WO2020235291A1 - Electrode composite material - Google Patents

Electrode composite material Download PDF

Info

Publication number
WO2020235291A1
WO2020235291A1 PCT/JP2020/017444 JP2020017444W WO2020235291A1 WO 2020235291 A1 WO2020235291 A1 WO 2020235291A1 JP 2020017444 W JP2020017444 W JP 2020017444W WO 2020235291 A1 WO2020235291 A1 WO 2020235291A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
active material
powder
electrode mixture
filler powder
Prior art date
Application number
PCT/JP2020/017444
Other languages
French (fr)
Japanese (ja)
Inventor
純一 池尻
英郎 山内
良憲 山▲崎▼
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2021520667A priority Critical patent/JPWO2020235291A1/ja
Publication of WO2020235291A1 publication Critical patent/WO2020235291A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode mixture used as an electrode material for a secondary battery or the like.
  • Lithium-ion secondary batteries have established themselves as a high-capacity, lightweight power source that is indispensable for portable electronic terminals and electric vehicles, and as their positive electrode active material, olivine-type crystals represented by the general formula LiFePO 4 Active materials including are attracting attention.
  • LiFePO 4 Active materials including are attracting attention.
  • lithium is concerned about problems such as soaring prices of raw materials worldwide, Na 2 FeP 2 O 7 crystals and Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) using sodium as an alternative are concerned.
  • Sodium ion secondary batteries such as crystals have been studied in recent years (see, for example, Patent Documents 1 and 2).
  • the all-solid-state sodium-ion secondary battery is composed of a laminate of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • the positive electrode layer and the negative electrode layer (hereinafter collectively referred to as electrode layers) are made of, for example, a sintered body of active material powder.
  • a conductive auxiliary agent such as acetylene black is added to the electrode layer in order to form an electron conduction path and enhance electron conductivity.
  • the electrode layer is produced, for example, by firing a mixture of active material powder and a conductive auxiliary agent (electrode mixture).
  • a conductive auxiliary agent electrode mixture
  • the conductive auxiliary agent is homogeneously dispersed in the mixture before firing to form an electron conduction path
  • the active material powder softens and flows during firing, the connection between the conductive auxiliary agents is broken and electrons are formed.
  • the conduction path tends to be cut.
  • the electron conductivity of the obtained electrode layer is inferior and the discharge capacity of the all-solid-state battery tends to decrease.
  • an object of the present invention is to provide an electrode mixture capable of increasing the discharge capacity of an all-solid-state battery.
  • the electrode mixture of the present invention is characterized by containing an active material powder, an inorganic filler powder and a conductive auxiliary agent.
  • the inorganic filler powder functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Therefore, when the active material powder softens and flows by firing, the electron conduction path by the conductive auxiliary agent is not easily cut, and it is possible to suppress a decrease in the discharge capacity of the all-solid-state battery.
  • an electron conduction path can be sufficiently formed even if the content of the conductive auxiliary agent is reduced.
  • the sinterability of the electrode mixture can be improved, and as a result, the discharge capacity of the all-solid-state battery can be improved.
  • the coefficient of thermal expansion of the electrode layer obtained after firing and the solid electrolyte layer are different, stress may be generated at the interface between the two layers and the electrode layer may peel off.
  • the coefficient of thermal expansion of the electrode layer can be matched with the coefficient of thermal expansion of the solid electrolyte layer, and the above-mentioned problem of peeling of the electrode layer can be suppressed. can do.
  • the active material powder When the active material powder is made of glass powder, some of them exhibit the function as an active material (or improve the function as an active material) by crystallizing during firing.
  • such pre-crystallization glass powder active material precursor powder
  • active material powder is also regarded as active material powder.
  • the electrode mixture of the present invention includes at least one oxide selected from the group consisting of Al, Mg, Si, Zr, Ce, Fe, Ti, Nb and Y as the inorganic filler powder.
  • the electrode mixture of another aspect of the present invention is an electrode mixture containing an active material powder and an inorganic filler powder, and is characterized in that the inorganic filler powder has conductivity.
  • the conductive inorganic filler powder By including the conductive inorganic filler powder in the electrode mixture in this way, it is possible to form an electron conduction path by the inorganic filler powder itself without adding a conductive auxiliary agent.
  • the conductive inorganic filler powder at least one metal selected from the group consisting of Al, Cu, Ag and Au can be used.
  • the electrode mixture of the present invention preferably has an average particle size of the inorganic filler powder of 0.01 to 30 ⁇ m. In this way, the inorganic filler powder easily functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Alternatively, when the inorganic filler powder has conductivity, an electron conduction path by the inorganic filler powder is likely to be formed.
  • the electrode mixture of the present invention preferably has an average particle size ratio of the inorganic filler powder and the active material powder (average particle size of the inorganic filler powder / average particle size of the active material powder) of 0.5 to 50.
  • the inorganic filler powder easily functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer.
  • an electron conduction path by the inorganic filler powder is likely to be formed.
  • the electrode mixture of the present invention preferably has an inorganic filler powder content of 1 to 40% by volume.
  • the active material powder is preferably made of glass powder.
  • the electrode mixture of the present invention is preferably for a sodium ion secondary battery.
  • the active material powder contains 8 to 55% of Na 2 O, 10 to 70% of CrO + FeO + MnO + CoO + NiO, and 15 to 70% of P 2 O 5 + SiO 2 + B 2 O 3 in mol% in terms of oxide. It is preferable to contain it.
  • the electrode layer of the present invention is characterized by being made of a sintered body of the above-mentioned electrode mixture.
  • the all-solid-state secondary battery of the present invention is characterized by being provided as the above-mentioned electrode layer.
  • an electrode mixture capable of increasing the discharge capacity of an all-solid-state battery.
  • the electrode mixture of the present invention is characterized by containing an active material powder, an inorganic filler powder and a conductive auxiliary agent.
  • an active material powder an inorganic filler powder
  • a conductive auxiliary agent a conductive auxiliary agent
  • the active material powder includes a positive electrode active material powder and a negative electrode active material powder.
  • the positive electrode active material powder contains, for example, at least one of phosphate, silicate and borate, and is capable of storing and releasing alkaline ions such as sodium ions, specifically, an oxide-equivalent molar. %, Na 2 O 8 to 55%, CrO + FeO + MnO + CoO + NiO 10 to 70%, P 2 O 5 + SiO 2 + B 2 O 3 15 to 70%.
  • the positive electrode active material having this composition is suitable for a sodium ion secondary battery. The reason for limiting each component in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified. Further, in the present specification, " ⁇ + ⁇ + " Means the total amount of each corresponding component.
  • Na 2 O serves as a source of sodium ions that move between the positive electrode active material and the negative electrode active material during charging and discharging.
  • the Na 2 O content is preferably 8 to 55%, 15 to 45%, and particularly preferably 25 to 35%. If the amount of Na 2 O is too small, the amount of sodium ions that contribute to occlusion and release is small, and the discharge capacity tends to decrease. On the other hand, if the amount of Na 2 O is too large, dissimilar crystals such as Na 3 PO 4 that do not contribute to charging / discharging tend to precipitate, so that the discharge capacity tends to decrease.
  • CrO, FeO, MnO, CoO, and NiO are components that act as a driving force for the storage and release of sodium ions by causing a redox reaction by changing the valence of each transition element during charging and discharging.
  • NiO and MnO have a large effect of increasing the redox potential.
  • FeO is particularly easy to stabilize the structure during charging and discharging, and is easy to improve the cycle characteristics.
  • the content of CrO + FeO + MnO + CoO + NiO is preferably 10 to 70%, 15 to 60%, 20 to 55%, 23 to 50%, 25 to 40%, and particularly preferably 26 to 36%.
  • P 2 O 5 , SiO 2 and B 2 O 3 form a three-dimensional network structure, they have the effect of stabilizing the structure of the positive electrode active material.
  • P 2 O 5 and SiO 2 are preferable because they have excellent ionic conductivity, and P 2 O 5 is most preferable.
  • the content of P 2 O 5 + SiO 2 + B 2 O 3 is 15 to 70%, preferably 20 to 60%, particularly 25 to 45%. If the amount of P 2 O 5 + SiO 2 + B 2 O 3 is too small, the discharge capacity tends to decrease during repeated charging and discharging.
  • each component of P 2 O 5 , SiO 2 and B 2 O 3 are preferably 0 to 70%, 15 to 70%, 20 to 60%, and particularly preferably 25 to 45%, respectively.
  • vitrification can be facilitated by containing various components in addition to the above components as long as the effect as the positive electrode active material is not impaired.
  • various components MgO, CaO, SrO, BaO , ZnO, CuO, the Al 2 O 3, GeO 2, Nb 2 O 5, ZrO 2, Sb 2 O 5 are mentioned in the oxide notation, especially network forming Al 2 O 3 which acts as an oxide and V 2 O 5 which is an active material component are preferable.
  • the total content of the above components is preferably 0 to 30%, 0.1 to 20%, and particularly preferably 0.5 to 10%.
  • the negative electrode active material powder contains at least one of phosphate, silicate and borate, and is capable of storing and releasing alkaline ions such as sodium, specifically in molar% in terms of oxide.
  • alkaline ions such as sodium, specifically in molar% in terms of oxide.
  • SnO 0 ⁇ 90%, Bi 2 O 3 0 ⁇ 90%, Nb 2 O 5 0 ⁇ 90%, TiO 2 0 ⁇ 90%, Fe 2 O 3 0 ⁇ 90%, SiO 2 + B 2 O 3 + P 2 O 5 5-75% include those containing Na 2 O 0 ⁇ 80%.
  • the negative electrode active material powder having this composition is suitable for a sodium ion secondary battery.
  • SnO, Bi 2 O 3 , Nb 2 O 5 , TiO 2 and Fe 2 O 3 are negative electrode active material components that serve as sites for storing and releasing alkaline ions such as sodium ions.
  • the discharge capacity per unit mass of the negative electrode active material becomes larger, and the charge / discharge efficiency (ratio of the discharge capacity to the charge capacity) at the time of initial charge / discharge tends to be further improved.
  • the content of these components is too large, the volume change due to the storage and release of alkaline ions during charging and discharging cannot be alleviated, and the cycle characteristics tend to deteriorate.
  • the content range of each component is preferably as follows.
  • the SnO content is preferably 0 to 90%, 45 to 85%, 55 to 75%, and particularly preferably 60 to 72%.
  • the content of Bi 2 O 3 is preferably 0 to 90%, 10 to 70%, 15 to 65%, and particularly preferably 25 to 55%.
  • the content of Nb 2 O 5 is preferably 0 to 90%, 7 to 79%, 9 to 69%, 11 to 59%, 13 to 49%, and particularly preferably 15 to 39%.
  • the content of TiO 2 is preferably 0 to 90%, 5 to 72%, 10 to 68%, 12 to 58%, 15 to 49%, and particularly preferably 15 to 39%.
  • the content of Fe 2 O 3 is preferably 0 to 90%, 15 to 85%, 20 to 80%, and particularly preferably 25 to 75%.
  • the amount of SnO + Bi 2 O 3 + Nb 2 O 5 + TiO 2 + Fe 2 O 3 is preferably 0 to 90%, 5 to 85%, and particularly preferably 10 to 80%.
  • SiO 2 , B 2 O 3 and P 2 O 5 are network-forming oxides, which surround the storage and release sites of alkaline ions in the negative electrode active material component and have an effect of further improving the cycle characteristics.
