WO2020233541A1 - 具有储冰盒的制冷电器 - Google Patents

具有储冰盒的制冷电器 Download PDF

Info

Publication number
WO2020233541A1
WO2020233541A1 PCT/CN2020/090814 CN2020090814W WO2020233541A1 WO 2020233541 A1 WO2020233541 A1 WO 2020233541A1 CN 2020090814 W CN2020090814 W CN 2020090814W WO 2020233541 A1 WO2020233541 A1 WO 2020233541A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
ice
box
dispenser
box body
Prior art date
Application number
PCT/CN2020/090814
Other languages
English (en)
French (fr)
Inventor
米勒·查尔斯·本杰明
普拉茨·劳伦·尼科尔
沃特兰德·路易斯·A.
沃德·贾维斯
吉尔基·布拉德利·尼古拉斯
渡边·迈克尔·C.
Original Assignee
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202080037783.4A priority Critical patent/CN113906263A/zh
Publication of WO2020233541A1 publication Critical patent/WO2020233541A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/187Ice bins therefor with ice level sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/02Level of ice

Definitions

  • the present invention generally relates to refrigerating appliances, and particularly relates to refrigerating appliances with selectively accessible ice storage boxes.
  • Refrigeration appliances usually include a box with one or more refrigerating compartments for storing food.
  • refrigerating appliances usually include a door pivotally hinged to the box, and the user can rotate the door to put or take out food in the refrigerating compartment.
  • Some refrigeration appliances are also equipped with an ice maker and an ice storage box for storing ice.
  • liquid water is injected into the ice maker.
  • the ice maker discharges the ice into the ice storage box for storage.
  • the ice storage box is generally arranged in a freezer compartment or a separate compartment behind the door of the refrigerating appliance.
  • the user opens the door of the refrigeration appliance to take out the ice storage box, but if the user directly opens the door of the refrigeration appliance to take ice from the ice storage box, a large amount of high temperature gas from the outside will enter the refrigeration appliance and cause the internal temperature of the refrigeration appliance to rise, affecting the internal cooling effect .
  • some refrigeration appliances are provided with a dispenser on the door, and users can directly take ice through the dispenser.
  • this type of dispenser can generally only dispense ice in a limited area.
  • the user may cause more cold capacity loss.
  • the user generally needs to open the door of the refrigeration appliance, and since the interior of many ice storage boxes is not easy to see, the user may also need to take out the ice storage box completely or partially to view the inside of the ice storage box.
  • the provided refrigeration appliance can solve one or more of the above problems, it will be very advantageous.
  • the refrigeration appliance may include a box body, a door body, a distribution assembly, an ice making assembly and an ice storage box.
  • a refrigeration compartment is formed in the box.
  • the door is provided with a distributor cavity, the distributor cavity has a lateral opening; the lateral opening extends in the vertical direction from the top end of the cavity to the bottom end of the cavity, and laterally from the side of the first cavity to the first cavity. Two sides of the cavity; the door is rotatably hinged to the box to open or close the refrigeration compartment.
  • the dispensing assembly is located in the cavity of the dispenser and has an ice discharge channel.
  • the ice making assembly can be connected to the box.
  • the ice storage box may include a box body defining a storage cavity.
  • the box body can be optionally installed in the dispenser cavity of the door body to receive the ice dispensed by the dispensing assembly.
  • the box body can extend from the top end of the cavity to the bottom end of the cavity in the vertical direction, and extends from the side surface of the first cavity to the side surface of the second cavity in the lateral direction.
  • a refrigeration appliance may include a box body, a door body, a distribution assembly, an ice making assembly and an ice storage box.
  • a refrigeration compartment is formed in the box.
  • the door is provided with a distributor cavity, the distributor cavity has a lateral opening; the lateral opening extends in the vertical direction from the top end of the cavity to the bottom end of the cavity, and laterally extends from the side of the first cavity to the second cavity Side of the cavity; the door is rotatably hinged to the box to open or close the refrigeration compartment.
  • the dispensing assembly may be located in the cavity of the dispenser and has an ice discharge channel and a drainage channel. The drainage channel may point to the cavity of the distributor.
  • the ice making assembly can be connected to the box.
  • the ice storage box may include a transparent box body having a storage cavity and located at the rear side of the drainage channel along the lateral direction.
  • the box body can be optionally installed in the dispenser cavity on the door body to receive the ice dispensed by the dispensing assembly.
  • the box body extends from the top end of the cavity to the bottom end of the cavity in the vertical direction, and extends from the side of the first cavity to the side of the second cavity in the lateral direction.
  • Fig. 1 is a perspective schematic view of a refrigerating appliance according to an embodiment of the present invention, in which the refrigerating door is in a closed position.
  • Fig. 2 is another three-dimensional schematic diagram of the refrigerating appliance shown in Fig. 1, wherein the refrigerating door is in an open position.
  • Figure 3 is a perspective view of an ice storage box and a distribution assembly of a refrigeration appliance according to an embodiment of the present invention.
  • Fig. 4 is a perspective view of an ice storage box and a distribution assembly of a refrigeration appliance according to another embodiment of the present invention.
  • Fig. 5 is a front perspective view of an ice bank of a refrigerating appliance according to an embodiment of the present invention.
  • Fig. 6 is a rear perspective view of the ice bank shown in Fig. 5.
  • Fig. 7 is a cross-sectional view of the ice bank shown in Fig. 5.
  • Fig. 8 is a perspective view of an ice storage box and a distribution assembly of a refrigerating appliance according to another embodiment of the present invention.
  • Fig. 9 is a rear perspective view of the ice bank shown in Fig. 8.
  • Fig. 10 is a front view of an ice storage box and a dispenser assembly of a refrigeration appliance according to an embodiment of the present invention.
  • Fig. 11 is a cross-sectional view of an ice storage box and a distribution assembly of a refrigeration appliance according to an embodiment of the present invention.
  • Fig. 12 is a cross-sectional view of an ice storage box and a distribution assembly of a refrigeration appliance according to another embodiment of the present invention.
  • Fig. 13 is a side cross-sectional view of an ice storage box and a distribution assembly of a refrigerating appliance according to another embodiment of the present invention.
  • FIG. 1 and 2 are perspective views of the refrigerating appliance 100 in an embodiment of the present invention.
  • the pair of refrigerating doors 128 of the refrigeration appliance shown in FIG. 1 are in the closed position, and the refrigerating door 128 shown in FIG. 2 is in the open position.
  • the refrigerating appliance 100 includes a box 120 extending along the vertical direction V between the top 101 and the bottom 102.
  • the box body 120 also extends along the lateral direction L and the lateral direction T, and the vertical direction V, the lateral direction L and the lateral direction T are perpendicular to each other.
  • the box 120 has one or more refrigerating compartments for storing food.
  • the box 120 includes a food preservation compartment 122 at or near the top 101 of the box 120, and a freezer compartment 124 at or near the bottom 102 of the box 120.
  • Such a refrigeration appliance 100 is generally called a bottom. Installed refrigerator.
  • the storage structure may include a storage box 192, a drawer 194, and a shelf 196 installed in the food preservation compartment 122.
  • the storage box 192, the drawer 194, and the shelf 196 are used to store food such as beverages and solid foods, and facilitate the user to organize the stored food.
  • the drawer 194 can store fresh food (for example, vegetables, fruits, or cheese), and can extend the storage time of these fresh foods.
  • the refrigerating door 128 is rotatably hinged to the edge of the box 120 to open or close the food preservation compartment 122.
  • the freezing door 130 is installed under the refrigerating door 128 for opening or closing the freezing compartment 124.
  • the freezer door body 130 may be connected to a freezer drawer (not shown), and the freezer drawer is slidably installed in the freezer compartment 124.
  • the refrigerator door 128 and the freezer door 130 of the refrigeration appliance shown in FIG. 1 are in a closed state.
  • the refrigeration appliance 100 includes a dispensing assembly 140 for dispensing liquid water or ice.
