WO2020234550A1 - Method for producing a part from composite material by injecting a loaded slip into a fibrous texture - Google Patents

Method for producing a part from composite material by injecting a loaded slip into a fibrous texture Download PDF

Info

Publication number
WO2020234550A1
WO2020234550A1 PCT/FR2020/050857 FR2020050857W WO2020234550A1 WO 2020234550 A1 WO2020234550 A1 WO 2020234550A1 FR 2020050857 W FR2020050857 W FR 2020050857W WO 2020234550 A1 WO2020234550 A1 WO 2020234550A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
fibrous texture
injection
texture
fibrous
Prior art date
Application number
PCT/FR2020/050857
Other languages
French (fr)
Inventor
Ludovic Philippe LIAIS
Nicolas DROZ
Michaël Podgorski
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2020234550A1 publication Critical patent/WO2020234550A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/265Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor pressure being applied on the slip in the filled mould or on the moulded article in the mould, e.g. pneumatically, by compressing slip in a closed mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements
    • B28B17/0081Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the present invention relates to a method of manufacturing a part made of composite material, in particular of the oxide / oxide type or of ceramic matrix (CMC), that is to say comprising a fibrous reinforcement formed from fibers of densified refractory ceramic material. by a matrix also made of refractory ceramic material.
  • CMC ceramic matrix
  • the parts made of oxide / oxide composite material are generally produced by draping in a mold a plurality of fibrous layers made from refractory oxide fibers, the layers each being impregnated beforehand with a slip loaded with particles of refractory oxide. All the layers thus arranged are then compacted using a counter-mold or a vacuum tank and passing through an autoclave. The loaded preform thus obtained is then subjected to sintering in order to form a refractory oxide matrix in the preform and to obtain a part made of oxide / oxide composite material. This technique can also be used to make parts in ceramic matrix composite material (CMC).
  • CMC ceramic matrix composite material
  • the fibrous layers are made from silicon carbide (SiC) or carbon fibers and are impregnated with a slip loaded with particles of carbide (eg SiC), boride (eg TiB 2 ) or nitride (eg Si 3 N 4 ).
  • the impregnation of the fibrous texture is long and delicate due to the complex shape and the high thickness of the texture.
  • the phase of injecting or filling the fibrous texture with the slip is not controlled, which results in the presence of porosities in the final part.
  • the injection or filling of the fibrous texture with the slip is controlled by adjusting the pressure in the molding cavity containing the fibrous texture to be impregnated.
  • the pressure in the mold cavity is adjusted primarily depending on the fiber texture and the injection tooling, the goal being to ensure the passage of the slip through the entire volume of the texture.
  • this pressure control of the injection phase does not prevent the creation of
  • macroporosities in the final part these macroporosities resulting from air or vacuum trapped after the injection phase.
  • the pressure control of the injection does not make it possible to control the speed of progression of the slip front in the texture.
  • the object of the present invention is to remedy the aforementioned drawbacks and to propose a solution which makes it possible to better control the phase of injecting or filling a fibrous texture with a slip in order to obtain a material or part with a macroporosity rate. very weak.
  • the invention provides a method of manufacturing a part made of composite material comprising the following steps:
  • the flow rate of the slip injected into the molding cavity is controlled so as to be maintained at at least a determined value of flow, characterized in that the fibrous texture exhibits a two-dimensional weaving or a three-dimensional weaving or a stack of unidirectional layers, and in that said at least one determined flow rate value is between 5 and 2000 ml / min.
  • the flow rate of the slip By controlling the flow rate of the slip during its injection into the molding cavity, it is possible to control the speed of the slip front progressing through the fibrous texture. In fact, by maintaining the flow rate of the injected slip at at least one constant value, the speed of the advancing front of the slip in the fibrous texture is also maintained at a substantially constant value. The speed of impregnation of the fibers being proportional to the injection rate of the slip, by controlling this rate, the speed of advance of the front is controlled.
  • the step of injecting or filling the fibrous texture is no longer controlled by adjusting the pressure in the molding cavity, as in the prior art, but by controlling the flow rate of the injected slip. in the molding cavity, which makes it possible to control the speed of the slip front and to maintain this speed at a sufficiently low value for optimum impregnation of the fibrous texture by the slip. This avoids the trapping of air or gas in the fibrous texture and, consequently, the presence of macroporosities in the final part.
  • the capillary velocity being slower than the "flow velocity inter-yarn ”, that is to say the speed of progression of the slip in the spaces present between the wires or strands of the fibrous texture, it is advantageous to adjust the flow rate of the injected slip to at least a value allowing to maintain the speed of the impregnation front of the slip at a speed close to the capillary speed. Optimal impregnation of the fibrous texture is thus ensured by avoiding having slip fronts which close together by trapping air or any other gas.
  • the injection of the slip at a controlled rate into the molding cavity is carried out until a predetermined pressure level is reached in the molding cavity of the injection tool, the pressure in the molding cavity being controlled during drainage of the liquid from the slip so as to be maintained at a value of between 3 and 40 bars.
  • a predetermined level of pressure is here advantageously used to detect the end of the injection step and the start of the step of draining the slip
  • the pressure is adjusted in order to control the drainage step.
  • the flow rate of the slip injected into the mold cavity is controlled so as to be maintained successively at several determined flow rate values. This makes it possible to have several speeds of the advance front of the slip adapted according to the variations in geometries and / or weaving weave in the fibrous texture.
  • the injection of the slip into the fibrous texture is carried out with a first slip and, during drainage of the liquid from the slip, a second slip is injected, said second slip having a rate of charge less than the charge rate of the first slip.
  • the yarns can be woven in a three-dimensional or multi-layered weave.
  • the fibrous texture can also be produced by stacking layers woven in a weaving
  • the texture having a thickness of at least 0.5 mm and preferably at least 1 mm.
  • the yarns of the preform can be yarns formed from fibers made from one or more of the following materials: alumina, mullite, silica, an aluminosilicate, a borosilicate, silicon carbide and carbon.
  • the refractory ceramic particles can be made of a material chosen from: alumina, mullite, silica, an aluminosilicate, an aluminophosphate, zirconia, a carbide, a boride and a nitride.
  • the method of the invention is used to manufacture a composite material part constituting a turbomachine blade.
  • Figure 1 is a schematic exploded perspective view of an injection tool in accordance with one embodiment of the invention.
  • Figure 2 is a schematic sectional view showing a controlled flow rate injection step of slip in a fibrous texture in the tooling of Figure 1,
  • Figure 3 is a schematic sectional view showing a pressure-regulated drainage step of the liquid phase of a slip in the tool of Figure 1.
  • the method of manufacturing a part made of composite material, in particular of the oxide / oxide or CMC type in accordance with the present invention begins with the production of a fibrous texture intended to form the reinforcement of the part.
  • the fibrous structure is produced in a known manner by weaving by means of a loom of the jacquard type on which a bundle of warp threads or strands has been placed in a plurality of layers, the warp threads being linked by threads of weft or vice versa.
  • the fibrous texture can be achieved by stacking unidirectional layers or strata (UD).
  • the fibrous texture can also be produced by stacking layers or plies obtained by two-dimensional (2D) weaving.
  • the Fibrous texture can still be produced directly in one piece by three-dimensional (3D) weaving.
  • two-dimensional weaving is meant here a conventional weaving method by which each weft yarn passes from one side of the yarns of a single warp layer to the other or vice versa.
  • the method of the invention is particularly suitable for allowing the introduction of a loaded slip into UD or 2D fiber textures, namely textures obtained by stacking UD or 2D layers, strata or plies, of significant thickness, c That is, 2D fiber structures having a thickness of at least 0.5mm, preferably at least 1mm.
  • three-dimensional weaving or “3D weaving” or even “multilayer weaving” is meant here a weaving method by which at least some of the weft threads bind warp threads on several layers of warp threads or vice versa following a weaving. corresponding to a weaving weave which can in particular be chosen from one of the following weaves: interlock, multi-canvas, multi-satin and multi-twill.
  • weave or interlock fabric is meant here a 3D weaving weave in which each layer of warp threads binds several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weft. armor.
  • weave or multi-canvas fabric is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional plain type weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-satin fabric is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional satin type weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-twill fabric is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional twill type weave but with certain points of the weave which bind the layers of weft threads together.
  • 3D textures present a complex geometry in which it is difficult to introduce and evenly distribute solid particles in suspension.
  • the method of the invention is also very well suited for the introduction of a loaded slip into 3D woven fiber textures.
  • the yarns used to weave the fibrous texture intended to form the fibrous reinforcement of the part made of composite material can in particular be formed of fibers.
  • alumina Made from any of the following materials: alumina, mullite, silica, a
  • aluminosilicate a borosilicate, silicon carbide, carbon or a mixture of several of these materials.
  • a fibrous texture 10 is placed in an injection tool 100.
  • the fibrous texture 10 is produced according to one of the techniques defined above (stacking UD or 2D strata or 3D weaving) with Nextel 610 TM alumina threads.
  • the fibrous texture 10 is here intended to form the fibrous reinforcement of a blade made of an oxide / oxide composite material.
  • the tool 100 comprises a mold of porous material 1 10 formed in two parts 1 1 1 and 1 12 each comprising respectively an imprint 1 1 10 and an imprint 1 120.
  • the imprints 1 1 10 and 1 120 define a mold cavity 113 ( Figure 2) when the two parts 1 1 1 and 1 12 are assembled against each other, cavity in which the fibrous texture is intended to be placed.
  • the imprints 1110 and 1120 have a shape corresponding to the shape of the part to be manufactured from the fibrous texture.
  • the two parts 1 11 and 1 12 serve to size the preform and therefore the part to be obtained as well as to adjust the rate of fibers in the part to be obtained.
  • part 11 of the mold of porous material 110 comprises a channel 11 11 for the injection of a slurry loaded into the fibrous texture as explained below in detail.
  • the injection tool 100 also comprises an enclosure made of rigid material 130 in which the mold of porous material 110 is held.
  • the enclosure 130 comprises a bottom 131, a side wall 132 integral with the bottom 131 and a cover 133.
  • the cover 133 comprises an injection port 134 through which the slip is intended to be injected in order to penetrate into the porosity of the fibrous texture 10.
  • the slip is intended to be injected. through an injection port 134 opening into the molding cavity 1 13.
  • the injection tool further comprises a controlled flow injection system 140 and a pressure-regulated injection system 150, both connected to the injection port 134 of the enclosure 130.
  • the controlled-flow injection system 140 here consists of a reservoir 141 containing a loaded slip B1 and whose outlet duct 144 is connected to the inlet of a peristaltic pump 142.
  • the outlet of the peristaltic pump 142 is connected to the injection port 134 by conduits 145 and 146 between which a valve 143 is interposed.
  • the pressure-regulated injection system 150 here consists of an injection pot 151 which defines a chamber 1510 containing a loaded slip B2, the injection pot 151 furthermore being equipped with a piston 151 1 and, opposite said piston, a discharge opening 1512 connected to the injection port 134 by conduits 153 and 154 between which a valve 152 is interposed.
  • the enclosure 130 comprises a single vent 135 for evacuating the liquid medium from the slip, present here on the side wall 132 in the vicinity of the bottom 131.
  • a single vent 135 for evacuating the liquid medium from the slip, present here on the side wall 132 in the vicinity of the bottom 131.
  • the mold of porous material 110 has a size smaller than the internal volume of the enclosure made of metallic material 130.
  • the volume present between the mold of porous material and the enclosure of metallic material is filled with a porous medium 120 in order to allow the circulation and evacuation of the liquid phase of the slip.
  • the porous medium 120 can consist in particular of sand, a foam, or a granular material.
  • the mold of porous material 1 10 may for example be made from a porous resin.
  • the mold 110 has a pore size of between 4 and 30 ⁇ m.
  • the pore size is around 7 ⁇ m.
  • the two parts 1 1 1 and 1 12 forming the mold 1 10 are produced by casting in a tool called "master". This is made from a material that avoids chemical interactions with the porous resin (avoid compatible polymers) to allow release from the mold. It is therefore possible to use wood, metal, aluminum, or even cardboard in the case of slip injections intended for the manufacture of oxide / oxide and SiC / SiC materials.
  • the mold of porous material 1 10 allows the drainage of the liquid medium of the slip outside the fibrous texture 10 and its evacuation through the vent 135 due to the application of a pressure gradient between the vent 135 and the injection port 134.
  • the average size of the pores (D50) of the mold of porous material may for example be between 1 ⁇ m and 10 ⁇ m.
  • FIG. 2 illustrates the step of injecting or filling the fibrous texture 10 with the slip B1 in accordance with the invention.
  • the pressure-regulated injection system 150 is inoperative, the injection pot 151 not delivering the B2 slip and the valve 152 being closed.
  • the slip B1 is delivered at a constant flow rate into the injection port 134 by the peristaltic pump 142, the valve 143 being open.
  • the regulation of the flow rate of the injected slip can be achieved with means other than a peristaltic pump, for example with an injector equipped with a controlled flow piston.
  • the peristaltic pump is controlled to control the flow rate of the slip B1 injected into the molding cavity 1 13. More precisely, the flow rate is maintained at at least one determined value.
  • the flow rate value is preferably between 5 and 2000 milliliters per minute (ml / min) for fiber textures having two-dimensional or three-dimensional weaving.
  • “Intra-yarn flow rate” means the speed of movement of the slip in the strands or the yarns which are formed of fibers.
  • the capillary speed being lower that the "inter-yarn flow rate", that is to say the speed of progression of the slip in the spaces present between the wires or strands of the fibrous texture, it is advantageous to adjust the flow rate of the slip injected at at least one value making it possible to maintain the speed of the impregnation front of the slip at a speed close to the capillary speed. Optimal impregnation of the fibrous texture is thus ensured by avoiding having slip fronts which close together while trapping air or any other gas.
  • the determination of an optimal flow rate of slip that is to say a flow rate making it possible to obtain an impregnation front speed close to the capillary flow speed in the fibrous texture, can be carried out by successive tests.
  • each injection is carried out at different flow rates.
  • each specimen is inspected by micro-tomography in order to determine its macroporosity rate.
  • the constant flow rate value adopted corresponds to that with which the lowest macroporosity rate was obtained, indirectly indicating that this flow rate value makes it possible to obtain an impregnation front speed which is close to the capillary flow speed in the fibrous texture.
  • the optimum flow rate can also be determined from the capillary flow rate when it is known.
  • the flow rate is adjusted so as to obtain a constant flow rate value making it possible to have an impregnation front speed closest to the known value of the flow speed.
  • the capillary flow rate is generally between 3 and 50 mm / min.
  • the step of injecting the fiber texture at a controlled rate ends when the pressure in the molding cavity 1 13 increases and reaches a predetermined pressure value, for example 6 bars.
  • the step of draining the liquid phase can then begin.
  • the measurement of the pressure rise at the end of the controlled-flow injection step can be carried out by means of a pressure sensor 160, for example a manometer, placed at the level of the injection port 134 of the pump.
  • FIG. 3 illustrates the step of draining the medium or liquid phase thereof.
  • the B2 slip is injected into the molding cavity under controlled pressure.
  • the controlled flow injection system 140 is inoperative, the peristaltic pump 142 being stopped and the valve 143 being closed.
  • the slip B2 is delivered at regulated pressure into the injection port 134 by the injection pot 151, the valve 152 being open.
  • the pressure regulation is controlled by the piston 151 1 of the injection pot 151 as a function of the pressure measured in the molding cavity 1 13.
  • the pressure in the molding cavity is controlled during the drainage of the liquid from the slurry. so as to be maintained preferably at a value between 3 and 40 bars.
  • the B2 slip is injected under pressure through the injection port 134 and transported to the fibrous texture 10 via the conduit 121 and the channel 1 1 11 so as to penetrate the fibrous texture 10.
  • the refractory ceramic particles 1500 present in the slip B1 previously injected and in the slip B2 are retained in the fibrous texture 10 thanks to the mold of porous material 110, all or part of these particles being deposited by filtration. in the fibrous texture 10.
  • the arrows 1501 represent the movement of the medium or liquid phase 1501 of the slips B1 and B2 drained by the mold of porous material 110.
  • Pumping P can furthermore be carried out at the outlet vent 135 during drainage, for example by means of a primary vacuum pump. Performing such pumping improves drainage and dries the fibrous texture more quickly.
  • Slips B1 and B2 can for example be a suspension of alumina powder in water.
  • the alumina powder used can be an alpha alumina powder sold by the company Baikowski under the name SM8.
  • the slips used can be a suspension comprising refractory ceramic particles having an average particle size of between 0.1 ⁇ m and 10 ⁇ m.
  • the volume content of refractory ceramic particles in the slip may, before injection, be between 15% and 40%.
  • the refractory ceramic particles may include a material chosen from: alumina, mullite, silica, aluminosilicates,
  • the refractory ceramic particles can furthermore be mixed with particles of alumina, zirconia, aluminosilicate, rare earth oxide, rare earth silicate (which can for example example be used in environmental or thermal barriers) or any other filler making it possible to functionalize the part made of composite material to be obtained such as carbon black, graphite or silicon carbide.
  • the medium or liquid phase of the slurries may, for example, comprise an aqueous phase having an acidic pH (i.e. a pH less than 7) and / or an alcoholic phase comprising, for example, ethanol.
  • the slip may comprise an acidifier such as nitric acid and the pH of the liquid medium may for example be between 1, 5 and 4.
  • the slip may, in addition, comprise an organic binder such as polyvinyl alcohol (PVA ) which is especially soluble in water.
  • PVA polyvinyl alcohol
  • Slips B1 and B2 can be identical. However, it may be advantageous to use a B1 slip during the filling phase of the fibrous texture which has a higher loading rate than that of the B2 slip used during the drainage or filtration phase. It is possible, for example, to use a slip B1 having a degree of load of alumina particles of 40% and a slip B2 having a rate of load of particles of alumina of 20%.
  • the refractories improves the filling rate of the cavity with refractory ceramic particles, before the drainage / filtration phase, the most time-consuming phase of the process. As the interstices between powder grains are less numerous when the drainage / filtration phase begins, the drainage / filtration time can be reduced because the volume to be filled, created by the evacuation of the solvent, will be less.
  • a fiber preform 15 loaded with refractory ceramic particles for example particles of refractory ceramic oxide or alumina, is obtained.
  • the preform obtained is then dried and then demolded, the preform being able to retain, after demolding, the shape adopted in the molding cavity.
  • the preform is then subjected to a heat sintering treatment, for example in air at a temperature between 1000 ° C and 1200 ° C in order to sinter the refractory ceramic particles and thus form a refractory ceramic matrix in the porosity of the fiber preform.
  • a part of composite material is then obtained, for example a part of oxide / oxide composite material, provided with a fibrous reinforcement formed by the fibrous preform and having a high matrix volume ratio with a homogeneous distribution of the refractory ceramic matrix throughout. the fibrous reinforcement.
  • a part made of CMC composite material other than Oxide / Oxide can be obtained in the same way by producing the fiber texture with silicon carbide and / or carbon fibers and by using a slip loaded with carbide particles (for example SiC ), boride (for example of TiB 2 ) or nitride (for example of Si 3 N 4 ).
  • carbide particles for example SiC
  • boride for example of TiB 2
  • nitride for example of Si 3 N 4
  • the flow rate of the injected slip can be controlled so as to be maintained successively at several determined flow rate values. It is thus possible to adapt the speed of the advance front of the slip in the fibrous texture to variations in geometry and / or weaving of the texture. Indeed, the same texture can
  • the slip for a first portion of the fiber texture exhibiting, for example, a two-dimensional weave, the slip is injected at a constant flow rate according to a first determined flow rate value.
  • the slip front reaches a second portion of the texture exhibiting for example a three-dimensional weaving, the slip is injected at a constant flow rate according to a second determined flow rate value lower than the first determined value so as to reduce the speed of the front in the second portion where the flow velocity is reduced due to the three-dimensional weaving.
  • the flow-controlled injection and pressure-regulated injection systems described above are each equipped with an independent slip tank. These systems can also be implemented with a common reservoir connected to the both to a controlled rate delivery means and to a pressure regulated delivery means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