  • SiO 2 and P 2 O 5 not only further improve the cycle characteristics, but also have an effect of further improving the rate characteristics because they are excellent in the conductivity of alkaline ions (particularly sodium ions).
  • SiO 2 + B 2 O 3 + P 2 O 5 is preferably 5 to 85%, 6 to 79%, 7 to 69%, 8 to 59%, 9 to 49%, and particularly preferably 10 to 39%. If SiO 2 + B 2 O 3 + P 2 O 5 is too small, the volume change of the negative electrode active material component due to the storage and release of alkaline ions during charging and discharging cannot be mitigated and structural destruction occurs, so the cycle characteristics tend to deteriorate. Become. On the other hand, if the amount of SiO 2 + B 2 O 3 + P 2 O 5 is too large, the content of the negative electrode active material component tends to be relatively small, and the charge / discharge capacity per unit mass of the negative electrode active material tends to be small.
  • the preferable ranges of the contents of SiO 2 , B 2 O 3 and P 2 O 5 are as follows.
  • the content of SiO 2 is preferably 0 to 75%, 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of SiO 2 is too large, the discharge capacity tends to decrease.
  • the content of P 2 O 5 is preferably 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of P 2 O 5 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of P 2 O 5 is too large, the discharge capacity tends to decrease and the water resistance tends to decrease. Further, in the case of preparing a water-based electrode paste, because unwanted heterologous crystals are P 2 O 5 network is cut occurs, the cycle characteristics are easily lowered.
  • the content of B 2 O 3 is preferably 0 to 75%, 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of B 2 O 3 is too large, the discharge capacity tends to decrease and the chemical durability tends to decrease.
  • Na 2 O is a component that improves the initial discharge capacity by making it difficult for sodium ions to be absorbed into the negative electrode active material during the initial charge. It also has the effect of increasing sodium ion conductivity and lowering the operating voltage of the negative electrode.
  • the content of Na 2 O is preferably 0 to 80%, 1 to 70%, and particularly preferably 5 to 60%. If the content of Na 2 O is too high, a large amount of heterogeneous crystals containing sodium ions (Na 4 P 2 O 7 , NaPO 4, etc.) are formed, and the cycle characteristics tend to deteriorate. Further, since the content of the active material component is relatively small, the discharge capacity tends to decrease.
  • the average particle size of the active material powder is preferably 0.01 to 15 ⁇ m, 0.05 to 10 ⁇ m, 0.07 to 5 ⁇ m, and particularly preferably 0.1 to 0.7 ⁇ m. If the average particle size of the active material powder is too small, the cohesive force between the active material powders becomes strong, and the dispersibility tends to be inferior when made into a paste. As a result, it becomes difficult to obtain a homogeneous electrode layer. As a result, there is a possibility that the internal resistance of the battery increases and the operating voltage tends to decrease, or the electrode density decreases and the capacity per unit volume of the battery decreases. On the other hand, if the average particle size of the active material powder is too large, the density and surface smoothness of the electrode layer tend to be inferior.
  • the average particle diameter is the median diameter of the primary particles, which indicates D 50 (50% volume cumulative diameter), and refers to a value measured by a laser diffraction type particle size distribution measuring device.
  • the specific surface area of the active material powder is preferably 1 to 100 m 2 / g, 3 to 80 m 2 / g, 5 to 70 m 2 / g, and particularly preferably 10 to 50 m 2 / g. If the specific surface area of the active material powder is too small, the density and surface smoothness of the electrode layer tend to be poor. On the other hand, if the specific surface area of the active material powder is too large, the cohesive force between the active material powders becomes strong, and the dispersibility tends to be inferior when made into a paste. As a result, it becomes difficult to obtain a homogeneous electrode layer. As a result, the internal resistance of the battery may increase and the operating voltage may easily decrease, or the electrode density may decrease and the capacity per unit volume of the battery may decrease.
  • Al 2 O 3 , MgO, SiO 2 , ZrO 2 , CeO 2 , TiO 2 and Y 2 O 3 are preferable because they have excellent chemical stability and are not easily deteriorated during charging and discharging.
  • inorganic filler powders function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Therefore, when the active material powder softens and flows by firing, the electron conduction path by the conductive auxiliary agent is not easily cut, and it is possible to suppress a decrease in the discharge capacity of the all-solid-state battery.
  • the inorganic filler powder in the electrode mixture it is possible to match the coefficient of thermal expansion of the electrode layer with the coefficient of thermal expansion of the solid electrolyte layer, and the problem of peeling of the electrode layer due to the difference in the coefficient of thermal expansion can be solved. It can be suppressed.
  • the surface of the above-mentioned inorganic filler powder may be coated with carbon.
  • a conductive inorganic filler powder as the inorganic filler powder.
  • the conductive inorganic filler powder include at least one metal selected from the group consisting of Al, Cu, Ag and Au.
  • the electrode mixture of the present invention it is conceivable to include a solid electrolyte powder such as beta-alumina powder or NASICON powder in the electrode mixture for the purpose of enhancing the ionic conductivity of the electrode layer, but these solid electrolyte powders have extremely low weather resistance and can be handled. There is a problem that it is difficult and expensive.
  • the inorganic filler powder used in the present invention has an advantage that it is easy to handle and inexpensive because it is stable in the atmosphere. Further, as shown in Examples described later, if the electrode mixture of the present invention is used, the all-solid-state battery can be operated without containing the above-mentioned solid electrolyte powder in the electrode mixture. ..
  • the average particle size of the inorganic filler powder is preferably 0.01 to 30 ⁇ m, 0.07 to 20 ⁇ m, 0.05 to 10 ⁇ m, 0.1 to 5 ⁇ m, and particularly preferably 0.1 to 3 ⁇ m. If the average particle size of the inorganic filler powder is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. On the other hand, if the average particle size of the inorganic filler powder is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
  • the specific surface area of the inorganic filler powder is preferably 1 to 400 m 2 / g, 2 to 200 m 2 / g, 3 to 100 m 2 / g, and particularly preferably 3 to 70 m 2 / g. If the specific surface area of the inorganic filler powder is too small, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered. On the other hand, if the specific surface area of the inorganic filler powder is too large, it becomes difficult to obtain a function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or a function of forming an electron conduction path by the inorganic filler powder itself.
  • the average particle size ratio of the inorganic filler powder to the active material powder is 0.5 to 50, 0.7 to 30, 1 to 10, especially 1.15. It is preferably ⁇ 5. If the ratio is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. On the other hand, if the ratio is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
  • the content of the inorganic filler powder in the electrode mixture is preferably 1 to 40%, 3 to 30%, and particularly 4 to 25% in volume%. If the content of the inorganic filler powder is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. In addition, it becomes difficult to obtain the function of adjusting the coefficient of thermal expansion of the electrode layer. On the other hand, if the content of the inorganic filler powder is too large, the ratio of the active material powder in the electrode layer is reduced, the sinterability is lowered, and it is difficult to obtain a dense sintered body, and as a result, the discharge capacity is lowered. It will be easier to do.
  • the content of the active material powder in the electrode mixture is preferably 5 to 70% by volume, 10 to 60%, 20 to 55%, and particularly preferably 30 to 50%. If the content of the active material powder is too small, the discharge capacity tends to decrease. On the other hand, if the amount of active material powder is too large, it becomes difficult to form an electron conduction path, and as a result, the discharge capacity tends to decrease.
  • the ratio of the content of the inorganic filler powder to the active material powder in% by volume is 0.01 to 1, 0.05 to 0.8, and particularly 0. It is preferably 1 to 0.5. If the ratio is too small, it becomes difficult to form an electron conduction path, and as a result, the discharge capacity tends to decrease. On the other hand, if the ratio is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
  • conductive auxiliary agent examples include highly conductive carbon black such as acetylene black and Ketjen black, and powdery or fibrous conductive carbon such as graphite. Of these, acetylene black, which has excellent conductivity, is preferable.
  • the content of the conductive auxiliary agent in the electrode mixture is preferably 1 to 70%, 5 to 65%, 10 to 60%, 20 to 55%, and particularly 30 to 55% in volume%. If the content of the conductive auxiliary agent is too small, a sufficient electron conduction path is not formed in the electrode layer, and the discharge capacity of the all-solid-state battery tends to be inferior. On the other hand, if the content of the conductive auxiliary agent is too large, the ratio of the active material powder in the electrode layer becomes small, the sinterability is lowered, and it becomes difficult to obtain a dense sintered body, and as a result, the discharge capacity is lowered. It will be easier to do. As described above, when the inorganic filler powder having conductivity is used as the inorganic filler powder, it is not necessary to contain the conductive auxiliary agent. However, even in that case, it does not necessarily prevent the inclusion of the conductive auxiliary agent.
  • the all-solid-state secondary battery of the present invention includes an electrode layer made of a sintered body of the above-mentioned electrode mixture.
  • the all-solid-state secondary battery includes a solid electrolyte layer, a positive electrode layer formed on one main surface thereof, and a negative electrode layer formed on the other main surface.
  • both the positive electrode layer and the negative electrode layer may be made of the sintered body of the electrode mixture, and only one of the positive electrode layer and the negative electrode layer may be made of the sintered body of the electrode mixture. It may be.
  • solid electrolyte layer examples include beta-alumina ( ⁇ -alumina or ⁇ ′′ -alumina) and NASICON crystals. These solid electrolyte layers are suitable for all-solid-state alkaline ion secondary batteries.
  • Table 1 shows Examples 1 to 4 and Comparative Example 1.
  • the obtained positive electrode active material precursor was pulverized by a ball mill using Al 2 O 3 jade of ⁇ 20 mm for 5 hours, and then pulverized by a ball mill in ethanol using ZrO 2 jade of ⁇ 5 mm for 100 hours, and average particle size.
  • D 50 0.7 ⁇ m positive electrode active material precursor powder was obtained.
  • the inorganic filler powder of Example 5 was prepared as follows. To 100 parts by mass of Al 2 O 3 powder, 14.2 parts by mass of polyethylene oxide nonylphenyl ether (HLB value: 13.3, mass average molecular weight: 660), which is a nonionic surfactant, was added as a carbon source. Further, 60 parts by mass of pure water was added and thoroughly mixed, and then dried at 100 ° C. for about 1 hour. Then, it was calcined at 620 ° C. for 30 minutes in a nitrogen atmosphere to obtain an Al 2 O 3 powder whose surface was coated with carbon.
  • HLB value polyethylene oxide nonylphenyl ether
  • 660 mass average molecular weight
  • metallic sodium as a counter electrode was pressure-bonded to the other surface of the solid electrolyte sheet, placed on the lower lid of the coin cell, and then covered with the upper lid to prepare a CR2032 type test battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides an electrode composite material capable of increasing discharge capacity of a solid-state battery. This electrode composite material is characterized by containing an active substance powder, an inorganic filler powder, and an electroconductive auxiliary agent.

