Y 1200: value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1 Y 1370: peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
  • the crystallization index may be 1.50 or more, but from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. , More preferably 1.55 or more, still more preferably 1.60 or more, and particularly preferably 1.65 or more.
  • the upper limit of the crystallization index is not particularly limited, and examples thereof include 2.50 or less and 1.80 or less.
  • Preferred ranges of the crystallization index include, for example, 1.50 to 2.50, 1.60 to 2.50, 1.65 to 2.50, 1.50 to 1.80, and 1.60 to 1. 80, 1.65 to 1.80 and the like can be mentioned.
  • the polyamide forming the polyamide film are as described in the item of the base material layer 1 of the exterior material 10 for the power storage device.
  • the polyamide film may be an unstretched film or a stretched film.
  • the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable.
  • the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
  • the polyamide film is particularly preferably a biaxially stretched nylon film.
  • the thickness of the polyamide film is preferably about 3 ⁇ m or more, more preferably about 10 ⁇ m or more, and more preferably about 10 ⁇ m or more, from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. It is preferably about 50 ⁇ m or less, more preferably about 35 ⁇ m or less, and preferred ranges include about 3 to 50 ⁇ m, about 3 to 35 ⁇ m, about 10 to 50 ⁇ m, and about 10 to 35 ⁇ m, among which 10 to 35 ⁇ m. The degree is particularly preferable.
  • Additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the inside of the polyamide film. Only one type of additive may be used, or two or more types may be mixed and used. The details of the additive are as described in the item of the base material layer 1 of the exterior material 10 for the power storage device.
  • Example 1-3 and Comparative Example 1-2 Stretched nylon (ONy) films (thickness 25 ⁇ m) were prepared as the base material layers. As will be described later, the stretched nylon films used in Examples 1-3 and Comparative Example 1-2 were prepared by changing the draw ratio and the heat-fixing temperature to adjust the crystallization index to the values shown in Table 1, respectively. is there. Erucic acid amide is applied as a lubricant to the stretched nylon film. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 ⁇ m)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried.
  • an adhesive two-component urethane adhesive
  • the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 25 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) /.
  • a laminated body of a barrier layer (thickness 40 ⁇ m) was prepared.
  • Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • Example 4 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer. As will be described later, the stretched nylon film used in Example 4 has a crystallization index adjusted to the values shown in Table 1 by changing the stretch ratio and the heat fixing temperature.
  • the stretched nylon film has a coat layer (a polyester polyurethane containing a lubricant coated with a thickness of 300 nm or less) on the surface opposite to the barrier layer, and a coat layer (polyester polyurethane) on the surface on the barrier layer side. , With a thickness of 300 nm or less).
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 35 ⁇ m)) was prepared.
  • an adhesive two-component urethane adhesive
  • the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) /.
  • a laminated body of a barrier layer was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • thermosetting resin layer By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 20 ⁇ m) / adhesive layer (3 ⁇ m). / Barrier layer (35 ⁇ m) / Adhesive layer (15 ⁇ m) / Thermosetting resin layer (15 ⁇ m) were laminated to obtain a laminated body (total thickness 88 ⁇ m).
  • Example 5 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 5 is the same as that used in Example 4.
  • the stretched nylon film has a coat layer (a polyester polyurethane containing a lubricant coated with a thickness of 300 nm or less) on the surface opposite to the barrier layer, and a coat layer (polyester polyurethane) on the surface on the barrier layer side. , With a thickness of 300 nm or less).
  • an aluminum alloy foil JIS H4160: 1994 A8021HO (thickness 30 ⁇ m)
  • an adhesive two-component urethane adhesive
  • the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) /.
  • a laminated body of a barrier layer (thickness 30 ⁇ m) was prepared.
  • Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • Example 6 As the base material layer, a stretched nylon (ONy) film having a coat layer (polyester polyurethane coated with a thickness of 300 nm or less) is used on the surface on the barrier layer side in the same manner as in Example 1 from the outside. Laminated body (total thickness 114 ⁇ m) in which a base material layer (thickness 25 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (23 ⁇ m) / thermosetting resin layer (23 ⁇ m) are laminated in this order.
  • Example 7 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 7 is the same as that used in Example 4.
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 35 ⁇ m)) was prepared.
  • the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness).
  • a laminated body of 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) / barrier layer (35 ⁇ m thickness) was prepared.
  • Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 ⁇ m.
  • Surface coating layer (thickness 3 ⁇ m) / base material layer (thickness 20 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (35 ⁇ m) / adhesive layer (15 ⁇ m) / heat in this order from the outside.
  • a laminated body (total thickness 91 ⁇ m) in which a fusible resin layer (15 ⁇ m) was laminated was obtained.
  • Example 8 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 8 is the same as that used in Example 4.
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 ⁇ m)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) /.
  • a laminated body of a barrier layer (thickness 40 ⁇ m) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • Example 9 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 9 is the same as that used in Example 4.
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 ⁇ m)) was prepared.
  • the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness).
  • a laminated body of 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) / barrier layer (40 ⁇ m thickness) was prepared.
  • Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 ⁇ m.
  • Surface coating layer (thickness 3 ⁇ m) / base material layer (thickness 20 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (14 ⁇ m) / heat, in order from the outside.
  • a laminated body (total thickness 90 ⁇ m) in which a fusible resin layer (10 ⁇ m) was laminated was obtained.
  • Example 10 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 10 is the same as that used in Example 4.
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 ⁇ m)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) /.
  • a laminated body of a barrier layer (thickness 40 ⁇ m) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • Example 11 A stretched nylon (ONy) film (thickness 20 ⁇ m) was prepared as a base material layer.
  • the stretched nylon film used in Example 11 is the same as that used in Example 4.
  • As a barrier layer an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 ⁇ m)) was prepared.
  • the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness).
  • a laminated body of 20 ⁇ m) / adhesive layer (thickness after curing 3 ⁇ m) / barrier layer (40 ⁇ m thickness) was prepared.
  • Both sides of the aluminum alloy foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
  • a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 ⁇ m.
  • Surface coating layer (thickness 3 ⁇ m) / base material layer (thickness 20 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (15 ⁇ m) / heat, in order from the outside.
  • a laminated body (total thickness 96 ⁇ m) in which a fusible resin layer (15 ⁇ m) was laminated was obtained.
  • a sample was prepared by cutting the exterior material for a power storage device into a square of 100 mm ⁇ 100 mm.
  • the surface of the stretched nylon film located on the outside of the obtained sample was manufactured by Thermo Fisher Scientific Co., Ltd .: using the ATR measurement mode of Nicolet iS10 FT-IR under an environment of a temperature of 25 ° C. and a relative humidity of 50%. Infrared absorption spectrum measurement was performed in.
  • a sample was prepared by cutting a stretched nylon film used for the base material layer of the exterior material for a power storage device into a square of 100 mm ⁇ 100 mm.
  • the surface of the obtained sample was subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% using the ATR measurement mode of Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 FT-IR. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of ⁇ crystal of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystal were measured, and the peak intensity Q was measured.
  • the intensity ratio X P / Q of the peak intensity P with respect to the above was calculated as the crystallization index.
  • the results are shown in Table 1. (Measurement condition) Method: Macro ATR method Wavenumber resolution: 8 cm -1 Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge Incident angle: 45 ° Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1.
  • Absorption peak intensity Y 1200 value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1
  • Y 1370 peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
  • the peeling test of the power storage device was performed according to the following procedure. This will be described with reference to FIGS. 5 to 8.
  • a procedure for preparing a sample used for a peeling test of a power storage device will be described with reference to FIG.
  • the exterior material for a power storage device is cut into a rectangular shape having a length (MD) of 200 mm and a width (TD) of 90 mm.
  • TD width
  • a molding die female mold
  • a recess M (a region surrounded by a broken line in FIG. 5a) was formed by cold molding at a distant position to a depth of 5.0 mm from the thermosetting resin layer side.
  • an acrylic plate having a length of 55 mm, a width of 32 mm, and a thickness of 5 mm was inserted into the recess M (FIGS. 5b and c).
  • the exterior material for the power storage device after molding was folded in half in the TD direction at the position of the crease P (the position along the short side of the recess M) so that the recess M was on the inside (FIG. 5d).
  • thermosetting resin layers overlap each other is heat-sealed (190 ° C., 3 seconds, surface pressure 1 MPa) at three locations along the MD and TD along the peripheral edge of the recess M.
  • the recess M was sealed (FIG. 5e).
  • the colored region S is a heat-sealed portion.
  • the sample 12 used for the peeling test of the power storage device was prepared by trimming to a size of 60 mm in length (MD) and 37 mm in width (TD) along the recess M.
  • FIG. 6 shows a side view (FIG. 6a) and a plan view (FIG. 6b) of the sample 12.
  • the sample 12 to which the double-sided tape was attached was attached to a stainless steel plate and cured in an environment of 60 ° C. for 24 hours.
  • the stainless steel plate is likened to a housing for fixing the power storage device with double-sided tape.
  • the sample 12 was carefully peeled off from the stainless steel plate using a metal spatula, and the presence or absence of holes in the peeled sample 12 was visually confirmed, and each sample 3 was visually confirmed.
  • the peeling test of the power storage device was evaluated according to the following criteria. As shown in FIG. 8, the power storage device was peeled off by applying a force from the lateral direction (TD) of the sample 12. The results are shown in Table 1.
  • B There was a hole in one or two samples.
  • C All three samples had holes.
  • the exterior materials for power storage devices of Examples 1 to 11 are composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the base material layer is a polyamide.
  • the film is included, and the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • the polyamide film used for the base material layer of the exterior material for the power storage device of Examples 1 to 11 has a crystallization index of 1.50 or more measured by the ATR method of Fourier transform infrared spectroscopy. It can be seen that the exterior materials for power storage devices of Examples 1 to 11 effectively suppress damage to the exterior materials for power storage devices when the power storage device fixed with double-sided tape or the like is peeled off from the housing.
  • the difference between the crystallization index measured for the base material layer of the exterior material for the power storage device and the crystallization index measured for the stretched nylon film is considered to be the effect of aging of the exterior material for the power storage device.
  • the stretched nylon films used in Comparative Examples 1 and 2 had a crystallization index value significantly smaller than that of Examples 1 to 11, but the value measured after the base layer of the exterior material for the power storage device was stretched. It is considerably larger than the value measured in the state of nylon film.
  • the crystallization index of the polyamide film measured from the outside of the base material layer could not be increased to 1.50 or more by the aging of the exterior material for the power storage device, and the power storage device was peeled off.
  • the test evaluation was inferior to Examples 1 to 11.
  • Exterior materials for power storage devices (length 15 mm x width 70 mm) of Examples 1 to 11, double-sided tape (length 7.5 mm x width 60 mm) used in ⁇ Peeling test of power storage device>, and aluminum foil (thickness 35 ⁇ m).
  • a double-sided adhesive tape for fixing (length 5 mm x width 60 mm) and an acrylic plate (thickness 3 mm x length 50 mm x width 70 mm) were prepared.
  • the surface of the exterior material for the power storage device on the stretched nylon film side (Examples 4 and 5 are the surfaces of the coat layer on the stretched nylon film, and Examples 7, 9 and 11 are on the stretched nylon film.
  • the surface of the surface coating layer) and one side of the double-sided tape are bonded together, and then an aluminum foil is bonded to the other side of the double-sided tape, and a 2 kg roller is reciprocated once from the top of the aluminum foil to obtain a laminate P. It was. Further, the acrylic plate and one side of the fixing double-sided adhesive tape were bonded to obtain a laminated body Q. Further, the surface of the heat-sealing resin layer of the exterior material for the power storage device of the laminate P is attached to the other surface of the double-sided adhesive tape for fixing the laminate Q, and the surface of the heat-sealing resin layer is pressed by hand to adhere the acrylic plate and the double-sided adhesive for fixing.
  • the test sample M was stored in an environment at a temperature of 60 ° C. for 24 hours.
  • the surface of the stretched nylon film of the exterior material for the power storage device and the end portion of the double-sided tape were peeled off by about 1 mm to provide a trigger portion for measuring the peeling strength.
  • the acrylic plate of the test sample M is fixed, and a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) is used under the conditions of a tensile angle of 180 °, a peeling speed of 300 mm / min, and a peeling distance of 50 mm or more.
  • a tensile tester manufactured by Shimadzu Corporation, AG-Xplus (trade name)
  • the aluminum foil is pulled and peeled off at the interface between the stretched nylon film surface of the exterior material for the power storage device and the double-sided tape (from the above-mentioned trigger portion), and the peeling strength at peeling distances of 10 mm, 20 mm, 30 mm, and 40 mm and 10
  • the average of the total five peel strengths of the maximum peel strengths between about 40 mm was calculated and used as the peel strength (the peel strength of the double-sided tape against the stretched nylon film (N / 7.5 mm)). The results are shown in Table 2.
  • test sample N The test sample N was stored in an environment at a temperature of 60 ° C. for 24 hours.
  • the surface of the stainless steel plate and the end portion of the double-sided tape were peeled off by about 1 mm to provide a trigger portion for measuring the peeling strength.
  • the stainless steel plate of the test sample N is fixed, and a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) is used under the conditions of a tensile angle of 180 °, a peeling speed of 300 mm / min, and a peeling distance of 50 mm or more.
  • Item 1 From the outside, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer.
  • the base material layer contains a polyamide film and An exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • Item 2. Item 2. The exterior material for a power storage device according to Item 1, wherein an adhesive layer is provided between the base material layer and the barrier layer.
  • Item 3. Item 2.
  • the exterior material for a power storage device according to Item 1 or 2, wherein an adhesive layer is provided between the barrier layer and the thermosetting resin layer.
  • Item 4. A step of obtaining a laminate in which at least a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
  • the base material layer contains a polyamide film and A method for producing an exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  • Item 6 A polyamide film for use in the base material layer of an exterior material for a power storage device composed of a laminate including at least a base material layer, a barrier layer, and a thermosetting resin layer.
  • the polyamide film is a polyamide film having a crystallization index of 1.50 or more as measured by the ATR method of Fourier transform infrared spectroscopy.
  • Base material layer 2 Adhesive layer 3 Barrier layer 4 Thermosetting resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Abstract

Provided is an exterior material which is for a power storage device and is not easily damaged when the power storage device fixed to a case with a double-sided tape, etc., is removed from the case. This exterior material for a power storage comprises a laminate having at least a substrate layer, a barrier layer, and a thermally fusible resin layer in this order from the outside, wherein the substrate layer includes a polyamide film, and the crystallization index of the polyamide film is 1.50 or more as measured from the outside of the substrate layer through ATR of the Fourier transform infrared spectroscopy.

