WO2020233420A1 - 时隙格式指示的方法和通信装置 - Google Patents

时隙格式指示的方法和通信装置 Download PDF

Info

Publication number
WO2020233420A1
WO2020233420A1 PCT/CN2020/089339 CN2020089339W WO2020233420A1 WO 2020233420 A1 WO2020233420 A1 WO 2020233420A1 CN 2020089339 W CN2020089339 W CN 2020089339W WO 2020233420 A1 WO2020233420 A1 WO 2020233420A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
slot format
time slot
symbols
cyclic prefix
Prior art date
Application number
PCT/CN2020/089339
Other languages
English (en)
French (fr)
Inventor
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910429847.4A external-priority patent/CN111988848B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20809111.6A priority Critical patent/EP3965502A4/en
Publication of WO2020233420A1 publication Critical patent/WO2020233420A1/zh
Priority to US17/532,322 priority patent/US20220086832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to the field of communications, and more specifically, to a method and a communication device for indicating a time slot format.
  • the fifth generation (5G) mobile communication system is dedicated to supporting higher system performance, supporting multiple service types, different deployment scenarios, and a wider spectrum range.
  • multiple service types include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low-latency communications (URLLC), multimedia Broadcast multicast service (multimedia broadcast multicast service, MBMS) and positioning services, etc.
  • URLLC services have relatively high requirements for data transmission delay and reliability.
  • the use of common cyclic prefix time slots to transmit URLLC services cannot meet the delay requirements. Therefore, it is necessary to use extended cyclic prefix time slots to transmit URLLC services. .
  • the use of the extended cyclic prefix time slot to transmit the URLLC service cannot guarantee the simultaneous transmission of the uplink data and the downlink data of the URLLC service, which seriously affects the uplink and downlink data in the URLLC service. Transmission affects the normal operation of URLLC services and reduces communication efficiency.
  • This application provides a method and communication device for indicating a time slot format.
  • the time slot format index used to indicate the time slot format of the extended cyclic prefix is used to determine the extended cyclic time slot format.
  • the time slot format of the extended cyclic prefix can satisfy URLLC The uplink transmission and downlink transmission and transmission delay requirements of the service, and can guarantee the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • a method for indicating the format of a time slot is provided.
  • the execution subject of the method can be either a terminal device or a chip applied to the terminal device.
  • the method includes: terminal device Receive the slot format index, the slot format index is used to indicate a row in the slot format table, and a row in the slot format table is used to indicate the symbol attributes corresponding to at least 12 symbols, and the symbol attributes include the uplink symbol U ,
  • the position of the downlink symbol D or the flexible symbol F, the value of the slot format index is greater than or equal to 56 and less than or equal to 254.
  • the terminal device determines the time slot format of the extended cyclic prefix according to the time slot format index.
  • the time slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the network device sends a time slot format index to the terminal device.
  • the time slot format index is used by the terminal device to determine the time slot format of the extended cyclic prefix.
  • the slot format includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the uplink transmission and downlink transmission and transmission delay requirements of the URLLC service, and can ensure the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where , D represents a downlink symbol, Y 0 to Y 3 all represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 represents a flexible symbol or a downlink symbol, and Y 4 represents a flexible symbol or an uplink symbol.
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the time slot format corresponding to these two symbol attributes is a common cyclic prefix format with a subcarrier interval of 60KHz.
  • the terminal device is indicated to the terminal device corresponding to the common cyclic prefix format with a subcarrier interval of 60KHz. Symbol attribute, the terminal device only needs to use the mapping relationship between the ordinary cyclic prefix format under 60KHz and the time slot format of the extended cyclic prefix to determine the time slot format of the extended cyclic prefix under 60KHz so that the terminal device can determine more accurately
  • the extended cyclic prefix format under 60KHz reduces the complexity of terminal equipment determining the extended cyclic prefix format under 60KHz and is easy to implement.
  • the symbol attribute is: Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 , where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents Downlink symbol.
  • the time slot format corresponding to the symbol attribute is a common cyclic prefix format with a subcarrier spacing of 30KHz.
  • the terminal device is indicated to the terminal device with the symbol attributes corresponding to the common cyclic prefix format with a subcarrier spacing of 30KHz. , Can make the terminal equipment more accurately determine the extended cyclic prefix format under 60KHz. Further, since only the symbol attributes of 14 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the symbol attribute is: Z 0 DD FDD F Z 1 DD Z 2 DD Z 3 , where F represents a flexible symbol, and Z 1 to Z 3 all represent a flexible symbol or an uplink symbol , D represents the downlink symbol.
  • the time slot format corresponding to the symbol attribute is a common cyclic prefix format with a subcarrier interval of 15KHz.
  • the terminal device is indicated to the terminal equipment of the symbol attributes corresponding to the common cyclic prefix format with a subcarrier interval of 15KHz.
  • the terminal device can make the terminal device more accurately determine the extended cyclic prefix format under 60KHz. Further, since only the symbol attributes of 14 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the symbol attribute includes at least one of the following two symbol attributes: the first symbol attribute is: A 0 A 1 A 2 DDDDDDDDF, where F represents a flexible symbol, D represents downlink symbols, and A 0 to A 2 represent any one of flexible symbols, uplink symbols, and downlink symbols; the first type of symbol attribute is: B 0 DDDDDDDDB 1 B 2 B 3 , where F represents flexible symbols, and D represents For downlink symbols, B 0 represents a flexible symbol or an uplink symbol, B 1 represents a flexible symbol or a downlink symbol, and B 2 and B 3 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the time slot format corresponding to these two symbol attributes is an extended cyclic prefix format with a subcarrier interval of 60KHz.
  • the terminal device is indicated to the terminal device corresponding to the extended cyclic prefix format with a subcarrier interval of 60KHz.
  • Symbol attribute terminal equipment can directly transmit uplink and downlink data and SSB according to the indicated extended cyclic prefix format at 60KHz.
  • the terminal device does not need to map the slot format. The complexity of determining the extended cyclic prefix format under 60KHz by the terminal device is reduced, and it is easy to implement.
  • the symbol attribute is: Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3 , where Z 0 represents a flexible symbol or an uplink symbol, and Z 1 represents a flexible symbol or a downlink symbol , D represents a downlink symbol, C 0 and C 1 both represent a flexible symbol or a downlink symbol, Z 2 represents a flexible symbol or a downlink symbol, and Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the time slot format corresponding to the symbol attribute is an extended cyclic prefix format with a subcarrier interval of 30KHz.
  • the terminal device is indicated to the terminal equipment of the symbol attribute corresponding to the extended cyclic prefix format with a subcarrier interval of 30KHz.
  • the terminal device only needs to use the mapping relationship between the extended cyclic prefix format under 60KHz and the time slot format of the 30KHz extended cyclic prefix to determine the time slot format of the extended cyclic prefix under 60KHz, which can make the terminal equipment more accurate
  • the extended cyclic prefix format under 60KHz is produced, which reduces the complexity of terminal equipment determining the extended cyclic prefix format under 60KHz. Further, since only the symbol attributes of 12 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the symbol attribute is: C 0 DD DD C 1 C 2 DD DD C 3 , where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols .
  • the time slot format corresponding to the symbol attribute is an extended cyclic prefix format with a subcarrier interval of 15KHz.
  • the terminal device is indicated to the terminal equipment of the symbol attributes corresponding to the extended cyclic prefix format with a subcarrier interval of 15KHz.
  • the terminal device only needs to use the mapping relationship between the extended cyclic prefix format under 60KHz and the time slot format of the 15KHz extended cyclic prefix to determine the time slot format of the extended cyclic prefix under 60KHz, which can make the terminal device more accurate
  • the extended cyclic prefix format under 60KHz is produced, which reduces the complexity of terminal equipment determining the extended cyclic prefix format under 60KHz. Further, since only the symbol attributes of 12 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the symbols indicated by the slot format index are 12 symbols among the 14 symbols indicated by a row in the slot format table.
  • the symbols indicated by the slot format index are 12 of the 14 symbols indicated by a row in the slot format table, because the terminal equipment ultimately uses the extended cyclic prefix format for uplink and downlink data transmission.
  • the symbol attributes of the 12 symbols indicated by the slot format index can be determined more accurately and conveniently, which reduces the complexity of determining the symbol attributes of the 12 symbols indicated by the slot format index, and is easy to implement.
  • the accuracy of the symbol attributes of the 12 symbols indicated by the slot format index is improved.
  • the 12 symbols are the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the symbol indicated by the slot format index is the first 12 symbols, or the last 12 symbols, or the first to the sixth symbols among the 14 symbols indicated by a row in the slot format table. Symbol and the 8th to 13th symbols.
  • the symbol attributes of the 12 symbols indicated by the slot format index can be determined more accurately and conveniently, which reduces the complexity of determining the symbol attributes of the 12 symbols indicated by the slot format index, and is easy to implement.
  • the 60KHz extended cyclic prefix format determined by the terminal device according to the symbol attributes of the 12 symbols indicated by the slot format index can satisfy the transmission of URLLC uplink services and downlink services, and can ensure the transmission of SSB. Ensure communication quality and efficiency.
  • the symbol attributes of the 14 symbols indicated by the slot format index include: the downlink symbol D and the uplink symbol U are two consecutive symbols, and the symbol index of the downlink symbol D Less than the symbol index of the uplink symbol U.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the symbol attributes of the 14 symbols indicated by using the slot format index include symbol attributes where D and U are two consecutive symbols, and the symbol index of D is smaller than the symbol index of U.
  • the number and types of the symbol attribute slot format indexes used to indicate 14 symbols can be increased, that is, more types of symbol attributes of 14 symbols can be used to indicate the extended cyclic prefix format. A more flexible indication of the symbol attributes of 14 symbols is realized.
  • the extended cyclic prefix format at 60KHz determined by the terminal device according to the symbol attributes of the 14 symbols indicated by the slot format index meets the transmission of URLLC uplink services and downlink services, ensuring communication quality and efficiency.
  • the method further includes: the terminal device sends first indication information, the first indication information is used to indicate that the terminal device supports synchronization in the time slot receiving the extended cyclic prefix Broadcast block SS/PBCH block.
  • the method further includes: the terminal device receives second indication information, the second indication information being used to instruct the terminal device to receive the synchronous broadcast in the time slot of the extended cyclic prefix Block SS/PBCH block.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the carrier interval corresponding to the carrier interval of the time slot format of the extended cyclic prefix is: 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval, and 240KHz subcarrier interval. Any kind.
  • a method for indicating the format of a time slot is provided.
  • the execution subject of the method can be either a network device or a chip applied to the network device.
  • the method includes: network device Determine the slot format index according to the slot format of the extended cyclic prefix.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U and/or at least one flexible symbol F, and the slot format index is used to indicate A row in the slot format table.
  • a row in the slot format table is used to indicate the symbol attributes corresponding to at least 12 symbols.
  • the symbol attributes include the positions of the uplink symbol U, downlink symbol D, or flexible symbol F.
  • the value of the format index is greater than or equal to 56 and less than or equal to 254.
  • the network device sends the slot format index.
  • the network device sends a time slot format index to the terminal device.
  • the time slot format index is used by the terminal device to determine the time slot format of the extended cyclic prefix, and the time slot format of the extended cyclic prefix
  • the slot format includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the uplink transmission and downlink transmission and transmission delay requirements of the URLLC service, and can ensure the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where , D represents a downlink symbol, Y 0 to Y 3 all represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 represents a flexible symbol or a downlink symbol, and Y 4 represents a flexible symbol or an uplink symbol.
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is: Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 , where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents Downlink symbol.
  • the symbol attribute is: Z 0 DD FDD F Z 1 DD Z 2 DD Z 3 , where F represents a flexible symbol, and Z 1 to Z 3 all represent flexible symbols or uplink symbols , D represents the downlink symbol.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first symbol attribute is: A 0 A 1 A 2 DDDDDDDDF, where F represents a flexible symbol, D represents a downlink symbol, and A 0 to A 2 all represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the first symbol attribute is: B 0 DDDDDDDDB 1 B 2 B 3 , where F represents a flexible symbol, D represents a downlink symbol, B 0 represents a flexible symbol or an uplink symbol, B 1 represents a flexible symbol or a downlink symbol, B 2 and B 3 represents any one of flexible symbols, uplink symbols, and downlink symbols.
  • the symbol attribute is: Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3 , where Z 0 represents a flexible symbol or an uplink symbol, and Z 1 represents a flexible symbol or a downlink symbol , D represents a downlink symbol, C 0 and C 1 both represent a flexible symbol or a downlink symbol, Z 2 represents a flexible symbol or a downlink symbol, and Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is: C 0 DD DD C 1 C 2 DD DD C 3 , where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols .
  • the symbols indicated by the slot format index are 12 symbols among the 14 symbols indicated by a row in the slot format table.
  • the 12 symbols are the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the symbol attributes of the 14 symbols indicated by the slot format index include: the downlink symbol D and the uplink symbol U are two consecutive symbols, and the symbol index of the downlink symbol D Less than the symbol index of the uplink symbol U.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the method further includes: the network device receives first indication information, the first indication information is used to indicate that the terminal device supports receiving synchronous broadcast in the time slot of the extended cyclic prefix Block SS/PBCH block.
  • the method further includes: the network device sends second indication information, the second indication information is used to instruct the terminal device to receive the synchronous broadcast block in the time slot of the extended cyclic prefix SS/PBCH block.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the carrier interval corresponding to the carrier interval of the time slot format of the extended cyclic prefix is: 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval, and 240KHz subcarrier interval. Any kind.
  • a communication device which has the function of realizing the behavior of the terminal device in the above method design.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the module can be software and/or hardware.
  • the structure of the terminal device includes a transmitter and a processor, and the processor is configured to support the terminal device to perform corresponding functions in the foregoing method.