Description

電極合材Electrode mixture
 本発明は、二次電池等の電極材料として使用される電極合材に関する。 The present invention relates to an electrode mixture used as an electrode material for a secondary battery or the like.
 リチウムイオン二次電池は、携帯電子端末や電気自動車等に不可欠な、高容量で軽量な電源としての地位を確立しており、その正極活物質として、一般式LiFePOで表されるオリビン型結晶を含む活物質が注目されている。しかし、リチウムは世界的な原材料の高騰などの問題が懸念されているため、その代替としてナトリウムを使用した、NaFeP結晶やNaNi(PO(P)結晶等のナトリウムイオン二次電池の研究が近年行われている(例えば特許文献1及び2参照)。 Lithium-ion secondary batteries have established themselves as a high-capacity, lightweight power source that is indispensable for portable electronic terminals and electric vehicles, and as their positive electrode active material, olivine-type crystals represented by the general formula LiFePO 4 Active materials including are attracting attention. However, since lithium is concerned about problems such as soaring prices of raw materials worldwide, Na 2 FeP 2 O 7 crystals and Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) using sodium as an alternative are concerned. ) Sodium ion secondary batteries such as crystals have been studied in recent years (see, for example, Patent Documents 1 and 2).
 また有機系電解液を電解質として使用した二次電池は、発火等の危険性が懸念されるため、有機系電解液に代えて固体電解質を使用した全固体ナトリウムイオン二次電池が提案されている(例えば特許文献3参照)。 In addition, since there is a concern about the risk of ignition of a secondary battery using an organic electrolyte as an electrolyte, an all-solid-state sodium-ion secondary battery using a solid electrolyte instead of the organic electrolyte has been proposed. (See, for example, Patent Document 3).
 全固体ナトリウムイオン二次電池は、正極層、固体電解質層及び負極層の積層体から構成される。正極層及び負極層(以下、まとめて電極層という)は、例えば活物質粉末の焼結体からなる。電極層には、電子伝導パスを形成して電子伝導性を高めるため、アセチレンブラック等の導電助剤が添加される。 The all-solid-state sodium-ion secondary battery is composed of a laminate of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. The positive electrode layer and the negative electrode layer (hereinafter collectively referred to as electrode layers) are made of, for example, a sintered body of active material powder. A conductive auxiliary agent such as acetylene black is added to the electrode layer in order to form an electron conduction path and enhance electron conductivity.
特許第5673836号公報Japanese Patent No. 5673836 特開2016-25067号公報JP-A-2016-25067 特開2010-15782号公報Japanese Unexamined Patent Publication No. 2010-15782
 電極層は、例えば活物質粉末と導電助剤の混合物(電極合材)を焼成することにより作製される。ここで、焼成前の混合物中で導電助剤が均質に分散して電子伝導パスが形成されていたとしても、焼成時に活物質粉末が軟化流動する際、導電助剤同士の連結が切れて電子伝導パスが切断される傾向がある。その結果、得られる電極層の電子伝導性に劣り、全固体電池の放電容量が低下しやすくなるという問題がある。 The electrode layer is produced, for example, by firing a mixture of active material powder and a conductive auxiliary agent (electrode mixture). Here, even if the conductive auxiliary agent is homogeneously dispersed in the mixture before firing to form an electron conduction path, when the active material powder softens and flows during firing, the connection between the conductive auxiliary agents is broken and electrons are formed. The conduction path tends to be cut. As a result, there is a problem that the electron conductivity of the obtained electrode layer is inferior and the discharge capacity of the all-solid-state battery tends to decrease.
 以上に鑑み、本発明は、全固体電池の放電容量を高めることが可能な電極合材を提供することを目的とする。 In view of the above, an object of the present invention is to provide an electrode mixture capable of increasing the discharge capacity of an all-solid-state battery.
 本発明の電極合材は、活物質粉末、無機フィラー粉末及び導電助剤を含有することを特徴とする。このようにすれば、無機フィラー粉末が電極層中の導電助剤による電子伝導パスを維持するための骨格として機能する。そのため、焼成により活物質粉末が軟化流動した際に、導電助剤による電子伝導パスが切断されにくく、全固体電池の放電容量の低下を抑制することが可能となる。 The electrode mixture of the present invention is characterized by containing an active material powder, an inorganic filler powder and a conductive auxiliary agent. In this way, the inorganic filler powder functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Therefore, when the active material powder softens and flows by firing, the electron conduction path by the conductive auxiliary agent is not easily cut, and it is possible to suppress a decrease in the discharge capacity of the all-solid-state battery.
 また、無機フィラー粉末を含有させることにより、導電助剤の含有量を低減しても十分に電子伝導パスを形成できる。導電助剤の含有量を低減することにより、電極合材の焼結性が向上し、結果として全固体電池の放電容量を向上させることができる。 Further, by containing the inorganic filler powder, an electron conduction path can be sufficiently formed even if the content of the conductive auxiliary agent is reduced. By reducing the content of the conductive auxiliary agent, the sinterability of the electrode mixture can be improved, and as a result, the discharge capacity of the all-solid-state battery can be improved.
 さらに、焼成後に得られる電極層と固体電解質層の熱膨張係数が異なる場合、両層の界面に応力が発生して電極層が剥離する恐れがある。一方、電極合材中に無機フィラー粉末を含有させることにより、電極層の熱膨張係数を固体電解質層の熱膨張係数に整合させることが可能となり、上記のような電極層の剥離の問題を抑制することができる。 Furthermore, if the coefficient of thermal expansion of the electrode layer obtained after firing and the solid electrolyte layer are different, stress may be generated at the interface between the two layers and the electrode layer may peel off. On the other hand, by containing the inorganic filler powder in the electrode mixture, the coefficient of thermal expansion of the electrode layer can be matched with the coefficient of thermal expansion of the solid electrolyte layer, and the above-mentioned problem of peeling of the electrode layer can be suppressed. can do.
 なお、活物質粉末がガラス粉末からなる場合、焼成時に結晶化することにより活物質としての機能を発現する(あるいは活物質としての機能が向上する)ものもある。本発明では、そのような結晶化前のガラス粉末(活物質前駆体粉末)も活物質粉末とみなす。 When the active material powder is made of glass powder, some of them exhibit the function as an active material (or improve the function as an active material) by crystallizing during firing. In the present invention, such pre-crystallization glass powder (active material precursor powder) is also regarded as active material powder.
 本発明の電極合材は、無機フィラー粉末として、Al、Mg、Si、Zr、Ce、Fe、Ti、Nb及びYからなる群より選択される少なくとも1種の酸化物が挙げられる。 The electrode mixture of the present invention includes at least one oxide selected from the group consisting of Al, Mg, Si, Zr, Ce, Fe, Ti, Nb and Y as the inorganic filler powder.
 本発明の別の局面の電極合材は、活物質粉末及び無機フィラー粉末を含有する電極合材であって、無機フィラー粉末が導電性を有することを特徴とする。このように、導電性を有する無機フィラー粉末を電極合材中に含有させることにより、導電助剤を添加しなくても、無機フィラー粉末自体により電子伝導パスを形成することが可能となる。導電性を有する無機フィラー粉末としては、Al、Cu、Ag及びAuからなる群より選択される少なくとも1種の金属を使用することができる。 The electrode mixture of another aspect of the present invention is an electrode mixture containing an active material powder and an inorganic filler powder, and is characterized in that the inorganic filler powder has conductivity. By including the conductive inorganic filler powder in the electrode mixture in this way, it is possible to form an electron conduction path by the inorganic filler powder itself without adding a conductive auxiliary agent. As the conductive inorganic filler powder, at least one metal selected from the group consisting of Al, Cu, Ag and Au can be used.
 本発明の電極合材は、無機フィラー粉末の平均粒子径が0.01~30μmであることが好ましい。このようにすれば、無機フィラー粉末が電極層中の導電助剤による電子伝導パスを維持するための骨格として機能しやすくなる。あるいは、無機フィラー粉末が導電性を有する場合は、無機フィラー粉末による電子伝導パスが形成されやすくなる。 The electrode mixture of the present invention preferably has an average particle size of the inorganic filler powder of 0.01 to 30 μm. In this way, the inorganic filler powder easily functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Alternatively, when the inorganic filler powder has conductivity, an electron conduction path by the inorganic filler powder is likely to be formed.
 本発明の電極合材は、無機フィラー粉末と活物質粉末の平均粒子径比(無機フィラー粉末の平均粒子径/活物質粉末の平均粒子径)が0.5~50であることが好ましい。このようにすれば、無機フィラー粉末が電極層中の導電助剤による電子伝導パスを維持するための骨格として機能しやすくなる。あるいは、無機フィラー粉末が導電性を有する場合は、無機フィラー粉末による電子伝導パスが形成されやすくなる。 The electrode mixture of the present invention preferably has an average particle size ratio of the inorganic filler powder and the active material powder (average particle size of the inorganic filler powder / average particle size of the active material powder) of 0.5 to 50. In this way, the inorganic filler powder easily functions as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Alternatively, when the inorganic filler powder has conductivity, an electron conduction path by the inorganic filler powder is likely to be formed.
 本発明の電極合材は、無機フィラー粉末の含有量が、体積%で、1~40%であることが好ましい。 The electrode mixture of the present invention preferably has an inorganic filler powder content of 1 to 40% by volume.
 本発明の電極合材は、活物質粉末が、ガラス粉末からなることが好ましい。 In the electrode mixture of the present invention, the active material powder is preferably made of glass powder.
 本発明の電極合材は、ナトリウムイオン二次電池用であることが好ましい。 The electrode mixture of the present invention is preferably for a sodium ion secondary battery.
 本発明の電極合材は、活物質粉末が、酸化物換算のモル%で、NaO 8~55%、CrO+FeO+MnO+CoO+NiO 10~70%、P+SiO+B 15~70%を含有することが好ましい。 In the electrode mixture of the present invention, the active material powder contains 8 to 55% of Na 2 O, 10 to 70% of CrO + FeO + MnO + CoO + NiO, and 15 to 70% of P 2 O 5 + SiO 2 + B 2 O 3 in mol% in terms of oxide. It is preferable to contain it.
 本発明の電極層は、上記の電極合材の焼結体からなることを特徴とする。 The electrode layer of the present invention is characterized by being made of a sintered body of the above-mentioned electrode mixture.
 本発明の全固体二次電池は、上記の電極層として備えたことを特徴とする。 The all-solid-state secondary battery of the present invention is characterized by being provided as the above-mentioned electrode layer.
 本発明によれば、全固体電池の放電容量を高めることが可能な電極合材を提供することができる。 According to the present invention, it is possible to provide an electrode mixture capable of increasing the discharge capacity of an all-solid-state battery.
 本発明の電極合材は、活物質粉末、無機フィラー粉末及び導電助剤を含有することを特徴とする。以下、各構成要素について説明する。 The electrode mixture of the present invention is characterized by containing an active material powder, an inorganic filler powder and a conductive auxiliary agent. Hereinafter, each component will be described.
 (活物質粉末)
 活物質粉末には、正極活物質粉末と負極活物質粉末がある。正極活物質粉末としては、例えばリン酸塩、ケイ酸塩及びホウ酸塩のうち少なくとも一種を含み、ナトリウムイオン等のアルカリイオンを吸蔵及び放出可能であるもの、具体的には酸化物換算のモル%で、NaO 8~55%、CrO+FeO+MnO+CoO+NiO 10~70%、P+SiO+B 15~70%を含有するものが挙げられる。当該組成を有する正極活物質は、ナトリウムイオン二次電池用として好適である。各成分をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。また本明細書において、「○+○+・・・」は該当する各成分の合量を意味する。
(Active material powder)
The active material powder includes a positive electrode active material powder and a negative electrode active material powder. The positive electrode active material powder contains, for example, at least one of phosphate, silicate and borate, and is capable of storing and releasing alkaline ions such as sodium ions, specifically, an oxide-equivalent molar. %, Na 2 O 8 to 55%, CrO + FeO + MnO + CoO + NiO 10 to 70%, P 2 O 5 + SiO 2 + B 2 O 3 15 to 70%. The positive electrode active material having this composition is suitable for a sodium ion secondary battery. The reason for limiting each component in this way will be described below. In the following description of the content of each component, "%" means "mol%" unless otherwise specified. Further, in the present specification, "○ + ○ + ..." Means the total amount of each corresponding component.