Description

蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルムExterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films
 本開示は、蓄電デバイス用外装材、その製造方法、蓄電デバイス、及びポリアミドフィルムに関する。 The present disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, a power storage device, and a polyamide film.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Conventionally, various types of power storage devices have been developed, but in all power storage devices, an exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, a metal exterior material has been widely used as an exterior material for a power storage device.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the improvement of high performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., various shapes are required for power storage devices, and thinning and weight reduction are required. However, the metal exterior material for a power storage device, which has been widely used in the past, has a drawback that it is difficult to keep up with the diversification of shapes and there is a limit to weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, as an exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter, it is in the form of a film in which a base material layer / barrier layer / thermosetting resin layer is sequentially laminated. Laminates have been proposed (see, for example, Patent Document 1).
 このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such exterior materials for power storage devices, recesses are generally formed by cold forming, and storage device elements such as electrodes and electrolytic solutions are arranged in the space formed by the recesses to form a thermosetting resin. By heat-sealing the layers, a power storage device in which the power storage device element is housed inside the exterior material for the power storage device can be obtained.
特開2008-287971号公報Japanese Unexamined Patent Publication No. 2008-287971
 蓄電デバイス素子には、レアメタルなどの成分が使用されており、これらの成分の需要は急増している。このため、電気機器などの各種製品において、蓄電デバイスの交換などの際に、蓄電デバイスを製品から取り外し、蓄電デバイス素子に含まれる各種成分を回収・再利用することが求められる。 Rare metals and other components are used in power storage device elements, and the demand for these components is rapidly increasing. Therefore, in various products such as electric devices, when the power storage device is replaced, it is required to remove the power storage device from the product and collect and reuse various components contained in the power storage device element.
 電気機器などの各種製品において、蓄電デバイスは、両面テープや接着剤などによって、製品の筐体に強固に固定されている。このため、蓄電デバイスを製品の筐体から取り外す際には、大きな外力が蓄電デバイスに加わることになる。具体的には、一般に、金属ヘラなどを用いて、蓄電デバイスを筐体から取り外されており、蓄電デバイスには大きな外力が加わる。蓄電デバイスの取り外し時に、フィルム状の積層体からなる蓄電デバイス用外装材に大きな外力が加わると、蓄電デバイス用外装材が破損する虞がある。 In various products such as electrical equipment, the power storage device is firmly fixed to the product housing with double-sided tape or adhesive. Therefore, when the power storage device is removed from the housing of the product, a large external force is applied to the power storage device. Specifically, in general, the power storage device is removed from the housing by using a metal spatula or the like, and a large external force is applied to the power storage device. If a large external force is applied to the exterior material for the energy storage device made of a film-like laminate when the energy storage device is removed, the exterior material for the energy storage device may be damaged.
 このような状況下、本開示は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制された、蓄電デバイス用外装材を提供することを主な目的とする。 Under such circumstances, the present disclosure discloses an exterior material for a power storage device in which damage to the exterior material for the power storage device is suppressed when the power storage device fixed to the housing with double-sided tape or the like is peeled off from the housing. The main purpose is to provide.
 本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、基材層は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が所定値以上である蓄電デバイス用外装材は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制されることを見出した。 The inventors of the present disclosure have made diligent studies to solve the above problems. As a result, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in order from the outside, and the base material layer contains a polyamide film, and Fourier transform infrared spectroscopy. The exterior material for a power storage device in which the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of the method is equal to or higher than a predetermined value covers the power storage device fixed to the housing with double-sided tape or the like. It has been found that damage to the exterior material for the power storage device is suppressed when the material is peeled off from the body.
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記基材層は、ポリアミドフィルムを含んでおり、
 フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
The present disclosure has been completed by further studies based on these findings. That is, the present disclosure provides the inventions of the following aspects.
From the outside, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer.
The base material layer contains a polyamide film and
An exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
 本開示によれば、両面テープなどで筐体に固定された蓄電デバイスを、金属ヘラなどを用いて筐体から引き剥がす際に蓄電デバイス用外装材が破損することが抑制された、蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を利用した蓄電デバイス、及び蓄電デバイス用外装材の基材層としての利用に適したポリアミドフィルムを提供することもできる。 According to the present disclosure, for a power storage device in which damage to the exterior material for the power storage device is suppressed when the power storage device fixed to the housing with double-sided tape or the like is peeled off from the housing using a metal spatula or the like. Exterior materials can be provided. Further, according to the present disclosure, a method for manufacturing an exterior material for a power storage device, a power storage device using the exterior material for the power storage device, and a polyamide film suitable for use as a base material layer for the exterior material for the power storage device are provided. It can also be provided.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 実施例における蓄電デバイスの引き剥がし試験に用いるサンプルの作製手順を説明するための模式図である。It is a schematic diagram for demonstrating the procedure of making the sample used for the peeling test of the power storage device in an Example. 実施例における蓄電デバイスの引き剥がし試験に用いるサンプルの側面図(a)及び平面図(b)である。It is a side view (a) and a plan view (b) of the sample used for the peeling test of the power storage device in an Example. 実施例における蓄電デバイスの引き剥がし試験に用いるサンプルに両面テープを貼り付けた際の側面図(a)及び平面図(b)である。It is a side view (a) and a plan view (b) when the double-sided tape is attached to the sample used for the peeling test of the power storage device in an Example. 実施例における蓄電デバイスの引き剥がし試験において、金属さじを用いて蓄電デバイスをステンレス鋼板から剥離する様子を示した模式図である。It is a schematic diagram which showed the state of peeling a power storage device from a stainless steel plate using a metal spoon in the peeling test of the power storage device in an Example.
 本開示の蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記基材層は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上であることを特徴とする。本開示の蓄電デバイス用外装材は、両面テープなどで筐体に固定された蓄電デバイスを筐体から引き剥がす際に、蓄電デバイス用外装材が破損することが抑制されている。 The exterior material for a power storage device of the present disclosure is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the base material layer contains a polyamide film. The crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more. The exterior material for a power storage device of the present disclosure is prevented from being damaged when the power storage device fixed to the housing with double-sided tape or the like is peeled off from the housing.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 Hereinafter, the exterior material for the power storage device of the present disclosure will be described in detail. In this specification, the numerical range indicated by "-" means "greater than or equal to" and "less than or equal to". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.蓄電デバイス用外装材の積層構造と物性
 本開示の蓄電デバイス用外装材10は、例えば図1に示すように、外側から順に、基材層1、バリア層3、及び熱融着性樹脂層4を備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
1. 1. Laminated structure and physical properties of exterior material for power storage device The exterior material 10 for power storage device of the present disclosure is, for example, as shown in FIG. 1, in order from the outside, a base material layer 1, a barrier layer 3, and a thermosetting resin layer 4. It is composed of a laminated body comprising. In the exterior material 10 for a power storage device, the base material layer 1 is on the outermost layer side, and the thermosetting resin layer 4 is on the innermost layer. When assembling a power storage device using the power storage device exterior material 10 and the power storage device element, the peripheral portion is heat-sealed with the thermosetting resin layers 4 of the power storage device exterior material 10 facing each other. The power storage device element is housed in the space formed by. In the laminate constituting the exterior material 10 for the power storage device of the present disclosure, the heat-sealing resin layer 4 side is inside the barrier layer 3 and the base material layer 1 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
 蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図5に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。 As shown in FIGS. 2 to 4, for example, the exterior material 10 for a power storage device is used as necessary for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, for example, as shown in FIGS. 3 and 4, the adhesive layer 5 is required between the barrier layer 3 and the thermosetting resin layer 4 for the purpose of enhancing the adhesiveness between the layers. May have. Further, as shown in FIG. 5, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the thermosetting resin layer 4 side), if necessary.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、好ましくは約180μm以下、約155μm以下、約120μm以下が挙げられ、下限については、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~155μm程度、35~120μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられ、これらの中でも特に60~120μmが好ましい。 The thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but the upper limit is preferably about 180 μm or less, about 155 μm or less, about 120 μm or less from the viewpoint of cost reduction, energy density improvement, and the like. From the viewpoint of maintaining the function of the exterior material for the power storage device, which is to protect the power storage device element, the lower limit is preferably about 35 μm or more, about 45 μm or more, and about 60 μm or more, and the preferable range is about 60 μm or more. For example, about 35 to 180 μm, about 35 to 155 μm, about 35 to 120 μm, about 45 to 180 μm, about 45 to 155 μm, about 45 to 120 μm, about 60 to 180 μm, about 60 to 155 μm, about 60 to 120 μm. Of these, 60 to 120 μm is particularly preferable.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。 In the power storage device exterior material 10, the base material layer 1, the adhesive layer 2 provided as necessary, the barrier layer 3, and if necessary with respect to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10. The ratio of the total thickness of the adhesive layer 5, the thermosetting resin layer 4, and the surface coating layer 6 provided as needed is preferably 90% or more, more preferably 95% or more. More preferably, it is 98% or more. As a specific example, when the exterior material 10 for a power storage device of the present disclosure includes a base material layer 1, an adhesive layer 2, a barrier layer 3, an adhesive layer 5, and a thermosetting resin layer 4, the exterior for the power storage device The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
 本開示の蓄電デバイス用外装材10の基材層1は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、基材層1の外側から測定されるポリアミドフィルムの結晶化指数が、1.50以上である。本開示の蓄電デバイス用外装材10の基材層1について、結晶化指数を測定する方法は以下の通りである。 The base material layer 1 of the exterior material 10 for a power storage device of the present disclosure contains a polyamide film, and the crystallization index of the polyamide film measured from the outside of the base material layer 1 by the ATR method of Fourier transform infrared spectroscopy. However, it is 1.50 or more. The method for measuring the crystallization index of the base material layer 1 of the exterior material 10 for a power storage device of the present disclosure is as follows.
<蓄電デバイス用外装材の基材層の結晶化指数の測定>
 蓄電デバイス用外装材を100mm×100mmの正方形に裁断してサンプルを作製する。得られたサンプルの外側に位置しているポリアミドフィルムの表面を、FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施する。装置としては、例えば、サーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10が使用できる。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出する。なお、蓄電デバイスから蓄電デバイス用外装材を取得して、基材層の結晶化指数を測定する場合には、蓄電デバイスの熱融着部や側面ではなく、天面又は底面から蓄電デバイス用外装材を取得してサンプルを作製する。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:波数1100cm-1から1400cm-1間で直線近似として求めた。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<Measurement of crystallization index of base material layer of exterior material for power storage device>
A sample is prepared by cutting the exterior material for a power storage device into a square of 100 mm × 100 mm. The surface of the polyamide film located on the outside of the obtained sample is subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% by using the ATR measurement mode of FT-IR. As the apparatus, for example, Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 can be used. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of α crystals of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystals were measured, and the peak intensity Q was measured. The intensity ratio X = P / Q of the peak intensity P with respect to the crystallization index is calculated. When the exterior material for a power storage device is acquired from the power storage device and the crystallization index of the base material layer is measured, the exterior for the power storage device is not from the heat-sealed portion or the side surface of the power storage device, but from the top surface or the bottom surface. The material is obtained and a sample is prepared.
(Measurement condition)
Method: Macro ATR method Wavenumber resolution: 8 cm -1
Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge
Incident angle: 45 °
Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1.
Absorption peak intensity Y 1200: value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1 Y 1370: peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
 なお、蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されている場合には、蓄電デバイス用外装材10をそのまま結晶化指数の測定対象とすることができる。また、基材層1が後述のように多層構造を有しており、ポリアミドフィルムとは異なる樹脂フィルム(例えばポリエステルフィルム)がポリアミドフィルムよりも外側に位置している場合や、基材層1の外側に後述の表面被覆層6が積層されている場合など、蓄電デバイス用外装材10の外側の表面が基材層1のポリアミドフィルムにより構成されていない場合には、ポリアミドフィルムよりも外側に位置する層を蓄電デバイス用外装材10から取り除き、ポリアミドフィルムの表面を露出させた状態で、結晶化指数を測定することができる。 When the outer surface of the power storage device exterior material 10 is made of the polyamide film of the base material layer 1, the power storage device exterior material 10 can be used as it is as a measurement target of the crystallization index. Further, when the base material layer 1 has a multilayer structure as described later and a resin film (for example, polyester film) different from the polyamide film is located outside the polyamide film, or when the base material layer 1 has a multilayer structure. When the outer surface of the exterior material 10 for a power storage device is not composed of the polyamide film of the base material layer 1, such as when the surface coating layer 6 described later is laminated on the outside, the position is located outside the polyamide film. The crystallization index can be measured in a state where the layer is removed from the exterior material 10 for a power storage device and the surface of the polyamide film is exposed.
 蓄電デバイス用外装材10において、前記の結晶化指数は、1.50以上であればよいが、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、より好ましくは1.55以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。また、前記の結晶化指数の上限については、特に制限されないが、例えば2.50以下、1.80以下などが挙げられる。当該結晶化指数の好ましい範囲としては、例えば、1.50~2.50、1.60~2.50、1.65~2.50、1.50~1.80、1.60~1.80、1.65~1.80などが挙げられる。 In the power storage device exterior material 10, the crystallization index may be 1.50 or more, but from the viewpoint of more effectively suppressing damage to the power storage device exterior material during the above-mentioned peeling. Therefore, it is more preferably 1.55 or more, further preferably 1.60 or more, and particularly preferably 1.65 or more. The upper limit of the crystallization index is not particularly limited, and examples thereof include 2.50 or less and 1.80 or less. Preferred ranges of the crystallization index include, for example, 1.50 to 2.50, 1.60 to 2.50, 1.65 to 2.50, 1.50 to 1.80, and 1.60 to 1. 80, 1.65 to 1.80 and the like can be mentioned.
 蓄電デバイス用外装材10の基材層1に含まれるポリアミドフィルムの結晶化指数を1.50以上にまで高める方法としては、ポリアミドフィルムの製造工程における延伸倍率、熱固定温度、さらには、後加熱の温度や時間などによって結晶化を促進する(α晶の生成を促進する)方法が挙げられる。 As a method for increasing the crystallization index of the polyamide film contained in the base material layer 1 of the exterior material 10 for a power storage device to 1.50 or more, the draw ratio, the heat fixing temperature, and the post-heating in the manufacturing process of the polyamide film are used. A method of promoting crystallization (promoting the formation of α-crystals) depending on the temperature and time of the film can be mentioned.
2.蓄電デバイス用外装材を形成する各層
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
2. 2. Each layer forming the exterior material for the power storage device [base material layer 1]
In the present disclosure, the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device. The base material layer 1 is located on the outer layer side of the exterior material for the power storage device.
 基材層1は、ポリアミドフィルムを含んでいる。前記の通り、フーリエ変換赤外分光法のATR法により、基材層1の外側から測定されるポリアミドフィルムの結晶化指数は、1.50以上である。 The base material layer 1 contains a polyamide film. As described above, the crystallization index of the polyamide film measured from the outside of the base material layer 1 by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
 ポリアミドフィルムを形成するポリアミドとしては、α晶を有するものであればよく、具体的には、ナイロン6、ナイロン66、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリアミドフィルムは、ナイロンフィルムであることが好ましい。 The polyamide forming the polyamide film may be any polyamide having α crystals, and specifically, nylon 6, nylon 66, nylon 46, an aliphatic polyamide such as a copolymer of nylon 6 and nylon 66, or the like may be used. Can be mentioned. These polyamides may be used alone or in combination of two or more. The polyamide film is preferably a nylon film.
 ポリアミドフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。基材層1が未延伸フィルムを含む場合、蓄電デバイス用外装材10の各層を積層する際に、押出して成形して未延伸フィルムとしてもよいし、予め用意した未延伸フィルムを貼り合わせてもよいし、樹脂(ポリアミド)を塗布して未延伸フィルムとしてもよい。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。また、基材層1が延伸フィルムである場合、蓄電デバイス用外装材10の各層を積層する際に、予め用意した延伸フィルムを貼り合わせる。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。 The polyamide film may be an unstretched film or a stretched film. When the base material layer 1 contains an unstretched film, when each layer of the exterior material 10 for a power storage device is laminated, it may be extruded and molded to form an unstretched film, or an unstretched film prepared in advance may be laminated. Alternatively, a resin (polyamide) may be applied to form an unstretched film. Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method. When the base material layer 1 is a stretched film, a stretched film prepared in advance is bonded when laminating the layers of the exterior material 10 for a power storage device. Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable. Examples of the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
 ポリアミドフィルムは、特に二軸延伸ナイロンフィルムであることが好ましい。 The polyamide film is particularly preferably a biaxially stretched nylon film.