A method for manufacturing a part from composite material comprises the following steps: forming a fibrous texture from refractory ceramic fibres, placing the fibrous texture in a moulding cavity (113) present in an injection tool (110), injecting a slip (B1) containing a powder of refractory ceramic particles (1500) into the fibrous texture present in the moulding cavity, draining the liquid (1501) from the slip once the latter has passed through the fibrous texture and retaining the powder of ceramic particles inside the texture so as to obtain a fibre preform (15) loaded with refractory ceramic particles (1500), drying the fibrous preform (15), removing the fibrous preform (15) from the mould, and sintering the refractory ceramic particles present in the fibrous preform in order to form a refractory matrix in the preform. During the injection of the slip into the fibrous texture, the flow rate of the slip (B1) injected into the moulding cavity (113) is controlled so as to be maintained at at least one determined constant value between 5 and 2000 ml/min.

Description

PROCEDE DE FABRICATION D'UNE PIECE EN MATERIAU COMPOSITE PAR INJECTION D'UNE BARBOTINE CHARGEE DANS UNE TEXTURE FIBREUSE METHOD OF MANUFACTURING A PART IN COMPOSITE MATERIAL BY INJECTING A SPROCKET CHARGED IN A FIBROUS TEXTURE
Domaine Technique Technical area
La présente invention concerne un procédé de fabrication d'une pièce en matériau composite notamment de type oxyde/oxyde ou à matrice céramique (CMC), c’est-à- dire comportant un renfort fibreux formé à partir de fibres en matériau céramique réfractaire densifié par une matrice également en matériau céramique réfractaire. The present invention relates to a method of manufacturing a part made of composite material, in particular of the oxide / oxide type or of ceramic matrix (CMC), that is to say comprising a fibrous reinforcement formed from fibers of densified refractory ceramic material. by a matrix also made of refractory ceramic material.
Technique antérieure Prior art
Les pièces en matériau composite oxyde/oxyde sont généralement élaborées par drapage dans un moule d’une pluralité de strates fibreuses réalisées à partir de fibres en oxyde réfractaire, les strates étant chacune préalablement imprégnées avec une barbotine chargée de particules d’oxyde réfractaire. L’ensemble des strates ainsi disposées est ensuite compacté à l’aide d’un contre-moule ou d’une bâche à vide et un passage en autoclave. La préforme chargée ainsi obtenue est alors soumise à un frittage afin de former une matrice en oxyde réfractaire dans la préforme et obtenir une pièce en matériau composite oxyde/oxyde. Cette technique peut être également utilisée pour réaliser des pièces en matériau composite à matrice céramique (CMC). Dans ce cas, les strates fibreuses sont réalisées à partir de fibres de carbure de silicium (SiC) ou de carbone et sont imprégnées avec une barbotine chargée de particules de carbure (ex. SiC), de borure (ex. TiB2) ou de nitrure (ex. Si3N4). The parts made of oxide / oxide composite material are generally produced by draping in a mold a plurality of fibrous layers made from refractory oxide fibers, the layers each being impregnated beforehand with a slip loaded with particles of refractory oxide. All the layers thus arranged are then compacted using a counter-mold or a vacuum tank and passing through an autoclave. The loaded preform thus obtained is then subjected to sintering in order to form a refractory oxide matrix in the preform and to obtain a part made of oxide / oxide composite material. This technique can also be used to make parts in ceramic matrix composite material (CMC). In this case, the fibrous layers are made from silicon carbide (SiC) or carbon fibers and are impregnated with a slip loaded with particles of carbide (eg SiC), boride (eg TiB 2 ) or nitride (eg Si 3 N 4 ).
Cependant, ce type de procédé d’élaboration ne permet de réaliser que des pièces en matériau composite oxyde/oxyde ou CMC ayant une faible épaisseur et un renfort fibreux bidimensionnel (2D). Les caractéristiques mécaniques de ces types de matériau composite restent limitées dans certaines directions. En particulier, ces matériaux ont une faible tenue au délaminage et ne résistent pas bien aux efforts de cisaillement. However, this type of production process only makes it possible to produce parts made of composite oxide / oxide or CMC material having a low thickness and a two-dimensional (2D) fiber reinforcement. The mechanical characteristics of these types of composite material remain limited in certain directions. In particular, these materials have a low resistance to delamination and do not withstand shear forces well.
La réalisation de textures fibreuses obtenues par tissage tridimensionnel entre des fils continus de chaîne et de trame permet d’augmenter la résistance mécanique du matériau et en particulier sa résistance au délaminage. Dans ce cas et également pour des textures fibreuses 2D de forte épaisseur, seuls les procédés utilisant un gradient de pression, comme les procédés de type infusion, moulage par injection dits « RTM » ou aspiration de poudre submicronique dits « APS », permettent de faire pénétrer une barbotine chargée dans la texture fibreuse dont l’épaisseur peut atteindre plusieurs dizaines de millimètres selon les applications visées. The production of fibrous textures obtained by three-dimensional weaving between continuous warp and weft threads makes it possible to increase the mechanical strength of the material and in particular its resistance to delamination. In this case and also for very thick 2D fiber textures, only the processes using a pressure gradient, such as infusion type processes, injection molding called "RTM" or submicron powder suction called "APS", allow a charged slip to penetrate into the fibrous texture, the thickness of which can reach several tens of millimeters depending on the targeted applications.
Cependant, avec ces procédés, l’imprégnation de la texture fibreuse est longue et délicate en raison de la forme complexe et de la forte épaisseur de la texture. Ainsi, la phase d’injection ou de remplissage de la texture fibreuse avec la barbotine n’est pas maîtrisée, ce qui entraîne la présence de porosités dans la pièce finale. However, with these processes, the impregnation of the fibrous texture is long and delicate due to the complex shape and the high thickness of the texture. Thus, the phase of injecting or filling the fibrous texture with the slip is not controlled, which results in the presence of porosities in the final part.
L’injection ou le remplissage de la texture fibreuse avec la barbotine est pilotée par l’ajustement de la pression dans la cavité de moulage contenant la texture fibreuse à imprégner. La pression dans la cavité de moulage est ajustée principalement en fonction de la texture fibreuse et de l’outillage d’injection, le but étant d’assurer le passage de la barbotine dans l’ensemble du volume de la texture. Toutefois, ce pilotage en pression de la phase d’injection n’empêche pas la création de The injection or filling of the fibrous texture with the slip is controlled by adjusting the pressure in the molding cavity containing the fibrous texture to be impregnated. The pressure in the mold cavity is adjusted primarily depending on the fiber texture and the injection tooling, the goal being to ensure the passage of the slip through the entire volume of the texture. However, this pressure control of the injection phase does not prevent the creation of
macroporosités dans la pièce finale, ces macroporosités résultant d’air ou de vide piégés après la phase d’injection. macroporosities in the final part, these macroporosities resulting from air or vacuum trapped after the injection phase.
En outre, le pilotage en pression de l’injection ne permet pas de contrôler la vitesse de progression du front de barbotine dans la texture. In addition, the pressure control of the injection does not make it possible to control the speed of progression of the slip front in the texture.
Exposé de l’invention Disclosure of the invention
La présente invention a pour but de remédier aux inconvénients précités et de proposer une solution qui permet de mieux maîtriser la phase d’injection ou de remplissage d’une texture fibreuse par une barbotine afin d’obtenir un matériau ou pièce avec un taux de macroporosité très faible. The object of the present invention is to remedy the aforementioned drawbacks and to propose a solution which makes it possible to better control the phase of injecting or filling a fibrous texture with a slip in order to obtain a material or part with a macroporosity rate. very weak.
A cet effet, l'invention propose un procédé de fabrication d’une pièce en matériau composite comprenant les étapes suivantes : To this end, the invention provides a method of manufacturing a part made of composite material comprising the following steps:
formation d’une texture fibreuse à partir de fibres céramiques réfractaires, placement de la texture fibreuse dans une cavité de moulage présente dans un outillage d’injection, formation of a fibrous texture from refractory ceramic fibers, placement of the fibrous texture in a mold cavity present in an injection tool,
injection d’une barbotine contenant une poudre de particules céramiques réfractaires dans la texture fibreuse présente dans la cavité de moulage, injection of a slip containing a powder of refractory ceramic particles in the fibrous texture present in the mold cavity,
drainage du liquide de la barbotine ayant traversé la texture fibreuse et rétention de la poudre de particules céramiques réfractaires à l'intérieur de ladite texture de manière à obtenir une préforme fibreuse chargée de particules céramiques réfractaires, drainage of the liquid from the slip which has passed through the fibrous texture and retention of the powder of refractory ceramic particles inside said texture so as to obtain a fiber preform loaded with refractory ceramic particles,
séchage de la préforme fibreuse, drying of the fiber preform,
démoulage de la préforme fibreuse, et release of the fiber preform, and
frittage des particules céramiques réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractaire dans ladite préforme, sintering of the refractory ceramic particles present in the fiber preform in order to form a refractory matrix in said preform,
dans lequel, lors de l’injection de la barbotine dans la texture fibreuse, le débit de barbotine injectée dans la cavité de moulage est contrôlé de manière à être maintenu à au moins une valeur déterminée de débit, caractérisé en ce que la texture fibreuse présente un tissage bidimensionnel ou un tissage tridimensionnel ou un empilement de couches unidirectionnelles, et en ce que ladite au moins une valeur déterminée de débit étant comprise entre 5 et 2000 ml/min. in which, during the injection of the slip into the fibrous texture, the flow rate of the slip injected into the molding cavity is controlled so as to be maintained at at least a determined value of flow, characterized in that the fibrous texture exhibits a two-dimensional weaving or a three-dimensional weaving or a stack of unidirectional layers, and in that said at least one determined flow rate value is between 5 and 2000 ml / min.
En contrôlant le débit de la barbotine lors de son injection dans la cavité de moulage, il est possible de contrôler la vitesse du front de barbotine progressant dans la texture fibreuse. En effet, en maintenant le débit de la barbotine injectée à au moins une valeur constante, on maintient également la vitesse du front de progression de la barbotine dans la texture fibreuse à une valeur sensiblement constante. La vitesse d’imprégnation des fibres étant proportionnelle au débit d’injection de la barbotine, en contrôlant ce débit, on contrôle la vitesse d’avancement du front. By controlling the flow rate of the slip during its injection into the molding cavity, it is possible to control the speed of the slip front progressing through the fibrous texture. In fact, by maintaining the flow rate of the injected slip at at least one constant value, the speed of the advancing front of the slip in the fibrous texture is also maintained at a substantially constant value. The speed of impregnation of the fibers being proportional to the injection rate of the slip, by controlling this rate, the speed of advance of the front is controlled.