 NaOは、充放電の際に正極活物質と負極活物質との間を移動するナトリウムイオンの供給源となる。NaOの含有量は8~55%、15~45%、特に25~35%であることが好ましい。NaOが少なすぎると、吸蔵及び放出に寄与するナトリウムイオンが少なくなるため、放電容量が低下する傾向にある。一方、NaOが多すぎると、NaPO等の充放電に寄与しない異種結晶が析出しやすくなるため、放電容量が低下する傾向にある。 Na 2 O serves as a source of sodium ions that move between the positive electrode active material and the negative electrode active material during charging and discharging. The Na 2 O content is preferably 8 to 55%, 15 to 45%, and particularly preferably 25 to 35%. If the amount of Na 2 O is too small, the amount of sodium ions that contribute to occlusion and release is small, and the discharge capacity tends to decrease. On the other hand, if the amount of Na 2 O is too large, dissimilar crystals such as Na 3 PO 4 that do not contribute to charging / discharging tend to precipitate, so that the discharge capacity tends to decrease.
 CrO、FeO、MnO、CoO、NiOは、充放電の際に各遷移元素の価数が変化してレドックス反応を起こすことにより、ナトリウムイオンの吸蔵及び放出の駆動力として作用する成分である。なかでも、NiO及びMnOは酸化還元電位を高める効果が大きい。また、FeOは充放電において特に構造を安定化させやすく、サイクル特性を向上させやすい。CrO+FeO+MnO+CoO+NiOの含有量は10~70%、15~60%、20~55%、23~50%、25~40%、特に26~36%であることが好ましい。CrO+FeO+MnO+CoO+NiOが少なすぎると、充放電に伴うレドックス反応が起こりにくくなり、吸蔵及び放出されるナトリウムイオンが少なくなるため放電容量が低下する傾向にある。一方、CrO+FeO+MnO+CoO+NiOが多すぎると、異種結晶が析出して放電容量が低下する傾向にある。 CrO, FeO, MnO, CoO, and NiO are components that act as a driving force for the storage and release of sodium ions by causing a redox reaction by changing the valence of each transition element during charging and discharging. Among them, NiO and MnO have a large effect of increasing the redox potential. Further, FeO is particularly easy to stabilize the structure during charging and discharging, and is easy to improve the cycle characteristics. The content of CrO + FeO + MnO + CoO + NiO is preferably 10 to 70%, 15 to 60%, 20 to 55%, 23 to 50%, 25 to 40%, and particularly preferably 26 to 36%. If the amount of CrO + FeO + MnO + CoO + NiO is too small, the redox reaction associated with charging and discharging is less likely to occur, and the sodium ions occluded and released are reduced, so that the discharge capacity tends to decrease. On the other hand, if the amount of CrO + FeO + MnO + CoO + NiO is too large, dissimilar crystals tend to precipitate and the discharge capacity tends to decrease.
 P、SiO及びBは3次元網目構造を形成するため、正極活物質の構造を安定化させる効果を有する。特に、P、SiOがイオン伝導性に優れるために好ましく、Pが最も好ましい。P+SiO+Bの含有量は15~70%であり、20~60%、特に25~45%であることが好ましい。P+SiO+Bが少なすぎると、繰り返し充放電した際に放電容量が低下しやすくなる傾向にある。一方、P+SiO+Bが多すぎると、P等の充放電に寄与しない異種結晶が析出する傾向にある。なお、P、SiO及びBの各成分の含有量は各々0~70%、15~70%、20~60%、特に25~45%であることが好ましい。 Since P 2 O 5 , SiO 2 and B 2 O 3 form a three-dimensional network structure, they have the effect of stabilizing the structure of the positive electrode active material. In particular, P 2 O 5 and SiO 2 are preferable because they have excellent ionic conductivity, and P 2 O 5 is most preferable. The content of P 2 O 5 + SiO 2 + B 2 O 3 is 15 to 70%, preferably 20 to 60%, particularly 25 to 45%. If the amount of P 2 O 5 + SiO 2 + B 2 O 3 is too small, the discharge capacity tends to decrease during repeated charging and discharging. On the other hand, if the amount of P 2 O 5 + SiO 2 + B 2 O 3 is too large, heterogeneous crystals such as P 2 O 5 that do not contribute to charging / discharging tend to precipitate. The contents of each component of P 2 O 5 , SiO 2 and B 2 O 3 are preferably 0 to 70%, 15 to 70%, 20 to 60%, and particularly preferably 25 to 45%, respectively.
 また、正極活物質としての効果を損なわない範囲で、上記成分に加えて種々の成分を含有させることでガラス化を容易にすることができる。このような成分としては、酸化物表記でMgO、CaO、SrO、BaO、ZnO、CuO、Al、GeO、Nb、ZrO、Sbが挙げられ、特に網目形成酸化物として働くAlや活物質成分となるVが好ましい。上記成分の含有量は、合量で0~30%、0.1~20%、特に0.5~10%であることが好ましい。 Further, vitrification can be facilitated by containing various components in addition to the above components as long as the effect as the positive electrode active material is not impaired. Examples of such components, MgO, CaO, SrO, BaO , ZnO, CuO, the Al 2 O 3, GeO 2, Nb 2 O 5, ZrO 2, Sb 2 O 5 are mentioned in the oxide notation, especially network forming Al 2 O 3 which acts as an oxide and V 2 O 5 which is an active material component are preferable. The total content of the above components is preferably 0 to 30%, 0.1 to 20%, and particularly preferably 0.5 to 10%.
 負極活物質粉末としては、特にリン酸塩、珪酸塩及びホウ酸塩のうち少なくとも一種を含み、ナトリウム等のアルカリイオンを吸蔵・放出可能であるもの、具体的には酸化物換算のモル%で、SnO 0~90%、Bi 0~90%、Nb 0~90%、TiO 0~90%、Fe 0~90%、SiO+B+P 5~75%、NaO 0~80%を含有するものが挙げられる。当該組成を有する負極活物質粉末は、ナトリウムイオン二次電池用として好適である。上記構成にすることにより、負極活物質成分であるSnイオン、Biイオン、Tiイオン、FeイオンまたはNbイオンが、Si、BまたはPを含有する酸化物マトリクス中により均一に分散した構造が形成される。また、NaOを含有することにより、より一層ナトリウムイオン伝導性に優れた材料となる。結果として、ナトリウムイオンを吸蔵及び放出する際の体積変化を抑制でき、より一層サイクル特性に優れた負極活物質を得ることが可能となる。 The negative electrode active material powder contains at least one of phosphate, silicate and borate, and is capable of storing and releasing alkaline ions such as sodium, specifically in molar% in terms of oxide. , SnO 0 ~ 90%, Bi 2 O 3 0 ~ 90%, Nb 2 O 5 0 ~ 90%, TiO 2 0 ~ 90%, Fe 2 O 3 0 ~ 90%, SiO 2 + B 2 O 3 + P 2 O 5 5-75%, include those containing Na 2 O 0 ~ 80%. The negative electrode active material powder having this composition is suitable for a sodium ion secondary battery. With the above configuration, a structure is formed in which Sn ions, Bi ions, Ti ions, Fe ions or Nb ions, which are negative electrode active material components, are more uniformly dispersed in an oxide matrix containing Si, B or P. Ion. Further, by containing Na 2 O, the material becomes more excellent in sodium ion conductivity. As a result, it is possible to suppress the volume change when occluding and releasing sodium ions, and it is possible to obtain a negative electrode active material having further excellent cycle characteristics.
 負極活物質粉末の組成を上記の通り限定した理由を以下に説明する。 The reason for limiting the composition of the negative electrode active material powder as described above will be explained below.
 SnO、Bi、Nb、TiO及びFeは、ナトリウムイオン等のアルカリイオンを吸蔵及び放出するサイトとなる負極活物質成分である。これらの成分を含有させることにより、負極活物質の単位質量当たりの放電容量がより大きくなり、かつ、初回充放電時の充放電効率(充電容量に対する放電容量の比率)がより向上しやすくなる。但し、これらの成分の含有量が多すぎると、充放電時のアルカリイオンの吸蔵及び放出に伴う体積変化を緩和できずに、サイクル特性が低下する傾向がある。以上に鑑み、各成分の含有量範囲は以下の通りとすることが好ましい。 SnO, Bi 2 O 3 , Nb 2 O 5 , TiO 2 and Fe 2 O 3 are negative electrode active material components that serve as sites for storing and releasing alkaline ions such as sodium ions. By containing these components, the discharge capacity per unit mass of the negative electrode active material becomes larger, and the charge / discharge efficiency (ratio of the discharge capacity to the charge capacity) at the time of initial charge / discharge tends to be further improved. However, if the content of these components is too large, the volume change due to the storage and release of alkaline ions during charging and discharging cannot be alleviated, and the cycle characteristics tend to deteriorate. In view of the above, the content range of each component is preferably as follows.
 SnOの含有量は、0~90%、45~85%、55~75%、特に60~72%であることが好ましい。 The SnO content is preferably 0 to 90%, 45 to 85%, 55 to 75%, and particularly preferably 60 to 72%.
 Biの含有量は、0~90%、10~70%、15~65%、特に25~55%であることが好ましい。 The content of Bi 2 O 3 is preferably 0 to 90%, 10 to 70%, 15 to 65%, and particularly preferably 25 to 55%.
 Nbの含有量は、0~90%、7~79%、9~69%、11~59%、13~49%、特に15~39%であることが好ましい。 The content of Nb 2 O 5 is preferably 0 to 90%, 7 to 79%, 9 to 69%, 11 to 59%, 13 to 49%, and particularly preferably 15 to 39%.
 TiOの含有量は、0~90%、5~72%、10~68%、12~58%、15~49%、特に15~39%であることが好ましい。 The content of TiO 2 is preferably 0 to 90%, 5 to 72%, 10 to 68%, 12 to 58%, 15 to 49%, and particularly preferably 15 to 39%.
 Feの含有量は、0~90%、15~85%、20~80%、特に25~75%であることが好ましい。 The content of Fe 2 O 3 is preferably 0 to 90%, 15 to 85%, 20 to 80%, and particularly preferably 25 to 75%.
 なお、SnO+Bi+Nb+TiO+Feは、0~90%、5~85%、特に10~80%であることが好ましい。 The amount of SnO + Bi 2 O 3 + Nb 2 O 5 + TiO 2 + Fe 2 O 3 is preferably 0 to 90%, 5 to 85%, and particularly preferably 10 to 80%.
 SiO、B及びPは、網目形成酸化物であり、上記負極活物質成分におけるアルカリイオンの吸蔵及び放出サイトを取り囲み、サイクル特性をより一層向上させる作用がある。なかでも、SiO及びPは、サイクル特性をより一層向上させるだけでなく、アルカリイオン(特にナトリウムイオン)の伝導性に優れるため、レート特性をより一層向上させる効果がある。 SiO 2 , B 2 O 3 and P 2 O 5 are network-forming oxides, which surround the storage and release sites of alkaline ions in the negative electrode active material component and have an effect of further improving the cycle characteristics. Among them, SiO 2 and P 2 O 5 not only further improve the cycle characteristics, but also have an effect of further improving the rate characteristics because they are excellent in the conductivity of alkaline ions (particularly sodium ions).
 SiO+B+Pは、5~85%、6~79%、7~69%、8~59%、9~49%、特に10~39%であることが好ましい。SiO+B+Pが少なすぎると、充放電時のアルカリイオンの吸蔵及び放出に伴う負極活物質成分の体積変化を緩和できず構造破壊を起こすため、サイクル特性が低下しやすくなる。一方、SiO+B+Pが多すぎると、相対的に負極活物質成分の含有量が少なくなり、負極活物質の単位質量当たりの充放電容量が小さくなる傾向がある。 SiO 2 + B 2 O 3 + P 2 O 5 is preferably 5 to 85%, 6 to 79%, 7 to 69%, 8 to 59%, 9 to 49%, and particularly preferably 10 to 39%. If SiO 2 + B 2 O 3 + P 2 O 5 is too small, the volume change of the negative electrode active material component due to the storage and release of alkaline ions during charging and discharging cannot be mitigated and structural destruction occurs, so the cycle characteristics tend to deteriorate. Become. On the other hand, if the amount of SiO 2 + B 2 O 3 + P 2 O 5 is too large, the content of the negative electrode active material component tends to be relatively small, and the charge / discharge capacity per unit mass of the negative electrode active material tends to be small.
 なお、SiO、B及びPの各々の含有量の好ましい範囲は以下の通りである。 The preferable ranges of the contents of SiO 2 , B 2 O 3 and P 2 O 5 are as follows.
 SiOの含有量は、0~75%、5~75%、7~60%、10~50%、12~40%、特に20~35%であることが好ましい。SiOの含有量が多すぎると、放電容量が低下しやすくなる。 The content of SiO 2 is preferably 0 to 75%, 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of SiO 2 is too large, the discharge capacity tends to decrease.
 Pの含有量は、5~75%、7~60%、10~50%、12~40%、特に20~35%であることが好ましい。Pの含有量が少なすぎると、上記の効果が得られにくくなる。一方、Pの含有量が多すぎると、放電容量が低下しやすくなるとともに、耐水性が低下しやすくなる。また、水系電極ペーストを作製した際に、望まない異種結晶が生じてPネットワークが切断されるため、サイクル特性が低下しやすくなる。 The content of P 2 O 5 is preferably 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of P 2 O 5 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of P 2 O 5 is too large, the discharge capacity tends to decrease and the water resistance tends to decrease. Further, in the case of preparing a water-based electrode paste, because unwanted heterologous crystals are P 2 O 5 network is cut occurs, the cycle characteristics are easily lowered.