 本開示の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が1.50以上であるポリアミドフィルムを、基材層1に用いて製造することもできるし、蓄電デバイス用外装材10の製造過程でポリアミドフィルムに熱を加えることにより、結晶化指数を高めて、当該結晶化指数を1.50以上とすることもできる。後述の「5.ポリアミドフィルム」の項目で説明するとおり、本開示の蓄電デバイス用外装材10においては、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上であるポリアミドフィルムを基材層1に用いて製造されることが好ましい。すなわち、前記の結晶化指数が予め1.50以上に調整されたポリアミドフィルムを基材層1に用い、バリア層3、熱融着性樹脂層4などの各層と積層することによって、本開示の蓄電デバイス用外装材10を製造することが好ましい。なお、後述の実施例においても示されているように、蓄電デバイス用外装材10に適用される前のポリアミドフィルムよりも、蓄電デバイス用外装材10に積層されて基材層1に含まれるポリアミドフィルムの結晶化指数を高めることができる。 In the exterior material 10 for a power storage device of the present disclosure, a polyamide film having a crystallization index of 1.50 or more measured by the ATR method of Fourier transform infrared spectroscopy can be produced as the base material layer 1. Alternatively, the crystallization index can be increased by applying heat to the polyamide film in the manufacturing process of the exterior material 10 for the power storage device, and the crystallization index can be set to 1.50 or more. As described in the section “5. Polyamide film” described later, in the exterior material 10 for a power storage device of the present disclosure, the crystallization index measured by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more. It is preferably produced by using a certain polyamide film as the base material layer 1. That is, the present disclosure is made by using a polyamide film whose crystallization index has been adjusted to 1.50 or more in advance for the base material layer 1 and laminating it with each layer such as the barrier layer 3 and the thermosetting resin layer 4. It is preferable to manufacture the exterior material 10 for a power storage device. As shown in Examples described later, the polyamide film that is laminated on the exterior material 10 for the power storage device and contained in the base material layer 1 is more than the polyamide film before being applied to the exterior material 10 for the power storage device. The crystallization index of the film can be increased.
 ポリアミドフィルムの厚みについては、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましくは約50μm以下、より好ましくは約35μm以下であり、好ましい範囲としては、3~50μm程度、3~35μm程度、10~50μm程度、10~35μm程度が挙げられ、これらの中でも10~35μm程度が特に好ましい。 The thickness of the polyamide film is preferably about 3 μm or more, more preferably about 10 μm or more, and more preferably about 10 μm or more, from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. It is preferably about 50 μm or less, more preferably about 35 μm or less, and preferred ranges include about 3 to 50 μm, about 3 to 35 μm, about 10 to 50 μm, and about 10 to 35 μm, among which 10 to 35 μm. The degree is particularly preferable.
 基材層1は、ポリアミドフィルムとは異なる樹脂フィルムをさらに有していてもよい。ポリアミドフィルムとは異なる樹脂フィルムを形成する樹脂としては、例えば、ポリエステル、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。これらの中でも、好ましくはポリエステルが挙げられる。 The base material layer 1 may further have a resin film different from the polyamide film. Examples of the resin that forms a resin film different from the polyamide film include resins such as polyester, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. .. Further, the resin may be a copolymer of these resins, or may be a modified product of the copolymer. Further, it may be a mixture of these resins. Among these, polyester is preferable.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレートが好ましい。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Further, examples of the copolymerized polyester include a copolymerized polyester containing ethylene terephthalate as a repeating unit. Specifically, copolymer polyester (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / terephthalate / (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like. These polyesters may be used alone or in combination of two or more. Of these, polyethylene terephthalate and polybutylene terephthalate are preferable.
 ポリエステルフィルムは、延伸ポリエステルフィルムであることが好ましく、二軸延伸ポリエステルフィルムであることがより好ましい。 The polyester film is preferably a stretched polyester film, and more preferably a biaxially stretched polyester film.
 ポリエステルフィルムは、特に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルムであることが好ましい。 The polyester film is particularly preferably a biaxially stretched polyethylene terephthalate film or a biaxially stretched polybutylene terephthalate film.
 基材層1がポリアミドフィルムとは異なる樹脂フィルムをさらに有する場合、他の樹脂フィルムの厚みについては、本発明の効果を阻害しないことを限度として、特に制限されず、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましくは約50μm以下、より好ましくは約35μm以下であり、好ましい範囲としては、3~50μm程度、3~35μm程度、10~50μm程度、10~35μm程度が挙げられ、これらの中でも10~35μm程度が特に好ましい。 When the base material layer 1 further has a resin film different from the polyamide film, the thickness of the other resin film is not particularly limited as long as it does not interfere with the effect of the present invention, and is preferably about 3 μm or more. It is preferably about 10 μm or more, preferably about 50 μm or less, more preferably about 35 μm or less, and the preferred range is about 3 to 50 μm, about 3 to 35 μm, about 10 to 50 μm, and about 10 to 35 μm. Among these, about 10 to 35 μm is particularly preferable.
 基材層1は、ポリアミドフィルムを含んでいれば、単層であってもよいし、2層以上により構成されていてもよく、蓄電デバイス用外装材10を薄型化する観点から、ポリアミドフィルムの単層であることが好ましい。 The base material layer 1 may be a single layer or may be composed of two or more layers as long as it contains a polyamide film, and from the viewpoint of thinning the exterior material 10 for a power storage device, the polyamide film It is preferably a single layer.
 基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 When the base material layer 1 is composed of two or more layers, the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
 基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。 Specific examples of the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and the like, preferably stretched nylon. A laminate of a film and a stretched polyester film, and a laminate of two or more layers of stretched nylon film are preferable. For example, when the base material layer 1 is a laminate of two layers of resin film, a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film is preferable, and nylon film and nylon film. A laminate or a laminate of a polyethylene terephthalate film and a nylon film is more preferable. Further, since the polyester resin is difficult to discolor when the electrolytic solution adheres to the surface, for example, when the base material layer 1 is a laminate of two or more resin films, the polyester resin film is the base material layer 1. It is preferably located in the outermost layer.
 基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01から1.0μm程度が挙げられる。 When the base material layer 1 is a laminated body of two or more layers of resin films, the two or more layers of resin films may be laminated via an adhesive. Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later. The method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable. The laminating method can be mentioned. When laminating by the dry laminating method, it is preferable to use a polyurethane adhesive as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 μm. Further, an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, even if additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present disclosure, from the viewpoint of enhancing the moldability of the exterior material for the power storage device, it is preferable that the lubricant is present on the surface of the base material layer 1. The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like. Specific examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucate amide and the like. Further, specific examples of methylolamide include methylolstearic acid amide. Specific examples of the saturated fatty acid bisamide include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearic. Examples thereof include acid amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distearyl adipate amides, and N, N'-distearyl sebacic acid amides. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N'-diorail adipic acid amide, and N, N'-diorail sebacic acid amide. And so on. Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like. Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide. One type of lubricant may be used alone, or two or more types may be used in combination.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When the lubricant is present on the surface of the base material layer 1, the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
 基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the base material layer 1 may be one in which the lubricant contained in the resin constituting the base material layer 1 is exuded, or one in which the lubricant is applied to the surface of the base material layer 1. You may.
 基材層1の総厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。 The total thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, and examples thereof include about 3 to 50 μm, preferably about 10 to 35 μm.
 [コート層]
 本開示の蓄電デバイス用外装材は、印字性や、成形性などの向上を目的として、必要に応じて、基材層1の上(基材層1のバリア層3側とは反対側)に、コート層(図示を省略する)を備えていてもよい。コート層は、基材層1に接面するようにして設けられる。コート層の厚みとしては、コート層としての上記の機能を発揮すれば特に制限されず、例えば0.01~0.40μm程度、好ましくは0.01~0.30μm程度、さらに好ましくは0.1~0.30μm程度が挙げられる。厚みが0.01μm以上であることにより、基材層1の上に均一な膜厚の層を形成することができる。その結果、本開示の蓄電デバイス用外装材の印字性にムラが生じず均一な印字を可能にすることができたり、均一な成形性が得られたりする。
[Coat layer]
The exterior material for a power storage device of the present disclosure is placed on the base material layer 1 (opposite to the barrier layer 3 side of the base material layer 1) as necessary for the purpose of improving printability and moldability. , A coat layer (not shown) may be provided. The coat layer is provided so as to be in contact with the base material layer 1. The thickness of the coat layer is not particularly limited as long as it exhibits the above-mentioned function as the coat layer, and is, for example, about 0.01 to 0.40 μm, preferably about 0.01 to 0.30 μm, and more preferably 0.1. The range is about 0.30 μm. When the thickness is 0.01 μm or more, a layer having a uniform film thickness can be formed on the base material layer 1. As a result, it is possible to enable uniform printing without causing unevenness in the printability of the exterior material for the power storage device of the present disclosure, and to obtain uniform moldability.
 コート層を形成する樹脂としては、例えば、ポリ塩化ビニリデン、塩化ビニリデン-塩化ビニル共重合体、ポリオレフィン、酸変性ポリオレフィン、ポリエステル、エポキシ樹脂、フェノール樹脂、フッ素樹脂、セルロースエステル、ポリウレタン、アクリル樹脂、ポリアミド等の各種の合成樹脂が挙げられる。これらの中でも、ポリウレタン、ポリエステル、アクリル樹脂が好ましい。 Examples of the resin forming the coat layer include polyvinylidene chloride, vinylidene chloride-vinyl chloride copolymer, polyolefin, acid-modified polyolefin, polyester, epoxy resin, phenol resin, fluororesin, cellulose ester, polyurethane, acrylic resin, and polyamide. And various synthetic resins such as. Among these, polyurethane, polyester and acrylic resin are preferable.
 コート層には、滑り性を向上させるために、必要に応じて滑剤や添加剤を含有させてもよい。滑剤としては、上述した滑剤と同様のものが例示される。また、添加剤としては、後述の表面被覆層6で例示する添加剤と同様のものが例示される。これらの滑剤や添加剤の含有量や粒径は、コート層の厚みにあわせて適宜調整される。 The coat layer may contain a lubricant or an additive, if necessary, in order to improve the slipperiness. Examples of the lubricant include the same lubricants as those described above. Further, as the additive, the same additives as those exemplified in the surface coating layer 6 described later are exemplified. The content and particle size of these lubricants and additives are appropriately adjusted according to the thickness of the coat layer.
 また、本開示の蓄電デバイス用外装材は、基材層に隣接する層との接着性の向上を目的として、必要に応じて、基材層1の片面(基材層1のバリア層3側や、基材層1のバリア層3とは反対側)や両面に、コート層(図示を省略する)を備えていてもよい。すなわち、基材層の上に設けるコート層は、印字性や、成形性などの向上を目的とした層であってもよいし、基材層の接着性の向上を目的とした層であってもよい。コート層が基材層の接着性の向上を目的とする場合にも、コート層を形成する樹脂や、厚みとしては、上述したコート層の樹脂や厚みと同様のものが例示される。また、上述した滑剤や添加剤を含めてもよいが、コート層の基材層と反対側に隣接する層が存在する場合は、滑剤や添加剤を含めない方が好ましい。 Further, the exterior material for a power storage device of the present disclosure has, if necessary, one side of the base material layer 1 (the barrier layer 3 side of the base material layer 1) for the purpose of improving the adhesiveness with the layer adjacent to the base material layer. Alternatively, a coat layer (not shown) may be provided on both sides of the base material layer 1 on the side opposite to the barrier layer 3). That is, the coat layer provided on the base material layer may be a layer for the purpose of improving printability, moldability, etc., or a layer for the purpose of improving the adhesiveness of the base material layer. May be good. Even when the coat layer is intended to improve the adhesiveness of the base material layer, the resin forming the coat layer and the thickness similar to the resin and the thickness of the coat layer described above are exemplified. Further, although the above-mentioned lubricants and additives may be included, it is preferable not to include the lubricants and additives when there is a layer adjacent to the base material layer of the coat layer.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3. The adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; Polyolefin such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; Polyvinyl acetate; Cellulose; (meth) acrylic resin; Polyethylene; Polyolefin; Amino resin such as urea resin and melamine resin; Rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; Silicone resin and the like. These adhesive components may be used alone or in combination of two or more. Among these adhesive components, a polyurethane adhesive is preferable. In addition, the resin as an adhesive component can be used in combination with an appropriate curing agent to increase the adhesive strength. An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 Examples of the polyurethane adhesive include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound. Preferred are two-component curable polyurethane adhesives in which a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent. Further, as the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Since the adhesive layer 2 is formed of the polyurethane adhesive, excellent electrolyte resistance is imparted to the exterior material for the power storage device, and even if the electrolyte adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, etc., as long as the adhesiveness is not hindered, the addition of other components is permitted. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系、銅系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。顔料は単独で使用可能だが、2種類以上を混合して使用することができ、例えば有機顔料と無機顔料の混合でも良い。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindrenine-based, and benzimidazolone-based pigments, which are inorganic. Examples of pigments include carbon black pigments, titanium oxide pigments, cadmium pigments, lead pigments, chromium oxide pigments, iron pigments, copper pigments, and other pigments such as mica (mica) fine powder and fish scale foil. Be done. The pigment can be used alone, but two or more kinds can be mixed and used, for example, a mixture of an organic pigment and an inorganic pigment may be used.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the colorants, for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
 接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは8~40質量%が挙げられる。 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 8 to 40% by mass.
 接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、下限については、例えば、約1μm以上、約2μm以上が挙げられ、上限については、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, but the lower limit is, for example, about 1 μm or more and about 2 μm or more, and the upper limit is about 10 μm or less. , About 5 μm or less, and preferred ranges include about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[着色層]
 着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
[Colored layer]
The colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown). When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the coloring layer, the exterior material for the power storage device can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1, the surface of the adhesive layer 2, or the surface of the barrier layer 3. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of the colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 3]
In the exterior material for a power storage device, the barrier layer 3 is at least a layer that suppresses the infiltration of water.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like. Examples of the vapor deposition film include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like, and the resin layer includes polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE). Examples thereof include polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing a fluoroalkyl unit as a main component, and ethylene vinyl alcohol copolymers. Further, examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate. When used as a metal foil, the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
 アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 From the viewpoint of improving the moldability of the exterior material for the power storage device, the aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the moldability. Therefore, it is preferable that the aluminum alloy foil contains iron. In the iron-containing aluminum alloy foil (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, an exterior material for a power storage device having more excellent moldability can be obtained. When the iron content is 9.0% by mass or less, a more flexible exterior material for a power storage device can be obtained. As the soft aluminum alloy foil, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Examples of stainless steel foils include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of providing an exterior material for a power storage device having excellent moldability, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS304 is particularly preferable.
 バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、例えば、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下が挙げられ、下限については、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられ、当該厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられ、これらの中でも特に25~40μm程度が好ましい。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、上限については、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、下限については、好ましくは約10μm以上、より好ましくは約15μm以上が挙げられ、好ましい厚みの範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 In the case of a metal foil, the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 μm. The thickness of the barrier layer 3 is, for example, preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, particularly preferably about 35 μm or less, and the lower limit is preferably about about. 10 μm or more, more preferably about 20 μm or more, more preferably about 25 μm or more, and preferable ranges of the thickness are about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, and about 20 to. About 85 μm, about 20 to 50 μm, about 20 to 40 μm, about 20 to 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, about 25 to 35 μm, and among these, about 25 to 40 μm preferable. When the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable. Further, in particular, when the barrier layer 3 is made of stainless steel foil, the upper limit of the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less. More preferably, it is about 30 μm or less, particularly preferably about 25 μm or less, and the lower limit is preferably about 10 μm or more, more preferably about 15 μm or more, and the preferred thickness range is about 10 to 60 μm, 10 Examples thereof include about 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, about 15 to 40 μm, about 15 to 30 μm, and about 15 to 25 μm.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 When the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the base material layer in order to prevent dissolution and corrosion. The barrier layer 3 may be provided with a corrosion-resistant film on both sides. Here, the corrosion-resistant film is, for example, a hot-water transformation treatment such as boehmite treatment, a chemical conversion treatment, anodizing treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer. This is a thin film that makes the barrier layer corrosive. As the treatment for forming the corrosion-resistant film, one type may be performed, or two or more types may be combined. Moreover, not only one layer but also multiple layers can be used. Further, among these treatments, the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by a treatment agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of chemical conversion process. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the barrier layer surface from melting and corroding, and the adhesiveness (wetness) of the barrier layer surface. The effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding is shown.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples include a corrosion-resistant film containing. Examples of the chemical conversion treatment using a phosphate or a chromate include a chromate chromate treatment, a phosphoric chromate treatment, a phosphoric acid-chromate treatment, a chromate treatment, and the like, and chromium used in these treatments. Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium dichromate, acetylacetate chromate, chromium chloride, and chromium potassium sulfate. In addition, examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like. Further, examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable. In this coating type chromate treatment, at least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like. Degreasing treatment is performed by the treatment method, and then, a metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zyroxide) salt, Zn (zinc) phosphate, etc. is applied to the degreased surface. A treatment liquid containing a salt and a mixture of these non-metal salts as a main component, or a treatment liquid containing a mixture of a non-metal phosphate salt and these non-metal salts as a main component, or a synthetic resin and the like. This is a process in which a treatment liquid composed of a mixture is coated by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and dried. As the treatment liquid, for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable. Further, examples of the resin component used at this time include polymers such as phenolic resin and acrylic resin, and an amination phenol polymer having a repeating unit represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good. The acrylic resin shall be polyacrylic acid, acrylic acid methacrylate copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives of these sodium salts, ammonium salts, amine salts, etc. Is preferable. In particular, derivatives of polyacrylic acid such as ammonium salt, sodium salt, and amine salt of polyacrylic acid are preferable. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt, a sodium salt, or a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride. Alternatively, it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. Further, R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl groups. Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group and 3-. Linear or branched chain with 1 to 4 carbon atoms in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group is substituted. Alkyl groups can be mentioned. In the general formulas (1) to (4), the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred. The amination phenol polymer, for example, polycondenses a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then formsaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using amine (R 1 R 2 NH). The aminated phenol polymer is used alone or in combination of two or more.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 As another example of the corrosion resistant film, it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied. The thin film to be used is mentioned. The coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer. In the rare earth element oxide sol, fine particles of rare earth element oxide (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of the rare earth element oxide include cerium oxide, yttrium oxide, neodymium oxide, lanthanum oxide and the like, and cerium oxide is preferable from the viewpoint of further improving adhesion. The rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more. As the liquid dispersion medium of the rare earth element oxide sol, for example, various solvents such as water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester solvent, ether solvent and the like can be used, and water is preferable. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable. The anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Further, it is preferable that the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent. Further, it is preferable that the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion-resistant film, a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary. Examples of the cationic polymer and the anionic polymer include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating type chromate treatment, a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the thermosetting resin layer. The degree, more preferably about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy. The time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 In the chemical conversion treatment, a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C. Further, before the chemical conversion treatment is applied to the barrier layer, the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer. Further, by using an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also the fluoride of the metal which is immobile. In this case, only the degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Thermosetting resin layer 4]
In the exterior material for a power storage device of the present disclosure, the thermosetting resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable. The fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the thermosetting resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. When the thermosetting resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the polyolefin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene). Polypropylene such as (block copolymer of ethylene), random copolymer of polypropylene (for example, random copolymer of propylene and ethylene); propylene-α-olefin copolymer; terpolymer of ethylene-butene-propylene and the like. Among these, polypropylene is preferable. When it is a copolymer, the polyolefin resin may be a block copolymer or a random copolymer. One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Further, the polyolefin may be a cyclic polyolefin. The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done. Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 The acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component. As the acid-modified polyolefin, the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used. Examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. The acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. is there. The same applies to the cyclic polyolefins that are acid-modified. The acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The thermosetting resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the thermosetting resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
 また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, the thermosetting resin layer 4 may contain a lubricant or the like, if necessary. When the heat-sealing resin layer 4 contains a lubricant, the moldability of the exterior material for a power storage device can be improved. The lubricant is not particularly limited, and a known lubricant can be used. The lubricant may be used alone or in combination of two or more.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。 When the lubricant is present on the surface of the thermosetting resin layer 4, the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for the power storage device. , More preferably about 15 to 40 mg / m 2 .
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the thermosetting resin layer 4 may be one in which the lubricant contained in the resin constituting the thermosetting resin layer 4 is exuded, or the lubricant contained in the thermosetting resin layer 4 may be exuded. The surface may be coated with a lubricant.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the thermosetting resin layer 4 is not particularly limited as long as the thermosetting resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 μm or less, preferably. It is about 85 μm or less, more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 5 described later is 10 μm or more, the thickness of the thermosetting resin layer 4 is preferably about 85 μm or less, more preferably about 15 to 45 μm, for example. When the thickness of the adhesive layer 5 described later is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the thermosetting resin layer 4 is preferably about 20 μm or more, more preferably 35 to 85 μm. The degree can be mentioned.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the thermosetting resin layer 4 as necessary in order to firmly bond them. It is a layer to be corroded.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the thermosetting resin layer 4 to each other. As the resin used for forming the adhesive layer 5, for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used. The resin used for forming the adhesive layer 5 preferably contains a polyolefin skeleton, and examples thereof include the polyolefins exemplified in the above-mentioned heat-sealing resin layer 4 and acid-modified polyolefins. The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited. Further, when the resin constituting the adhesive layer 5 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。 From the viewpoint of firmly adhering the barrier layer 3 and the thermosetting resin layer 4, the adhesive layer 5 preferably contains an acid-modified polyolefin. As the acid-modified polyolefin, a polyolefin modified with a carboxylic acid or an anhydride thereof, a polypropylene modified with a carboxylic acid or an anhydride thereof, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene are particularly preferable.
 さらに、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Further, from the viewpoint of making the exterior material for the power storage device excellent in shape stability after molding while reducing the thickness of the exterior material for the power storage device, the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferable that it is a cured product of. As the acid-modified polyolefin, the above-mentioned ones are preferably exemplified.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an amide ester resin is preferable. The amide ester resin is generally produced by the reaction of a carboxyl group and an oxazoline group. The adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin. When an unreacted substance of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ポリウレタンなどが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 Further, from the viewpoint of further enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 is selected from at least a group consisting of an oxygen atom, a heterocycle, a C = N bond, and a COC bond. It is preferably a cured product of a resin composition containing a curing agent having one type. Examples of the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C = N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—C bond include a curing agent having an oxazoline group, a curing agent having an epoxy group, and polyurethane. The fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
 イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers. In addition, an adduct body, a burette body, an isocyanate body and the like can be mentioned.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. In addition, examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 Examples of the compound having an epoxy group include an epoxy resin. The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800. In the first disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and known polyurethane can be used. The adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
 接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
 なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 When the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. , The acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層5の厚さは、上限については、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下が挙げられ、下限については、好ましくは、約0.1μm以上、約0.5μm以上が挙げられ、当該厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。 The upper limit of the thickness of the adhesive layer 5 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, about 5 μm or less, and the lower limit is preferably about 0.1 μm or more. , About 0.5 μm or more, and the thickness range is preferably about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, 0. 1. About 1 to 5 μm, about 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified in the adhesive layer 2 or the cured product of the acid-modified polyolefin and the curing agent, the thickness is preferably about 1 to 10 μm, more preferably about 1 to 5 μm. When the resin exemplified in the thermosetting resin layer 4 is used, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. When the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. As a result, the adhesive layer 5 can be formed. Further, when the resin exemplified in the thermosetting resin layer 4 is used, it can be formed by, for example, extrusion molding of the thermosetting resin layer 4 and the adhesive layer 5.
[表面被覆層6]
 本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
[Surface coating layer 6]
The exterior material for a power storage device of the present disclosure is above the base material layer 1 (base material layer 1), if necessary, for the purpose of improving at least one of designability, electrolyte resistance, scratch resistance, moldability, and the like. The surface coating layer 6 may be provided on the side opposite to the barrier layer 3 of the above. The surface coating layer 6 is a layer located on the outermost layer side of the exterior material for the power storage device when the power storage device is assembled using the exterior material for the power storage device.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。 The surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
 表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。 When the resin forming the surface coating layer 6 is a curable resin, the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type. Examples of the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
 2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。 Examples of the two-component curable polyurethane include polyurethane containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound. Preferred are two-component curable polyurethanes in which a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent. Further, as the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Since the surface coating layer 6 is made of polyurethane, excellent electrolyte resistance is imparted to the exterior material for the power storage device.
 表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 On at least one of the surface and the inside of the surface coating layer 6, the surface coating layer 6 is provided with the above-mentioned lubricant or antistatic agent, if necessary, depending on the surface coating layer 6 and the functionality to be provided on the surface thereof. It may contain additives such as a blocking agent, a matting agent, a flame retardant, an antioxidant, a tackifier, and an antistatic agent. Examples of the additive include fine particles having an average particle diameter of about 0.5 nm to 5 μm. The average particle size of the additive shall be the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
 添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。 The additive may be either an inorganic substance or an organic substance. The shape of the additive is also not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, and scaly shapes.
 添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。 Specific examples of additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodium oxide, and antimony oxide. , Titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, refractory nylon, acrylate resin, Examples thereof include crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper and nickel. The additive may be used alone or in combination of two or more. Among these additives, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. Further, the additive may be subjected to various surface treatments such as an insulation treatment and a highly dispersible treatment on the surface.
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin for forming the surface coating layer 6. When an additive is blended in the surface coating layer 6, a resin mixed with the additive may be applied.
 表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions as the surface coating layer 6, and examples thereof include about 0.5 to 10 μm, preferably about 1 to 5 μm.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から順に、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。具体的には、本開示の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、前記基材層は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である。
3. 3. Method for Manufacturing Exterior Material for Power Storage Device The method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present disclosure is laminated can be obtained, and the method is not particularly limited. At least, a method including a step of laminating the base material layer 1, the barrier layer 3, and the thermosetting resin layer 4 in this order can be mentioned. Specifically, the method for producing an exterior material for a power storage device of the present disclosure includes a step of obtaining a laminate in which at least a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside. The base material layer contains a polyamide film, and the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50. That is all.
 本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 An example of the manufacturing method of the exterior material for the power storage device disclosed in the present disclosure is as follows. First, a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter, may be referred to as “laminate A”) is formed. Specifically, the layered body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being coated and dried by a coating method such as a roll coating method.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A. When the thermosetting resin layer 4 is directly laminated on the barrier layer 3, the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it. When the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A. A method of laminating 4 by extruding (co-extrusion laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and this is laminated. A laminated body in which the adhesive layer 5 is laminated on the barrier layer 3 of the laminated body A is formed by a method of laminating on the barrier layer 3 of the above, and this is formed by a heat-sealing resin layer 4 and a thermal laminating method. Method of Laminating, (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 formed into a sheet in advance, the adhesive layer 5 is passed through. A method of laminating the laminate A and the heat-sealing resin layer 4 (sandwich lamination method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminate A is performed. Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 having a sheet-like film formed in advance on the adhesive layer 5.
 表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above resin that forms the surface coating layer 6 to the surface of the base material layer 1. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited. For example, after forming the surface coating layer 6 on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
 上記のようにして、外側から順に、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4を備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。 As described above, in order from the outside, the surface coating layer 6 provided as needed / the base material layer 1 / the adhesive layer 2 provided as needed / the barrier layer 3 / the adhesive layer 5 provided as needed. / A laminate having the thermosetting resin layer 4 is formed, but in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed, it may be further subjected to heat treatment. Good.
 蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。 In the exterior material for a power storage device, each layer constituting the laminated body may be subjected to surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc., if necessary, to improve processing suitability. .. For example, by applying a corona treatment to the surface of the base material layer 1 opposite to the barrier layer 3, the printability of ink on the surface of the base material layer 1 can be improved.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Applications of exterior materials for power storage devices The exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。 Specifically, a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward in the exterior material for the power storage device of the present disclosure. , The peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed. Provides a power storage device using an exterior material for the power storage device. When the power storage device element is housed in the package formed of the exterior material for the power storage device of the present disclosure, the thermosetting resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). ) To form a package.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery. Examples thereof include cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
 蓄電デバイスは、一般に、各種製品の筐体に両面テープや接着剤を介して固定される。すなわち、本開示の蓄電デバイス用外装材10は、各種製品の筐体に両面テープや接着剤を介して固定される。筐体の材質としては、製品の種類によって様々であり、例えばステンレス鋼、アルミニウム合金、ニッケル合金などの金属、ポリオレフィン、ポリアミド、ポリエステル、ポリイミド、ポリスチレンなどのプラスチック、ガラスなど多岐に亘る。 The power storage device is generally fixed to the housing of various products via double-sided tape or an adhesive. That is, the exterior material 10 for a power storage device of the present disclosure is fixed to the housing of various products via double-sided tape or an adhesive. The material of the housing varies depending on the type of product, and includes, for example, metals such as stainless steel, aluminum alloys and nickel alloys, plastics such as polyolefins, polyamides, polyesters, polyimides and polystyrenes, and glass.