  • the distribution assembly 140 includes a distributor 142, which is located or installed on the outer part of the refrigeration appliance 100 (for example, installed on one of the door bodies 128).
  • the dispenser 142 includes a discharge outlet 144 for discharging ice and liquid water, and an actuator 146 for controlling the dispenser 142.
  • the actuator 146 may be a paddle and is installed below the discharge outlet 144.
  • other suitable actuators may be used to control the dispenser 142.
  • a sensor such as an ultrasonic sensor
  • a button may be provided on the dispenser 142 instead of a paddle.
  • the refrigeration appliance also includes a user interface panel 148 for controlling the operation mode.
  • the user interface panel 148 includes various user inputs (not labeled) for selecting a desired operation mode such as crushed ice or non-crushed ice, such as a water withdrawal button and an ice withdrawal button.
  • the discharge outlet 144 and the actuator 146 are located at the outer part of the distributor 142 and are installed in the distributor cavity 150, which will be described in more detail below.
  • the dispenser cavity 150 has a lateral opening 151 that extends in the vertical direction V from the cavity top end 152 to the cavity bottom end 154, and in the lateral direction L from the first cavity side surface 156 to the second cavity.
  • the dispenser cavity 150 is located at a predetermined height to facilitate the user to obtain ice or water, enabling the user to obtain ice without bending over and opening the refrigerating door 128.
  • the dispenser cavity 150 is provided at a position close to the level of the user's chest.
  • the refrigerating appliance 100 includes a sub-compartment 162 arranged on the refrigerating door 128.
  • the sub-compartment 162 is generally called an "ice-making chamber". Moreover, when the refrigerating door 128 is in the closed position, the sub-compartment 162 extends into the food preservation compartment 122.
  • the ice making assembly 160 is connected to the box 120 (for example, it can be indirectly connected to the box 120 via the door 128 as shown in the figure, or directly connected to the box 120).
  • the ice making assembly is disposed in the sub-compartment 162.
  • an ice storage box 164 is further provided inside the sub-compartment 162. In this way, ice can be supplied to the dispenser cavity 150 from the ice making assembly 160 or the ice storage box 164 in the rear sub-compartment 162 of the refrigerating door 128.
  • the cold air from the sealed refrigeration system of the refrigeration appliance 100 may be guided to the ice making assembly 160 to cool the components of the ice making assembly 160.
  • the evaporator 178 (for example, can be located in the food preservation compartment 122 or the freezing compartment 124 or inside) is used to generate cold air
  • the supply pipe 180 (for example, defined by the box 120 or located inside) is in the evaporator 178.
  • the extension between the ice making assembly 160 and the components of the ice making assembly 160 guides cold air to the ice making assembly so as to cool the components of the ice making assembly 160 to assist the ice making assembly 160 in making ice.
  • the cold air from the sealing system cools the components of the ice making assembly 160 to the freezing temperature of liquid water or below. Therefore, the ice making assembly 160 may be an air-cooled ice making assembly.
  • the cold air from the sealing system can also cool the ice storage box 164.
  • the temperature of the cold air around the ice storage box 164 is higher than the freezing temperature of liquid water (for example, cooled to about the temperature of the food preservation compartment 122), and the ice cubes in the ice storage box 164 are exposed to temperatures higher than the freezing temperature of liquid water.
  • the air melts over time.
  • the ice making assembly 160 may also be exposed to air whose temperature is higher than the freezing temperature of liquid water.
  • the air from the fresh food compartment 122 is guided into the sub-compartment 162 so that the ice making assembly 160 or the ice bank 164 is exposed to the air from the fresh food compartment 122.
  • liquid water generated during the melting of ice cubes in the ice storage box 164 is guided out of the ice storage box 164.
  • liquid water produced by melting ice cubes may be guided to the evaporation tray 172.
  • the evaporation tray 172 is provided in the machine compartment 170 in the box 120 (for example, at the bottom 102 of the box 120).
  • the condenser 174 of the sealed system may be arranged directly above or near the evaporation tray 172. The heat from the condenser 174 can promote the evaporation of liquid water in the evaporation tray 172.
  • a fan 176 for cooling the condenser 174 may be provided above or near the evaporation tray 172 to guide air to flow through the evaporation tray 172.
  • the evaporation tray 172 may be set to a size and shape to facilitate the evaporation of liquid water therein.
  • the evaporation tray 172 may be an open top and extend across the width or depth of the box 120.
  • the access door 166 is hinged to the refrigerating door body 128.
  • the access door 166 is used to open or close the sub-compartment 162.
  • Any kind of latch 168 capable of locking the access door 166 in the closed position can be provided on the sub-compartment 162.
  • the latch 168 may be manipulated by the user to open the access door 166 and enter the sub-compartment 162.
  • the access door 166 can also help the sub-compartment 162 to isolate heat.
  • the operation of the refrigeration appliance 100 can be controlled by the controller 190.
  • the controller 190 is operatively connected to the user interface panel 148 or other components.
  • the user interface panel 148 provides options such as full ice or crushed ice, cold water, etc., to facilitate the user to operate the refrigeration appliance 100.
  • the controller 190 may control various components of the refrigeration appliance 100.
  • the controller 190 may include a memory and one or more microprocessors, CPUs, etc., such as a general-purpose or special-purpose microprocessor that executes programming instructions or micro-control codes for controlling the refrigeration appliance 100.
  • the memory may be a random access memory such as DRAM, or a read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be provided on a board including the processor.
  • the controller 190 may also be configured to perform control functions without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, and circuits, etc.) , To replace related software.
  • the controller 190 may be placed in various positions in the entire refrigeration appliance 100.
  • the controller 190 is located on the user interface panel 148 or its accessory.
  • the controller 190 may be located in any suitable position in the refrigerating appliance 100, such as inside the food preservation compartment 122, the freezing door 130, and the like.
  • Input/output ("I/O") signals may be transmitted between the controller 190 and various operating components of the refrigeration appliance 100.
  • the user interface panel 148 may be in operable communication (eg, electrical communication) with the controller 190 via one or more signal lines or a shared communication bus.
  • the controller 190 is operatively connected with the various components of the distribution assembly 140, and the controller 190 can control the operation of the various components. For example, based on commands from the controller 190, various valves, switches, etc. may be actuated. As mentioned above, the interface panel 148 may also be operably connected to the controller 190 (e.g., via electrical or wireless communication). Therefore, various operations can be automatically performed based on a user input or an instruction of the controller 190.
  • FIGS. 3 to 13 various views are provided of an exemplary embodiment including a movable ice bank 210 that is movably mounted to or inside the dispenser cavity 150.
  • the movable ice bank 210 extends along the vertical direction V, the lateral direction L, and the lateral direction T.
  • the vertical direction V, the lateral direction L, and the lateral direction T are consistent with the above-mentioned vertical direction V, lateral direction L, and lateral T when the door 128 is in the closed position, and the ice bank 210 is mounted to or inside the dispenser cavity 150.
  • FIG. 3 a perspective view of the dispensing assembly 140 is provided, specifically showing the dispenser cavity 150 in which a movable ice bank 210 is provided.
  • the ice bank 210 includes a box body 212, and the box body 212 is detachably installed (for example, installed on the door 128) in the dispenser cavity 150.
  • the box body 212 when the box body 212 is installed in the dispenser cavity 150, it can cover most (if not all) of the lateral opening 151 of the dispenser cavity 150.
  • the box body 212 can extend laterally from the first cavity side surface 156 to the second cavity side surface 158 to cover the lateral opening 151 in the lateral direction.
  • the box body 212 can also extend from the cavity top end 152 in the vertical direction.
  • the ice bank 210 can completely cover the dispenser cavity 150 in the lateral direction L or the vertical direction V.