 Bの含有量は、0~75%、5~75%、7~60%、10~50%、12~40%、特に20~35%であることが好ましい。Bの含有量が多すぎると、放電容量が低下しやすくなるとともに、化学的耐久性が低下しやすくなる。 The content of B 2 O 3 is preferably 0 to 75%, 5 to 75%, 7 to 60%, 10 to 50%, 12 to 40%, and particularly preferably 20 to 35%. If the content of B 2 O 3 is too large, the discharge capacity tends to decrease and the chemical durability tends to decrease.
 NaOは、初回充電時に負極活物質中にナトリウムイオンを吸収させにくくさせることにより、初回放電容量を向上させる成分である。また、ナトリウムイオン伝導性を高め、負極の作動電圧を低下させる効果もある。NaOの含有量は0~80%、1~70%、特に5~60%であることが好ましい。NaOの含有量が多すぎると、ナトリウムイオンを含む異種結晶(Na、NaPO等)が多量に形成され、サイクル特性が低下しやすくなる。また活物質成分の含有量が相対的に少なくなるため、放電容量が低下する傾向にある。 Na 2 O is a component that improves the initial discharge capacity by making it difficult for sodium ions to be absorbed into the negative electrode active material during the initial charge. It also has the effect of increasing sodium ion conductivity and lowering the operating voltage of the negative electrode. The content of Na 2 O is preferably 0 to 80%, 1 to 70%, and particularly preferably 5 to 60%. If the content of Na 2 O is too high, a large amount of heterogeneous crystals containing sodium ions (Na 4 P 2 O 7 , NaPO 4, etc.) are formed, and the cycle characteristics tend to deteriorate. Further, since the content of the active material component is relatively small, the discharge capacity tends to decrease.
 活物質粉末の平均粒子径は0.01~15μm、0.05~10μm、0.07~5μm、特に0.1~0.7μmであることが好ましい。活物質粉末の平均粒子径が小さすぎると、活物質粉末同士の凝集力が強くなり、ペースト化した際に分散性に劣る傾向がある。その結果、均質な電極層が得にくくなる。その結果、電池の内部抵抗が大きくなり作動電圧が低下しやすくなる、あるいは、電極密度が低下して電池の単位体積あたりの容量が低下する、等の不具合が発生する恐れがある。一方、活物質粉末の平均粒子径が大きすぎると、電極層の緻密性や表面平滑性に劣る傾向がある。 The average particle size of the active material powder is preferably 0.01 to 15 μm, 0.05 to 10 μm, 0.07 to 5 μm, and particularly preferably 0.1 to 0.7 μm. If the average particle size of the active material powder is too small, the cohesive force between the active material powders becomes strong, and the dispersibility tends to be inferior when made into a paste. As a result, it becomes difficult to obtain a homogeneous electrode layer. As a result, there is a possibility that the internal resistance of the battery increases and the operating voltage tends to decrease, or the electrode density decreases and the capacity per unit volume of the battery decreases. On the other hand, if the average particle size of the active material powder is too large, the density and surface smoothness of the electrode layer tend to be inferior.
 なお本明細書において、平均粒子径は一次粒子のメジアン径でD50(50%体積累積径)を示し、レーザー回折式粒度分布測定装置により測定された値をいう。 In the present specification, the average particle diameter is the median diameter of the primary particles, which indicates D 50 (50% volume cumulative diameter), and refers to a value measured by a laser diffraction type particle size distribution measuring device.
 活物質粉末の比表面積は1~100m/g、3~80m/g、5~70m/g、特に10~50m/gであることが好ましい。活物質粉末の比表面積が小さすぎると、電極層の緻密性や表面平滑性に劣る傾向がある。一方、活物質粉末の比表面積が大きすぎると、活物質粉末同士の凝集力が強くなり、ペースト化した際に分散性に劣る傾向がある。その結果、均質な電極層が得にくくなる。その結果、電池の内部抵抗が大きくなり作動電圧が低下しやすくなる、あるいは、電極密度が低下して電池の単位体積あたりの容量が低下する等の不具合が発生する恐れがある。 The specific surface area of the active material powder is preferably 1 to 100 m 2 / g, 3 to 80 m 2 / g, 5 to 70 m 2 / g, and particularly preferably 10 to 50 m 2 / g. If the specific surface area of the active material powder is too small, the density and surface smoothness of the electrode layer tend to be poor. On the other hand, if the specific surface area of the active material powder is too large, the cohesive force between the active material powders becomes strong, and the dispersibility tends to be inferior when made into a paste. As a result, it becomes difficult to obtain a homogeneous electrode layer. As a result, the internal resistance of the battery may increase and the operating voltage may easily decrease, or the electrode density may decrease and the capacity per unit volume of the battery may decrease.
 (無機フィラー粉末)
 無機フィラー粉末としては、Al、Mg、Si、Zr、Ce、Fe、Ti、Nb及びYからなる群より選択される少なくとも1種の酸化物、具体的にはAl、MgO、SiO、ZrO、CeO、Fe、TiO、Y、Nb、NaNbO、KNbO、BaTiO、PbZrTiOが挙げられる。なかでも、Al、MgO、SiO、ZrO、CeO、TiO及びYは化学的安定性に優れ、充放電時に劣化しにくいため好ましい。これらの無機フィラー粉末は、電極層中の導電助剤による電子伝導パスを維持するための骨格として機能する。そのため、焼成により活物質粉末が軟化流動した際に、導電助剤による電子伝導パスが切断されにくく、全固体電池の放電容量の低下を抑制することが可能となる。電極合材中に無機フィラー粉末を含有させることにより、電極層の熱膨張係数を固体電解質層の熱膨張係数に整合させることが可能となり、熱膨張係数差に起因する電極層の剥離の問題を抑制することができる。
(Inorganic filler powder)
As the inorganic filler powder, at least one oxide selected from the group consisting of Al, Mg, Si, Zr, Ce, Fe, Ti, Nb and Y, specifically Al 2 O 3 , MgO, SiO 2 include ZrO 2, CeO 2, Fe 2 O 3, TiO 2, Y 2 O 3, Nb 2 O 5, NaNbO 3, KNbO 3, BaTiO 3, PbZrTiO 3. Of these, Al 2 O 3 , MgO, SiO 2 , ZrO 2 , CeO 2 , TiO 2 and Y 2 O 3 are preferable because they have excellent chemical stability and are not easily deteriorated during charging and discharging. These inorganic filler powders function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent in the electrode layer. Therefore, when the active material powder softens and flows by firing, the electron conduction path by the conductive auxiliary agent is not easily cut, and it is possible to suppress a decrease in the discharge capacity of the all-solid-state battery. By containing the inorganic filler powder in the electrode mixture, it is possible to match the coefficient of thermal expansion of the electrode layer with the coefficient of thermal expansion of the solid electrolyte layer, and the problem of peeling of the electrode layer due to the difference in the coefficient of thermal expansion can be solved. It can be suppressed.
 上記の無機フィラー粉末の表面は炭素で被覆されていてもよい。そのようにすれば、無機フィラー粉末に導電性が付与されるため、電極層の導電性を高めることができ、その結果、電池特性を向上させることが可能となる。 The surface of the above-mentioned inorganic filler powder may be coated with carbon. By doing so, since the inorganic filler powder is imparted with conductivity, the conductivity of the electrode layer can be enhanced, and as a result, the battery characteristics can be improved.
 無機フィラー粉末として、導電性を有する無機フィラー粉末を使用することも可能である。導電性を有する無機フィラー粉末を電極合材中に含有させることにより、導電助剤を添加しなくても、無機フィラー粉末自体により電子伝導パスを形成することが可能となる。導電性を有する無機フィラー粉末としては、Al、Cu、Ag及びAuからなる群より選択される少なくとも1種の金属が挙げられる。 It is also possible to use a conductive inorganic filler powder as the inorganic filler powder. By including the conductive inorganic filler powder in the electrode mixture, it is possible to form an electron conduction path by the inorganic filler powder itself without adding a conductive auxiliary agent. Examples of the conductive inorganic filler powder include at least one metal selected from the group consisting of Al, Cu, Ag and Au.
 ところで、電極層のイオン伝導性を高める目的でベータアルミナ粉末やNASICON粉末等の固体電解質粉末を電極合材中に含有させることも考えられるが、これらの固体電解質粉末は耐候性が著しく低く、ハンドリングが困難であり、また高価であるといった問題がある。それに対し、本発明で使用する無機フィラー粉末は大気中で安定であるためハンドリングが容易であり、かつ安価であるという利点がある。また後述の実施例に示す通り、本発明の電極合材を使用すれば、電極合材中に上記のような固体電解質粉末を含有させなくても、全固体電池を作動させることが可能である。 By the way, it is conceivable to include a solid electrolyte powder such as beta-alumina powder or NASICON powder in the electrode mixture for the purpose of enhancing the ionic conductivity of the electrode layer, but these solid electrolyte powders have extremely low weather resistance and can be handled. There is a problem that it is difficult and expensive. On the other hand, the inorganic filler powder used in the present invention has an advantage that it is easy to handle and inexpensive because it is stable in the atmosphere. Further, as shown in Examples described later, if the electrode mixture of the present invention is used, the all-solid-state battery can be operated without containing the above-mentioned solid electrolyte powder in the electrode mixture. ..
 無機フィラー粉末の平均粒子径は0.01~30μm、0.07~20μm、0.05~10μm、0.1~5μm、特に0.1~3μmであることが好ましい。無機フィラー粉末の平均粒子径が小さすぎると、導電助剤による電子伝導パスを維持するための骨格としての機能、あるいは、無機フィラー粉末自体により電子伝導パスを形成する機能が得にくくなる。一方、無機フィラー粉末の平均粒子径が大きすぎると、焼結性が低下して緻密な焼結体が得にくくなり、放電容量が低下しやすくなる。 The average particle size of the inorganic filler powder is preferably 0.01 to 30 μm, 0.07 to 20 μm, 0.05 to 10 μm, 0.1 to 5 μm, and particularly preferably 0.1 to 3 μm. If the average particle size of the inorganic filler powder is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. On the other hand, if the average particle size of the inorganic filler powder is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
 無機フィラー粉末の比表面積は1~400m/g、2~200m/g、3~100m/g、特に3~70m/gであることが好ましい。無機フィラー粉末の比表面積が小さすぎると、焼結性が低下して緻密な焼結体が得にくくなり、放電容量が低下しやすくなる。一方、無機フィラー粉末の比表面積が大きすぎると、導電助剤による電子伝導パスを維持するための骨格としての機能、あるいは、無機フィラー粉末自体により電子伝導パスを形成する機能が得にくくなる。 The specific surface area of the inorganic filler powder is preferably 1 to 400 m 2 / g, 2 to 200 m 2 / g, 3 to 100 m 2 / g, and particularly preferably 3 to 70 m 2 / g. If the specific surface area of the inorganic filler powder is too small, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered. On the other hand, if the specific surface area of the inorganic filler powder is too large, it becomes difficult to obtain a function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or a function of forming an electron conduction path by the inorganic filler powder itself.
 無機フィラー粉末と活物質粉末の平均粒子径比(無機フィラー粉末の平均粒子径/活物質粉末の平均粒子径)は0.5~50、0.7~30、1~10、特に1.15~5であることが好ましい。当該比率が小さすぎると、導電助剤による電子伝導パスを維持するための骨格としての機能、あるいは、無機フィラー粉末自体により電子伝導パスを形成する機能が得にくくなる。一方、当該比率が大きすぎると、焼結性が低下して緻密な焼結体が得にくくなり、放電容量が低下しやすくなる。 The average particle size ratio of the inorganic filler powder to the active material powder (average particle size of the inorganic filler powder / average particle size of the active material powder) is 0.5 to 50, 0.7 to 30, 1 to 10, especially 1.15. It is preferably ~ 5. If the ratio is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. On the other hand, if the ratio is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
 電極合材中における無機フィラー粉末の含有量は、体積%で、1~40%、3~30%、特に4~25%であることが好ましい。無機フィラー粉末の含有量が少なすぎると、導電助剤による電子伝導パスを維持するための骨格としての機能、あるいは、無機フィラー粉末自体により電子伝導パスを形成する機能が得にくくなる。また、電極層の熱膨張係数を調整する機能が得にくくなる。一方、無機フィラー粉末の含有量が多すぎると、電極層に占める活物質粉末の割合が少なくなったり、焼結性が低下して緻密な焼結体が得にくくなり、結果として放電容量が低下しやすくなる。 The content of the inorganic filler powder in the electrode mixture is preferably 1 to 40%, 3 to 30%, and particularly 4 to 25% in volume%. If the content of the inorganic filler powder is too small, it becomes difficult to obtain the function as a skeleton for maintaining the electron conduction path by the conductive auxiliary agent or the function of forming the electron conduction path by the inorganic filler powder itself. In addition, it becomes difficult to obtain the function of adjusting the coefficient of thermal expansion of the electrode layer. On the other hand, if the content of the inorganic filler powder is too large, the ratio of the active material powder in the electrode layer is reduced, the sinterability is lowered, and it is difficult to obtain a dense sintered body, and as a result, the discharge capacity is lowered. It will be easier to do.