Dans l’invention, l’étape d’injection ou de remplissage de la texture fibreuse n’est plus pilotée par ajustement de la pression dans la cavité de moulage, comme dans l’art antérieur, mais par le contrôle du débit de barbotine injectée dans la cavité de moulage, ce qui permet de contrôler la vitesse du front de barbotine et de maintenir cette vitesse à une valeur suffisamment basse pour une imprégnation optimale de la texture fibreuse par la barbotine. On évite ainsi le piégeage d’air ou de gaz dans la texture fibreuse et, par conséquent, la présence de macroporosités dans la pièce finale. In the invention, the step of injecting or filling the fibrous texture is no longer controlled by adjusting the pressure in the molding cavity, as in the prior art, but by controlling the flow rate of the injected slip. in the molding cavity, which makes it possible to control the speed of the slip front and to maintain this speed at a sufficiently low value for optimum impregnation of the fibrous texture by the slip. This avoids the trapping of air or gas in the fibrous texture and, consequently, the presence of macroporosities in the final part.
En ajustant le débit de la barbotine injectée à une valeur comprise entre 5 et 2000 ml/min, il est possible d’obtenir une vitesse de front d’imprégnation de la barbotine qui est proche de la vitesse d’écoulement capillaire dans la texture fibreuse. On entend ici par « vitesse d’écoulement capillaire » ou « vitesse d’écoulement intra- fils », la vitesse de déplacement de la barbotine dans les torons ou les fils qui sont formés de fibres. La vitesse capillaire étant plus faible que la « vitesse d’écoulement inter-fils », c’est-à-dire la vitesse de progression de la barbotine dans les espaces présents entre les fils ou torons de la texture fibreuse, il est avantageux de régler le débit de la barbotine injectée à au moins une valeur permettant de maintenir la vitesse de front d’imprégnation de la barbotine à une vitesse proche de la vitesse capillaire. On assure ainsi une imprégnation optimale de la texture fibreuse en évitant d’avoir des fronts de barbotine qui se referment en emprisonnant de l’air ou tout autre gaz. By adjusting the flow rate of the injected slip to a value between 5 and 2000 ml / min, it is possible to obtain an impregnation front speed of the slip which is close to the capillary flow speed in the fibrous texture. . The term “capillary flow rate” or “intra-yarn flow speed” is understood here to mean the speed of displacement of the slip in the strands or the yarns which are formed of fibers. The capillary velocity being slower than the "flow velocity inter-yarn ”, that is to say the speed of progression of the slip in the spaces present between the wires or strands of the fibrous texture, it is advantageous to adjust the flow rate of the injected slip to at least a value allowing to maintain the speed of the impregnation front of the slip at a speed close to the capillary speed. Optimal impregnation of the fibrous texture is thus ensured by avoiding having slip fronts which close together by trapping air or any other gas.
Selon une caractéristique particulière du procédé de fabrication d’une pièce en matériau composite de l’invention, l’injection de la barbotine à débit contrôlé dans la cavité de moulage est réalisée jusqu’à ce qu’un niveau prédéterminé de pression soit atteint dans la cavité de moulage de l’outillage d’injection, la pression dans la cavité de moulage étant contrôlée lors du drainage du liquide de la barbotine de manière à être maintenue à une valeur comprise entre 3 et 40 bars. A la fin de l’étape d’injection, c’est-à-dire lorsque la texture fibreuse est complètement imprégnée par la barbotine, la pression dans la cavité de moulage augmente. Un niveau prédéterminé de pression est ici avantageusement utilisé pour détecter la fin de l’étape d’injection et le début de l’étape de drainage de la barbotine According to a particular characteristic of the method of manufacturing a part of composite material of the invention, the injection of the slip at a controlled rate into the molding cavity is carried out until a predetermined pressure level is reached in the molding cavity of the injection tool, the pressure in the molding cavity being controlled during drainage of the liquid from the slip so as to be maintained at a value of between 3 and 40 bars. At the end of the injection step, that is to say when the fibrous texture is completely impregnated by the slip, the pressure in the mold cavity increases. A predetermined level of pressure is here advantageously used to detect the end of the injection step and the start of the step of draining the slip
correspondant au passage entre le pilotage en débit et le pilotage en pression de la barbotine. Pendant l’étape de drainage, la pression est ajustée afin de contrôler l’étape de drainage. corresponding to the passage between the flow control and the pressure control of the slip. During the drainage step, the pressure is adjusted in order to control the drainage step.
Selon un aspect du procédé de l’invention, lors de l’injection de la barbotine dans la texture fibreuse, le débit de barbotine injectée dans la cavité de moulage est contrôlé de manière à être maintenu successivement à plusieurs valeurs déterminées de débit. Cela permet d’avoir plusieurs vitesses du front de progression de la barbotine adaptées en fonction des variations de géométries et/ou d’armure de tissage dans la texture fibreuse. According to one aspect of the process of the invention, during the injection of the slip into the fibrous texture, the flow rate of the slip injected into the mold cavity is controlled so as to be maintained successively at several determined flow rate values. This makes it possible to have several speeds of the advance front of the slip adapted according to the variations in geometries and / or weaving weave in the fibrous texture.
Selon un aspect du procédé de l’invention, l’injection de la barbotine dans la texture fibreuse est réalisée avec une première barbotine et, lors du drainage du liquide de la barbotine, une deuxième barbotine est injectée, ladite deuxième barbotine présentant un taux de charge inférieur au taux de charge de la première barbotine. Cela permet de réduire le temps de l’étape de drainage de la barbotine. Lors de l’étape de la formation de la texture fibreuse, les fils peuvent être tissés suivant un tissage tridimensionnel ou multicouche. La texture fibreuse peut être également réalisée par empilement de strates tissées suivant un tissage According to one aspect of the process of the invention, the injection of the slip into the fibrous texture is carried out with a first slip and, during drainage of the liquid from the slip, a second slip is injected, said second slip having a rate of charge less than the charge rate of the first slip. This makes it possible to reduce the time of the step of draining the slip. During the step of forming the fiber texture, the yarns can be woven in a three-dimensional or multi-layered weave. The fibrous texture can also be produced by stacking layers woven in a weaving
bidimensionnel, la texture présentant une épaisseur d’au moins 0,5 mm et de préférence d’au moins 1 mm. two-dimensional, the texture having a thickness of at least 0.5 mm and preferably at least 1 mm.
Les fils de la préforme peuvent être des fils formés de fibres constituées d’un ou plusieurs des matériaux suivants : l’alumine, la mullite, la silice, un aluminosilicate, un borosilicate, du carbure de silicium et du carbone. The yarns of the preform can be yarns formed from fibers made from one or more of the following materials: alumina, mullite, silica, an aluminosilicate, a borosilicate, silicon carbide and carbon.
Les particules céramiques réfractaires peuvent être en un matériau choisi parmi : l’alumine, la mullite, la silice, un aluminosilicate, un aluminophosphate, la zircone, un carbure, un borure et un nitrure. The refractory ceramic particles can be made of a material chosen from: alumina, mullite, silica, an aluminosilicate, an aluminophosphate, zirconia, a carbide, a boride and a nitride.
Dans un exemple de réalisation, le procédé de l’invention est utilisé pour fabriquer une pièce en matériau composite constituant une aube de turbomachine. In an exemplary embodiment, the method of the invention is used to manufacture a composite material part constituting a turbomachine blade.
Brève description des dessins Brief description of the drawings
[Fig. 1 ] La figure 1 est une vue schématique en perspective éclatée d’un outillage d’injection conformément à un mode de réalisation de l’invention, [Fig. 1] Figure 1 is a schematic exploded perspective view of an injection tool in accordance with one embodiment of the invention,
[Fig. 2] La figure 2 est une vue schématique en coupe montrant une étape d’injection à débit contrôlé de barbotine dans une texture fibreuse dans l’outillage de la figure 1 , [Fig. 2] Figure 2 is a schematic sectional view showing a controlled flow rate injection step of slip in a fibrous texture in the tooling of Figure 1,
[Fig. 3] La figure 3 est une vue schématique en coupe montrant une étape de drainage à pression régulée de la phase liquide d’une barbotine dans l’outillage de la figure 1. [Fig. 3] Figure 3 is a schematic sectional view showing a pressure-regulated drainage step of the liquid phase of a slip in the tool of Figure 1.
Description des modes de réalisation Description of embodiments
Le procédé de fabrication d’une pièce en matériau composite notamment de type oxyde/oxyde ou CMC conforme à la présente invention débute par la réalisation d’une texture fibreuse destinée à former le renfort de la pièce. The method of manufacturing a part made of composite material, in particular of the oxide / oxide or CMC type in accordance with the present invention, begins with the production of a fibrous texture intended to form the reinforcement of the part.
La structure fibreuse est réalisée de façon connue par tissage au moyen d'un métier à tisser de type jacquard sur lequel on a disposé un faisceau de fils de chaîne ou torons en une pluralité de couches, les fils de chaîne étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de couches ou strates unidirectionnelles (UD). La texture fibreuse peut également être réalisée par empilement de strates ou plis obtenus par tissage bidimensionnel (2D). La texture fibreuse peut encore être réalisée directement en une seule pièce par tissage tridimensionnel (3D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d’un côté à l’autre de fils d’une seule couche de chaîne ou inversement. Le procédé de l’invention est particulièrement adapté pour permettre l’introduction d’une barbotine chargée dans des textures fibreuses UD ou 2D, à savoir des textures obtenues par empilement de couches, strates ou plis UD ou 2D, d’épaisseur importante, c’est-à-dire des structures fibreuses 2D ayant une épaisseur d’au moins 0,5 mm, de préférence au moins 1 mm. The fibrous structure is produced in a known manner by weaving by means of a loom of the jacquard type on which a bundle of warp threads or strands has been placed in a plurality of layers, the warp threads being linked by threads of weft or vice versa. The fibrous texture can be achieved by stacking unidirectional layers or strata (UD). The fibrous texture can also be produced by stacking layers or plies obtained by two-dimensional (2D) weaving. The Fibrous texture can still be produced directly in one piece by three-dimensional (3D) weaving. By “two-dimensional weaving” is meant here a conventional weaving method by which each weft yarn passes from one side of the yarns of a single warp layer to the other or vice versa. The method of the invention is particularly suitable for allowing the introduction of a loaded slip into UD or 2D fiber textures, namely textures obtained by stacking UD or 2D layers, strata or plies, of significant thickness, c That is, 2D fiber structures having a thickness of at least 0.5mm, preferably at least 1mm.