  • the ice making assembly 160 and the dispensing assembly 140 are placed above the ice bank 210 (for example, when the ice bank 210 is installed in the dispenser cavity 150).
  • the ice bank 210 generally includes a plurality of walls defining a storage cavity 224.
  • the ice storage box 210 may include one or more side walls 214, 216 and a bottom wall 218, and the side walls and the bottom wall jointly define a storage cavity 224.
  • the side walls 214, 216 together define an opening periphery 220 at the top of the ice bank 210 (e.g., the vertical end opposite the bottom wall 218).
  • the ice 222 can be taken out or stored in the storage cavity 224 through the opening periphery 220.
  • the storage cavity 224 may be in communication with the dispensing assembly 140 (eg, selective physical communication, fluid communication, etc.) to receive ice from the dispenser assembly 140 (eg, via the ice discharge channel 248, FIG. 10).
  • At least one side wall may be formed of a clear, permeable (ie, transparent or translucent) material (such as transparent glass or plastic) for the user to see Go inside the storage cavity 224 and check the ice in it.
  • the at least one side wall 214 or 216 may include an outer panel 228 or an inner panel 230, which is made of a clear, permeable (ie, transparent or translucent) material (such as , Clear glass or plastic).
  • the box body 212 may be configured as a transparent box body.
  • the ice bank 210 includes at least one insulated side wall (for example, 214 or 216).
  • the insulating side wall 214 spans the lateral opening 151 .
  • the insulated side wall 214 includes an outer panel 228 and an inner panel 230. Depending on the circumstances, one or both of the outer panel 228 or the inner panel 230 may extend from the bottom wall 218.
  • the bottom wall 218 may be configured as an insulated wall (for example, connected to the insulated side wall 214).
  • the bottom wall 218 may include an outer panel 228 and an inner panel 230.
  • the bottom wall 218 is located below a portion of the insulated side wall 214, such as the bottom wall 218 is located below the inner panel 230 along the vertical direction V.
  • the outer panel 228 and the inner panel 230 are spaced apart (for example, in the lateral direction T, the lateral direction L, or the vertical direction V). Specifically, the outer panel 228 and the inner panel 230 are horizontally spaced apart (for example, in the transverse direction T), and the top section 232 can span the outer panel 228 and the inner panel at the top of the ice storage box 21 (for example, above the transparent insulation gap 234). The distance between panels 230. As shown in the figure, a transparent insulating gap 234 is formed between the panels of the insulating side walls (for example, 214 or 216) or the bottom wall 218. For example, the transparent insulation gap 234 may be a sealed space between the outer panel 228 and the inner panel 230.
  • the sealed space can prevent air or oxygen from flowing into or out of the transparent insulating gap 234.
  • the transparent insulating gap 234 is substantially evacuated.
  • the transparent insulating gap 234 is filled with a predetermined gas of a set mass, such as nitrogen, oxygen, argon, or a suitable inert gas.
  • the side walls 214 and 216 shown in Figures 5 to 9 are solid members that do not allow ice to pass through.
  • at least one side wall (for example, the front wall 214) is provided with The cavity exit 236 passing through the side wall 214.
  • the cavity outlet 236 extends between the storage cavity 224 and the front surface of the box body 212 and fluidly communicates the storage cavity 224 and the box body 212.
  • the box pick 238 is installed at the cavity outlet 236 on the side wall 214.
  • the box pick 238 can be in a locked position that restricts ice from passing through the cavity outlet 236 and allows ice to pass from the cavity outlet 236 through the side wall 214 (for example, along the transverse direction T) to the ice bank 212 Move between the outer release positions.
  • the ice bank 210 includes a partial cover 240 connected to (for example, pivotally connected) to the box body 212.
  • the partial cover 240 may be connected (eg, pivotally connected) to the top of the box body 212 near the opening periphery 220.
  • the partial cover 240 may selectively extend along the front side wall 214 (for example, along the lateral direction L).
  • the partial cover 240 can cover at least a part of the opening periphery 220, thereby reducing the cross-sectional area (for example, perpendicular to the vertical direction V) of the opening that allows ice to pass through (for example, relative to the opening defined by the opening periphery 220).
  • the partial cover 240 generally (eg, at least partially) extends upwardly from the opening periphery 220 along the vertical direction V. Therefore, when the ice bank is installed in the dispenser cavity 150, the partial cover 240 may extend toward the top end 152 of the cavity. Optionally, the partial cover 240 may selectively engage or abut a part of the dispensing assembly 140, thereby preventing air from passing through the gap between the upper surface of the ice bank 210 and the bottom surface of the dispensing assembly 140.
  • At least one side wall 216 is shaped or otherwise formed to form a positive fit with the rear wall of the dispenser assembly.
  • the side wall 216 has a curved outer surface, and the shape of the curved outer surface is opposite to the shape of the rear portion of the dispenser cavity 150, so that the ice bank 210 can be positioned, installed and supported in the lateral direction.
  • the side wall 216 may be provided with a pick slot 242 (for example, as a substantially concave surface), and the pick slot 242 can be used to receive a pick or an actuator 146.
  • At least one side wall 216 is provided with a recessed hook 244.
  • the recess hook 244 may extend in the opposite direction with respect to the storage cavity 224 (for example, extend from the outer portion or outer surface of the box body 212).
  • An anchor 246 cooperating with the female hook part 244 may be provided in the dispenser cavity 150. In this way, when the ice bank 210 is installed in the dispenser cavity 150, the female hook member 244 can selectively cooperate with the anchor 246 to fix the ice bank 210 to the dispensing assembly 140 or the door 128. Moreover, the ice bank 210 can be prevented from accidentally moving laterally in the dispenser cavity 150.
  • FIGS. 10 and 11 a plan view and a side cross-sectional view of an exemplary embodiment of the dispensing assembly 140 are provided, the dispensing assembly 140 including an ice bank 210 installed therein.
  • the distribution assembly 140 has an ice discharge channel 248.
  • the dispenser duct 250 is at least partially located in one of the refrigerating door bodies 128 for guiding ice into the dispenser cavity 150.
  • the dispenser duct 250 extends from the ice making assembly 160 (for example, from the ice bank 164 or directly from the ice maker therein) to the dispenser cavity 150.
  • the dispenser duct 250 includes a top piece or top piece 252 and a bottom piece or bottom piece 254 connected to the top piece 252 (e.g., at the joint 260).
  • An inlet 256 is provided at or near the ice making assembly 160, and an outlet 258 is provided below the inlet 256 in the vertical direction V. It should be understood that the outlet 258 corresponds to the discharge outlet 144 shown in FIG. 1.
  • the top part 252 and the bottom part 254 together form an ice discharge channel 248 from the inlet 256 to the outlet 258.
  • a pipe cover 262 is provided within the distributor pipe 250 (e.g., at or near the joint 260 between the top part 252 and the bottom part 254).
  • the duct cover 262 is movable (e.g., rotatable) between an open position and a closed position. In the closed position, the duct cover 262 covers a portion of the ice discharge channel 248 between the dispenser cavity 150 and the freezing sub-compartment 162 (FIG. 2).
  • the duct cover 262 can cover the inner portion of the dispenser duct 250 (eg, at the joint 260).
  • the duct cover 262 can prevent the air flow between the distributor cavity 150 and the freezing sub-compartment 162 and reduce the heat transfer between the distributor cavity 150 and the freezing sub-compartment 162.
  • the duct cover 262 in the open position, the duct cover 262 is not between the dispenser cavity 150 and the freezing sub-compartment 162, so the ice from the ice making assembly 160 can pass through the ice discharge channel 248 to the outlet 258 without affecting the duct cover 262 .
  • the duct cover 262 is normally in the closed position, and when a filling signal is received (for example, the user operates the actuator 146), the duct cover 262 is displaced to the open position.
  • the distributor duct 250 may be provided with a size and shape (e.g., having a recess) that allows the duct cover 262 to move or rotate between an open position and a closed position within the distributor duct 250.
  • the drainage channel 264 is separated from the ice discharge channel 248 (for example, fluidly isolated).
  • the water guiding pipe 266 formed as the drainage channel 264 may be provided on the front side of the distributor pipe 250.