 電極合材中における活物質粉末の含有量は、体積%で5~70%、10~60%、20~55%、特に30~50%であることが好ましい。活物質粉末の含有量が少なすぎると、放電容量が低下しやすくなる。一方、活物質粉末が多すぎると、電子伝導パスを形成しにくくなり、結果として放電容量が低下しやすくなる。 The content of the active material powder in the electrode mixture is preferably 5 to 70% by volume, 10 to 60%, 20 to 55%, and particularly preferably 30 to 50%. If the content of the active material powder is too small, the discharge capacity tends to decrease. On the other hand, if the amount of active material powder is too large, it becomes difficult to form an electron conduction path, and as a result, the discharge capacity tends to decrease.
 無機フィラー粉末と活物質粉末の体積%での含有量の比(無機フィラー粉末の含有量/活物質粉末の含有量)は、0.01~1、0.05~0.8、特に0.1~0.5であることが好ましい。当該比率が小さすぎると、電子伝導パスを形成しにくくなり、結果として放電容量が低下しやすくなる。一方、当該比率が大きすぎると焼結性が低下して緻密な焼結体が得にくくなり、放電容量が低下しやすくなる。 The ratio of the content of the inorganic filler powder to the active material powder in% by volume (content of the inorganic filler powder / content of the active material powder) is 0.01 to 1, 0.05 to 0.8, and particularly 0. It is preferably 1 to 0.5. If the ratio is too small, it becomes difficult to form an electron conduction path, and as a result, the discharge capacity tends to decrease. On the other hand, if the ratio is too large, the sinterability is lowered, it is difficult to obtain a dense sintered body, and the discharge capacity is likely to be lowered.
 (導電助剤)
 導電助剤としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、グラファイト等の粉末状または繊維状の導電性炭素等が挙げられる。なかでも、導電性に優れるアセチレンブラックが好ましい。
(Conductive aid)
Examples of the conductive auxiliary agent include highly conductive carbon black such as acetylene black and Ketjen black, and powdery or fibrous conductive carbon such as graphite. Of these, acetylene black, which has excellent conductivity, is preferable.
 電極合材中における導電助剤の含有量は、体積%で、1~70%、5~65%、10~60%、20~55%、特に30~55%であることが好ましい。導電助剤の含有量が少なすぎると、電極層内に十分な電子伝導パスが形成されず、全固体電池の放電容量に劣る傾向がある。一方、導電助剤の含有量が多すぎると、電極層に占める活物質粉末の割合が少なくなったり、焼結性が低下して緻密な焼結体が得にくくなり、結果として放電容量が低下しやすくなる。なお既述の通り、無機フィラー粉末として導電性を有する無機フィラー粉末を使用する場合は、導電助剤を含有させなくてもよい。ただしその場合であっても、導電助剤を含有させることを必ずしも妨げるものではない。 The content of the conductive auxiliary agent in the electrode mixture is preferably 1 to 70%, 5 to 65%, 10 to 60%, 20 to 55%, and particularly 30 to 55% in volume%. If the content of the conductive auxiliary agent is too small, a sufficient electron conduction path is not formed in the electrode layer, and the discharge capacity of the all-solid-state battery tends to be inferior. On the other hand, if the content of the conductive auxiliary agent is too large, the ratio of the active material powder in the electrode layer becomes small, the sinterability is lowered, and it becomes difficult to obtain a dense sintered body, and as a result, the discharge capacity is lowered. It will be easier to do. As described above, when the inorganic filler powder having conductivity is used as the inorganic filler powder, it is not necessary to contain the conductive auxiliary agent. However, even in that case, it does not necessarily prevent the inclusion of the conductive auxiliary agent.
 (全固体二次電池)
 本発明の全固体二次電池は、上記の電極合材の焼結体からなる電極層を備えている。具体的には、全固体二次電池は、固体電解質層と、その一方の主面に形成された正極層と、他方の主面に形成された負極層を備えている。ここで、正極層及び負極層の両方が上記の電極合材の焼結体からなるものであってもよく、正極層及び負極層のいずれか一方のみが上記の電極合材の焼結体からなるものであってもよい。
(All-solid-state secondary battery)
The all-solid-state secondary battery of the present invention includes an electrode layer made of a sintered body of the above-mentioned electrode mixture. Specifically, the all-solid-state secondary battery includes a solid electrolyte layer, a positive electrode layer formed on one main surface thereof, and a negative electrode layer formed on the other main surface. Here, both the positive electrode layer and the negative electrode layer may be made of the sintered body of the electrode mixture, and only one of the positive electrode layer and the negative electrode layer may be made of the sintered body of the electrode mixture. It may be.
 固体電解質層としては、ベータアルミナ(β-アルミナまたはβ’’-アルミナ)やNASICON結晶が挙げられる。これらの固体電解質層は、全固体アルカリイオン二次電池用として好適である。 Examples of the solid electrolyte layer include beta-alumina (β-alumina or β ″ -alumina) and NASICON crystals. These solid electrolyte layers are suitable for all-solid-state alkaline ion secondary batteries.
 以下に本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
 表1は実施例1~4及び比較例1を示す。 Table 1 shows Examples 1 to 4 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (a)正極活物質前駆体粉末の作製
 メタリン酸ナトリウム(NaPO)、酸化第二鉄(Fe)、及びオルソリン酸(HPO)を原料とし、モル%で、NaO 40%、Fe 20%、P 40%となるように原料粉末を調合し、1250℃にて45分間、大気雰囲気中にて溶融を行った。その後、一対のローラーに溶融ガラスを流し込み、急冷しながらフィルム状に成形することにより、正極活物質前駆体を作製した。
(A) Preparation of positive electrode active material precursor powder Using sodium metaphosphate (NaPO 3 ), ferric oxide (Fe 2 O 3 ), and orthophosphate (H 3 PO 4 ) as raw materials, in mol%, Na 2 O Raw material powders were prepared so as to have 40%, Fe 2 O 3 20%, and P 2 O 5 40%, and melted in an air atmosphere at 1250 ° C. for 45 minutes. Then, molten glass was poured into a pair of rollers and molded into a film while being rapidly cooled to prepare a positive electrode active material precursor.
 得られた正極活物質前駆体について、φ20mmのAl玉石を使用したボールミル粉砕を5時間、次にφ5mmのZrO玉石を使用したエタノール中でのボールミル粉砕を100時間行い、平均粒子径D50 0.7μmの正極活物質前駆体粉末を得た。 The obtained positive electrode active material precursor was pulverized by a ball mill using Al 2 O 3 jade of φ20 mm for 5 hours, and then pulverized by a ball mill in ethanol using ZrO 2 jade of φ5 mm for 100 hours, and average particle size. D 50 0.7 μm positive electrode active material precursor powder was obtained.
 (b)正極合材の作製
 上記の正極活物質前駆体粉末に対し、表1に記載の無機フィラー粉末と、導電助剤としてアセチレンブラック(TIMCAL社製 SUPER C65)を、表1に記載の割合となるように秤量し、メノウ製の乳鉢及び乳棒を用いて約30分間混合することにより正極合材を得た。なお、実施例4は導電助剤を添加しなかった。
(B) Preparation of Positive Electrode Mixture The ratio of the inorganic filler powder shown in Table 1 and acetylene black (SUPER C65 manufactured by TIMCAL) as a conductive additive to the above-mentioned positive electrode active material precursor powder is shown in Table 1. A positive electrode mixture was obtained by weighing the mixture so as to be the same as above and mixing for about 30 minutes using a mortar and pestle made of Menou. In Example 4, no conductive auxiliary agent was added.
 実施例5の無機フィラー粉末は次のように作製した。Al粉末100質量部に対して、炭素源として非イオン性界面活性剤であるポリエチレンオキシドノニルフェニルエーテル(HLB値:13.3、質量平均分子量:660)を14.2質量部添加し、さらに純水を60質量部加えて十分に混合した後、100℃で約1時間乾燥させた。その後、窒素雰囲気下で620℃、30分間焼成を行い、表面に炭素が被覆されたAl粉末を得た。 The inorganic filler powder of Example 5 was prepared as follows. To 100 parts by mass of Al 2 O 3 powder, 14.2 parts by mass of polyethylene oxide nonylphenyl ether (HLB value: 13.3, mass average molecular weight: 660), which is a nonionic surfactant, was added as a carbon source. Further, 60 parts by mass of pure water was added and thoroughly mixed, and then dried at 100 ° C. for about 1 hour. Then, it was calcined at 620 ° C. for 30 minutes in a nitrogen atmosphere to obtain an Al 2 O 3 powder whose surface was coated with carbon.
 得られた正極合材100質量部に、10質量%のポリプロピレンカーボネートを含有したN-メチルピロリドンを20質量部添加して、自転公転ミキサーを用いて十分に撹拌し、スラリー化した。 To 100 parts by mass of the obtained positive electrode mixture, 20 parts by mass of N-methylpyrrolidone containing 10% by mass of polypropylene carbonate was added, and the mixture was sufficiently stirred using a rotation / revolution mixer to form a slurry.
 (c)試験電池の作製
 上記のスラリー化した正極合材を、固体電解質シート(Ionotec社製 LiO安定化β”-アルミナ、組成式:Na1.7Li0.3Al10.717、1cm角、厚み1mm)の一方の表面に、1cmの面積、200μmの厚さで塗布し、70℃にて3時間乾燥させた。次に、窒素と水素の混合ガス雰囲気(窒素96体積%、水素4体積%)中、550℃にて1時間焼成することにより、正極合材を焼結するとともに正極活物質前駆体粉末を結晶化させ、正極層とした。得られた正極層についてX線回折パターンを確認したところ、活物質結晶であるNaFeP由来の回折線が確認された。
(C) Preparation of test battery The above slurryed positive electrode mixture was used as a solid electrolyte sheet (Li 2 O stabilized β ”-alumina manufactured by Ionotec, composition formula: Na 1.7 Li 0.3 Al 10.7 O. It was applied to one surface of 17 , 1 cm square, 1 mm thick) with an area of 1 cm 2 and a thickness of 200 μm, and dried at 70 ° C. for 3 hours. Next, a mixed gas atmosphere of nitrogen and hydrogen (nitrogen 96). By firing at 550 ° C. for 1 hour in (% by volume, 4% by volume of hydrogen), the positive electrode mixture was sintered and the positive electrode active material precursor powder was crystallized to obtain a positive electrode layer. When the X-ray diffraction pattern was confirmed, a diffraction line derived from Na 2 FeP 2 O 7, which is an active material crystal, was confirmed.
 次に、スパッタ装置(サンユー電子株式会社製 SC-701AT)を用いて、集電体である厚さ300nmの金電極を正極層の表面に形成した。その後、対極となる金属ナトリウムを固体電解質シートの他方の表面に圧着し、コインセルの下蓋に載置した後、上蓋を被せてCR2032型試験電池を作製した。 Next, using a sputtering device (SC-701AT manufactured by Sanyu Electronics Co., Ltd.), a gold electrode having a thickness of 300 nm, which is a current collector, was formed on the surface of the positive electrode layer. Then, metallic sodium as a counter electrode was pressure-bonded to the other surface of the solid electrolyte sheet, placed on the lower lid of the coin cell, and then covered with the upper lid to prepare a CR2032 type test battery.
 (d)充放電試験
 上記試験電池を用いて充放電試験を行った。結果を表1に示す。充放電試験において、充電(正極活物質からのナトリウムイオン放出)は開回路電圧(OCV)から4.5VまでのCC(定電流)充電により行い、放電(正極活物質へのナトリウムイオン吸蔵)は4.5Vから2VまでCC放電により行った。Cレートは0.01Cとし、試験は60℃及び30℃で行った。なお、放電容量は正極層に含まれる正極活物質の単位重量当たりに対して放電された電気量とした。
(D) Charge / discharge test A charge / discharge test was performed using the above test battery. The results are shown in Table 1. In the charge / discharge test, charging (sodium ion release from the positive electrode active material) is performed by CC (constant current) charging from the open circuit voltage (OCV) to 4.5 V, and discharge (sodium ion storage in the positive electrode active material) is performed. It was carried out by CC discharge from 4.5V to 2V. The C rate was 0.01 C and the test was performed at 60 ° C and 30 ° C. The discharge capacity was defined as the amount of electricity discharged per unit weight of the positive electrode active material contained in the positive electrode layer.
 表1に示す通り、電極合材中に無機フィラーを添加した実施例1~5では、放電容量は60℃において80mAh/g以上、30℃において53mAh/g以上と優れていた。一方、電極合材中に無機フィラーを添加しなかった比較例1では、放電容量が60℃において5mAh/gと低く、30℃においては0mAh/g(即ち、電池が作動せず)であった。 As shown in Table 1, in Examples 1 to 5 in which the inorganic filler was added to the electrode mixture, the discharge capacity was excellent at 80 mAh / g or more at 60 ° C. and 53 mAh / g or more at 30 ° C. On the other hand, in Comparative Example 1 in which the inorganic filler was not added to the electrode mixture, the discharge capacity was as low as 5 mAh / g at 60 ° C. and 0 mAh / g at 30 ° C. (that is, the battery did not operate). ..