 また、蓄電デバイスと筐体との接着強度は、例えば、蓄電デバイスを筐体から引き剥がすことが可能な程度に調整される。蓄電デバイスと筐体との剥離強度は、例えば、後述の(両面テープの剥離強度の測定)で測定されるステンレス鋼板に対する剥離強度が5~15N/7.5mm程度となるような両面テープを用いて固定されていることが好ましい。蓄電デバイス用外装材10は、筐体に対する剥離強度が5~15N/7.5mm程度となる両面テープで筐体に固定されている蓄電デバイスに対して、好適に使用することができる。 Further, the adhesive strength between the power storage device and the housing is adjusted to such an extent that the power storage device can be peeled off from the housing, for example. For the peel strength between the power storage device and the housing, for example, a double-sided tape having a peel strength of about 5 to 15 N / 7.5 mm with respect to the stainless steel plate measured by (measurement of the peel strength of the double-sided tape) described later is used. It is preferable that it is fixed. The exterior material 10 for a power storage device can be suitably used for a power storage device fixed to the housing with a double-sided tape having a peel strength with respect to the housing of about 5 to 15 N / 7.5 mm.
5.ポリアミドフィルム
 本開示のポリアミドフィルムは、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の基材層に用いるためのポリアミドフィルムであって、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である。蓄電デバイス用外装材10の詳細については、前述の通りである。
5. Polyamide film The polyamide film of the present disclosure is a polyamide film for use as a base material layer of an exterior material for a power storage device composed of a laminate including at least a base material layer, a barrier layer, and a thermosetting resin layer. Therefore, the crystallization index measured by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more. The details of the exterior material 10 for the power storage device are as described above.
 本開示のポリアミドフィルムを蓄電デバイス用外装材の基材層1に用いることにより、蓄電デバイス用外装材10の基材層1のポリアミドフィルムについて、結晶化指数を好適に1.50以上に設定することができ、前述の引き剥がしの際に蓄電デバイス用外装材が破損することを効果的に抑制することができる。すなわち、前記の結晶化指数が予め1.50以上に調整された本開示のポリアミドフィルムを基材層1に用い、バリア層3、熱融着性樹脂層4などの各層と積層することによって、本開示の蓄電デバイス用外装材10を製造することが好ましい。前記の通り、蓄電デバイス用外装材10に適用される前のポリアミドフィルムよりも、蓄電デバイス用外装材10に積層されて基材層1に含まれるポリアミドフィルムの結晶化指数を高めることができる。具体的には、蓄電デバイス用外装材10の製造過程でポリアミドフィルムに熱を加えることにより、結晶化指数を高めることもできる。 By using the polyamide film of the present disclosure for the base material layer 1 of the exterior material for a power storage device, the crystallization index is preferably set to 1.50 or more for the polyamide film of the base material layer 1 of the exterior material 10 for a power storage device. This makes it possible to effectively prevent damage to the exterior material for the power storage device during the above-mentioned peeling. That is, the polyamide film of the present disclosure whose crystallization index has been adjusted to 1.50 or more in advance is used as the base material layer 1 and laminated with each layer such as the barrier layer 3 and the thermosetting resin layer 4. It is preferable to manufacture the exterior material 10 for the power storage device of the present disclosure. As described above, the crystallization index of the polyamide film laminated on the power storage device exterior material 10 and contained in the base material layer 1 can be increased as compared with the polyamide film before being applied to the power storage device exterior material 10. Specifically, the crystallization index can be increased by applying heat to the polyamide film in the manufacturing process of the exterior material 10 for a power storage device.
 本開示のポリアミドフィルムについて、結晶化指数を測定する方法は以下の通りである。 The method for measuring the crystallization index of the polyamide film disclosed in the present disclosure is as follows.
<ポリアミドフィルムの結晶化指数の測定>
 ポリアミドフィルムを100mm×100mmの正方形に裁断してサンプルを作製する。得られたサンプルの表面をFT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施する。装置としては、例えば、サーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10が使用できる。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出する。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:波数1100cm-1から1400cm-1間で直線近似として求めた。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<Measurement of crystallization index of polyamide film>
A sample is prepared by cutting a polyamide film into a square of 100 mm × 100 mm. The surface of the obtained sample is subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% using the ATR measurement mode of FT-IR. As the apparatus, for example, Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 can be used. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of α crystals of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystals were measured, and the peak intensity Q was measured. The intensity ratio X = P / Q of the peak intensity P with respect to the crystallization index is calculated.
(Measurement condition)
Method: Macro ATR method Wavenumber resolution: 8 cm -1
Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge
Incident angle: 45 °
Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1.
Absorption peak intensity Y 1200: value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1 Y 1370: peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
 本開示のポリアミドフィルムにおいて、前記の結晶化指数は、1.50以上であればよいが、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、より好ましくは1.55以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。また、前記の結晶化指数の上限については、特に制限されないが、例えば2.50以下、1.80以下などが挙げられる。当該結晶化指数の好ましい範囲としては、例えば、1.50~2.50、1.60~2.50、1.65~2.50、1.50~1.80、1.60~1.80、1.65~1.80などが挙げられる。 In the polyamide film of the present disclosure, the crystallization index may be 1.50 or more, but from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. , More preferably 1.55 or more, still more preferably 1.60 or more, and particularly preferably 1.65 or more. The upper limit of the crystallization index is not particularly limited, and examples thereof include 2.50 or less and 1.80 or less. Preferred ranges of the crystallization index include, for example, 1.50 to 2.50, 1.60 to 2.50, 1.65 to 2.50, 1.50 to 1.80, and 1.60 to 1. 80, 1.65 to 1.80 and the like can be mentioned.
 ポリアミドフィルムを形成するポリアミドの具体例としては、蓄電デバイス用外装材10の基材層1の項目で説明した通りである。ポリアミドフィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 Specific examples of the polyamide forming the polyamide film are as described in the item of the base material layer 1 of the exterior material 10 for the power storage device. The polyamide film may be an unstretched film or a stretched film. Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable. Examples of the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
 ポリアミドフィルムは、特に二軸延伸ナイロンフィルムであることが好ましい。 The polyamide film is particularly preferably a biaxially stretched nylon film.
 ポリアミドフィルムの厚みについては、前述の引き剥がしの際に蓄電デバイス用外装材が破損することをより一層効果的に抑制する観点から、好ましくは約3μm以上、より好ましくは約10μm以上であり、また、好ましくは約50μm以下、より好ましくは約35μm以下であり、好ましい範囲としては、3~50μm程度、3~35μm程度、10~50μm程度、10~35μm程度が挙げられ、これらの中でも10~35μm程度が特に好ましい。 The thickness of the polyamide film is preferably about 3 μm or more, more preferably about 10 μm or more, and more preferably about 10 μm or more, from the viewpoint of more effectively suppressing damage to the exterior material for the power storage device during the above-mentioned peeling. It is preferably about 50 μm or less, more preferably about 35 μm or less, and preferred ranges include about 3 to 50 μm, about 3 to 35 μm, about 10 to 50 μm, and about 10 to 35 μm, among which 10 to 35 μm. The degree is particularly preferable.
 ポリアミドフィルムの表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。添加剤の詳細については、蓄電デバイス用外装材10の基材層1の項目で説明した通りである。 Additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the inside of the polyamide film. Only one type of additive may be used, or two or more types may be mixed and used. The details of the additive are as described in the item of the base material layer 1 of the exterior material 10 for the power storage device.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be described in detail below with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1-3及び比較例1-2
 基材層として、それぞれ、延伸ナイロン(ONy)フィルム(厚さ25μm)を準備した。後述の通り、実施例1-3及び比較例1-2で使用した延伸ナイロンフィルムは、それぞれ、延伸倍率、熱固定温度を変更して結晶化指数を表1に記載の値に調整したものである。延伸ナイロンフィルムには、滑剤としてエルカ酸アミドが塗布されている。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用意した。次に、アルミニウム合金箔の一方面に、接着剤(2液型ウレタン接着剤)を塗布し、乾燥させた。次いで、バリア層上の接着剤と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ25μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ40μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
<Manufacturing of exterior materials for power storage devices>
Example 1-3 and Comparative Example 1-2
Stretched nylon (ONy) films (thickness 25 μm) were prepared as the base material layers. As will be described later, the stretched nylon films used in Examples 1-3 and Comparative Example 1-2 were prepared by changing the draw ratio and the heat-fixing temperature to adjust the crystallization index to the values shown in Table 1, respectively. is there. Erucic acid amide is applied as a lubricant to the stretched nylon film. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 μm)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 25 μm) / adhesive layer (thickness after curing 3 μm) /. A laminated body of a barrier layer (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ23μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ23μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み114μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 23 μm) and random polypropylene as a thermosetting resin layer (thickness 23 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 25 μm) / adhesive layer (3 μm). A laminated body (total thickness 114 μm) in which a barrier layer (40 μm) / adhesive layer (23 μm) / thermosetting resin layer (23 μm) was laminated was obtained.
実施例4
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。後述の通り、実施例4で使用した延伸ナイロンフィルムは、延伸倍率、熱固定温度を変更して結晶化指数を表1に記載の値に調整したものである。延伸ナイロンフィルムには、バリア層とは反対側の表面にコート層(滑剤を含むポリエステルポリウレタンを、300nm以下の厚みで塗布したもの)を有し、バリア層側の表面にコート層(ポリエステルポリウレタンを、300nm以下の厚みで塗布したもの)を有する。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ35μm))を用意した。次に、アルミニウム合金箔の一方面に、接着剤(2液型ウレタン接着剤)を塗布し、乾燥させた。次いで、バリア層上の接着剤と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ35μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 4
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. As will be described later, the stretched nylon film used in Example 4 has a crystallization index adjusted to the values shown in Table 1 by changing the stretch ratio and the heat fixing temperature. The stretched nylon film has a coat layer (a polyester polyurethane containing a lubricant coated with a thickness of 300 nm or less) on the surface opposite to the barrier layer, and a coat layer (polyester polyurethane) on the surface on the barrier layer side. , With a thickness of 300 nm or less). As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 35 μm)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 μm) / adhesive layer (thickness after curing 3 μm) /. A laminated body of a barrier layer (thickness 35 μm) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ15μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ15μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(35μm)/接着層(15μm)/熱融着性樹脂層(15μm)が積層された積層体(総厚み88μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 15 μm) and random polypropylene as a thermosetting resin layer (thickness 15 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 20 μm) / adhesive layer (3 μm). / Barrier layer (35 μm) / Adhesive layer (15 μm) / Thermosetting resin layer (15 μm) were laminated to obtain a laminated body (total thickness 88 μm).
実施例5
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例5で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。延伸ナイロンフィルムには、バリア層とは反対側の表面にコート層(滑剤を含むポリエステルポリウレタンを、300nm以下の厚みで塗布したもの)を有し、バリア層側の表面にコート層(ポリエステルポリウレタンを、300nm以下の厚みで塗布したもの)を有する。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ30μm))を用意した。次に、アルミニウム合金箔の一方面に、接着剤(2液型ウレタン接着剤)を塗布し、乾燥させた。次いで、バリア層上の接着剤と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ30μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 5
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 5 is the same as that used in Example 4. The stretched nylon film has a coat layer (a polyester polyurethane containing a lubricant coated with a thickness of 300 nm or less) on the surface opposite to the barrier layer, and a coat layer (polyester polyurethane) on the surface on the barrier layer side. , With a thickness of 300 nm or less). As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 30 μm)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 μm) / adhesive layer (thickness after curing 3 μm) /. A laminated body of a barrier layer (thickness 30 μm) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ14μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ10μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(30μm)/接着層(14μm)/熱融着性樹脂層(10μm)が積層された積層体(総厚み77μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 14 μm) and random polypropylene as a thermosetting resin layer (thickness 10 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 20 μm) / adhesive layer (3 μm). A laminated body (total thickness 77 μm) in which / a barrier layer (30 μm) / an adhesive layer (14 μm) / a thermosetting resin layer (10 μm) was laminated was obtained.
実施例6
 基材層として、バリア層側の表面にコート層(ポリエステルポリウレタンを、300nm以下の厚みで塗布したもの)を有する延伸ナイロン(ONy)フィルムを用いた以外は実施例1と同様にして、外側から順に、基材層(厚さ25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(23μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み114μm)を得た。
Example 6
As the base material layer, a stretched nylon (ONy) film having a coat layer (polyester polyurethane coated with a thickness of 300 nm or less) is used on the surface on the barrier layer side in the same manner as in Example 1 from the outside. Laminated body (total thickness 114 μm) in which a base material layer (thickness 25 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (23 μm) / thermosetting resin layer (23 μm) are laminated in this order. Got
実施例7
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例7で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ35μm))を用意した。次に、接着剤(カーボンブラックを含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ35μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 7
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 7 is the same as that used in Example 4. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 35 μm)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness). A laminated body of 20 μm) / adhesive layer (thickness after curing 3 μm) / barrier layer (35 μm thickness) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ15μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ15μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(35μm)/接着層(15μm)/熱融着性樹脂層(15μm)が順に積層された積層体を得た。次に、得られた積層体の延伸ナイロンフィルムの表面に、表面被覆層としてのマット層を形成するための(シリカ粒子、樹脂ビーズを含む2液型ウレタン樹脂)を、厚みが3μmとなるように塗布し、エージングして、外側から順に、表面被覆層(厚さ3μm)/基材層(厚さ20μm)/接着剤層(3μm)/バリア層(35μm)/接着層(15μm)/熱融着性樹脂層(15μm)が積層された積層体(総厚み91μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 15 μm) and random polypropylene as a thermosetting resin layer (thickness 15 μm) By co-extruding, the adhesive layer / thermosetting resin layer is laminated on the barrier layer, and the base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (35 μm) / adhesion A laminated body in which layers (15 μm) / thermosetting resin layers (15 μm) were laminated in this order was obtained. Next, on the surface of the stretched nylon film of the obtained laminate, a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 μm. Surface coating layer (thickness 3 μm) / base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (35 μm) / adhesive layer (15 μm) / heat in this order from the outside. A laminated body (total thickness 91 μm) in which a fusible resin layer (15 μm) was laminated was obtained.
実施例8
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例8で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用意した。次に、アルミニウム合金箔の一方面に、接着剤(2液型ウレタン接着剤)を塗布し、乾燥させた。次いで、バリア層上の接着剤と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ40μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 8
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 8 is the same as that used in Example 4. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 μm)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 μm) / adhesive layer (thickness after curing 3 μm) /. A laminated body of a barrier layer (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ14μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ10μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(14μm)/熱融着性樹脂層(10μm)が積層された積層体(総厚み87μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 14 μm) and random polypropylene as a thermosetting resin layer (thickness 10 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 20 μm) / adhesive layer (3 μm). / Barrier layer (40 μm) / Adhesive layer (14 μm) / Thermosetting resin layer (10 μm) were laminated to obtain a laminated body (total thickness 87 μm).
実施例9
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例9で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用意した。次に、接着剤(カーボンブラックを含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ40μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 9
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 9 is the same as that used in Example 4. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 μm)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness). A laminated body of 20 μm) / adhesive layer (thickness after curing 3 μm) / barrier layer (40 μm thickness) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ14μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ10μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させ、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(14μm)/熱融着性樹脂層(10μm)が順に積層された積層体を得た。次に、得られた積層体の延伸ナイロンフィルムの表面に、表面被覆層としてのマット層を形成するための(シリカ粒子、樹脂ビーズを含む2液型ウレタン樹脂)を、厚みが3μmとなるように塗布し、エージングして、外側から順に、表面被覆層(厚さ3μm)/基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(14μm)/熱融着性樹脂層(10μm)が積層された積層体(総厚み90μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 14 μm) and random polypropylene as a thermosetting resin layer (thickness 10 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, and the base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer. A laminate in which (14 μm) / thermosetting resin layer (10 μm) was laminated in order was obtained. Next, on the surface of the stretched nylon film of the obtained laminate, a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 μm. Surface coating layer (thickness 3 μm) / base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (14 μm) / heat, in order from the outside. A laminated body (total thickness 90 μm) in which a fusible resin layer (10 μm) was laminated was obtained.
実施例10
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例10で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用意した。次に、アルミニウム合金箔の一方面に、接着剤(2液型ウレタン接着剤)を塗布し、乾燥させた。次いで、バリア層上の接着剤と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ40μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 10
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 10 is the same as that used in Example 4. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 μm)) was prepared. Next, an adhesive (two-component urethane adhesive) was applied to one surface of the aluminum alloy foil and dried. Next, the adhesive on the barrier layer and the base material layer are laminated by a dry laminating method, and then an aging treatment is performed to obtain a base material layer (thickness 20 μm) / adhesive layer (thickness after curing 3 μm) /. A laminated body of a barrier layer (thickness 40 μm) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ15μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ15μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、エージングして、外側から順に、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)が積層された積層体(総厚み93μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 15 μm) and random polypropylene as a thermosetting resin layer (thickness 15 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, aged, and in order from the outside, a base material layer (thickness 20 μm) / adhesive layer (3 μm). A laminated body (total thickness 93 μm) in which / a barrier layer (40 μm) / an adhesive layer (15 μm) / a thermosetting resin layer (15 μm) was laminated was obtained.
実施例11
 基材層として、延伸ナイロン(ONy)フィルム(厚さ20μm)を準備した。実施例11で使用した延伸ナイロンフィルムは、実施例4で使用したものと同じである。バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O(厚さ40μm))を用意した。次に、接着剤(カーボンブラックを含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層(厚さ20μm)/接着剤層(硬化後の厚さ3μm)/バリア層(厚さ40μm)の積層体を作製した。アルミニウム合金箔の両面には、化成処理が施してある。アルミニウム合金箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより行った。
Example 11