  • the water conduit 266 may be in selective fluid communication (eg, via one or more fluid pipes or pipes) with a water source (not shown), such as a municipal water supply, to receive water from the drainage hole.
  • a water source not shown
  • the water pipe 266 and the drainage channel 264 generally point toward the distributor cavity 150. Therefore, during operation, the water conduit 266 can guide water to the container in the dispenser cavity 150.
  • the water pipe 266 and the drainage channel 264 are placed on the front side of the ice bank 210 (for example, when the ice bank 210 is installed in the dispenser cavity 150, they are arranged along the transverse direction T).
  • the ice storage box 210 is placed in the dispenser cavity 150 to receive ice from the dispenser pipe 250, the water can be directed into a separate container instead of the storage cavity 224.
  • the detection sensor 268 is fixed to the refrigerating door 128 (for example, it may be disposed above the dispenser cavity 150).
  • the detection sensor 268 can be operable to detect whether one or more objects are present in the dispenser cavity 150.
  • the detection sensor 268 can be operable to measure the height of the ice 222 in the storage cavity 224 (for example, the distance from the detection sensor 268 to the uppermost surface of the ice 222 in the storage cavity 224 can be measured).
  • the detection sensor 268 is any suitable device for detecting or measuring the distance to an object.
  • the detection sensor 268 may be an ultrasonic sensor, an infrared sensor, or a laser ranging sensor.
  • the controller 190 can be operatively connected to the detection sensor, and can receive the signal sent by the detection sensor 268 to obtain ice volume information such as the ice storage height in the storage cavity 224.
  • the signal sent by the detection sensor 268 may be a voltage or current signal.
  • the controller 190 may send one or more signals (e.g., to guide or control the position of the pipe cover 262 within the distributor pipe 250).
  • the distribution assembly 140 has one or more ice melting stations for processing the storage cavity 224 The structure of the water produced.
  • a drain hole 270 is provided on the bottom wall 218 (for example, along the vertical direction V).
  • the drainage hole 270 may be in fluid communication with the storage cavity 224, so that the melted water in the storage cavity 224 can flow out of the box body 212 through the drainage hole 270.
  • the drainage hole 270 may be provided as a single or multiple perforations that allow water to flow through.
  • the check valve 272 (shown in dashed lines) may be provided (eg, mounted to) the box body 212.
  • the check valve 272 can be installed on the bottom wall 218 and optionally cover or pass through the drain hole 270.
  • the check valve 272 can cooperate with an adapter element located under the ice bank 210 and installed on the dispenser assembly 140.
  • the adapter can move the check valve 272 to separate a part of the check valve 272 from the drain hole 270 so that water flows through the drain hole 270.
  • certain embodiments also include a socket valve 274, as shown in dashed lines.
  • the socket valve 274 may be mounted to the front side wall 214 (eg, at the proximal end of the bottom wall 218) and be in fluid communication with the storage cavity 224. It is understood that the socket valve 274 can be any suitable plunger or handle to selectively open the socket valve 274 and allow water to flow out of the storage cavity 224.
  • the fluid pipe 276 is installed in the door body and is in selective fluid communication with the drain hole 270 (eg, to receive water from the drain hole 270).
  • the fluid pipe 276 is located below the drain hole 270 and is aligned with the drain hole 270 in the vertical direction, so that the water in the storage cavity 224 is removed from The drain hole 270 flows to the fluid pipe 276.
  • the fluid pipe 276 can extend from the door to any suitable part or flow path in the refrigeration appliance (FIG. 1 ), for example, to the return water line or the evaporation tray 172 shown in FIG. 1.
  • other or alternative embodiments include a water receiving tray 278 that can be placed in the melting water cavity 280 under the ice storage box 210 to selectively receive water flowing out of the drain hole 270.
  • a water receiving tray 278 that can be placed in the melting water cavity 280 under the ice storage box 210 to selectively receive water flowing out of the drain hole 270.
  • the water receiving tray 278 is slidably installed in the sensing assembly to selectively move in and out of the door 128 along the transverse direction T.
  • the user can selectively slide the water receiving tray 278 (for example, along the transverse direction T) to be aligned with and not aligned with the drain hole 270. Moreover, if the melting water chamber 280 is filled or nearly full, the user can take out the water receiving tray 278, remove the water in the water receiving tray 278, and then reinsert the water receiving tray 278 below the drain hole 270.
  • the controller 190 can be operatively connected to (ie, operatively communicated with) the dispensing assembly 140 such as the controller 190 can be connected to the operation panel 148, the actuator 146, the detection sensor 268 or the pipe cover 262. Moreover, the controller 190 can be used to control one or more operating states of the refrigerating appliance 100 shown in FIG. 1, one of the operations includes, for example, guiding the ice to be discharged to the storage cavity 224 through the dispenser pipe 250, that is, controlling The device 190 can be used to initiate a box filling operation.
  • the user can control the box filling operation by triggering the dispenser actuator, and the box filling operation may include receiving a filling input from the dispenser actuator 146.
  • the actuator sends an input signal to the controller 190.
  • the dispenser actuator 146 is triggered by the ice bank 210.
  • the actuator 146 is triggered when it moves backward (for example, along the transverse direction T). The controller guides the ice to the ice bank 210 when receiving the filling input.
  • the duct cover 262 may be moved to the open position, or a motor in the ice bank 164 may start to rotate to force ice to pass through the dispenser duct 250.
  • the ice ejection actuator can be directly controlled by the actuator 146. After the dispenser actuator 146 is triggered and the ice has been guided to the storage cavity 224, if the actuator 146 is released, the controller 190 controls to stop dispensing ice.
  • the box filling operation may be associated with a time-based prompt received from the interface panel 146.
  • the box filling operation may include receiving a filling input from the interface panel 146.
  • the user selects the box filling operation via a button or option on the interface panel 146, which sends an input signal to the controller 190.
  • the selected filling operation may correspond to the general ice level or amount of ice required by the dispensing assembly 140.
  • the filling operation includes directing ice to the ice bank 210 within a predetermined period of time (eg, in response to a received filling input).
  • the duct cover 262 may be moved to the open position, or the motor in the ice bank 164 may start to rotate to force ice to pass through the dispenser duct 250.
  • the controller 190 stops guiding the ice from the dispenser duct 250.
  • the box filling operation may be associated with the ice volume-based prompt received at the interface panel 146.
  • the box filling operation may include: receiving a filling input from the interface panel 146.
  • the user selects the box filling operation via a button or option on the interface panel 146, which sends an input signal to the controller 190.
  • the selected filling operation may correspond to the general ice level or amount of ice required in the ice bank 210.
  • the filling operation may include receiving an ice level signal from one or more detection sensors 268 (eg, after receiving a filling input).
  • the box filling operation includes (eg, based on an ice level signal) directing ice to the ice bank 210.
  • the duct cover 262 may be moved to the open position, or the motor in the ice bank 164 may start to rotate to force ice to pass through the dispenser duct 250 until a predetermined ice level is reached.
  • the controller 190 may calculate the necessary amount of ice required to reach the predetermined ice level based on the first filling input.
  • the controller 190 may receive multiple secondary ice level signals after starting to guide ice to the storage cavity 224. Based on these secondary filling signals, the controller 190 can determine whether a predetermined ice level has been reached. When the predetermined ice level is reached, the controller 190 may stop guiding the ice from the dispenser pipe 250.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种制冷电器(100),包括箱体(120)、门体(128)、分配组件(140)、制冰组件(160)和储冰盒(164)。门体(128)上设置有分配器凹腔(150),分配器凹腔(150)具有横向开口(151),横向开口(151)沿竖直方向从分配器凹腔(150)顶端垂直延伸至分配器凹腔(150)底端,并且沿侧向从第一凹腔侧面(156)延伸至第二凹腔侧面(158)。分配组件(140)可以位于分配凹腔(150)内并且具有排冰通道(248),制冰组件(160)可以连接到箱体(120)上,储冰盒(164)包括具有储藏腔(224)的盒体(212),盒体(212)能够选择性地安装到门体(128)上且置于分配器凹腔(150)内以接收分配组件(140)分配的冰。盒体(212)能够沿竖直方向从分配器凹腔(150)顶端垂直延伸至分配器凹腔(150)底端,并沿侧向从第一凹腔侧面(156)延伸至第二凹腔侧面(158)。