Claims (12)

  1.  活物質粉末、無機フィラー粉末及び導電助剤を含有することを特徴とする電極合材。 Electrode mixture characterized by containing active material powder, inorganic filler powder and conductive auxiliary agent.
  2.  無機フィラー粉末が、Al、Mg、Si、Zr、Ce、Fe、Ti、Nb及びYからなる群より選択される少なくとも1種の酸化物であることを特徴とする請求項1に記載の電極合材。 The electrode combination according to claim 1, wherein the inorganic filler powder is at least one oxide selected from the group consisting of Al, Mg, Si, Zr, Ce, Fe, Ti, Nb and Y. Material.
  3.  活物質粉末及び無機フィラー粉末を含有する電極合材であって、無機フィラー粉末が導電性を有することを特徴とする電極合材。 An electrode mixture containing an active material powder and an inorganic filler powder, characterized in that the inorganic filler powder has conductivity.
  4.  無機フィラー粉末が、Al、Cu、Ag及びAuからなる群より選択される少なくとも1種の金属であることを特徴とする請求項3に記載の電極合材。 The electrode mixture according to claim 3, wherein the inorganic filler powder is at least one metal selected from the group consisting of Al, Cu, Ag and Au.
  5.  無機フィラー粉末の平均粒子径が0.01~30μmであることを特徴とする請求項1~4のいずれか一項に記載の電極合材。 The electrode mixture according to any one of claims 1 to 4, wherein the average particle size of the inorganic filler powder is 0.01 to 30 μm.
  6.  無機フィラー粉末と活物質粉末の平均粒子径比(無機フィラー粉末の平均粒子径/活物質粉末の平均粒子径)が0.5~50であることを特徴とする請求項1~5のいずれか一項に記載の電極合材。 Any of claims 1 to 5, wherein the average particle size ratio of the inorganic filler powder to the active material powder (average particle size of the inorganic filler powder / average particle size of the active material powder) is 0.5 to 50. The electrode mixture according to item 1.
  7.  無機フィラー粉末の含有量が、体積%で、1~40%であることを特徴とする請求項1~6のいずれか一項に記載の電極合材。 The electrode mixture according to any one of claims 1 to 6, wherein the content of the inorganic filler powder is 1 to 40% by volume.
  8.  活物質粉末が、ガラス粉末からなることを特徴とする請求項1~7のいずれか一項に記載の電極合材。 The electrode mixture according to any one of claims 1 to 7, wherein the active material powder is made of glass powder.
  9.  ナトリウムイオン二次電池用であることを特徴とする請求項1~8のいずれか一項に記載の電極合材。 The electrode mixture according to any one of claims 1 to 8, characterized in that it is for a sodium ion secondary battery.
  10.  活物質粉末が、酸化物換算のモル%で、NaO 8~55%、CrO+FeO+MnO+CoO+NiO 10~70%、P+SiO+B 15~70%を含有することを特徴とする請求項9に記載の電極合材。 Claims characterized in that the active material powder contains Na 2 O 8 to 55%, CrO + FeO + MnO + CoO + NiO 10 to 70%, P 2 O 5 + SiO 2 + B 2 O 3 15 to 70% in mole% in terms of oxide. Item 9. The electrode mixture according to item 9.
  11.  請求項1~10のいずれか一項に記載の電極合材の焼結体からなることを特徴とする電極層。 An electrode layer made of a sintered body of the electrode mixture according to any one of claims 1 to 10.
  12.  請求項11に記載の電極層を備えたことを特徴とする全固体二次電池。 An all-solid-state secondary battery comprising the electrode layer according to claim 11.
PCT/JP2020/017444 2019-05-17 2020-04-23 Electrode composite material WO2020235291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520667A JPWO2020235291A1 (en) 2019-05-17 2020-04-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093389 2019-05-17
JP2019093389 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235291A1 true WO2020235291A1 (en) 2020-11-26