Par « tissage tridimensionnel » ou « tissage 3D » ou encore « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, multi-toile, multi-satin et multi-sergé. By “three-dimensional weaving” or “3D weaving” or even “multilayer weaving” is meant here a weaving method by which at least some of the weft threads bind warp threads on several layers of warp threads or vice versa following a weaving. corresponding to a weaving weave which can in particular be chosen from one of the following weaves: interlock, multi-canvas, multi-satin and multi-twill.
Par « armure ou tissu interlock », on entend ici une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure. By “weave or interlock fabric” is meant here a 3D weaving weave in which each layer of warp threads binds several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weft. armor.
Par « armure ou tissu multi-toile », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type toile classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles. By "weave or multi-canvas fabric" is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional plain type weave but with certain points of the weave which bind the layers of weft threads together.
Par « armure ou tissu multi-satin », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles. By "weave or multi-satin fabric", is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional satin type weave but with certain points of the weave which bind the layers of weft threads together.
Par « armure ou tissu multi-sergé », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type sergé classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles. By "weave or multi-twill fabric", is meant here a 3D weaving with several layers of weft threads, the base weave of each layer of which is equivalent to a conventional twill type weave but with certain points of the weave which bind the layers of weft threads together.
Les textures 3D présentent une géométrie complexe dans laquelle il est difficile d’introduire et de répartir de manière homogène des particules solides en suspension. Le procédé de l’invention est également très bien adapté pour l’introduction d’une barbotine chargée dans des textures fibreuses tissées 3D. 3D textures present a complex geometry in which it is difficult to introduce and evenly distribute solid particles in suspension. The method of the invention is also very well suited for the introduction of a loaded slip into 3D woven fiber textures.
Les fils utilisés pour tisser la texture fibreuse destinée à former le renfort fibreux de la pièce en matériau composite peuvent être notamment formés de fibres The yarns used to weave the fibrous texture intended to form the fibrous reinforcement of the part made of composite material can in particular be formed of fibers.
constituées d’un des matériaux suivants: l’alumine, la mullite, la silice, un Made from any of the following materials: alumina, mullite, silica, a
aluminosilicate, un borosilicate, du carbure de silicium, du carbone ou d’un mélange de plusieurs de ces matériaux. aluminosilicate, a borosilicate, silicon carbide, carbon or a mixture of several of these materials.
Une fois la texture fibreuse réalisée, celle-ci est placée dans un outillage d’injection qui permet, comme expliqué ci-après, de déposer des particules réfractaires au sein de la texture fibreuse. A cet effet et comme illustrée sur les figures 1 et 2, une texture fibreuse 10 est placée dans un outillage d’injection 100. Dans l’exemple décrit ici, la texture fibreuse 10 est réalisée suivant une des techniques définies ci- avant (empilement strates UD ou 2D ou tissage 3D) avec des fils d’alumine Nextel 610™. La texture fibreuse 10 est ici destinée à former le renfort fibreux d’une aube en matériau composite oxyde/oxyde. Once the fibrous texture has been produced, it is placed in an injection tool which, as explained below, allows refractory particles to be deposited within the fibrous texture. For this purpose and as illustrated in Figures 1 and 2, a fibrous texture 10 is placed in an injection tool 100. In the example described here, the fibrous texture 10 is produced according to one of the techniques defined above (stacking UD or 2D strata or 3D weaving) with Nextel 610 ™ alumina threads. The fibrous texture 10 is here intended to form the fibrous reinforcement of a blade made of an oxide / oxide composite material.
L’outillage 100 comprend un moule en matériau poreux 1 10 formé en deux parties 1 1 1 et 1 12 comportant chacune respectivement une empreinte 1 1 10 et une empreinte 1 120. Les empreintes 1 1 10 et 1 120 délimitent une cavité de moulage 113 (figure 2) lorsque les deux parties 1 1 1 et 1 12 sont assemblées l’une contre l’autre, cavité dans laquelle la texture fibreuse est destinée à être placée. Les empreintes 1 1 10 et 1 120 présentent une forme correspondant à la forme de la pièce à fabriquer à partir de la texture fibreuse. Les deux parties 1 11 et 1 12 servent à dimensionner la préforme et donc la pièce à obtenir ainsi qu’à ajuster le taux de fibres dans la pièce à obtenir. The tool 100 comprises a mold of porous material 1 10 formed in two parts 1 1 1 and 1 12 each comprising respectively an imprint 1 1 10 and an imprint 1 120. The imprints 1 1 10 and 1 120 define a mold cavity 113 (Figure 2) when the two parts 1 1 1 and 1 12 are assembled against each other, cavity in which the fibrous texture is intended to be placed. The imprints 1110 and 1120 have a shape corresponding to the shape of the part to be manufactured from the fibrous texture. The two parts 1 11 and 1 12 serve to size the preform and therefore the part to be obtained as well as to adjust the rate of fibers in the part to be obtained.
Dans l’exemple décrit ici, la partie 1 11 du moule en matériau poreux 1 10 comporte un canal 1 1 11 pour l’injection d’une barbotine chargée dans la texture fibreuse comme expliqué ci-après en détails. In the example described here, part 11 of the mold of porous material 110 comprises a channel 11 11 for the injection of a slurry loaded into the fibrous texture as explained below in detail.
L’outillage d’injection 100 comprend également une enceinte en matériau rigide 130 dans laquelle le moule en matériau poreux 1 10 est maintenu. L’enceinte 130 comprend un fond 131 , une paroi latérale 132 solidaire du fond 131 et un couvercle 133. Le couvercle 133 comporte un port d’injection 134 au travers duquel la barbotine est destinée à être injectée afin de pénétrer dans la porosité de la texture fibreuse 10. Dans l’exemple illustré aux figures 1 et 2, la barbotine est destinée à être injectée au travers d’un port d’injection 134 débouchant dans la cavité de moulage 1 13. The injection tool 100 also comprises an enclosure made of rigid material 130 in which the mold of porous material 110 is held. The enclosure 130 comprises a bottom 131, a side wall 132 integral with the bottom 131 and a cover 133. The cover 133 comprises an injection port 134 through which the slip is intended to be injected in order to penetrate into the porosity of the fibrous texture 10. In the example illustrated in Figures 1 and 2, the slip is intended to be injected. through an injection port 134 opening into the molding cavity 1 13.
Toutefois, on ne sort pas du cadre de l’invention lorsque la barbotine est injectée au travers d’une pluralité de ports d’injection débouchant dans la cavité de moulage.However, it is not outside the scope of the invention when the slip is injected through a plurality of injection ports opening into the mold cavity.
Conformément à l’invention, l’outillage d’injection comprend en outre un système d’injection à débit contrôlé 140 et un système d’injection à régulation de pression 150, tous deux reliés au port d’injection 134 de l’enceinte 130. Plus précisément, le système d’injection à débit contrôlé 140 est constitué ici d’un réservoir 141 contenant une barbotine chargée B1 et dont le conduit de sortie 144 est relié à l’entrée d’une pompe péristaltique 142. La sortie de la pompe péristaltique 142 est reliée au port d’injection 134 par des conduits 145 et 146 entre lesquels une vanne 143 est interposée. Le système d’injection à régulation de pression 150 est constitué ici d’un pot d’injection 151 qui délimite une chambre 1510 contenant une barbotine chargée B2, le pot d’injection 151 étant en outre équipé d’un piston 151 1 et, à l’opposé dudit piston, une ouverture d’évacuation 1512 reliée au port d’injection 134 par des conduits 153 et 154 entre lesquels une vanne 152 est interposée. According to the invention, the injection tool further comprises a controlled flow injection system 140 and a pressure-regulated injection system 150, both connected to the injection port 134 of the enclosure 130. More precisely, the controlled-flow injection system 140 here consists of a reservoir 141 containing a loaded slip B1 and whose outlet duct 144 is connected to the inlet of a peristaltic pump 142. The outlet of the peristaltic pump 142 is connected to the injection port 134 by conduits 145 and 146 between which a valve 143 is interposed. The pressure-regulated injection system 150 here consists of an injection pot 151 which defines a chamber 1510 containing a loaded slip B2, the injection pot 151 furthermore being equipped with a piston 151 1 and, opposite said piston, a discharge opening 1512 connected to the injection port 134 by conduits 153 and 154 between which a valve 152 is interposed.
L’enceinte 130 comporte un unique évent d’évacuation 135 du milieu liquide de la barbotine, présent ici sur la paroi latéral 132 au voisinage du fond 131. Bien entendu, on ne sort pas du cadre de l’invention lorsqu’une pluralité d’évents de sortie est mise en oeuvre à différents endroits de l’enceinte. The enclosure 130 comprises a single vent 135 for evacuating the liquid medium from the slip, present here on the side wall 132 in the vicinity of the bottom 131. Of course, it is not beyond the scope of the invention when a plurality of The outlet vents are implemented at different locations in the enclosure.
Dans le mode de réalisation décrit ici, le moule en matériau poreux 1 10 présente une taille inférieure au volume interne de l’enceinte en matériau métallique 130. In the embodiment described here, the mold of porous material 110 has a size smaller than the internal volume of the enclosure made of metallic material 130.
Dans ce cas, le volume présent entre le moule en matériau poreux et l’enceinte en matériau métallique est comblé par un milieu poreux 120 afin de permettre la circulation et l’évacuation de la phase liquide de la barbotine. Le milieu poreux 120 peut être constitué notamment par du sable une mousse, ou un matériau granulaire.In this case, the volume present between the mold of porous material and the enclosure of metallic material is filled with a porous medium 120 in order to allow the circulation and evacuation of the liquid phase of the slip. The porous medium 120 can consist in particular of sand, a foam, or a granular material.