Description

具有储冰盒的制冷电器 技术领域
本发明一般涉及制冷电器,特别涉及具有可选择性取用的储冰盒的制冷电器。
背景技术
制冷电器通常包括箱体,箱体内具有一个或多个用于储藏食品的制冷间室。另外,制冷电器通常还包括枢转铰接到箱体上的门体,用户可以旋转门体以在制冷间室中放入或取出食品。某些制冷电器内还设置有制冰机以及用于储存冰的储冰盒。在制冰过程中,将液态水注入制冰机内,当液态水凝结为冰时,制冰机将冰排放到储冰盒中储存。为了防止储冰盒中的冰融化,储冰盒一般设置在冷冻间室或者制冷电器门体后独立的间室内。
用户打开制冷电器门体可以取出储冰盒,但如果用户直接打开制冷电器门体从储冰盒中取冰,外界大量的高温气体会进入制冷电器内部导致制冷电器内部温度上升,影响内部制冷效果。目前,一些制冷电器中在门体上设置有分配器,用户可以通过分配器直接取冰,但是,这种分配器一般仅能分配有限区域内的冰。
如果用户只是希望查看储冰盒中容纳的物品(例如,查看储冰盒中当前储藏了多少冰),则可能会造成更多的冷量损失。用户一般需要打开制冷电器的门体,而且,由于许多储冰盒的内部不易看到,所以用户也可能需要完全或部分取出储冰盒,才能查看储冰盒内部。
因此,如果提供的制冷电器能够解决上述一个或多个问题,则将会很有优势。
发明内容
本发明的各方面和优点将在以下描述中进行部分阐述,或者通过该描述可以变得显而易见,或者可以通过实施本发明获得进一步了解。
本发明一实施方式提供了一种制冷电器。该制冷电器可以包括箱体、门体、分配组件、制冰组件和储冰盒。箱体内形成制冷间室。门体上设置有分配器凹腔,分配器凹腔具有横向开口;该横向开口沿竖直方向从凹腔顶端延伸至凹腔底端,并且沿侧向从从第一凹腔侧面延伸至第二凹腔侧面;门体可旋转地铰接到箱体上以打开或关闭所述制冷间室。分配组件位于分配器凹腔内并且具有排冰通道。制冰组件可以连接到箱体上。储冰盒可以包括限定出储藏腔的盒体。盒体能够可选择地安装到 门体的分配器凹腔内以接收分配组件分配的冰。盒体沿竖直方向从凹腔顶端能够延伸至凹腔底端,并且沿侧向从第一凹腔侧面延伸至第二凹腔侧面。
在本公开的另一个示例性方面,提供了一种制冷电器。该制冷电器可以包括箱体、门体、分配组件、制冰组件和储冰盒。箱体内形成制冷间室。门体上设置有分配器凹腔,分配器凹腔具有横向开口;该横向开口沿竖直方向从凹腔顶端延伸至凹腔底端,并且沿侧向从第一凹腔侧面延伸至第二凹腔侧面;门体可旋转地铰接到箱体上,以打开或关闭制冷间室。分配组件可以位于分配器凹腔内并且具有排冰通道和排水通道。排水通道可以指向分配器凹腔。制冰组件可以连接到箱体上。储冰盒可以包括透明盒体,该透明盒体具有储藏腔,且沿着横向位于排水通道的后侧。盒体能够可选择地安装到门体上分配器凹腔内以接收分配组件分配的冰。盒体沿竖直方向从凹腔顶端延伸至凹腔底端,并且沿侧向从第一凹腔侧面延伸至第二凹腔侧面。
参考以下描述和所附权利要求,将更好地理解本发明的上述和其他特征、方面和优点。附图并入本说明书中并构成本说明书一部分,其中示出了本发明的实施例,并且与描述一起用于说明本发明的原理。
附图说明
在参考附图的说明书中,针对本领域普通技术人员阐述了本发明的完整且可行的公开内容,其中包括其最佳方式。
图1为本发明实施例制冷电器的一立体示意图,其中冷藏门体处于关闭位置。
图2为图1所示的制冷电器的另一立体示意图,其中冷藏门体处于打开位置。
图3为本发明一实施方式的制冷电器的储冰盒和分配组件的立体图。
图4为本发明另一实施方式的制冷电器储冰盒和分配组件的立体图。
图5为为本发明一实施方式的制冷电器的储冰盒的前视立体图。
图6为图5所示的储冰盒的后视立体图。
图7为图5所示储冰盒的截面图。
图8为本发明又一实施方式的制冷电器的储冰盒和分配组件的立体图。
图9为图8的所示的储冰盒的后视立体图。
图10为本发明一实施方式的制冷电器的储冰盒和分配器组件的主视图。
图11为本发明一实施方式的制冷电器的储冰盒和分配组件的截面图。
图12为本发明另一实施方式的制冷电器的储冰盒和分配组件的截面图。
图13为本发明又一实施方式的制冷电器的储冰盒和分配组件的侧视截面图。
具体实施方式
现在将详细介绍本发明的实施例,这些实施例的一个或多个示例已在附图中示出。提供的每个示例均用于说明本发明,而不是用于限制本发明。实际上,对于本领域技术人员而言将显而易见的是,在不脱离本发明的范围或精神的情况下,可以对本发明进行各种修改和变动。举例来说,作为一个实施例一部分示出或描述的特征可以和另一个实施例一起使用,以形成又一个实施例。因此,本发明旨在涵盖落入所附权利要求及其等同物范围内的此类修改和变型。
本文所使用的术语“或”一般旨在具有包含性(即,“A或B”旨在表示“A或B或二者”)。术语“第一”、“第二”和“第三”可以互换使用,以将一个部件与另一个部件区分开来,并非旨在指示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体路径中的流体流的相对流动方向。例如,“上游”是指流体流出的流动方向,而“下游”是指流体流向的流动方向。
参照图1和图2为本发明一实施方式中制冷电器100的立体图。图1所示的制冷电器的一对冷藏门体128处于关闭位置,而图2所示的冷藏门体128则处于打开位置。
制冷电器100包括箱体120,该箱体120沿着竖直方向V在顶部101和底部102之间延伸。箱体120还沿着侧向L和横向T延伸,竖直方向V、侧向L和横向T相互垂直。箱体120具有一个或多个用于储藏食物的制冷间室。在一些实施例中,箱体120包括位于箱体120顶部101或其附近的食品保鲜室122,以及位于箱体120底部102或其附近的冷冻室124,此种制冷电器100一般被称为底装型冰箱。然而,本发明的技术方案也适用于其他类型和样式的制冷电器,例如顶装型制冷电器或并排式制冷电器。因此,本文的描述仅出于说明之目的,并无意在任何方面对制冷间室的配置构成限制。
在本发明一个实施例中,本领域技术人员可以理解的是,为了方便储藏食物,食品保鲜室122内可安装多种储物结构。特别地,储物结构可以包括安装在食品保鲜室122内的储物盒192、抽屉194和搁架196。储物盒192、抽屉194和搁架196用于收容饮料、固体食品等食物,且方便用户整理存储的食物。作为示例,抽屉194能够储藏新鲜食品(例如,蔬菜、水果或奶酪),并且能够延长这些新鲜食品的储存时长。
冷藏门体128可旋转地铰接到箱体120的边缘,以便打开或关闭食品保鲜室122。在一些实施例中,冷冻门体130安装于冷藏门体128下方,用于打开或关闭冷冻室124。冷冻门体130可以连接至冷冻抽屉(未示出),冷冻抽屉可滑动地安装在冷冻室124内。图1所示的制冷电器冷藏门体128和冷冻门体130处于关闭状态。
在一些实施例中,制冷电器100包括用于分配液态水或冰的分配组件140。分配组件140包括分配器142,分配器142位于或安装在制冷电器100的外部部分(例如,安装在其中一个门体128上)。分配器142包括用于排放冰和液态水的排放出口144,以及用于控制分配器142的致动器146,致动器146可为拨片,安装在排放出口144下方。在可选的实施例中,可以使用其他合适的致动器来控制分配器142。例如,分配器142上可以设置传感器(诸如,超声传感器)或按钮代替拨片。制冷电器还包括用于控制操作模式的用户界面面板148。例如,用户界面面板148包括多种用于选择如碎冰或非碎冰等所需的操作模式的用户输入(未标记),诸如取水按钮和取冰按钮。
排放出口144和致动器146位于分配器142的外部部分,并且安装在分配器凹腔150中,下文将对此进行更详细的说明。一般,分配器凹腔150具有横向开口151,该横向开口151沿竖直方向V从凹腔顶端152延伸至凹腔底端154,并且沿侧向L从第一凹腔侧面156延伸至第二凹腔侧面158。在某些实施例中,分配器凹腔150位于预定高度处,以便于用户获取冰或水,使用户能够在无需弯腰且无需打开冷藏门体128的情况下获取冰。在可选实施例中,分配器凹腔150设置在接近用户的胸部水平的位置。
在一些实施例中,制冷电器100包括设置于冷藏门体128上的子间室162。子间室162通常被称为“制冰室”。而且,当冷藏门体128处于关闭位置时,子间室162延伸到食品保鲜室122中。
如图所示,制冰组件160连接于箱体120(例如,可如图所示经由门体128间接连接到箱体120,也可直接连接到箱体120)。在一些实施例中,制冰组件设置在子间室162内。在可选的实施例中,进一步的,子间室162内部还设置有储冰盒164。这样,即可将冰从冷藏门体128后侧子间室162中的制冰组件160或储冰盒164供应到分配器凹腔150。可以将来自制冷电器100的密封制冷***的冷空气引导至制冰组件160中,以便冷却制冰组件160的部件。特别地,蒸发器178(例如,可位于食品保鲜室122或冷冻室124或在其内部)用于产生冷空气,供应管道180 (例如,由箱体120限定或位于其内部)在蒸发器178和制冰组件160的部件之间延伸将冷气引导至制冰组件,以便冷却制冰组件160的部件辅助制冰组件160制冰。
在本发明一实施方式中,在制冰组件160运行期间,来自密封***的冷空气将制冰组件160的部件冷却至液态水冻结温度或低于该温度。因此,制冰组件160可以是风冷式制冰组件。来自密封***的冷空气还可以冷却储冰盒164。特别地,储冰盒164周围的冷气温度高于液态水冻结温度(例如,冷却至食品保鲜室122的温度左右),储冰盒164中的冰块因暴露于温度高于液态水冻结温度的空气而随时间融化。另外,制冰组件160也可能暴露于温度高于液态水冻结温度的空气中。作为示例,来自食品保鲜室122的空气引导至子间室162中,使得制冰组件160或储冰盒164暴露于来自食品保鲜室122的空气中。