A stretched nylon (ONy) film (thickness 20 μm) was prepared as a base material layer. The stretched nylon film used in Example 11 is the same as that used in Example 4. As a barrier layer, an aluminum alloy foil (JIS H4160: 1994 A8021HO (thickness 40 μm)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (a two-component urethane adhesive containing carbon black), and then an aging treatment is performed to obtain a base material layer (thickness). A laminated body of 20 μm) / adhesive layer (thickness after curing 3 μm) / barrier layer (40 μm thickness) was prepared. Both sides of the aluminum alloy foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum alloy foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the aluminum alloy foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying on both sides and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ14μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ10μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させ、基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)が順に積層された積層体を得た。次に、得られた積層体の延伸ナイロンフィルムの表面に、表面被覆層としてのマット層を形成するための(シリカ粒子、樹脂ビーズを含む2液型ウレタン樹脂)を、厚みが3μmとなるように塗布し、エージングして、外側から順に、表面被覆層(厚さ3μm)/基材層(厚さ20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)が積層された積層体(総厚み96μm)を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 14 μm) and random polypropylene as a thermosetting resin layer (thickness 10 μm) By co-extruding, an adhesive layer / thermosetting resin layer is laminated on the barrier layer, and the base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer. A laminate in which (15 μm) / thermosetting resin layer (15 μm) was laminated in this order was obtained. Next, on the surface of the stretched nylon film of the obtained laminate, a two-component urethane resin (two-component urethane resin containing silica particles and resin beads) for forming a mat layer as a surface coating layer was applied so as to have a thickness of 3 μm. Surface coating layer (thickness 3 μm) / base material layer (thickness 20 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (15 μm) / heat, in order from the outside. A laminated body (total thickness 96 μm) in which a fusible resin layer (15 μm) was laminated was obtained.
<蓄電デバイス用外装材の基材層の結晶化指数の測定>
 蓄電デバイス用外装材を100mm×100mmの正方形に裁断してサンプルを作製した。得られたサンプルの外側に位置している延伸ナイロンフィルムの表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。実施例7,9,11については、表面被覆層を塗布する前に測定を行った。結果を表1に示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:波数1100cm-1から1400cm-1間で直線近似として求めた。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<Measurement of crystallization index of base material layer of exterior material for power storage device>
A sample was prepared by cutting the exterior material for a power storage device into a square of 100 mm × 100 mm. The surface of the stretched nylon film located on the outside of the obtained sample was manufactured by Thermo Fisher Scientific Co., Ltd .: using the ATR measurement mode of Nicolet iS10 FT-IR under an environment of a temperature of 25 ° C. and a relative humidity of 50%. Infrared absorption spectrum measurement was performed in. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of α crystal of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystal were measured, and the peak intensity Q was measured. The intensity ratio X = P / Q of the peak intensity P with respect to the above was calculated as the crystallization index. For Examples 7, 9 and 11, the measurement was performed before applying the surface coating layer. The results are shown in Table 1.
(Measurement condition)
Method: Macro ATR method Wavenumber resolution: 8 cm -1
Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge
Incident angle: 45 °
Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1.
Absorption peak intensity Y 1200: value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1 Y 1370: peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
<延伸ナイロンフィルムの結晶化指数の測定>
 蓄電デバイス用外装材の基材層に用いた延伸ナイロンフィルムを100mm×100mmの正方形に裁断してサンプルを作製した。得られたサンプルの表面をサーモフィッシャーサイエンティフィック株式会社製:Nicolet iS10 FT-IRのATR測定モードを用いて、温度25℃、相対湿度50%の環境下で赤外吸収スペクトル測定を実施した。得られた吸収スペクトルから、ナイロンのα晶の吸収に由来する1200cm-1付近のピーク強度Pと、結晶とは無関係の吸収に由来する1370cm-1付近のピーク強度Qを測定し、ピーク強度Qに対するピーク強度Pの強度比X=P/Qを結晶化指数として算出した。結果を表1に示す。
(測定条件)
手法:マクロATR法
波数分解能:8cm-1
積算回数:32回
検出器:DTGS検出器
ATRプリズム:Ge
入射角:45°
ベースライン:波数1100cm-1から1400cm-1間で直線近似として求めた。
吸収ピーク強度Y1200:波数1195cm-1から1205cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
吸収ピーク強度Y1370:波数1365cm-1から1375cm-1の範囲におけるピーク強度の最大値からベースラインの値を引いた値
<Measurement of crystallization index of stretched nylon film>
A sample was prepared by cutting a stretched nylon film used for the base material layer of the exterior material for a power storage device into a square of 100 mm × 100 mm. The surface of the obtained sample was subjected to infrared absorption spectrum measurement in an environment of a temperature of 25 ° C. and a relative humidity of 50% using the ATR measurement mode of Thermo Fisher Scientific Co., Ltd .: Nicolet iS10 FT-IR. From the obtained absorption spectrum, the peak intensity P around 1200 cm -1 derived from the absorption of α crystal of nylon and the peak intensity Q around 1370 cm -1 derived from the absorption unrelated to the crystal were measured, and the peak intensity Q was measured. The intensity ratio X = P / Q of the peak intensity P with respect to the above was calculated as the crystallization index. The results are shown in Table 1.
(Measurement condition)
Method: Macro ATR method Wavenumber resolution: 8 cm -1
Number of integrations: 32 times Detector: DTGS detector ATR prism: Ge
Incident angle: 45 °
Baseline: determined as a straight line approximation between 1400 cm -1 wave number 1100 cm -1.
Absorption peak intensity Y 1200: value absorption peak intensity minus the baseline values from the maximum value of the peak intensity in the range of 1205cm -1 wave number 1195cm -1 Y 1370: peak intensity in the range of 1375 cm -1 wave number 1365cm -1 Maximum value minus baseline value
<蓄電デバイスの引き剥がし試験>
 蓄電デバイスの引き剥がし試験を以下の手順により行った。図5から図8を参照しながら、説明する。まず、蓄電デバイスの引き剥がし試験に用いるサンプルの作製手順を、図5を参照しながら説明する。図5aに示すように、蓄電デバイス用外装材を縦(MD)200mm、横(TD)90mmの矩形状に裁断する。次に、縦55mm(MD)×横32mm(TD)の口径の成型金型(雌型)とこれに対応した成型金型(雄型)を用いて、蓄電デバイス用外装材の短辺から15mm離れた位置に、熱融着性樹脂層側から5.0mmの深さに冷間成形し、凹部M(図5aの破線で囲まれた領域)を形成した。次に、長さ55mm、幅32mm、厚さ5mmのアクリル板を凹部Mに挿入した(図5b、c)。次に、凹部Mが内側になるようにして、成型後の蓄電デバイス用外装材を折り目Pの位置(凹部Mの短辺に沿った位置)でTD方向に2つ折りにした(図5d)。次に、凹部Mの周縁に沿うようにして、熱融着性樹脂層同士が重なり合っている部分をMD、TDに沿って3箇所ヒートシール(190℃、3秒、面圧1MPa)して、凹部Mを密封した(図5e)。図5eにおいて、着色された領域Sがヒートシールされている部分である。次に、図5fに示すように、凹部Mに沿うようにして、縦(MD)60mm、横(TD)37mmのサイズにトリミングして、蓄電デバイスの引き剥がし試験に用いるサンプル12を作製した。図6に、サンプル12の側面図(図6a)と平面図(図6b)を示す。
<Peeling test of power storage device>
The peeling test of the power storage device was performed according to the following procedure. This will be described with reference to FIGS. 5 to 8. First, a procedure for preparing a sample used for a peeling test of a power storage device will be described with reference to FIG. As shown in FIG. 5a, the exterior material for a power storage device is cut into a rectangular shape having a length (MD) of 200 mm and a width (TD) of 90 mm. Next, using a molding die (female mold) having a diameter of 55 mm (MD) x 32 mm (TD) in length and a corresponding molding die (male mold), 15 mm from the short side of the exterior material for the power storage device. A recess M (a region surrounded by a broken line in FIG. 5a) was formed by cold molding at a distant position to a depth of 5.0 mm from the thermosetting resin layer side. Next, an acrylic plate having a length of 55 mm, a width of 32 mm, and a thickness of 5 mm was inserted into the recess M (FIGS. 5b and c). Next, the exterior material for the power storage device after molding was folded in half in the TD direction at the position of the crease P (the position along the short side of the recess M) so that the recess M was on the inside (FIG. 5d). Next, the portion where the thermosetting resin layers overlap each other is heat-sealed (190 ° C., 3 seconds, surface pressure 1 MPa) at three locations along the MD and TD along the peripheral edge of the recess M. The recess M was sealed (FIG. 5e). In FIG. 5e, the colored region S is a heat-sealed portion. Next, as shown in FIG. 5f, the sample 12 used for the peeling test of the power storage device was prepared by trimming to a size of 60 mm in length (MD) and 37 mm in width (TD) along the recess M. FIG. 6 shows a side view (FIG. 6a) and a plan view (FIG. 6b) of the sample 12.
 次に、図7の模式図に示すように、サンプル12の平面側の表面(凹部Mが形成されている面とは反対側の面)に、縦方向(MD)に沿って3本の両面テープ(幅7.5mm、長さ55mm)を両端と中央の位置に貼り付けた。なお、両面テープの被対象物への剥離強度については、後述の方法で測定した。 Next, as shown in the schematic view of FIG. 7, three double-sided surfaces along the vertical direction (MD) on the plane side surface of the sample 12 (the surface opposite to the surface on which the recess M is formed). Tape (width 7.5 mm, length 55 mm) was attached to both ends and the center. The peel strength of the double-sided tape to the object was measured by the method described later.
 次に、両面テープを貼り付けたサンプル12を、ステンレス鋼板に貼り付けて、60℃環境で24時間養生した。なお、ステンレス鋼板は、蓄電デバイスを両面テープで固定する筐体を見立てたものである。次に、図8の模式図に示すようにして、金属ヘラを用いてサンプル12をステンレス鋼板から慎重に引き剥がし、引き剥がされたサンプル12の穴の有無を目視で確認し、それぞれ、サンプル3つずつについて、以下の基準に従って蓄電デバイスの引き剥がし試験の評価を行った。図8に示すように、蓄電デバイスの引き剥がしは、サンプル12の横方向(TD)から力を加えることで行った。結果を表1に示す。
A:3つ全てのサンプルに穴が開いていなかった。
B:1つ又は2つのサンプルに穴が開いていた。
C:3つ全てのサンプルに穴が開いていた。
Next, the sample 12 to which the double-sided tape was attached was attached to a stainless steel plate and cured in an environment of 60 ° C. for 24 hours. The stainless steel plate is likened to a housing for fixing the power storage device with double-sided tape. Next, as shown in the schematic view of FIG. 8, the sample 12 was carefully peeled off from the stainless steel plate using a metal spatula, and the presence or absence of holes in the peeled sample 12 was visually confirmed, and each sample 3 was visually confirmed. For each, the peeling test of the power storage device was evaluated according to the following criteria. As shown in FIG. 8, the power storage device was peeled off by applying a force from the lateral direction (TD) of the sample 12. The results are shown in Table 1.
A: There were no holes in all three samples.
B: There was a hole in one or two samples.
C: All three samples had holes.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~11の蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、前記基材層は、ポリアミドフィルムを含んでおり、フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である。また、実施例1~11の蓄電デバイス用外装材の基材層に用いたポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である。実施例1~11の蓄電デバイス用外装材は、両面テープなどで固定された蓄電デバイスを筐体から引き剥がす際に蓄電デバイス用外装材が破損することが効果的に抑制されることが分かる。 The exterior materials for power storage devices of Examples 1 to 11 are composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the base material layer is a polyamide. The film is included, and the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more. Further, the polyamide film used for the base material layer of the exterior material for the power storage device of Examples 1 to 11 has a crystallization index of 1.50 or more measured by the ATR method of Fourier transform infrared spectroscopy. It can be seen that the exterior materials for power storage devices of Examples 1 to 11 effectively suppress damage to the exterior materials for power storage devices when the power storage device fixed with double-sided tape or the like is peeled off from the housing.
 蓄電デバイス用外装材の基材層について測定した結晶化指数と、延伸ナイロンフィルムについて測定した結晶化指数の値の相違は、蓄電デバイス用外装材のエージングによる影響と考えられる。比較例1,2で用いた延伸ナイロンフィルムは、結晶化指数の値が実施例1~11よりも大幅に小さいが、蓄電デバイス用外装材の基材層とした後に測定された値は、延伸ナイロンフィルムの状態で測定された値よりもかなり大きくなっている。しかしながら、比較例1,2において、基材層の外側から測定されるポリアミドフィルムの結晶化指数は、蓄電デバイス用外装材のエージングでは1.50以上にまでは高められず、蓄電デバイスの引き剥がし試験評価は、実施例1~11よりも劣っていた。 The difference between the crystallization index measured for the base material layer of the exterior material for the power storage device and the crystallization index measured for the stretched nylon film is considered to be the effect of aging of the exterior material for the power storage device. The stretched nylon films used in Comparative Examples 1 and 2 had a crystallization index value significantly smaller than that of Examples 1 to 11, but the value measured after the base layer of the exterior material for the power storage device was stretched. It is considerably larger than the value measured in the state of nylon film. However, in Comparative Examples 1 and 2, the crystallization index of the polyamide film measured from the outside of the base material layer could not be increased to 1.50 or more by the aging of the exterior material for the power storage device, and the power storage device was peeled off. The test evaluation was inferior to Examples 1 to 11.
(両面テープの剥離強度の測定)
 実施例1~11の蓄電デバイス用外装材(縦15mm×横70mm)と、<蓄電デバイスの引き剥がし試験>で用いた両面テープ(縦7.5mm×横60mm)と、アルミニウム箔(厚さ35μm×縦15mm×横150mm)と、固定用両面粘着テープ(縦5mm×横60mm)と、アクリル板(厚さ3mm×縦50mm×横70mm)とを用意した。まず、蓄電デバイス用外装材の延伸ナイロンフィルム側の表面(実施例4,5については、延伸ナイロンフィルム上のコート層の表面であり、実施例7,9,11については、延伸ナイロンフィルム上の表面被覆層の表面)と、両面テープの一方面とを貼り合わせ、さらに両面テープの他方面にアルミニウム箔を貼り合わせ、アルミニウム箔の上から、2kgのローラを一往復させて積層体Pを得た。また、アクリル板と、固定用両面粘着テープの一方面とを貼り合わせて積層体Qを得た。さらに、積層体Qの固定用両面粘着テープの他方面に、積層体Pの蓄電デバイス用外装材の熱融着性樹脂層表面を貼り合わせ、手で押さえつけることにより、アクリル板、固定用両面粘着テープ、蓄電デバイス用外装材、両面テープ、アルミニウム箔が順に積層された積層体Rを得、これを試験サンプルMとした。試験サンプルMを温度60℃環境で24時間保管した。次に、蓄電デバイス用外装材の延伸ナイロンフィルム表面と、両面テープの端部を1mm程度剥離させて、剥離強度を測定するきっかけ部分を設けた。次に、試験サンプルMのアクリル板を固定し、引張り試験機(島津製作所製、AG-Xplus(商品名))を用いて、引張角度180°、剥離速度300mm/min、剥離距離50mm以上の条件でアルミニウム箔を引張り、蓄電デバイス用外装材の延伸ナイロンフィルム表面と、両面テープの界面で(前記のきっかけ部分から)剥離させて、剥離距離10mm、20mm、30mm、40mmでの剥離強度と、10~40mm間の最大剥離強度の合計5つの剥離強度の平均を算出して剥離強度(延伸ナイロンフィルムに対する両面テープの剥離強度(N/7.5mm))とした。結果を表2に示す。
(Measurement of peel strength of double-sided tape)
Exterior materials for power storage devices (length 15 mm x width 70 mm) of Examples 1 to 11, double-sided tape (length 7.5 mm x width 60 mm) used in <Peeling test of power storage device>, and aluminum foil (thickness 35 μm). A double-sided adhesive tape for fixing (length 5 mm x width 60 mm) and an acrylic plate (thickness 3 mm x length 50 mm x width 70 mm) were prepared. First, the surface of the exterior material for the power storage device on the stretched nylon film side (Examples 4 and 5 are the surfaces of the coat layer on the stretched nylon film, and Examples 7, 9 and 11 are on the stretched nylon film. The surface of the surface coating layer) and one side of the double-sided tape are bonded together, and then an aluminum foil is bonded to the other side of the double-sided tape, and a 2 kg roller is reciprocated once from the top of the aluminum foil to obtain a laminate P. It was. Further, the acrylic plate and one side of the fixing double-sided adhesive tape were bonded to obtain a laminated body Q. Further, the surface of the heat-sealing resin layer of the exterior material for the power storage device of the laminate P is attached to the other surface of the double-sided adhesive tape for fixing the laminate Q, and the surface of the heat-sealing resin layer is pressed by hand to adhere the acrylic plate and the double-sided adhesive for fixing. A laminate R in which a tape, an exterior material for a power storage device, a double-sided tape, and an aluminum foil were laminated in this order was obtained, and this was used as a test sample M. The test sample M was stored in an environment at a temperature of 60 ° C. for 24 hours. Next, the surface of the stretched nylon film of the exterior material for the power storage device and the end portion of the double-sided tape were peeled off by about 1 mm to provide a trigger portion for measuring the peeling strength. Next, the acrylic plate of the test sample M is fixed, and a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) is used under the conditions of a tensile angle of 180 °, a peeling speed of 300 mm / min, and a peeling distance of 50 mm or more. The aluminum foil is pulled and peeled off at the interface between the stretched nylon film surface of the exterior material for the power storage device and the double-sided tape (from the above-mentioned trigger portion), and the peeling strength at peeling distances of 10 mm, 20 mm, 30 mm, and 40 mm and 10 The average of the total five peel strengths of the maximum peel strengths between about 40 mm was calculated and used as the peel strength (the peel strength of the double-sided tape against the stretched nylon film (N / 7.5 mm)). The results are shown in Table 2.
 次に、<蓄電デバイスの引き剥がし試験>で用いた、ステンレス鋼板(厚さ3mm×縦50mm×横70mm)及び両面テープ(縦7.5mm×横60mm)、さらに前記のアルミニウム箔(厚さ35μm×縦15mm×横150mm)を用意した。ステンレス鋼板の表面と、両面テープの一方面とを貼り合わせ、さらに両面テープの他方面にアルミニウム箔を貼り合わせ、アルミニウム箔の上から、2kgのローラを一往復させて積層体を得、これを試験サンプルNとした。試験サンプルNを温度60℃環境で24時間保管した。次に、ステンレス鋼板表面と、両面テープの端部を1mm程度剥離させて、剥離強度を測定するきっかけ部分を設けた。次に、試験サンプルNのステンレス鋼板を固定し、引張り試験機(島津製作所製、AG-Xplus(商品名))を用いて、引張角度180°、剥離速度300mm/min、剥離距離50mm以上の条件でアルミニウム箔を引張り、ステンレス鋼板表面と、両面テープの界面で(前記のきっかけ部分から)剥離させて、剥離距離10mm、20mm、30mm、40mmでの剥離強度と、10~40mm間の最大剥離強度の合計5つの剥離強度の平均を算出して剥離強度(ステンレス鋼板に対する両面テープの剥離強度(N/7.5mm))とした。結果を表2に示す。 Next, the stainless steel plate (thickness 3 mm × length 50 mm × width 70 mm) and double-sided tape (length 7.5 mm × width 60 mm) used in the <peeling test of the power storage device>, and the aluminum foil (thickness 35 μm). × length 15 mm × width 150 mm) was prepared. The surface of the stainless steel plate and one side of the double-sided tape are bonded together, and then the aluminum foil is bonded to the other side of the double-sided tape, and a 2 kg roller is reciprocated once from the top of the aluminum foil to obtain a laminate. It was designated as test sample N. The test sample N was stored in an environment at a temperature of 60 ° C. for 24 hours. Next, the surface of the stainless steel plate and the end portion of the double-sided tape were peeled off by about 1 mm to provide a trigger portion for measuring the peeling strength. Next, the stainless steel plate of the test sample N is fixed, and a tensile tester (manufactured by Shimadzu Corporation, AG-Xplus (trade name)) is used under the conditions of a tensile angle of 180 °, a peeling speed of 300 mm / min, and a peeling distance of 50 mm or more. Pull the aluminum foil with and peel it off at the interface between the stainless steel plate surface and the double-sided tape (from the above-mentioned trigger part), and peel strength at peeling distances of 10 mm, 20 mm, 30 mm, and 40 mm, and maximum peel strength between 10 and 40 mm. The average of the total of 5 peel strengths was calculated and used as the peel strength (the peel strength of the double-sided tape against the stainless steel plate (N / 7.5 mm)). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示される結果から明らかな通り、<蓄電デバイスの引き剥がし試験>に使用した両面テープの剥離強度は、延伸ナイロンフィルム、ステンレス鋼板に対して同程度のものであった。 As is clear from the results shown in Table 2, the peel strength of the double-sided tape used in the <peeling test of the power storage device> was about the same as that of the stretched nylon film and the stainless steel plate.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記基材層は、ポリアミドフィルムを含んでおり、
 フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
項2. 前記基材層と前記バリア層との間に、接着剤層を備えている、項1に記載の蓄電デバイス用外装材。
項3. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、項1又は2に記載の蓄電デバイス用外装材。
項4. 外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
 前記基材層は、ポリアミドフィルムを含んでおり、
 フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材の製造方法。
項5. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~3のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項6. 少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の前記基材層に用いるためのポリアミドフィルムであって、
 前記ポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である、ポリアミドフィルム。
As described above, the present disclosure provides the inventions of the following aspects.
Item 1. From the outside, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer.
The base material layer contains a polyamide film and
An exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
Item 2. Item 2. The exterior material for a power storage device according to Item 1, wherein an adhesive layer is provided between the base material layer and the barrier layer.
Item 3. Item 2. The exterior material for a power storage device according to Item 1 or 2, wherein an adhesive layer is provided between the barrier layer and the thermosetting resin layer.
Item 4. A step of obtaining a laminate in which at least a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
The base material layer contains a polyamide film and
A method for producing an exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
Item 5. A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of Items 1 to 3.
Item 6. A polyamide film for use in the base material layer of an exterior material for a power storage device composed of a laminate including at least a base material layer, a barrier layer, and a thermosetting resin layer.
The polyamide film is a polyamide film having a crystallization index of 1.50 or more as measured by the ATR method of Fourier transform infrared spectroscopy.
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
1 Base material layer 2 Adhesive layer 3 Barrier layer 4 Thermosetting resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Claims (6)