  • the transmitter is used to support communication between the network device and the terminal device, and send the information or instructions involved in the above method to the network device.
  • the terminal device may also include a memory, which is used for coupling with the processor and stores program instructions and data necessary for the network device.
  • a communication device which has the function of realizing the behavior of the network device in the above method design.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the network device includes a processor and a receiver, and the processor is configured to support the network device to perform corresponding functions in the foregoing method.
  • the receiver is used to support the communication between the network device and the terminal device, and to receive the information or instructions involved in the above method sent by the terminal device.
  • the network device may also include a memory, which is used for coupling with the processor and stores program instructions and data necessary for the network device.
  • a computer storage medium for storing computer software instructions used for the above-mentioned terminal device, which contains instructions for executing the above-mentioned first aspect or any one of the possible implementations of the first aspect. program.
  • a computer storage medium for storing computer software instructions used for the above-mentioned network device, which contains instructions for executing the above-mentioned second aspect or any one of the possible implementations of the second aspect. program.
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute the method in the first aspect or any possible implementation of the first aspect, Or execute the method in the second aspect or any possible implementation of the second aspect.
  • a chip system in an eighth aspect, includes a processor for supporting terminal devices to implement the functions involved in the above aspects, for example, generating, receiving, determining, sending, or processing the functions involved in the above methods Data and/or information.
  • the chip system also includes a memory, which is used to store necessary program instructions and data for the terminal device.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • a chip system in a ninth aspect, includes a processor for supporting network devices to implement the functions involved in the above aspects, for example, generating, receiving, determining, sending, or processing the functions involved in the above methods Data and/or information.
  • the chip system also includes a memory, which is used to store necessary program instructions and data for the terminal device.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • Figure 1 shows the symbol positions of the SSB corresponding to Case C mapped to the NCP and ECP corresponding to the 60kHz subcarrier spacing.
  • Fig. 2 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • FIG. 3 is a schematic interaction diagram of a method for indicating a time slot format provided by an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of another example of a method for indicating a time slot format provided by an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of another example of a method for indicating a time slot format provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a network device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evoled) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evoled evolved base station
  • NodeB eNB or eNodeB
  • it can also be a wireless controller in a cloud radio access network (CRAN) scenario
  • the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the fifth generation (5G) mobile communication system is dedicated to supporting higher system performance, supporting multiple service types, different deployment scenarios, and a wider spectrum range.
  • multiple service types include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low-latency communications (URLLC), multimedia Broadcast multicast service (multimedia broadcast multicast service, MBMS) and positioning services, etc.
  • URLLC services have high requirements for data transmission delays.
  • URLLC services mainly include: wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interactions such as remote repairs and remote surgery Class application.
  • the main characteristics of these services are that they require ultra-high reliability, low latency, small amount of transmitted data, and burstiness.
  • Typical mMTC businesses include: smart grid distribution automation, smart cities, etc.
  • the main characteristics of this kind of business are the huge number of networked devices, the small amount of transmitted data, and the data insensitive to transmission delay.
  • These mMTC communication devices need to meet the requirements of low cost and very long standby time.
  • Typical eMBB services mainly include: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • AR augmented reality
  • VR virtual reality
  • the main characteristics of these services are a large amount of data transmission and a high transmission rate.
  • the NR system supports the scheduling of various time units, and the length of the time unit can be one or more time domain symbols.
  • the symbol may be an orthogonal frequency division multiplexing symbol (orthogonal frequency division multiplexing, OFDM).
  • the time domain resources of the NR system are composed of slots.
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • one slot includes 12 symbols.
  • the NR system supports multiple subcarrier spacing. The time slot corresponding to the time slot under different subcarrier intervals is different.
  • the time length corresponding to a slot is 1ms
  • the time length corresponding to a slot is 0.5ms
  • the time length corresponding to a slot is 0.25ms
  • the time length corresponding to a slot is 0.125ms. Since the number of symbols in a time slot is always 14 or 12 symbols, it can be understood that the length of time corresponding to a symbol also changes with the change of the sub-carrier spacing.
  • the network equipment will use physical layer signaling or high-level signaling to notify the uplink symbol (Uplink Symbol, U), downlink symbol (Downlink Symbol, D) and flexible symbol (Flexible Symbol, F) in one or more time slots. Distribution within the gap.
  • uplink symbols are used to transmit uplink data and/or uplink control information
  • downlink symbols are used to transmit downlink data and/or downlink control information
  • flexible symbols may be used to transmit uplink data and/or uplink control information, or downlink data.
  • DCI downlink control information
  • a network device When a network device indicates through DCI that a certain time slot resource is an uplink channel, and the resource includes a flexible symbol, the flexible symbol is used to transmit uplink data and/or uplink control information.
  • the network device indicates that a certain time domain resource is a downlink channel through the downlink control information DCI, and the time domain resource includes a flexible symbol, the flexible symbol is used to transmit downlink data and/or downlink control information.
  • flexible symbols generally cannot carry both uplink and downlink data and/or control information.
  • network devices indicate the positions of U, D, and F in a time slot to terminal devices through slot format indication (SFI).
  • SFI slot format indication
  • Table 1 shows the time slots for common cyclic prefixes.
  • the format of the time slot format indicates the table.
  • the symbol correspondence between different subcarriers can be used to determine whether the symbols included in one of the subcarrier intervals are uplink symbols and downlink symbols.
  • Symbol or flexible symbol For example, a time slot with a sub-carrier spacing of 15 kHz is equivalent to two time slots corresponding to a sub-carrier spacing of 30 kHz. The time length of a symbol with a sub-carrier spacing of 15 kHz is the same as the time length of two symbols corresponding to a sub-carrier spacing of 30 kHz.
  • a U with a subcarrier spacing of 15kHz can be mapped (corresponding) to two U with a subcarrier spacing of 30kHz
  • a D with a subcarrier spacing of 15kHz can be mapped to two Ds with a subcarrier spacing of 30kHz
  • the subcarrier spacing is 15kHz
  • One F of can be mapped to two Fs corresponding to 30kHz subcarrier spacing.
  • the time length of one symbol with a subcarrier spacing of 15kHz is the same as the time length of 4 symbols corresponding to a subcarrier spacing of 60kHz
  • the subcarrier spacing A U with 15kHz can be mapped to 4 U with a subcarrier spacing of 60kHz
  • a D with a subcarrier spacing of 15kHz can be mapped to 4 Ds with a subcarrier spacing of 60kHz
  • an F with a subcarrier spacing of 15kHz can be mapped to 4 F corresponding to the subcarrier spacing 60kHz.
  • the corresponding time slot format can also be determined according to the above mapping relationship.
  • the slot format of the subcarrier spacing can also be determined according to the above mapping relationship.
  • the time length of the time slot corresponding to the ECP and the time slot corresponding to the NCP are the same, and the time slot boundaries are aligned. Defined according to the existing agreement.