Le moule en matériau poreux 1 10 peut être par exemple réalisé à partir d’une résine poreuse. Le moule 1 10 présente un taille de pores comprise entre 4 et 30 pm. Pour la fabrication de pièce en matériau composite Oxyde / Oxyde et SiC/SiC, la taille des pores se situe autour de 7 pm. Les deux parties 1 1 1 et 1 12 formant le moule 1 10 sont réalisés par coulage dans un outillage appelé « master ». Celui-ci est fabriqué à partir d’une matière évitant les interactions chimiques avec la résine poreuse (éviter les polymères compatibles) pour permettre un démoulage. Il est donc possible d’utiliser du bois, du métal, de l’aluminium, ou même du carton dans le cas d’injections de barbotine destinées à la fabrication de matériaux Oxyde / Oxyde et SiC/SiC. The mold of porous material 1 10 may for example be made from a porous resin. The mold 110 has a pore size of between 4 and 30 μm. For the manufacture of part made of an oxide / oxide and SiC / SiC composite material, the pore size is around 7 μm. The two parts 1 1 1 and 1 12 forming the mold 1 10 are produced by casting in a tool called "master". This is made from a material that avoids chemical interactions with the porous resin (avoid compatible polymers) to allow release from the mold. It is therefore possible to use wood, metal, aluminum, or even cardboard in the case of slip injections intended for the manufacture of oxide / oxide and SiC / SiC materials.
Le moule en matériau poreux 1 10 permet le drainage du milieu liquide de la barbotine à l’extérieur de la texture fibreuse 10 et son évacuation par l’évent 135 du fait de l’application d’un gradient de pression entre l’évent 135 et le port d’injection 134. The mold of porous material 1 10 allows the drainage of the liquid medium of the slip outside the fibrous texture 10 and its evacuation through the vent 135 due to the application of a pressure gradient between the vent 135 and the injection port 134.
A titre d’exemple, la taille moyenne des pores (D50) du moule en matériau poreux peut par exemple être comprise entre 1 pm et 10 pm. By way of example, the average size of the pores (D50) of the mold of porous material may for example be between 1 μm and 10 μm.
La figure 2 illustre l’étape d’injection ou de remplissage de la texture fibreuse 10 avec la barbotine B1 conformément à l’invention. Pendant cette étape, le système d’injection à régulation de pression 150 est inopérant, le pot d’injection 151 ne délivrant pas de barbotine B2 et la vanne 152 étant fermée. Du côté du système d’injection à débit contrôlé 140, la barbotine B1 est délivrée à débit constant dans le port d’injection 134 par la pompe péristaltique 142, la vanne 143 étant ouverte. La régulation du débit de la barbotine injectée peut être réalisée avec d’autres moyens qu’une pompe péristaltique comme par exemple avec un injecteur équipé d’un piston à débit contrôlé. FIG. 2 illustrates the step of injecting or filling the fibrous texture 10 with the slip B1 in accordance with the invention. During this step, the pressure-regulated injection system 150 is inoperative, the injection pot 151 not delivering the B2 slip and the valve 152 being closed. On the side of the controlled flow injection system 140, the slip B1 is delivered at a constant flow rate into the injection port 134 by the peristaltic pump 142, the valve 143 being open. The regulation of the flow rate of the injected slip can be achieved with means other than a peristaltic pump, for example with an injector equipped with a controlled flow piston.
La pompe péristaltique est commandée pour contrôler le débit de la barbotine B1 injectée dans la cavité de moulage 1 13. Plus précisément, le débit est maintenu à au moins une valeur déterminée. La valeur de débit est comprise de préférence entre 5 et 2000 millilitres par minute (ml/min) pour des textures fibreuses présentant un tissage bidimensionnel ou tridimensionnel. The peristaltic pump is controlled to control the flow rate of the slip B1 injected into the molding cavity 1 13. More precisely, the flow rate is maintained at at least one determined value. The flow rate value is preferably between 5 and 2000 milliliters per minute (ml / min) for fiber textures having two-dimensional or three-dimensional weaving.
En ajustant le débit de la barbotine injectée à une valeur constante comprise entre 5 et 2000 ml/min, il est possible d’obtenir une vitesse de front d’imprégnation de la barbotine qui est proche de la vitesse d’écoulement capillaire dans la texture fibreuse. On entend ici par « vitesse d’écoulement capillaire » ou By adjusting the flow rate of the injected slip to a constant value between 5 and 2000 ml / min, it is possible to obtain an impregnation front speed of the slip which is close to the capillary flow rate in the texture fibrous. By "capillary flow rate" is meant here or
« vitesse d’écoulement intra-fils », la vitesse de déplacement de la barbotine dans les torons ou les fils qui sont formés de fibres. La vitesse capillaire étant plus faible que la « vitesse d’écoulement inter-fils », c’est-à-dire la vitesse de progression de la barbotine dans les espaces présents entre les fils ou torons de la texture fibreuse, il est avantageux de régler le débit de la barbotine injectée à au moins une valeur permettant de maintenir la vitesse de front d’imprégnation de la barbotine à une vitesse proche de la vitesse capillaire. On assure ainsi une imprégnation optimale de la texture fibreuse en évitant d’avoir des fronts de barbotine qui se referment en emprisonnant de l’air ou tout autre gaz. "Intra-yarn flow rate" means the speed of movement of the slip in the strands or the yarns which are formed of fibers. The capillary speed being lower that the "inter-yarn flow rate", that is to say the speed of progression of the slip in the spaces present between the wires or strands of the fibrous texture, it is advantageous to adjust the flow rate of the slip injected at at least one value making it possible to maintain the speed of the impregnation front of the slip at a speed close to the capillary speed. Optimal impregnation of the fibrous texture is thus ensured by avoiding having slip fronts which close together while trapping air or any other gas.
Selon une première méthode, la détermination d’un débit optimal de barbotine, c’est- à-dire un débit permettant d’obtenir une vitesse de front d’imprégnation proche de la vitesse d’écoulement capillaire dans la texture fibreuse, peut être réalisée par essais successifs. Dans ce cas, on réalise une série d’injections d’une barbotine According to a first method, the determination of an optimal flow rate of slip, that is to say a flow rate making it possible to obtain an impregnation front speed close to the capillary flow speed in the fibrous texture, can be carried out by successive tests. In this case, we perform a series of injections of a slip
déterminée dans des éprouvettes de texture fibreuse identiques, chaque injection étant réalisée à des débits différents. Une fois la matrice formée (i.e. après frittage des particules), chaque éprouvette est inspectée par micro-tomographie afin de déterminer son taux de macroporosité. La valeur constante de débit retenue correspond alors à celle avec laquelle on a obtenu le taux de macroporosité le plus faible indiquant indirectement que cette valeur de débit permet d’obtenir une vitesse de front d’imprégnation qui est proche de la vitesse d’écoulement capillaire dans la texture fibreuse. determined in specimens of identical fiber texture, each injection being carried out at different flow rates. Once the matrix has been formed (i.e. after sintering of the particles), each specimen is inspected by micro-tomography in order to determine its macroporosity rate. The constant flow rate value adopted then corresponds to that with which the lowest macroporosity rate was obtained, indirectly indicating that this flow rate value makes it possible to obtain an impregnation front speed which is close to the capillary flow speed in the fibrous texture.
Selon une autre méthode, le débit optimal peut être également déterminé à partir de la vitesse d’écoulement capillaire lorsqu’elle est connue. Dans ce cas, on ajuste le débit de manière à obtenir une valeur constante de débit permettant d’avoir une vitesse de front d’imprégnation au plus proche de la valeur connue de la vitesse d’écoulement. Il a été constaté que la vitesse d’écoulement capillaire est en général située entre 3 et 50 mm/min. L’étape d’injection à débit contrôlé de la texture fibreuse se termine lorsque la pression dans la cavité de moulage 1 13 augmente et atteint une valeur de pression prédéterminée, par exemple 6 bars. L’étape de drainage de la phase liquide peut alors commencer. La mesure de l’élévation de pression à la fin de l’étape d’injection à débit contrôlé peut être réalisée au moyen d’un capteur de pression 160, par exemple un manomètre, placé au niveau du port d’injection 134 de l’outillage d’injection 100. La mesure de la pression dans la cavité de moulage peut être également réalisée avec des capteurs de pression placés sur la surface de la cavité de moulage (non représentés sur les figures 2 et 3). La figure 3 illustre l’étape de drainage du milieu ou phase liquide de celle-ci. Durant cette étape, la barbotine B2 est injectée dans la cavité de moulage sous une pression contrôlée. Pendant cette étape, le système d’injection à débit contrôlé 140 est inopérant, la pompe péristaltique 142 étant arrêtée et la vanne 143 étant fermée. Du côté du système d’injection à régulation de pression 150, la barbotine B2 est délivrée à pression régulée dans le port d’injection 134 par le pot d’injection 151 , la vanne 152 étant ouverte. La régulation de la pression est pilotée par le piston 151 1 du pot d’injection 151 en fonction de la pression mesurée dans la cavité de moulage 1 13. La pression dans la cavité de moulage est contrôlée lors du drainage du liquide de la barbotine de manière à être maintenue de préférence à une valeur comprise entre 3 et 40 bars. According to another method, the optimum flow rate can also be determined from the capillary flow rate when it is known. In this case, the flow rate is adjusted so as to obtain a constant flow rate value making it possible to have an impregnation front speed closest to the known value of the flow speed. It has been found that the capillary flow rate is generally between 3 and 50 mm / min. The step of injecting the fiber texture at a controlled rate ends when the pressure in the molding cavity 1 13 increases and reaches a predetermined pressure value, for example 6 bars. The step of draining the liquid phase can then begin. The measurement of the pressure rise at the end of the controlled-flow injection step can be carried out by means of a pressure sensor 160, for example a manometer, placed at the level of the injection port 134 of the pump. Injection tool 100. The measurement of the pressure in the molding cavity can also be carried out with pressure sensors placed on the surface of the molding cavity (not shown in Figures 2 and 3). FIG. 3 illustrates the step of draining the medium or liquid phase thereof. During this step, the B2 slip is injected into the molding cavity under controlled pressure. During this step, the controlled flow injection system 140 is inoperative, the peristaltic pump 142 being stopped and the valve 143 being closed. On the side of the pressure-regulated injection system 150, the slip B2 is delivered at regulated pressure into the injection port 134 by the injection pot 151, the valve 152 being open. The pressure regulation is controlled by the piston 151 1 of the injection pot 151 as a function of the pressure measured in the molding cavity 1 13. The pressure in the molding cavity is controlled during the drainage of the liquid from the slurry. so as to be maintained preferably at a value between 3 and 40 bars.
Sur la figure 3, la barbotine B2 est injectée sous pression par le port d’injection 134 et transportée jusqu’à la texture fibreuse 10 par le conduit 121 et le canal 1 1 11 de manière à pénétrer dans la texture fibreuse 10. In Figure 3, the B2 slip is injected under pressure through the injection port 134 and transported to the fibrous texture 10 via the conduit 121 and the channel 1 1 11 so as to penetrate the fibrous texture 10.