在可选的实施例中,储冰盒164中的冰块在融化期间产生的液态水被引导流出储冰盒164。例如,参见图1,冰块融化产生的液态水可以被引导至蒸发盘172。蒸发盘172设置在箱体120(例如,在箱体120的底部102)内的机械间室170内。密封***的冷凝器174可以设置在蒸发盘172的正上方或附近。来自冷凝器174的热量可以促进蒸发盘172中液态水蒸发。用于冷却冷凝器174的风扇176可以设置在蒸发盘172上方或附近以引导空气流经蒸发盘172。蒸发盘172可以设置成便于蒸发其中的液态水的尺寸和形状。例如,蒸发盘172可以是顶部敞开式,并且横跨箱体120的宽度或深度延伸。
在一些实施例中,进入门166铰接到冷藏门体128上。一般,进入门166用于打开或关闭子间室162。子间室162上可设置任何一种能够将进入门166锁定在关闭位置的闩锁168。作为示例,闩锁168可以由用户操控,以便打开进入门166,进入子间室162。进入门166还可以有助于子间室162隔绝热量。
一般,制冷电器100的运行可以由控制器190调控,如下所述,控制器190可操作地连接到用户界面面板148或其他部件。用户界面面板148提供全冰或碎冰、冷水等选项,方便用户操作制冷电器100。根据用户在用户界面面板148上的操作或至少一个传感器发送的信号,控制器190可控制制冷电器100的各个部件。控制器190可以包括存储器和一个或多个微处理器、CPU等,例如包括执行控制制冷电器100的编程指令或微控制代码的通用或专用微处理器。存储器可以为诸如DRAM之类的随机存取存储器,或诸如ROM或FLASH之类的只读存储器。在一个实施例中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分离的部件, 也可设置在包含处理器在内的板上。可选的,控制器190也可以构造成不使用微处理器(例如,使用离散模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与电路等)执行控制功能,以代替相关软件。
控制器190可以置于整个制冷电器100中的各个位置。在所示的实施例中,控制器190位于用户界面面板148或其附件上。在其他实施例中,控制器190可以位于制冷电器100内的任何合适位置,例如食品保鲜室122、冷冻门体130等的内部。输入/输出(“I/O”)信号可以在控制器190和制冷电器100的各个操作部件之间传输。例如,用户界面面板148可以经由一根或多根信号线或共享的通信总线与控制器190可操作的通信(例如,电通信)。
控制器190可操作的与分配组件140的各个部件连接,并且控制器190能够控制各个部件的运行。例如,基于来自控制器190的命令,可以对各个阀、开关等进行致动。如上所述,界面面板148还可以(例如,经由电通信或无线通信)可操作地连接到控制器190。因此,可以基于用户输入或控制器190的指令自动进行各种操作。
参见图3至图13,提供了包括可移动储冰盒210的示例性实施例的各种视图,该可移动储冰盒210可移动地安装到分配器凹腔150或位于其内部。如图所示,可移动储冰盒210沿着竖直方向V、侧向L和横向T延伸。本发明中关于储冰盒210的描述,竖直方向V、侧向L和横向T与上述当门体128处于关闭位置时的竖直方向V、侧向L和横向T一致,并且储冰盒210安装到分配器凹腔150或位于其内部。
在图3中,提供了分配组件140的立体图,具体的示出了分配器凹腔150,其内设置有可移动储冰盒210。一般说来,储冰盒210包括盒体212,该盒体212可拆卸的安装(例如,安装到门体128上)在分配器凹腔150内。如图所示,当盒体212安装在分配器凹腔150内时,其可以覆盖分配器凹腔150的横向开口151的大部分(即便不是全部的)。具体的,盒体212可沿侧向从第一凹腔侧面156延伸至第二凹腔侧面158以在侧向上覆盖横向开口151,此外,盒体212还可以沿竖直方向从凹腔顶端152延伸至凹腔底端154以在竖直方向上覆盖横向开口151。这样,储冰盒210可在侧向L上或竖直方向V上完全覆盖分配器凹腔150。在具体实施例中,制冰组件160和分配组件140置于储冰盒210上方(例如,当储冰盒210安装在分配器凹腔150内时)。
举例来说,如图5至图9所示,储冰盒210一般包括限定了储藏腔224的多个壁。例如,储冰盒210可以包括一个或多个侧壁214、216和底壁218,侧壁和底 壁共同围设成储藏腔224。侧壁214、216一起在储冰盒210的顶部(例如,与底壁218相对的竖直末端)限定了开口周边220。通过开口周边220可以在储藏腔224中取出或存入冰222。继而,储藏腔224可以与分配组件140连通(例如,选择性物理连通、流体连通等),以接收来自分配器组件140的冰(例如,经由排冰通道248,图10)。
在本发明一个实施例中,至少一个侧壁(例如,214或216)可以由清透、通透的(即,透明或半透明的)材料(诸如,透明玻璃或塑料)形成,以便用户看到储藏腔224内部并查看其中的冰。在一个实施例中,至少一个侧壁214或216可以包括外部面板228或内部面板230,该外部面板228或内部面板230由清透、通透的(即,透明或半透明的)材料(诸如,清透的玻璃或塑料)制成。在一些此类实施例中,盒体212可以设置为透明盒体。
在其他可选实施例中,储冰盒210包括至少一个隔热侧壁(例如,214或216)。在一些此类实施例中,在将储冰盒210***到横向开口151中或者以其他方式安装到分配器凹腔150内时,如图10所示,隔热侧壁214横跨横向开口151。隔热侧壁214包括外部面板228和内部面板230。视具体情况,外部面板228或内部面板230中的一个或二者可以从底壁218延伸。
在其他或可选实施例中,底壁218可设置成隔热壁(例如,与隔热侧壁214相连)。举例来说,底壁218可以包括外部面板228和内部面板230。在一些此类实施例中,底壁218位于一部分隔热侧壁214的下方,如沿着竖直方向V底壁218处于内部面板230下方。
在一些实施例中,外部面板228和内部面板230间隔设置(例如,在横向T、侧向L或竖直方向V上)。具体的如,外部面板228和内部面板230水平间隔开(例如,在横向T上),顶部段232可以在储冰盒21顶部(例如,在透明隔热间隙234上方)跨越外部面板228和内部面板230之间的距离。如图所示,隔热侧壁(例如,214或216)或底壁218的面板之间形成透明隔热间隙234。举例来说,透明隔热间隙234可以为外部面板228和内部面板230之间的密封空间。该密封空间可以防止空气或氧气流入或流出透明隔热间隙234。在示例性实施例中,透明隔热间隙234基本上被抽成真空。在可选示例实施例中,透明隔热间隙234填充有设定质量的预定气体,诸如,氮气、氧气、氩气或合适的惰性气体。
参见图4,图5至图9示出的侧壁214、216为不允许冰通过的实心构件,但是可选实施例中至少一个侧壁(例如,前壁214),该侧壁上设有穿过侧壁214的腔体 出口236。一般说来,腔体出口236在储藏腔224与盒体212的前面之间延伸,流体连通储藏腔224与盒体212。在一些此类实施例中,盒体拨片238安装在侧壁214上腔体出口236处。在装配状态时,盒体拨片238能够在限制冰穿过腔体出口236的锁定位置和允许冰从腔体出口236穿过侧壁214(例如,沿着横向T)到储冰盒体212外部的释放位置之间移动。
参见图5至图9,在一些实施例中,储冰盒210包括连接到(例如,可枢转地连接)盒体212上的部分盖240。举例来说,部分盖240可连接到(例如,可枢转地连接)盒体212的顶部靠近开口周边220处。部分盖240可选择性沿着前侧壁214延伸(例如,沿着侧向L)。处于装配状态时,部分盖240能够覆盖开口周边220的至少一部分,从而使允许冰通过的开口的横截面积(例如,垂直于竖直方向V)减小(例如,相对于由开口周边220限定的整个横截面面积)。在一些此类实施例中,部分盖240一般(例如,至少部分地)沿着竖直方向V从开口周边220向上延伸。因此,当储冰盒安装在分配器凹腔150内时,部分盖240可以朝向凹腔顶端152延伸。可选的,部分盖240可选择性接合或抵接分配组件140的一部分,从而阻止空气从储冰盒210的上表面和分配组件140的底表面之间的间隙穿过。
在某些实施例中,至少一个侧壁216成形为或以其他方式形成与分配器组件的后壁形状配合。举例来说,侧壁216具有弯曲外表面,该弯曲外表面的形状与分配器凹腔150后部的形状相反,从而使储冰盒210可以在横向上定位安装并支撑在其上。侧壁216上可设置拨片槽242(例如,作为大致凹入的表面),拨片槽242可用于接收拨片或致动器146。
在其他或可选实施例中,至少一个侧壁216上设置有凹部钩件244。如图所示,凹部钩件244可以相对于储藏腔224反向延伸(例如,从盒体212的外部部分或外表面延伸)。分配器凹腔150内可设置有与凹钩部件244配合的锚固件246。这样,当储冰盒210安装在分配器凹腔150内时,凹钩部件244能够选择性与锚固件246配合将储冰盒210固定至分配组件140或门体128上。而且,可以防止储冰盒210在分配器凹腔150意外发生横向移动。