  • the slot format corresponding to ECP is determined according to the slot format corresponding to NCP.
  • the specific implementation method is:
  • ECP symbol ECP symbol
  • ECP symbol overlaps with DD or DF or FD of NCP, then this ECP symbol corresponds to D. If an ECP symbol overlaps with UU or UF or FU of NCP, then this ECP symbol corresponds to U.
  • ECP symbol overlaps with D and U of the NCP symbol at the same time, then the ECP symbol is F.
  • the time slot format corresponding to ECP can be determined.
  • Table 2 shows the corresponding ECP time slot format table when the subcarrier spacing is 60kHz.
  • time slot format 3 indicated by the time slot format index 3 in Table 2 is the same as the time slot format indicated by the time slot format index 1, and the time slot format indexes 28, 31, 34-36 and 45-47 in Table 2
  • time slot format indexes 28, 31, 34-36 and 45-47 in Table 2 there is no F in the middle of D ⁇ U. Is not available. Because it is defined in the standard that there must be an F between DUs, and because the terminal device needs the conversion time from downlink reception to uplink transmission, these formats are not available because there is no reserved conversion time. However, there can be no F in the middle of U ⁇ D.
  • reference signals need to be transmitted during uplink data transmission (terminal equipment to network equipment) or downlink data transmission (network equipment to terminal equipment). This is because before the receiving end performs data decoding, it needs to use the reference signal to estimate the channel, and then use the result of the channel estimation to remove the influence of the spatial channel on the data, so as to perform decoding.
  • the network device taking the synchronization signal block (Synchronization Sigal block, SSB) or the physical broadcast channel block (physical Broadcast channel block, PBCH block) as an example, the network device will first send the SSB to the terminal device, and the terminal device will identify the cell and the cell based on the SSB. Perform synchronization, etc.
  • the terminal equipment successfully receives the synchronization signal block is a prerequisite for its access to the cell. Since the synchronization signal block is a downlink signal sent by the network device to the terminal device, if there is SSB transmission in a certain time slot, the symbol occupied by the SSB should be D. There are currently several SSB transmission situations, among which, each SSB transmission occupies 4 symbols.
  • the index of the symbol can be understood as the number of the symbol. For example, for the time slot format of NCP, the numbers of the 14 symbols are 0 to 13, respectively, and for the time slot format of ECP, the numbers of the 12 symbols are 0 to 11, respectively.
  • Case C Used to transmit SSB in the slot format corresponding to the 30kHz subcarrier interval, and the index corresponding to the start symbol of the SS/PBCH block is ⁇ 2, 8 ⁇ +14*n.
  • the corresponding case C can be determined
  • the SSB is mapped to the symbol position on the NCP and ECP corresponding to the 60kHz subcarrier spacing.
  • Figure 1 shows that the SSB corresponding to Case C is mapped to the symbol positions on the NCP and ECP corresponding to the 60kHz subcarrier spacing.
  • the maximum delay difference in the factory environment is already greater than the CP length of the NCP slot format corresponding to the 30Khz/60Khz subcarrier interval That is to say: the transmission method using the 30Khz/60Khz subcarrier interval NCP time slot format in the existing system is not available.
  • the transmission method using the 30Khz/60Khz subcarrier interval NCP time slot format in the existing system is not available.
  • only 15Khz subcarrier spacing NCP or 60Khz subcarrier spacing ECP time slot format can be used for data transmission. Since the time domain length occupied by each symbol in the slot format of the 15Khz subcarrier interval NCP is too long, and the time domain length occupied by each transmission is too long, the 15Khz subcarrier interval NCP is not suitable for URLLC. Extend sensitive business. In this way, the only option is to use the 60Khz subcarrier interval ECP time slot format for data transmission.
  • the time slot formats that can be used in Table 2 include:
  • the time slot format corresponding to the first transmission format includes: DDD "DDDDDDDD" F, corresponding to format index 4
  • the time slot format corresponding to the second transmission format includes:
  • DDDDDDDDDDFFU corresponding to format index 30,
  • the existing available time slot formats in Table 2 are basically D, that is, the existing time slot format is only suitable for the transmission of downlink data on the basis of satisfying SSB transmission.
  • uplink and downlink URLLC services exist at the same time, which means that the existing time slot format is not suitable for transmitting uplink data. It severely affected the transmission of uplink data in the URLLC service, affected the normal operation of the URLLC service, and reduced the communication efficiency.
  • the application body uses a method and communication device for indicating the time slot format, which can enable the time slot format to support the transmission of downlink signals as well as the transmission of uplink data, ensuring the transmission of uplink data in the URLLC service. Ensure the normal operation of URLLC business.
  • Fig. 2 is a schematic diagram of a communication system suitable for an embodiment of the present application.
  • the mobile communication system 100 may include at least one wireless access network device 110 and at least one terminal device (terminal devices 120, 130, 140, 150, 160 as shown in FIG. 2).
  • the terminal device is connected to the wireless access network device in a wireless manner, and the wireless access network device may be the aforementioned network device.
  • At least one terminal device may send uplink data or information to the wireless access network device, and the wireless access network device 110 may also send downlink data or information to at least one terminal device.
  • multiple terminal devices can also form a communication system.
  • the terminal devices 140, 150, and 160 can form a communication system.
  • the terminal device 140 can also send downlink data or information to the terminal devices 150 and 160. 160 may also send uplink data or information to the terminal device 140.
  • the uplink and downlink data and information related to the URLLC service can be transmitted between the terminal equipment and the wireless access network equipment.
  • Fig. 2 is only a schematic diagram, and the communication system may also include other network equipment and/or terminal equipment, which are not shown in Fig. 3.
  • the embodiment of the present application does not limit the number of radio access network devices and terminals included in the mobile communication system.
  • the wireless access network device 110 may be the aforementioned network device.
  • FIG. 3 is a schematic flowchart of a method 200 for time slot format indication according to an embodiment of the present application.
  • the method 200 may be applied to the method shown in FIG. In the scenario, for example, it can be applied to scenarios that require relatively high data packet transmission delay, such as engineering automation, process control and other scenarios.
  • the embodiments of the application are not limited here.
  • a terminal device and a network device are taken as an example of executing the method of each embodiment to describe the method of each embodiment.
  • the execution subject of the execution method may also be a chip applied to a terminal device and a network device.
  • the method 200 shown in FIG. 3 may include step S210 to step S220.
  • the steps in the method 200 are described in detail below with reference to FIG. 3.
  • the method 200 includes:
  • the network device determines the time slot format index according to the time slot format of the extended cyclic prefix.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the slot format index is used to indicate a row in the slot format table, and a row in the slot format table is used to indicate the symbol attributes corresponding to at least 12 symbols.
  • the symbol attributes include uplink symbol U, downlink symbol D, or flexible The position of the symbol F.
  • the value of the time slot format index is greater than or equal to 56 and less than or equal to 254.
  • S220 The network device sends the time slot format index to the terminal device.
  • the terminal device receives the slot format index.