  1.  外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
     前記基材層は、ポリアミドフィルムを含んでおり、
     フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材。
    From the outside, it is composed of a laminate having at least a base material layer, a barrier layer, and a thermosetting resin layer.
    The base material layer contains a polyamide film and
    An exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  2.  前記基材層と前記バリア層との間に、接着剤層を備えている、請求項1に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1, wherein an adhesive layer is provided between the base material layer and the barrier layer.
  3.  前記バリア層と前記熱融着性樹脂層との間に、接着層を備えている、請求項1又は2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein an adhesive layer is provided between the barrier layer and the thermosetting resin layer.
  4.  外側から順に、少なくとも、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
     前記基材層は、ポリアミドフィルムを含んでおり、
     フーリエ変換赤外分光法のATR法により、前記基材層の外側から測定される前記ポリアミドフィルムの結晶化指数が、1.50以上である、蓄電デバイス用外装材の製造方法。
    A step of obtaining a laminate in which at least a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
    The base material layer contains a polyamide film and
    A method for producing an exterior material for a power storage device, wherein the crystallization index of the polyamide film measured from the outside of the base material layer by the ATR method of Fourier transform infrared spectroscopy is 1.50 or more.
  5.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of claims 1 to 3.
  6.  少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材の前記基材層に用いるためのポリアミドフィルムであって、
     前記ポリアミドフィルムは、フーリエ変換赤外分光法のATR法により測定される結晶化指数が、1.50以上である、ポリアミドフィルム。
    A polyamide film for use in the base material layer of an exterior material for a power storage device composed of a laminate including at least a base material layer, a barrier layer, and a thermosetting resin layer.
    The polyamide film is a polyamide film having a crystallization index of 1.50 or more as measured by the ATR method of Fourier transform infrared spectroscopy.
PCT/JP2020/019675 2019-05-17 2020-05-18 Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film WO2020235534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080036390.1A CN113825638B (en) 2019-05-17 2020-05-18 Outer packaging material for power storage device, method for producing same, power storage device, and polyamide film
JP2020547255A JP6809657B1 (en) 2019-05-17 2020-05-18 Exterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-093552 2019-05-17
JP2019093552 2019-05-17
JP2019-176188 2019-09-26
JP2019176188 2019-09-26