Family

ID=73458092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017444 WO2020235291A1 (en) 2019-05-17 2020-04-23 Electrode composite material

Country Status (2)

Country Link
JP (1) JPWO2020235291A1 (en)
WO (1) WO2020235291A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216746A (en) * 2001-01-17 2002-08-02 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
JP2009038018A (en) * 2007-07-09 2009-02-19 Sony Corp Secondary battery
JP2016149194A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2017147054A (en) * 2016-02-15 2017-08-24 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019004288A1 (en) * 2017-06-30 2019-01-03 国立大学法人九州大学 Positive electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same
WO2019003846A1 (en) * 2017-06-28 2019-01-03 日本電気硝子株式会社 All-solid-state sodium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216746A (en) * 2001-01-17 2002-08-02 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
JP2009038018A (en) * 2007-07-09 2009-02-19 Sony Corp Secondary battery
JP2016149194A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2017147054A (en) * 2016-02-15 2017-08-24 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019003846A1 (en) * 2017-06-28 2019-01-03 日本電気硝子株式会社 All-solid-state sodium ion secondary battery
WO2019004288A1 (en) * 2017-06-30 2019-01-03 国立大学法人九州大学 Positive electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same

Also Published As

Publication number Publication date
JPWO2020235291A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR102410194B1 (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
CN110521046B (en) All-solid sodium ion secondary battery
JP6801454B2 (en) Manufacturing method of positive electrode material for power storage device
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
US20200112055A1 (en) All-solid-state sodium ion secondary battery
CN111213272B (en) Bipolar all-solid sodium ion secondary battery
WO2016157751A1 (en) Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP2019125547A (en) Solid electrolyte powder, electrode mixture using the same, and all-solid sodium ion secondary battery
JP7345748B2 (en) Manufacturing method for secondary batteries
WO2018020990A1 (en) Solid electrolyte powder, and electrode composite material and all-solid sodium ion secondary battery formed using same
JP7448875B2 (en) Sodium ion secondary battery parts and sodium ion secondary batteries
WO2018131627A1 (en) Electrode mix for sodium ion secondary battery and method for manufacturing same
WO2020235291A1 (en) Electrode composite material
WO2018235575A1 (en) Sodium ion secondary battery
WO2023090248A1 (en) Method for producing member for power storage devices
WO2023127717A1 (en) Electrode material for all-solid battery, electrode for all-solid battery and method for manufacturing same, and all-solid battery and method for manufacturing same
WO2021124945A1 (en) Member for electricity storage devices, and electricity storage device
WO2021054273A1 (en) Method for manufacturing positive electrode material for electricity storage device
WO2023120414A1 (en) Positive electrode active material for sodium-ion secondary cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810409

Country of ref document: EP

Kind code of ref document: A1