  • the terminal device determines the time slot format of the extended cyclic prefix according to the time slot format index.
  • the time slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U and/or at least one flexible symbol F.
  • the network device may notify the terminal device of the slot format index used for data transmission.
  • the network device determines the slot format index according to the slot format of the extended cyclic prefix.
  • the subcarrier interval corresponding to the time slot format of the extended cyclic prefix may be any one of 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval and 240KHz subcarrier interval.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix needs to meet applicable uplink transmission and downlink transmission, and needs to meet the transmission delay of the URLLC service.
  • the time slot format of the extended cyclic prefix may be a 60Khz subcarrier interval ECP time slot format.
  • the time slot format of the extended cyclic prefix also needs to meet the requirements of being able to transmit SSB. For example, when using the above 60Khz subcarrier spacing ECP time slot format to transmit SSB, the above two transmission formats need to be met, that is, it needs to meet The symbol position occupied by the SSB is the downlink symbol.
  • the slot format index is used to indicate a row in the slot format table.
  • the format of the time slot format table can be similar to that of Table 1 or Table 2 above.
  • the time slot format index is equivalent to the format in the first column of Table 1 or Table 2.
  • the value of the time slot format index is equivalent to the value of format in the first column of Table 1 or Table 2.
  • the value of the time slot format index is greater than or equal to 56 and less than or equal to 254. That is, the reserved value of the slot format index can be used to indicate the slot format. It should be understood that, in the example of the present application, the value of the time slot format index may also be less than 56. Alternatively, the value of the time slot format index may also be greater than 254.
  • the time slot format indicated by the time slot format table can be an extended cyclic prefix time slot or a common cyclic prefix time slot.
  • the slot format table is used to indicate the symbol attributes of 12 or 14 symbols included in a slot.
  • the symbol attribute can be understood as an attribute of an uplink symbol U, a downlink symbol D, or a flexible symbol F.
  • the time slot format table can be pre-configured or predefined.
  • the time slot format indicated by the time slot format table may be a normal cyclic prefix time slot format (14 symbols) or an extended cyclic prefix time slot format (14 symbols).
  • the subcarrier interval corresponding to the time slot format indicated by the time slot format table can also be any of the subcarrier intervals such as 15KHz subcarrier interval, 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval and 240KHz subcarrier interval. .
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the network device sends the slot format index to the terminal device.
  • the terminal device receives the slot format index.
  • the network device may send the slot format index to the terminal device through high-level signaling or physical layer signaling.
  • the terminal device can determine the symbol attributes of 12 or 14 symbols in a row in the slot table indicated by the slot format index, and according to the 12 or 14 symbols
  • the symbol attribute can determine the slot format of the extended cyclic prefix.
  • the extended cyclic time slot format is suitable for uplink transmission and downlink transmission, and needs to meet the transmission delay requirements of the URLLC service.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the network device sends a time slot format index to the terminal device.
  • the time slot format index is used by the terminal device to determine the time slot format of the extended cyclic prefix, and the time slot of the extended cyclic prefix
  • the format includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the uplink transmission and downlink transmission and transmission delay requirements of the URLLC service, and can ensure the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • the network device sends the slot format index to the terminal device. Specifically, the network device will determine the first number of bits according to the largest slot format index in the slot format table.
  • the maximum time slot format index in the time slot format table can be understood as the maximum value of the time slot format index in the time slot format table.
  • the network device sends the first bit state value corresponding to the first bit number to the terminal device, where the first bit state value is used to indicate the slot format index.
  • the maximum value of the time slot format index in the time slot format table is 128, the first bit number is 7 bits, and the bit status of each bit can be 0 or 1, then the bit corresponding to the first bit number There are 128 state values.
  • the first bit state value is one of the 128 bit state values, and the first bit state value is used to indicate the value of a certain slot format index.
  • the terminal device can determine the slot format index indicated by the first bit state value according to the first bit state value.
  • the first number of bits can be calculated by formula (1).
  • M represents the first number of bits
  • SFIindex represents the maximum slot format index of the slot format table. Indicates rounding up.
  • the time slot format index sent by the network device to the terminal device includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where D represents a downlink symbol, and Y 0 to Y 3 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 Represents flexible symbols or downlink symbols, Y 4 represents flexible symbols or uplink symbols.
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is a common cyclic prefix format table with a subcarrier interval of 60KHz, and the terminal device finally uses the extended cyclic prefix for uplink and downlink data transmission.
  • the time slot format of is an extended cyclic prefix format with a subcarrier spacing of 60KHz.
  • the time slot format of the extended cyclic prefix needs to meet the time slot format shown in Figure 2, that is, the extended cyclic prefix format under 60KHz needs to meet: the first transmission
  • the format (or called the first symbol attribute) needs to ensure that symbols 3 to 10 in a certain time slot are all downlink symbols, which is equivalent to ensuring that the time in the first time slot of the extended cyclic prefix format under 60KHz in Figure 2 Gap format.
  • the second transmission format (or called the second symbol attribute) needs to ensure that symbols 1 to 8 in a certain time slot are all downlink symbols, which is equivalent to ensuring the second time of the extended cyclic prefix format under 60KHz in Figure 2 Slot format in the slot. Since the time slot table corresponding to the time slot format index is a common cyclic prefix format table with a subcarrier interval of 60KHz, the terminal device can map the time slot format of the extended cyclic prefix and the time slot format of the common cyclic prefix according to the above-mentioned mapping Relationship, according to the ordinary cyclic prefix format at 60KHz, determine the extended cyclic prefix format at 60KHz.
  • the determined extended cyclic prefix format at 60KHz needs to meet: the first transmission format needs to ensure that symbols 3 to 10 are all downlink symbols, and the second transmission format needs to ensure that symbols 1 to 8 are all downlink symbols. Moreover, other symbol positions need to include the uplink symbol U and/or the flexible symbol F.
  • the time slot table corresponding to the time slot format index is a common cyclic prefix format with a subcarrier spacing of 60KHz, and the time slot format index includes two symbols used to indicate the common cyclic prefix format with a subcarrier spacing of 60KHz. At least one of the attributes:
  • the first type of symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where D represents a downlink symbol, and Y 0 to Y 3 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 Represents flexible symbols or downlink symbols, Y 4 represents flexible symbols or uplink symbols.
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the first type of symbol attribute and the second type of symbol attribute correspond to a common cyclic prefix slot format with a subcarrier spacing of 60KHz.
  • the possible values of the slot format index and the symbol attributes of the 14 symbols indicated by each possible value can be as shown in Table 4. of.
  • D represents a downlink symbol
  • Z 0 represents a flexible symbol or a downlink symbol
  • Y 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol
  • Y 4 represents a flexible symbol or an uplink symbol.
  • Y 3 represents D
  • Table 4 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 14 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 4 may also be other values, such as 71 to 85.