现在转到图10和图11,提供了分配组件140的示例性实施例的平面图和侧视截面图,该分配组件140包括安装在其中的储冰盒210。如图所示,分配组件140具有排冰通道248。一般来说,分配器管道250至少部分位于其中一个冷藏门体128内,用于将冰引导至分配器凹腔150中。分配器管道250从制冰组件160(例如,从储冰盒164,或直接从其中的制冰机)延伸至分配器凹腔150。在示例性实施 例中,分配器管道250包括顶部片或顶部件252以及连接到顶部件252的底部片或底部件254(例如,在接头260处)。制冰组件160或其附近处设置有入口256,在竖直方向V上入口256下方设置有出口258。应当理解,出口258与图1中所示的排放出口144相对应。顶部件252和底部件254共同形成从入口256到出口258的排冰通道248。
在一些实施例中,分配器管道250内设置有管道盖262(例如,在顶部件252和底部件254之间的接头260处或其附近)。管道盖262可在打开位置和关闭位置之间移动(例如,可旋转)。在关闭位置,管道盖262覆盖排冰通道248在分配器凹腔150和冷冻子间室162之间的一部分(图2)。例如,在关闭位置,管道盖262能够覆盖分配器管道250的内部部分(例如,在接头260处)。因此,管道盖262能够阻止分配器凹腔150和冷冻子间室162之间的空气流动,减少分配器凹腔150与冷冻子间室162之间的热传递。相反,在打开位置,管道盖262不在分配器凹腔150和冷冻子间室162之间,因此,来自制冰组件160的冰可以通过排冰通道248到达出口258,而不会影响管道盖262。管道盖262通常处于关闭位置,当接收到填充信号时(例如,用户操作致动器146),管道盖262移位到打开位置。分配器管道250可以设置成允许管道盖262在分配器管道250内在打开位置和关闭位置之间移动或旋转的尺寸和形状(例如,具有凹部)。
在示例性实施例中,排水通道264与排冰通道248分离设置(例如,流体隔离)。举例来说,形成为排水通道264的导水管266可以设置于分配器管道250的前侧。一般说来,导水管266可与诸如市政供水之类的水源(未示出)进行选择性流体连通(例如,经由一个或多个流体管或管道),以从所述排水孔接收水。如图所示,导水管266和排水通道264一般指向分配器凹腔150。因此,在运行期间,导水管266可以将水引导至分配器凹腔150内的容器。在一些实施例中,导水管266和排水通道264置于储冰盒210的前侧,(例如,当将储冰盒210安装在分配器凹腔150内时,沿着横向T设置)。有利的是,当将储冰盒210置于分配器凹腔150接收来自分配器管道250的冰时,可以将水引导至单独的容器中,而不是储藏腔224内。
在可选的实施例中,在分配组件140具有一个或多个检测传感器268。在一些此类实施例中,检测传感器268固定在冷藏门体128上(例如,可设置在分配器凹腔150上方)。检测传感器268能够可操作地检测分配器凹腔150内是否存在一个或多个物体。举例来说,检测传感器268能够可操作地测量储藏腔224内的冰222 的高度(例如,可测量检测传感器268到储藏腔224内的冰222的最上表面的距离)。
在示例性实施例中,检测传感器268是用于检测或测量到物体的距离的任何合适的装置。例如,检测传感器268可以是超声传感器、红外传感器或激光测距传感器。控制器190能够可操作地连接到检测传感器,并且能够接收检测传感器268发送的信号以获取储藏腔224内储冰高度等冰量信息,检测传感器268发送的信号可以为电压或电流信号。根据来自检测传感器268的信号,控制器190可以发送一个或多个信号(例如,以引导或控制分配器管道250内的管道盖262的位置)。
参见图12和图13,提供了储冰盒210中分配组件140的可选示例性实施例的侧视横截面图,该分配组件140具有一个或多个用于处理储藏腔224内冰融化所产生的水的结构。
如图12所示,在某些实施例中,底壁218上(例如,沿着竖直方向V)设置有排水孔270。排水孔270可以和储藏腔224流体连通,从而使储藏腔224中的融化水可以通过排水孔270流出盒体212。可以理解,排水孔270可以设置为单个或多个允许水流过的穿孔。止回阀272(如虚线所示)可设置在(例如,安装到)盒体212上。举例来说,止回阀272可安装到底壁218上,并且可选择的覆盖或穿过排水孔270。当储冰盒210安装在分配器凹腔150内时,止回阀272能够与位于储冰盒210下方且安装于分配器组件140上的适配元件配合。适配元件可以移动止回阀272使止回阀272一部分与排水孔270分离,从而使水流过排水孔270。
除止回阀272之外,某些实施例还包括插口阀274,如虚线所示。举例来说,插口阀274可以安装到前侧壁214(例如,在底壁218近端)并且与储藏腔224流体连通。可以理解,插口阀274可以为任何合适的柱塞或手柄,以便选择性打开插口阀274并允许水从储藏腔224流出。
在其他或可选实施例中,流体管道276安装在门体内,与排水孔270进行选择性流体连通(例如,以从排水孔270接收水)。举例来说,当储冰盒210安装在分配器凹腔150内时,流体管道276位于与排水孔270下方,并在竖直方向上与排水孔270对齐,从而使储藏腔224内的水从排水孔270流到流体管道276。可以理解,流体管道276可以从门体延伸至制冷电器内任何合适的部分或流动路径(图1),例如,延伸至回水管线或图1所示的蒸发盘172。
参见图13,其他或可选实施例包括接水盘278,该接水盘278可置于储冰盒210下方的融水腔280内,以便选择性接收从排水孔270流出的水。如图所示,当 储冰盒210安装在分配器凹腔150内时,接水盘278和融水腔280置于在排水孔270下方。当储藏腔224内发生积水时,一部分水可以通过排水孔270流入融水腔280。在可选实施例中,接水盘278可滑动地安装在感测组件内,以便选择性沿着横向T移入和移出门128。这样,用户可选择性将接水盘278(例如,沿着横向T)滑动至与排水孔270对齐和不对齐。而且,如果融水腔280被填充满或接近满,用户可以取出接水盘278,清除接水盘278中的水,然后将接水盘278重新***到排水孔270下方。
参见图10和图11,将对盒填充操作的多个示例性实施例进行说明。如上所述,控制器190能够可操作地连接至(即,可操作地连通)分配组件140如控制器190可与操作面板148、致动器146、检测传感器268或管道盖262连接。而且,控制器190可用于控制图1所示的制冷电器100的一个或多个运行状态,其中一项操作包括如进行引导冰通过分配器管道250排至储藏腔224中盒填充操作,即控制器190可以用于启动盒填充操作。
作为示例,用户可以通过触发分配器致动器控制盒填充操作,盒填充操作可以包括接收来自分配器致动器146的填充输入。如上所述,当用户触发致动器146时,致动器向控制器190发送输入信号。在一些实施例中,分配器致动器146通过储冰盒210触发。换言之,当储冰盒安装在分配器凹腔150内时,其向后移动(例如,沿着横向T)时触发致动器146。控制器接收到填充输入时将冰引导到储冰盒210。举例来说,管道盖262可以移动至打开位置,或者储冰盒164内的电动机启动旋转促使冰通过分配器管道250。可选地,可以通过致动器146直接控制出冰致动器。在分配器致动器146被触发且冰已被引导至储藏腔224后,若致动器146被释放,控制器190则控制停止出冰。
作为其他或可选示例,盒填充操作可以与从界面面板146上接收到的基于时间的提示相关联。具体而言,盒填充操作可以包括从界面面板146接收填充输入。在一些此类实施例中,用户通过按钮或界面面板146上的选项选择盒填充操作,这会将输入信号发送到控制器190。可选地,选定的填充操作可对应于分配组件140所需的冰的一般冰位或冰量。在一些此类实施例中,填充操作包括:在预定的时间段内(例如,响应接收到的填充输入)将冰引导至储冰盒210。举例来说,在预定的时间段内,管道盖262可以移动至打开位置,或者储冰盒164内的电动机启动旋转促使冰通过分配器管道250。在预定的时间段到期时,控制器190停止引导来自分配器管道250的冰。
作为又一其他或可选示例,盒填充操作可以与在界面面板146处接收到的基于冰量的提示相关联。具体而言,盒填充操作可以包括:从界面面板146接收填充输入。在一些此类实施例中,用户通过按钮或界面面板146上的选项选择盒填充操作,这会将输入信号发送到控制器190。可选地,选定的填充操作可以对应于储冰盒210内所需的冰的一般冰位或冰量。在一些此类实施例中,如上所述,填充操作可以包括:接收来自一个或多个检测传感器268的冰位信号(例如,在接收填充输入之后)。响应接收到的填充输入,盒填充操作包括(例如,基于冰位信号)将冰引导至储冰盒210。举例来说,管道盖262可以移动至打开位置,或者储冰盒164内的电动机启动旋转促使冰通过分配器管道250,直到达到预定的冰位为止。可以理解,控制器190可以基于第一填充输入,计算达到预定的冰位所需的必要冰量。或者可进一步理解,在开始将冰引导至储藏腔224后,控制器190可以接收多个二级冰位信号。基于这些二级填充信号,控制器190可以确定是否已经达到预定的冰位。在达到预定的冰位时,控制器190可以停止引导来自分配器管道250的冰。
请注意,尽管以上描述了数个示例性填充操作,但是本公开并不限于这些实施例,并且可以通过实施任何合适的填充操作向储藏腔224内提供冰。
本书面描述使用示例来公开本发明(包括最佳方式),并且还使本领域技术人员能够实践本发明,包括制造和使用任何设备或***以及执行任何包含的方法。本发明的可授予专利权的范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果此类其他示例包括与权利要求的字面语言并无区别的结构元件,或者如果此类其他示例包括与权利要求的字面语言没有实质区别的等效结构元件,此类其他示例则处于权利要求的范围内。