Publications (1)

Publication Number Publication Date
WO2020235534A1 true WO2020235534A1 (en) 2020-11-26

Family

ID=73459388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019675 WO2020235534A1 (en) 2019-05-17 2020-05-18 Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film

Country Status (3)

Country Link
JP (2) JP6809657B1 (en)
CN (1) CN113825638B (en)
WO (1) WO2020235534A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060185B1 (en) * 2020-11-25 2022-04-26 大日本印刷株式会社 Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2022114024A1 (en) * 2020-11-25 2022-06-02 大日本印刷株式会社 Outer package material for power storage devices, method for producing same, and power storage device
WO2023136360A1 (en) * 2022-01-17 2023-07-20 大日本印刷株式会社 Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234794B2 (en) * 2019-05-17 2023-03-08 大日本印刷株式会社 Exterior material for power storage device, method for producing the same, power storage device, and polyamide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286067A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Resin-impregnated fiber sheet
JP2015051528A (en) * 2013-09-05 2015-03-19 出光ユニテック株式会社 Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2015141448A1 (en) * 2014-03-20 2015-09-24 大日本印刷株式会社 Packaging material for batteries, battery, and production methods therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69427258T2 (en) * 1993-03-31 2001-12-06 Toray Industries FIBERBOARD IMPREGNATED WITH RESIN
JP2003103729A (en) * 2001-09-28 2003-04-09 Showa Denko Plastic Products Co Ltd Laminate, sealant film and container
JP2009234131A (en) * 2008-03-28 2009-10-15 Unitika Ltd Production process of biaxially stretched polyamide resin film
JP2012033394A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
JP2014124947A (en) * 2012-12-27 2014-07-07 Idemitsu Unitech Co Ltd Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film
JP2014231365A (en) * 2013-05-28 2014-12-11 凸版印刷株式会社 Gas barrier packaging material
US10396316B2 (en) * 2015-03-25 2019-08-27 Dai Nippon Printing Co., Ltd. Cell packaging material and cell
JP6754589B2 (en) * 2016-02-29 2020-09-16 藤森工業株式会社 Resin-coated metal laminate, battery exterior and battery
CN108701778B (en) * 2016-10-05 2021-08-03 大日本印刷株式会社 Battery packaging material, method for producing same, and battery
JP6420424B2 (en) * 2017-07-25 2018-11-07 藤森工業株式会社 Battery exterior laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286067A (en) * 1993-03-31 1994-10-11 Toray Ind Inc Resin-impregnated fiber sheet
JP2015051528A (en) * 2013-09-05 2015-03-19 出光ユニテック株式会社 Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2015141448A1 (en) * 2014-03-20 2015-09-24 大日本印刷株式会社 Packaging material for batteries, battery, and production methods therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060185B1 (en) * 2020-11-25 2022-04-26 大日本印刷株式会社 Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2022114024A1 (en) * 2020-11-25 2022-06-02 大日本印刷株式会社 Outer package material for power storage devices, method for producing same, and power storage device
WO2023136360A1 (en) * 2022-01-17 2023-07-20 大日本印刷株式会社 Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device

Also Published As

Publication number Publication date
JP2021061244A (en) 2021-04-15
CN113825638A (en) 2021-12-21
JPWO2020235534A1 (en) 2021-06-10
JP6809657B1 (en) 2021-01-06
CN113825638B (en) 2024-03-29

Similar Documents

Publication Publication Date Title
JP6809657B1 (en) Exterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films
JP2021012876A (en) Exterior material for power storage devices, method for manufacturing the same, and power storage device
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP6819839B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP7234794B2 (en) Exterior material for power storage device, method for producing the same, power storage device, and polyamide film
JPWO2020071254A1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021230251A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
WO2021201294A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
JP7024935B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021020583A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
WO2020204185A1 (en) Outer package material for electricity storage devices, method for producing same, and electricity storage device
WO2022114024A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP7060185B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021215538A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
WO2021157673A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
JP6870777B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP6828777B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
WO2020085461A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP2021103687A (en) Exterior material for power storage device, power storage device, and method for manufacturing these
JP2023012724A (en) Sheath material for power storage device, method for manufacturing the same, and power storage device
JP2021077647A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547255

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809964

Country of ref document: EP

Kind code of ref document: A1