  • the terminal device When the terminal device receives any slot format index shown in Table 4, it can determine the common cyclic prefix format under 60KHz according to the slot format index. After determining a certain common cyclic prefix format under 60KHz, according to The mapping relationship between the ordinary cyclic prefix format under 60KHz and the time slot format of the extended cyclic prefix determines the time slot format of the extended cyclic prefix under 60KHz.
  • the time slot format of the extended cyclic prefix at 60KHz includes a downlink symbol D, at least one uplink symbol U, and at least one flexible symbol F, thereby ensuring the transmission of URLLC uplink services and downlink services.
  • the time slot format of the extended cyclic prefix at 60KHz can also meet the requirements of the first transmission format, that is, it can ensure the transmission of SSB, thereby ensuring the quality of communication.
  • X 0 and X 1 both represent a flexible symbol or an uplink symbol
  • X 2 represents a flexible symbol or a downlink symbol
  • X 3 represents a flexible symbol or an uplink symbol
  • X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the possible values of the slot format index and the symbol attributes of the 14 symbols indicated by each possible value may be as shown in Table 5.
  • X 0 and X 1 both represent flexible symbols or uplink symbols, and X 2 represents flexible symbols or downlink symbols.
  • Table 5 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 14 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 4 may also be other values.
  • the terminal device When the terminal device receives any time slot format index shown in Table 5, it can determine the corresponding ordinary cyclic prefix format at 60KHz according to the time slot format index, and after determining a certain ordinary cyclic prefix format at 60KHz According to the mapping relationship or corresponding relationship between the ordinary cyclic prefix format under 60KHz and the slot format of the extended cyclic prefix, the slot format of the extended cyclic prefix under 60KHz is determined.
  • the time slot format of the extended cyclic prefix at 60 KHz can also meet the requirements of the second transmission format, that is, the transmission of SSB can be guaranteed.
  • the terminal equipment By instructing the terminal equipment of the symbol attributes corresponding to the common cyclic prefix format under the subcarrier spacing of 60KHz, the terminal equipment only needs to use the mapping relationship between the common cyclic prefix format under 60KHz and the time slot format of the extended cyclic prefix to determine 60KHz
  • the time slot format of the extended cyclic prefix under the extended cyclic prefix can make the terminal device more accurately determine the extended cyclic prefix format under 60KHz, reduce the complexity of determining the extended cyclic prefix format under 60KHz by the terminal device, and is easy to implement.
  • the time slot format index indicator attribute sent by the network device to the terminal device is:
  • Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents downlink symbols.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is a common cyclic prefix time slot format table with a subcarrier interval of 30KHz, and the terminal device finally uses the uplink and downlink data transmission
  • the extended cyclic prefix format under 60KHz Since the time slot format of the extended cyclic prefix needs to ensure SSB transmission, the time slot format of the extended cyclic prefix needs to meet the time slot format shown in FIG. 2. From the correspondence between the normal cyclic prefix slot format under 30KHz and the extended cyclic prefix slot format under 60KHz shown in Figure 2, it can be seen that it is necessary to ensure that the slot format of the extended cyclic prefix can meet the requirements of SSB.
  • the format of the ordinary cyclic prefix time slot under 30KHz needs to be guaranteed: symbols 2 to 5 are all downlink symbols, and symbols 8 to 11 are all downlink symbols.
  • the time slot table corresponding to the time slot format index is a normal cyclic prefix format with a subcarrier interval of 30KHz
  • the time slot format of the extended cyclic prefix is an extended cyclic prefix format with a subcarrier interval of 60KHz
  • the symbol attributes of the ordinary cyclic prefix grid under 30KHz indicated by the slot format index are:
  • Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents downlink symbols.
  • the terminal device can determine the extended cyclic prefix format at 60KHz according to the mapping relationship or correspondence between the above-mentioned extended cyclic prefix slot format and the normal cyclic prefix slot format, and the normal cyclic prefix format at 30KHz.
  • the determined extended cyclic prefix format at 60KHz needs to meet: the first transmission format needs to ensure that symbols 3 to 10 are all downlink symbols, and the second transmission format needs to ensure that symbols 1 to 8 are all downlink symbols.
  • other symbol positions need to include the uplink symbol U and/or the flexible symbol F.
  • the possible values of the slot format index and the symbol attributes of the 14 symbols indicated by each possible value can be a table 6 shown.
  • Table 6 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 14 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 6 may also be other values.
  • the terminal device When the terminal device receives any time slot format index shown in Table 6, it can determine the ordinary cyclic prefix time slot format under 30KHz according to the time slot format index, and after determining the ordinary cyclic prefix time slot format under 30KHz, According to the mapping relationship between the ordinary cyclic prefix time slot format under 30KHz and the ordinary cyclic prefix time slot format under 60KHz, the ordinary cyclic prefix time slot format under 60KHz is determined, and then the ordinary cyclic prefix time slot format under 60KHz and The mapping relationship between the extended cyclic prefix slot formats under 60KHz determines the extended cyclic prefix format under 60KHz.
  • the determined extended cyclic prefix format under 60KHz needs to meet the transmission of SSB, and other symbol positions need to include uplink symbol U and/or flexible symbol F. That is, it can also meet the uplink transmission and downlink transmission and transmission delay requirements of URLLC services.
  • the terminal equipment can more accurately determine the extended cyclic prefix format at 60KHz. Further, since only the symbol attributes of 14 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the time slot format index indicator attribute sent by the network device to the terminal device is:
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is a common cyclic prefix time slot format table with a subcarrier interval of 15KHz, and the terminal device finally uses the uplink and downlink data transmission
  • the extended cyclic prefix format under 60KHz Since the time slot format of the extended cyclic prefix needs to ensure SSB transmission, the time slot format of the extended cyclic prefix needs to meet the time slot format shown in FIG. 2. From the correspondence between the normal cyclic prefix slot format under 15KHz and the extended cyclic prefix slot format under 60KHz shown in Figure 2, it can be seen that it is necessary to ensure that the slot format of the extended cyclic prefix can meet the requirements of SSB.
  • Symbol 1 and Symbol 2 are downlink symbols
  • Symbol 4 and Symbol 5 are downlink symbols
  • Symbol 8 and Symbol 9 are downlink symbols
  • symbols 11 and Symbol 12 is a downlink symbol.
  • the time slot table corresponding to the time slot format index is a normal cyclic prefix format with a subcarrier interval of 15KHz
  • the time slot format of the extended cyclic prefix is an extended cyclic prefix format with a subcarrier interval of 60KHz
  • the symbol attributes of the common cyclic prefix grid under 15KHz indicated by the slot format index are:
  • the terminal equipment determines the common cyclic prefix format under 60KHz according to the common cyclic prefix format under 15KHz and the above-mentioned mapping relationship between common cyclic prefix time slot formats of different subcarrier intervals, and then according to the time of common cyclic prefix
  • the mapping relationship between the slot format and the time slot format of the extended cyclic prefix determines the extended cyclic prefix format under 60KHz.
  • the determined extended cyclic prefix format at 60KHz needs to meet: the first transmission format needs to ensure that symbols 3 to 10 are all downlink symbols, and the second transmission format needs to ensure that symbols 1 to 8 are all downlink symbols.