Comme illustré sur la figure 3, les particules céramiques réfractaires 1500 présentes dans la barbotine B1 préalablement injectée et dans la barbotine B2 sont retenues dans la texture fibreuse 10 grâce au moule en matériau poreux 1 10, tout ou partie de ces particules se déposant par filtration dans la texture fibreuse 10. Les flèches 1501 représentent le mouvement du milieu ou phase liquide 1501 des barbotines B1 et B2 drainé par le moule en matériau poreux 1 10. As illustrated in FIG. 3, the refractory ceramic particles 1500 present in the slip B1 previously injected and in the slip B2 are retained in the fibrous texture 10 thanks to the mold of porous material 110, all or part of these particles being deposited by filtration. in the fibrous texture 10. The arrows 1501 represent the movement of the medium or liquid phase 1501 of the slips B1 and B2 drained by the mold of porous material 110.
Un pompage P peut, en outre, être réalisé au niveau de l’évent de sortie 135 durant le drainage, par exemple au moyen d’une pompe à vide primaire. La réalisation d’un tel pompage permet d’améliorer le drainage et de sécher plus rapidement la texture fibreuse. Pumping P can furthermore be carried out at the outlet vent 135 during drainage, for example by means of a primary vacuum pump. Performing such pumping improves drainage and dries the fibrous texture more quickly.
Les barbotines B1 et B2 peuvent par exemple être une suspension d’une poudre d’alumine dans de l’eau. La poudre d’alumine utilisée peut être une poudre d’alumine alpha commercialisée par la société Baikowski sous la dénomination SM8. Slips B1 and B2 can for example be a suspension of alumina powder in water. The alumina powder used can be an alpha alumina powder sold by the company Baikowski under the name SM8.
Plus généralement, les barbotines utilisées peuvent être une suspension comportant des particules céramiques réfractaires présentant une dimension particulaire moyenne comprise entre 0,1 pm et 10 pm. La teneur volumique en particules céramiques réfractaires dans la barbotine peut, avant l’injection, être comprise entre 15% et 40%. Les particules céramiques réfractaires peuvent comporter un matériau choisi parmi : l’alumine, la mullite, la silice, les aluminosilicates, les More generally, the slips used can be a suspension comprising refractory ceramic particles having an average particle size of between 0.1 μm and 10 μm. The volume content of refractory ceramic particles in the slip may, before injection, be between 15% and 40%. The refractory ceramic particles may include a material chosen from: alumina, mullite, silica, aluminosilicates,
aluminophosphates, les carbures, les borures, les nitrures et les mélanges de tels matériaux. En fonction de leur composition de base, les particules céramiques réfractaires peuvent, en outre, être mélangées avec des particules d’alumine, de zircone, d’aluminosilicate, d’un oxyde de terre rare, de silicate de terre rare (lequel peut par exemple être utilisé dans les barrières environnementales ou thermiques) ou toute autre charge permettant de fonctionnaliser la pièce en matériau composite à obtenir comme le noir de carbone, le graphite ou le carbure de silicium. aluminophosphates, carbides, borides, nitrides and mixtures of such materials. Depending on their basic composition, the refractory ceramic particles can furthermore be mixed with particles of alumina, zirconia, aluminosilicate, rare earth oxide, rare earth silicate (which can for example example be used in environmental or thermal barriers) or any other filler making it possible to functionalize the part made of composite material to be obtained such as carbon black, graphite or silicon carbide.
Le milieu ou phase liquide des barbotines peut, par exemple, comporter une phase aqueuse présentant un pH acide (i.e. un pH inférieur à 7) et/ou une phase alcoolique comportant par exemple de l’éthanol. La barbotine peut comporter un acidifiant tel que de l’acide nitrique et le pH du milieu liquide peut par exemple être compris entre 1 ,5 et 4. La barbotine peut, en outre, comporter un liant organique comme de l’alcool polyvinylique (PVA) lequel est notamment soluble dans l’eau. The medium or liquid phase of the slurries may, for example, comprise an aqueous phase having an acidic pH (i.e. a pH less than 7) and / or an alcoholic phase comprising, for example, ethanol. The slip may comprise an acidifier such as nitric acid and the pH of the liquid medium may for example be between 1, 5 and 4. The slip may, in addition, comprise an organic binder such as polyvinyl alcohol (PVA ) which is especially soluble in water.
Les barbotines B1 et B2 peuvent être identiques. Toutefois, il peut être avantageux d’utiliser une barbotine B1 pendant la phase de remplissage de la texture fibreuse qui présente un taux de charge plus élevé que celui de la barbotine B2 utilisé pendant la phase de drainage ou filtration. On peut par exemple utiliser une barbotine B1 présentant un taux de charge en particules d’alumine de 40% et une barbotine B2 présentant un taux de charge en particules d’alumine de 20%. Slips B1 and B2 can be identical. However, it may be advantageous to use a B1 slip during the filling phase of the fibrous texture which has a higher loading rate than that of the B2 slip used during the drainage or filtration phase. It is possible, for example, to use a slip B1 having a degree of load of alumina particles of 40% and a slip B2 having a rate of load of particles of alumina of 20%.
L’utilisation d’une barbotine davantage chargée en particules céramiques The use of a slip more loaded with ceramic particles
réfractaires permet d’améliorer le taux de remplissage de la cavité en particules céramiques réfractaires, avant la phase de drainage/filtration, phase la plus chronophage du procédé. Les interstices entre grains de poudre étant moins nombreux au moment où débute la phase de drainage/filtration, le temps de drainage/filtration peut être réduit car le volume à combler, créé par l’évacuation du solvant, sera moindre.) refractories improves the filling rate of the cavity with refractory ceramic particles, before the drainage / filtration phase, the most time-consuming phase of the process. As the interstices between powder grains are less numerous when the drainage / filtration phase begins, the drainage / filtration time can be reduced because the volume to be filled, created by the evacuation of the solvent, will be less.)
Une fois les étapes d’injection et de drainage effectuées, on obtient une préforme fibreuse 15 chargée de particules céramiques réfractaires, par exemple de particules d’oxyde céramique réfractaire ou d’alumine. Once the injection and drainage steps have been completed, a fiber preform 15 loaded with refractory ceramic particles, for example particles of refractory ceramic oxide or alumina, is obtained.
La préforme obtenue est ensuite séchée puis démoulée, la préforme pouvant conserver après démoulage la forme adoptée dans la cavité de moulage. La préforme est ensuite soumise à un traitement thermique de frittage, par exemple sous air à une température comprise entre 1000°C et1200°C afin de fritter les particules céramiques réfractaires et ainsi former une matrice céramique réfractaire dans la porosité de la préforme fibreuse. On obtient alors une pièce en matériau composite, par exemple une pièce en matériau composite Oxyde/Oxyde, munie d’un renfort fibreux formé par la préforme fibreuse et présentant un taux volumique de matrice élevé avec une répartition homogène de la matrice céramique réfractaire dans tout le renfort fibreux. The preform obtained is then dried and then demolded, the preform being able to retain, after demolding, the shape adopted in the molding cavity. The preform is then subjected to a heat sintering treatment, for example in air at a temperature between 1000 ° C and 1200 ° C in order to sinter the refractory ceramic particles and thus form a refractory ceramic matrix in the porosity of the fiber preform. A part of composite material is then obtained, for example a part of oxide / oxide composite material, provided with a fibrous reinforcement formed by the fibrous preform and having a high matrix volume ratio with a homogeneous distribution of the refractory ceramic matrix throughout. the fibrous reinforcement.
Une pièce en matériau composite CMC autre que Oxyde/Oxyde peut être obtenue de la même façon en réalisant la texture fibreuse avec des fibres de carbure de silicium et/ou de carbone et en utilisant une barbotine chargée de particules de carbure (par exemple de SiC), de borure (par exemple de TiB2) ou de nitrure (par exemple de Si3N4). A part made of CMC composite material other than Oxide / Oxide can be obtained in the same way by producing the fiber texture with silicon carbide and / or carbon fibers and by using a slip loaded with carbide particles (for example SiC ), boride (for example of TiB 2 ) or nitride (for example of Si 3 N 4 ).
Lors de l’étape d’injection ou de remplissage de la texture fibreuse, le débit de la barbotine injectée peut être contrôlé de manière à être maintenu successivement à plusieurs valeurs déterminées de débit. Il est ainsi possible d’adapter la vitesse du front de progression de la barbotine dans la texture fibreuse aux variations de géométrie et/ou de tissage de la texture. En effet, une même texture peut During the step of injecting or filling the fibrous texture, the flow rate of the injected slip can be controlled so as to be maintained successively at several determined flow rate values. It is thus possible to adapt the speed of the advance front of the slip in the fibrous texture to variations in geometry and / or weaving of the texture. Indeed, the same texture can
comprendre des portions différentes en termes de géométrie et/ou d’armure de tissage dans lesquels la vitesse optimale de front de la barbotine doit être différente pour éviter la formation de macroporosités. Dans ce cas, pour une première portion de la texture fibreuse présentant par exemple un tissage bidimensionnel, la barbotine est injectée à un débit constant suivant une première valeur déterminée de débit. Lorsque le front de barbotine atteint une deuxième portion de la texture présentant par exemple un tissage tridimensionnel, la barbotine est injectée à un débit constant suivant une deuxième valeur déterminée de débit inférieure à la première valeur déterminée de manière à réduire la vitesse du front dans la deuxième portion où la vitesse d’écoulement est réduite en raison du tissage tridimensionnel. include different portions in terms of geometry and / or weave weave in which the optimum slurry front speed must be different to avoid macroporosities formation. In this case, for a first portion of the fiber texture exhibiting, for example, a two-dimensional weave, the slip is injected at a constant flow rate according to a first determined flow rate value. When the slip front reaches a second portion of the texture exhibiting for example a three-dimensional weaving, the slip is injected at a constant flow rate according to a second determined flow rate value lower than the first determined value so as to reduce the speed of the front in the second portion where the flow velocity is reduced due to the three-dimensional weaving.
Les systèmes d’injection à débit contrôlé et d’injection à régulation de pression décrit précédemment sont chacun équipés d’un réservoir de barbotine indépendant. Ces systèmes peuvent être également mis en oeuvre avec un réservoir commun relié à la fois à un moyen de délivrance à débit contrôlé et à un moyen de délivrance à pression régulée. The flow-controlled injection and pressure-regulated injection systems described above are each equipped with an independent slip tank. These systems can also be implemented with a common reservoir connected to the both to a controlled rate delivery means and to a pressure regulated delivery means.