Claims (19)

  1. 一种制冷电器,具有相互垂直的竖直方向、侧向和横向,所述制冷电器包括:
    箱体,其内形成制冷间室;
    门体,其上设置有分配器凹腔,所述分配器凹腔具有横向开口,所述横向开口沿竖直方向从凹腔顶端延伸至凹腔底端,并沿侧向从第一凹腔侧面延伸至第二凹腔侧面,所述门体可旋转地铰接于所述箱体以打开或关闭所述制冷间室;
    分配组件,其位于所述分配器凹腔内并且具有出排冰通道;
    制冰组件,其连接于到所述箱体上;以及
    储冰盒,其具有形成储藏腔的盒体,所述盒体可拆卸的安装于所述门体上且置于所述分配器凹腔内以接收从所述分配组件排出的冰,所述盒体沿竖直方向从所述凹腔顶端垂直延伸至所述凹腔底端,并且沿侧向从所述第一凹腔侧面延伸至至所述第二凹腔侧面。
  2. 根据权利要求1所述的制冷电器,其特征在于,所述储冰盒具有腔体出口,所述腔体出口在所述储藏腔与所述盒体的前面之间延伸,并流体连通所述储藏腔和所述盒体,所述盒体上还安装有盒体拨片,所述盒体拨片可选择的在允许冰通过腔体出口的锁定位置和阻止冰通过腔体出口的释放位置之间移动。
  3. 根据权利要求1所述的制冷电器,其特征在于,所述分配组件还包括排水通道,所述排水通道指向所述分配器凹腔并且沿着所述横向置于所述储冰盒的前侧。
  4. 根据权利要求1所述的制冷电器,其特征在于,所述分配组件还包括分配器致动器,所述分配器致动器置于所述分配器凹腔内,且沿着横向位于储冰盒的后侧。
  5. 根据权利要求1所述的制冷电器,其特征在于,所述储冰盒的底壁上设置有排水孔,所述排水孔与所述储藏腔流体连通。
  6. 根据权利要求5所述的制冷电器,其特征在于,还包括流体管道,所述流体管道安装在所述门体内,与所述排水孔进行选择性流体连通,以便从所述排水孔接收水。
  7. 根据权利要求5所述的制冷电器,其特征在于,还包括接水盘,所述接水盘可滑动地安装在所述储冰盒下方,与所述排水孔进行选择性流体连通,以便从所述 排水孔接收水。
  8. 根据权利要求4所述的制冷电器,其特征在于,还包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自所述分配器致动器的填充输入,以及
    响应接收到所述填充输入,将冰引导至所述储冰盒。
  9. 根据权利要求1所述的制冷电器,其特征在于,还包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自界面面板的填充输入,所述界面面板与所述分配器凹腔分离设置;以及
    响应接收到的所述填充输入,在预定的时间段内将冰引导至所述储冰盒。
  10. 根据权利要求1所述的制冷电器,其特征在于,还包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自界面面板的填充输入,所述界面面板与所述分配器凹腔分离设置,
    接收来自检测传感器的冰位信号,所述检测传感器置于所述分配器凹腔中且指向所述储冰盒,以及
    响应接收到的所述填充输入,基于所述冰位信号将冰引导至所述储冰盒。
  11. 一种制冷电器,具有相互垂直的竖直方向、侧向和横向,所述制冷电器包括:
    箱体,其内形成制冷间室;
    门体,其上设置有分配器凹腔,所述分配器凹腔具有横向开口,所述横向开口沿竖直方向从凹腔顶端延伸至凹腔底端,且沿侧向方向从第一凹腔侧面延伸至第二凹腔侧面,所述门体可旋转的铰接于所述箱体以打开或关闭所述制冷间室;
    分配组件,其位于所述分配器凹腔内并且具有排冰通道和排水通道,所述排水通道指向所述分配器凹腔;
    制冰组件,其连接到所述箱体上;以及
    储冰盒,其包括透明盒体,所述盒体具有储藏腔且沿着所述横向位于所述排水通道的后侧,所述盒体可拆卸的安装到所述门体上且置于所述分配器凹腔内以从所述分配组件接收冰,所述盒体沿竖直方向从所述凹腔顶端垂直延伸至所述凹腔底端,并且沿侧向从所述第一凹腔侧面延伸至所述第二凹腔侧面。
  12. 根据权利要求11所述的制冷电器,其特征在于,所述储冰盒具出腔体出口,所述腔体出口在所述储藏腔与所述盒体的前面之间延伸,并与所述储藏腔和所 述盒体流体连通,所述盒体上还安装有盒体拨片,所述盒体拨片可选择的在允许冰通过腔体出口的释放位置和阻止冰通过腔体出口的锁定位置之间移动。
  13. 根据权利要求11所述的制冷电器,其特征在于,所述分配组件还包括分配器致动器,所述分配器致动器置于所述分配器凹腔内,且沿着横向位于储冰盒的后侧。
  14. 根据权利要求11所述的制冷电器,其特征在于,所述储冰盒的底壁上设置有排水孔,所述排水孔与所述储藏腔流体连通。
  15. 根据权利要求14所述的制冷电器,其特征在于,还包括流体管道,所述流体管道安装在所述门体内,与所述排水孔进行选择性流体连通,以便从所述排水孔接收水。
  16. 根据权利要求14所述的制冷电器,其特征在于,还包括接水盘,所述接收盘可滑动地安装在所述储冰盒下方,与所述排水孔进行选择性流体连通,以便从所述排水孔接收水。
  17. 根据权利要求13所述的制冷电器,进一步包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自所述分配器致动器的填充输入,以及
    响应接收到的所述填充输入,将冰引导至所述储冰盒。
  18. 根据权利要求11所述的制冷电器,进一步包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自界面面板的填充输入,所述界面面板与所述分配器凹腔分离设置,以及
    响应接收到的所述填充输入,在预定的时间段内将冰引导至所述储冰盒。
  19. 根据权利要求11所述的制冷电器,进一步包括控制器,所述控制器用于启动盒填充操作,所述盒填充操作包括:
    接收来自界面面板的填充输入,所述界面面板与所述分配器凹腔分离设置,
    接收来自检测传感器的冰位信号,所述检测传感器置于所述分配器凹腔中且指向所述储冰盒,以及
    响应于接收到的所述填充输入,基于所述冰位信号将冰引导至所述储冰盒。
PCT/CN2020/090814 2019-05-21 2020-05-18 具有储冰盒的制冷电器 WO2020233541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080037783.4A CN113906263A (zh) 2019-05-21 2020-05-18 具有储冰盒的制冷电器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/417,709 US11629902B2 (en) 2019-05-21 2019-05-21 Refrigerator appliance having an ice storage bin
US16/417,709 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020233541A1 true WO2020233541A1 (zh) 2020-11-26

Family

ID=73456660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090814 WO2020233541A1 (zh) 2019-05-21 2020-05-18 具有储冰盒的制冷电器

Country Status (3)

Country Link
US (1) US11629902B2 (zh)
CN (1) CN113906263A (zh)
WO (1) WO2020233541A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217876582U (zh) * 2022-05-23 2022-11-22 青岛海尔电冰箱有限公司 用于冰箱的取冰机构及冰箱

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010025505A1 (en) * 1998-12-28 2001-10-04 Nelson Mark H. Removable ice bucket for an ice maker
CN1752676A (zh) * 2004-09-22 2006-03-29 三星电子株式会社 具有刨冰供给装置的电冰箱
CN1971180A (zh) * 2005-11-21 2007-05-30 惠尔普尔公司 用于冰箱的外倾式冰储存盒
US7549297B2 (en) * 2005-05-18 2009-06-23 Maytag Corporation Refrigerator air control damper for ice compartment
US8109112B2 (en) * 2008-02-25 2012-02-07 Whirlpool Corporation Variable ice storage assembly and method of use
CN102414525A (zh) * 2009-04-23 2012-04-11 Lg电子株式会社 冰箱
CN103134261A (zh) * 2011-11-29 2013-06-05 三星电子株式会社 冰箱
CN104654696A (zh) * 2013-11-21 2015-05-27 东部大宇电子株式会社 冰盒及使用其传送冰的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899804A (en) * 1959-08-18 Ice ejecting and storage means
US3621668A (en) * 1969-12-17 1971-11-23 Gen Electric Refrigerator including an automatic ice maker and a door mounted ice receptacle
KR100780836B1 (ko) * 2006-09-12 2007-11-30 엘지전자 주식회사 냉장고용 아이스뱅크 고정장치 및 이를 포함하는 냉장고
US8312735B2 (en) 2008-03-12 2012-11-20 Whirlpool Corporation External tilt bucket for an appliance door
KR101456572B1 (ko) * 2008-05-27 2014-10-31 엘지전자 주식회사 냉장고 제빙기의 만빙 감지 장치의 센서 히터 제어 방법
CN102109267B (zh) * 2009-12-29 2015-03-04 博西华家用电器有限公司 冰箱以及用于冰箱的分配***
KR20120040891A (ko) 2010-10-20 2012-04-30 삼성전자주식회사 냉장고
US9091473B2 (en) * 2010-11-09 2015-07-28 General Electric Company Float-type ice making assembly and related refrigeration appliance
US10502477B2 (en) 2014-07-28 2019-12-10 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US9733004B2 (en) * 2015-01-14 2017-08-15 Haier Us Appliance Solutions, Inc. Refrigerator appliances
DE102015214023A1 (de) * 2015-07-24 2017-01-26 BSH Hausgeräte GmbH Kältegerät mit Eis-/Wasserdispenser
US10260790B2 (en) 2017-06-16 2019-04-16 Haier US Applicance Solutions, Inc. Refrigerator appliance having an ice storage bin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010025505A1 (en) * 1998-12-28 2001-10-04 Nelson Mark H. Removable ice bucket for an ice maker
CN1752676A (zh) * 2004-09-22 2006-03-29 三星电子株式会社 具有刨冰供给装置的电冰箱
US7549297B2 (en) * 2005-05-18 2009-06-23 Maytag Corporation Refrigerator air control damper for ice compartment
CN1971180A (zh) * 2005-11-21 2007-05-30 惠尔普尔公司 用于冰箱的外倾式冰储存盒
US8109112B2 (en) * 2008-02-25 2012-02-07 Whirlpool Corporation Variable ice storage assembly and method of use
CN102414525A (zh) * 2009-04-23 2012-04-11 Lg电子株式会社 冰箱
CN103134261A (zh) * 2011-11-29 2013-06-05 三星电子株式会社 冰箱
CN104654696A (zh) * 2013-11-21 2015-05-27 东部大宇电子株式会社 冰盒及使用其传送冰的方法

Also Published As

Publication number Publication date
US11629902B2 (en) 2023-04-18
CN113906263A (zh) 2022-01-07
US20200370813A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR101647374B1 (ko) 냉장고 및 그 제어방법
EP2455691B1 (en) Refrigerator
KR20130079851A (ko) 냉장고
KR20140075291A (ko) 냉장고
CN112601920B (zh) 冷藏箱器具和限定液体出口的冰分配器
KR20170055790A (ko) 냉장고
WO2020233541A1 (zh) 具有储冰盒的制冷电器
KR100758325B1 (ko) 냉장고
WO2020228622A1 (zh) 具有可拆卸储冰盒的制冷电器
CN112739968B (zh) 透明的桶式冰制造机
US9377235B2 (en) Refrigerator and control method for the same
US20100175417A1 (en) Refrigerator
KR101626981B1 (ko) 냉장고의 제어 방법
WO2021032182A1 (zh) 具有多个流体连通的制冷间室的制冷电器
KR101652585B1 (ko) 냉장고의 제어 방법
KR20100113205A (ko) 냉장고
JP2010071564A (ja) 冷蔵庫
CN115335651B (zh) 具有制冰和分配***的制冷电器
WO2023284707A1 (zh) 具有冷却分配组件的制冷电器
CN113767256B (zh) 具有可拆卸储冰盒的制冷电器
KR20080052206A (ko) 냉장고
EP4092362A1 (en) Ice-making appliance and method for distributing ice above sink
JP7159781B2 (ja) 冷蔵庫
WO2023083219A1 (zh) 包括用于冰模具外部的副供水***的自动制冰机
KR101079469B1 (ko) 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809688

Country of ref document: EP

Kind code of ref document: A1