  • other symbol positions need to include the uplink symbol U and/or the flexible symbol F.
  • the possible values of the slot format index and the symbol attributes of the 14 symbols indicated by each possible value can be a table 7 shown.
  • F represents a flexible symbol
  • Z 0 to Z 3 all represent a flexible symbol or an uplink symbol
  • D represents a downlink symbol.
  • Table 7 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 14 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 7 may also be other values.
  • the terminal device When the terminal device receives any time slot format index shown in Table 7, it can determine the corresponding ordinary cyclic prefix time slot format under 15KHz according to the time slot format index, and then determine the ordinary cyclic prefix time slot format under 15KHz Then, according to the mapping relationship between the common cyclic prefix slot format under 15KHz and the common cyclic prefix slot format under 60KHz, the common cyclic prefix slot format under 60KHz is determined, and then the common cyclic prefix slot format under 60KHz is determined. The mapping relationship between the format and the extended cyclic prefix slot format under 60KHz determines the extended cyclic prefix format under 60KHz.
  • the determined extended cyclic prefix format under 60KHz needs to meet the transmission of SSB, and other symbol positions need to include uplink symbol U and/or flexible symbol F. That is, it can also meet the uplink transmission and downlink transmission and transmission delay requirements of URLLC services.
  • the terminal equipment can more accurately determine the extended cyclic prefix format at 60KHz. Further, since only the symbol attributes of 14 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is a common cyclic prefix format table, that is, the time slot table corresponding to the time slot format index sent by the network device to the terminal device is all Common cyclic prefix format table, each row in the table has 14 symbol attributes.
  • the subcarrier intervals corresponding to these tables are 15KHz, 30KHz, and 60KHz respectively.
  • the terminal equipment finally uses an extended cyclic prefix format with a subcarrier spacing of 60KHz to transmit uplink and downlink data and SSB.
  • the symbol attributes of the 14 symbols indicated by the slot format index in these slot format tables include: D and U are two consecutive symbols, and the symbol index of the downlink symbol D is smaller than the symbol index of the uplink symbol U . That is, there may be situations where there is no F between the symbol D and the symbol U, such as symbols 11 and 12 in the time slot format table shown in Table 4, and time slot format indexes 71 to 87 in the time slot format table shown in Table 6. Symbol 11 and symbol 12 in Table 7, symbol 9 and symbol 10 in the time slot format table shown in Table 7. This is because the network device notifies the terminal device of the slot format index of the slot format of the common cyclic prefix slot format.
  • the terminal device determines the slot format index after receiving the slot format index of the common cyclic prefix slot format.
  • the time slot format of the ordinary cyclic prefix indicated by the format index also needs to be determined according to the mapping relationship between the time slot format of the extended cyclic prefix and the time slot format of the ordinary cyclic prefix to determine the time slot for the final transmission of uplink and downlink data and the extended cyclic prefix of the SSB format. Even if the network device notifies the DU included in the slot format, F can appear between D and U when it is finally mapped to the slot format of the extended cyclic prefix. Therefore, the common cyclic prefix format table corresponding to the slot format index sent by the network device to the terminal device may have two adjacent symbol attributes of DU.
  • the symbol attributes of the 14 symbols indicated by using the slot format index include symbol attributes where D and U are two consecutive symbols, and the symbol index of D is smaller than the symbol index of U.
  • the number of symbol attribute slot format indexes used to indicate 14 symbols can be increased, that is, more types of symbol attributes of 14 symbols can be used to indicate the extended cyclic prefix format. A more flexible indication of the symbol attributes of 14 symbols is realized.
  • the extended cyclic prefix format at 60KHz determined by the terminal device according to the symbol attributes of the 14 symbols indicated by the slot format index meets the transmission of URLLC uplink services and downlink services, ensuring communication quality and efficiency.
  • the time slot tables corresponding to the time slot format index sent by the network device to the terminal device are all common cyclic prefix format tables, that is, a row in the table has symbol attributes of 14 symbols.
  • the terminal device can combine the above-mentioned extended cyclic prefix time slot format and ordinary cyclic prefix time slot format according to the symbol attributes of 14 symbols under a certain seed carrier interval (for example, 15KHz, 30KHz, 60KHz, etc.) indicated by the time slot index
  • the mapping relationship between the formats and/or the slot formats of common cyclic prefixes with different subcarrier intervals determines the extended cyclic prefix format under 60KHz.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device may also be an extended cyclic prefix format table, that is, a row in the table has symbol attributes of 12 symbols.
  • the terminal device can combine the symbol attributes of the 12 symbols under a certain seed carrier interval (for example, 15KHz, 30KHz, 60KHz, etc.) indicated by the slot index, and combine the above-mentioned slot formats of the extended cyclic prefix with different subcarrier intervals.
  • the mapping relationship can determine the final transmission of uplink and downlink data and the extended cyclic prefix format under a certain subcarrier interval (for example, 60KHz subcarrier interval) of the SSB.
  • the slot format index indicates the symbol attributes of the 12 symbols in the extended cyclic prefix slot format.
  • the time slot of the extended cyclic prefix For the time slot format index indicating that the 60KHz subcarrier interval corresponds to the 12 symbols of the extended cyclic prefix time slot format, since the time slot format of the extended cyclic prefix needs to ensure the transmission of SSB, the time slot of the extended cyclic prefix The format needs to meet the time slot format shown in Figure 2, that is, the extended cyclic prefix format under 60KHz needs to meet:
  • the first transmission format (or called the first symbol attribute) needs to ensure that symbols 3 to 10 are all downlink symbols. It is equivalent to guaranteeing the time slot format in the first time slot of the extended cyclic prefix format at 60 KHz in FIG. 2.
  • the second transmission format (or called the second symbol attribute) needs to ensure that symbols 1 to 8 are all downlink symbols.
  • the time slot table corresponding to the time slot format index is an extended cyclic prefix format with a subcarrier interval of 60KHz, and the terminal device finally uses an extended cycle with a subcarrier interval of 60KHz for uplink and downlink data transmission.
  • the symbol attribute indicated by the slot format index includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: A 0 A 1 A 2 DDDDDDDDF, where F represents a flexible symbol, D represents a downlink symbol, and A 0 to A 2 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the first symbol attribute is: B 0 DDDDDDDDB 1 B 2 B 3 , where F represents a flexible symbol, D represents a downlink symbol, B 0 represents a flexible symbol or an uplink symbol, B 1 represents a flexible symbol or a downlink symbol, B 2 and B 3 represents any one of flexible symbols, uplink symbols, and downlink symbols.
  • the possible values of the slot format index and the symbol attributes of the 12 symbols indicated by each possible value can be as shown in Table 8. of.
  • Table 8 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 12 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 8 may also be other values, such as 71 to 85.
  • the terminal device When the terminal device receives any slot format index shown in Table 8, it can determine the slot format of the extended cyclic prefix under 60KHz according to the slot format index.