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes : [Claim 1] A method of manufacturing a part made of composite material comprising the following steps:
formation d'une texture fibreuse (10) à partir de fibres céramiques réfractaires, formation of a fibrous texture (10) from refractory ceramic fibers,
placement de la texture fibreuse (10) dans une cavité de moulage (113) présente dans un outillage d'injection (110), placing the fibrous texture (10) in a molding cavity (113) present in an injection tool (110),
injection d'une barbotine (Bl) contenant une poudre de particules céramiques réfractaires (1500) dans la texture fibreuse (10) présente dans la cavité de moulage, injection of a slip (B1) containing a powder of refractory ceramic particles (1500) into the fibrous texture (10) present in the molding cavity,
drainage du liquide (1501) de la barbotine ayant traversé la texture fibreuse (10) et rétention de la poudre de particules céramiques réfractaires à l’intérieur de ladite texture de manière à obtenir une préforme fibreuse (15) chargée de particules céramiques réfractaires (1500), drainage of the liquid (1501) from the slip having passed through the fibrous texture (10) and retention of the powder of refractory ceramic particles inside said texture so as to obtain a fibrous preform (15) loaded with refractory ceramic particles (1500 ),
séchage de la préforme fibreuse (15), drying the fiber preform (15),
démoulage de la préforme fibreuse (15), et release of the fiber preform (15), and
frittage des particules céramiques réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractaire dans ladite préforme, dans lequel, lors de l'injection de la barbotine dans la texture fibreuse, le débit de barbotine (Bl) injectée dans la cavité de moulage (113) est contrôlé de manière à être maintenu à au moins une valeur constante déterminée, caractérisé en ce que la texture fibreuse (10) présente un tissage sintering of the refractory ceramic particles present in the fiber preform in order to form a refractory matrix in said preform, in which, during the injection of the slip into the fiber texture, the flow rate of the slip (Bl) injected into the molding cavity ( 113) is controlled so as to be maintained at at least a determined constant value, characterized in that the fibrous texture (10) has a weave
bidimensionnel ou un tissage tridimensionnel ou un empilement d'une pluralité de couches unidirectionnelles et en ce que ladite au moins une valeur déterminée de débit est comprise entre 5 et 2000 ml/min. two-dimensional or a three-dimensional weaving or a stack of a plurality of unidirectional layers and in that said at least one determined value of flow rate is between 5 and 2000 ml / min.
[Revendication 2] Procédé selon la revendication 1, dans lequel l'injection de la barbotine (Bl) à débit contrôlé dans la cavité de moulage (113) est réalisée jusqu'à ce qu'un niveau prédéterminé de pression soit atteint dans la cavité de moulage de l'outillage d'injection (100), la pression dans la cavité de moulage étant contrôlée lors du drainage du liquide de la barbotine de manière à être maintenue à une valeur comprise entre 3 et 40 bars. [Claim 2] The method of claim 1, wherein the injection of the flow-rate controlled slip (B1) into the mold cavity (113) is performed until a predetermined pressure level is reached in the cavity. molding of the injection tool (100), the pressure in the molding being controlled during drainage of the liquid from the slip so as to be maintained at a value between 3 and 40 bars.
[Revendication 3] Procédé selon la revendication 1 ou 2, dans lequel, lors de l'injection de la barbotine (Bl) dans la texture fibreuse (10), le débit de barbotine injectée dans la cavité de moulage est contrôlé de manière à être maintenu successivement à plusieurs valeurs déterminées de débit. [Claim 3] A method according to claim 1 or 2, wherein, during the injection of the slip (B1) into the fibrous texture (10), the flow rate of the slip injected into the mold cavity is controlled so as to be maintained successively at several determined flow rate values.
[Revendication 4] Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'injection de la barbotine (Bl) dans la texture fibreuse (10) est réalisée avec une première barbotine et dans lequel, lors du drainage du liquide (1501) de la barbotine, une deuxième barbotine (B2) est injectée, ladite deuxième barbotine présentant un taux de charge inférieur au taux de charge de la première barbotine. [Claim 4] A method according to any one of claims 1 to 3, in which the injection of the slip (B1) into the fibrous texture (10) is carried out with a first slip and in which, during drainage of the liquid ( 1501) of the slip, a second slip (B2) is injected, said second slip having a charge rate lower than the charge rate of the first slip.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les fils de la texture fibreuse (10) sont formés de fibres constituées d'un ou plusieurs des matériaux suivants : l'alumine, la mullite, la silice, un aluminosilicate, un borosilicate, du carbure de silicium et du carbone. [Claim 5] A method according to any one of claims 1 to 4, wherein the yarns of the fibrous texture (10) are formed from fibers made from one or more of the following materials: alumina, mullite, silica , aluminosilicate, borosilicate, silicon carbide and carbon.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les particules céramiques réfractaires (1500) sont en un matériau choisi parmi : l'alumine, la mullite, la silice, un aluminosilicate, un [Claim 6] A method according to any one of claims 1 to 5, wherein the refractory ceramic particles (1500) are made of a material selected from: alumina, mullite, silica, an aluminosilicate, a
aluminophosphate, la zircone, un carbure, un borure et un nitrure. aluminophosphate, zirconia, a carbide, a boride and a nitride.
[Revendication 7] Utilisation du procédé selon l'une quelconque des [Claim 7] Use of the method according to any one of
revendications 1 à 6 pour la fabrication d'une une aube de turbomachine. claims 1 to 6 for the manufacture of a turbine engine blade.
PCT/FR2020/050857 2019-05-23 2020-05-22 Method for producing a part from composite material by injecting a loaded slip into a fibrous texture WO2020234550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1905422 2019-05-23
FR1905422A FR3096299B1 (en) 2019-05-23 2019-05-23 Process for manufacturing a composite material part by injecting a filled slip into a fibrous texture

Publications (1)

Publication Number Publication Date
WO2020234550A1 true WO2020234550A1 (en) 2020-11-26

Family

ID=68138324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050857 WO2020234550A1 (en) 2019-05-23 2020-05-22 Method for producing a part from composite material by injecting a loaded slip into a fibrous texture

Country Status (2)

Country Link
FR (1) FR3096299B1 (en)
WO (1) WO2020234550A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130184A1 (en) * 2021-12-09 2023-06-16 Safran Ceramics Process for debinding a fibrous preform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030505A1 (en) * 2014-12-23 2016-06-24 Snecma PROCESS FOR PRODUCING A FIBROUS PREFORM CHARGED WITH REFRACTORY CERAMIC PARTICLES
FR3041890A1 (en) * 2015-10-05 2017-04-07 Snecma PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART BY INJECTING A BARBOTIN CHARGED IN A POROUS MOLD
FR3071245A1 (en) * 2017-09-21 2019-03-22 Safran Ceramics METHOD FOR INJECTING A BARBOTIN CHARGED WITH FIBROUS TEXTURE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071257B1 (en) * 2017-09-19 2021-08-20 Safran Ceram PROCESS FOR INJECTING A SUSPENSION LOADED IN A FIBROUS TEXTURE AND PROCESS FOR MANUFACTURING A PART FROM COMPOSITE MATERIAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030505A1 (en) * 2014-12-23 2016-06-24 Snecma PROCESS FOR PRODUCING A FIBROUS PREFORM CHARGED WITH REFRACTORY CERAMIC PARTICLES
FR3041890A1 (en) * 2015-10-05 2017-04-07 Snecma PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART BY INJECTING A BARBOTIN CHARGED IN A POROUS MOLD
FR3071245A1 (en) * 2017-09-21 2019-03-22 Safran Ceramics METHOD FOR INJECTING A BARBOTIN CHARGED WITH FIBROUS TEXTURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORDLUND ET AL: "Particle deposition mechanisms during processing of advanced composite materials", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, ELSEVIER, AMSTERDAM, NL, vol. 38, no. 10, 1 October 2007 (2007-10-01), pages 2182 - 2193, XP022285451, ISSN: 1359-835X, DOI: 10.1016/J.COMPOSITESA.2007.06.009 *

Also Published As

Publication number Publication date
FR3096299A1 (en) 2020-11-27
FR3096299B1 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP3359506B1 (en) Process for the manufacturing of a ceramic composite part by injection of a loaded slurry in a porous mould
FR3030505B1 (en) PROCESS FOR PRODUCING A FIBROUS PREFORM CHARGED WITH REFRACTORY CERAMIC PARTICLES
EP3448829B1 (en) Method for producing a part from composite material by injecting a loaded slip into a fibrous texture
EP3237358B1 (en) Process for manufacturing a refractory composite body
EP3774690B1 (en) Process for the manufacture of a composite material part by injection of a ceramic loaded slurry
EP3684575B1 (en) Process for injecting a loaded slurry into a fibrous texture
FR3030503B1 (en) PROCESS FOR MANUFACTURING A PIECE OF COMPOSITE MATERIAL
WO2020234550A1 (en) Method for producing a part from composite material by injecting a loaded slip into a fibrous texture
EP3863992B1 (en) Method for manufacturing a part made of composite material with compliance control
EP3996889B1 (en) Method for producing a part from composite material by injecting a filled slip into a fibrous texture
WO2022079379A1 (en) Non-woven fibrous texture with crimp
FR3114990A1 (en) Fibrous texture including unidirectional folds with spaced strands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20739745

Country of ref document: EP

Kind code of ref document: A1