  • the time slot format of the extended cyclic prefix at 60KHz includes a downlink symbol D, at least one uplink symbol U, and at least one flexible symbol F, which ensures the transmission of URLLC uplink services and downlink services.
  • the time slot format of the extended cyclic prefix at 60KHz can also meet the requirements of the first transmission format, that is, the transmission of SSB can be guaranteed.
  • the possible values of the slot format index and the symbol attributes of the 12 symbols indicated by each possible value may be shown in Table 9.
  • Table 9 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 12 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 9 may also be other values.
  • the terminal device When the terminal device receives any slot format index shown in Table 9, it can determine the slot format of the extended cyclic prefix under 60KHz according to the slot format index.
  • the time slot format of the extended cyclic prefix at 60KHz includes a downlink symbol D, at least one uplink symbol U, and at least one flexible symbol F, which ensures the transmission of URLLC uplink services and downlink services.
  • the time slot format of the extended cyclic prefix at 60KHz can also meet the requirements of the first transmission format, that is, the transmission of SSB can be guaranteed.
  • the terminal equipment can directly transmit uplink and downlink data based on the indicated 12 symbols of the extended cyclic prefix format under 60KHz And SSB transmission.
  • the terminal equipment does not need to perform the process of mapping and converting the slot format.
  • the complexity of determining the extended cyclic prefix format under 60KHz by the terminal device is reduced, and it is easy to implement.
  • the time slot format index indicator attribute sent by the network device to the terminal device is:
  • Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3
  • Z 0 represents flexible symbols or uplink symbols
  • Z 1 represents flexible symbols or downlink symbols
  • D represents downlink symbols
  • C 0 and C 1 both represent flexible symbols or downlink symbols
  • Z 2 represents a flexible symbol or a downlink symbol
  • Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is an extended cyclic prefix time slot format table with a subcarrier interval of 30KHz, and the terminal device finally uses the following for uplink and downlink data transmission In the case of the extended cyclic prefix format under 60KHz with the subcarrier spacing.
  • the time slot table corresponding to the time slot format index is the extended cyclic prefix format with the subcarrier spacing of 30KHz, and the time slot of the extended cyclic prefix
  • the symbol attributes of the extended cyclic prefix grid at 30KHz indicated by the slot format index are:
  • Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3
  • Z 0 represents flexible symbols or uplink symbols
  • Z 1 represents flexible symbols or downlink symbols
  • D represents downlink symbols
  • C 0 and C 1 both represent flexible symbols or downlink symbols
  • Z 2 represents a flexible symbol or a downlink symbol
  • Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the possible values of the slot format index and the symbol attributes of the 12 symbols indicated by each possible value can be a table 10 shown.
  • Table 10 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 12 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 10 may also be other values.
  • the terminal device When the terminal device receives any slot format index shown in Table 10, it can determine the extended cyclic prefix slot format at 30KHz according to the slot format index. After determining the extended cyclic prefix slot format at 30KHz, According to the relationship between the extended cyclic prefix slot format under 30KHz and the extended cyclic prefix slot format under 60KHz, the extended cyclic prefix format under 60KHz is determined. In addition, the determined extended cyclic prefix format under 60KHz needs to meet the transmission of SSB, and other symbol positions need to include uplink symbol U and/or flexible symbol F. That is, it can also meet the uplink transmission and downlink transmission and transmission delay requirements of URLLC services.
  • the terminal equipment By instructing the terminal equipment of the symbol attributes corresponding to the extended cyclic prefix format under the subcarrier spacing of 30KHz, the terminal equipment only needs to use the mapping relationship between the extended cyclic prefix format under 60KHz and the time slot format of the 30KHz extended cyclic prefix to determine
  • the time slot format of the extended cyclic prefix under 60KHz can be obtained by the terminal device to determine the extended cyclic prefix format under 60KHz more accurately, and the complexity of determining the extended cyclic prefix format under 60KHz can be reduced by the terminal device. Further, since only the symbol attributes of 12 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the time slot format index indicator attribute sent by the network device to the terminal device is:
  • C 0 DD DD C 1 C 2 DD DD C 3 where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols.
  • the time slot table corresponding to the time slot format index sent by the network device to the terminal device is an extended cyclic prefix time slot format table with a subcarrier interval of 15KHz, and the terminal device finally uses the uplink and downlink data transmission In the case of the extended cyclic prefix format under 60KHz. Since the time slot format of the extended cyclic prefix needs to ensure the transmission of SSB, when the time slot table corresponding to the time slot format index is the extended cyclic prefix format with the subcarrier interval of 15KHz, the time slot format index indicates 15KHz
  • the symbolic properties of the extended cyclic prefix lattice below are:
  • C 0 DD DD C 1 C 2 DD DD C 3 where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols.
  • the possible values of the slot format index and the symbol attributes of the 12 symbols indicated by each possible value can be a table 11 shown.
  • Table 11 is only exemplary, and there should be no restriction on the value of the slot format index and the symbol attributes of the 12 symbols corresponding to the slot format index.
  • the value of the time slot format index in Table 11 may also be other values.
  • the terminal device When the terminal device receives any slot format index shown in Table 11, it can determine the extended cyclic prefix slot format under 15KHz according to the slot format index. After determining the extended cyclic prefix slot format under 15KHz, According to the relationship between the extended cyclic prefix slot format under 15KHz and the extended cyclic prefix slot format under 60KHz, the extended cyclic prefix format under 60KHz is determined. In addition, the determined extended cyclic prefix format under 60KHz needs to meet the transmission of SSB, and other symbol positions need to include uplink symbol U and/or flexible symbol F. That is, it can also meet the uplink transmission and downlink transmission and transmission delay requirements of URLLC services.
  • the terminal equipment By instructing the terminal equipment of the symbol attributes corresponding to the extended cyclic prefix format at a subcarrier interval of 15KHz, the terminal equipment only needs to use the mapping relationship between the extended cyclic prefix format at 60KHz and the time slot format of the 15KHz extended cyclic prefix to determine
  • the time slot format of the extended cyclic prefix under 60KHz can be obtained by the terminal device to determine the extended cyclic prefix format under 60KHz more accurately, and the complexity of determining the extended cyclic prefix format under 60KHz can be reduced by the terminal device. Further, since only the symbol attributes of 12 symbols need to be notified, the resources occupied by the notification of the symbol attributes can be reduced, and the utilization rate of resources can be improved.
  • the above-mentioned time slot table corresponding to the time slot format index is the extended cyclic prefix time slot format table under the subcarrier interval of 15KHz, the extended cyclic prefix time slot format table under the subcarrier interval of 30KHz, and the subcarrier interval of 60KHz.
  • the extended cyclic prefix time slot format table is taken as an example for description.
  • For the slot format index indicating a row of 12 symbols of the extended cyclic slot format these 12 symbols may be 12 symbols of the 14 symbols of the common cyclic prefix corresponding to the same subcarrier interval.
  • the terminal equipment determines the positions of 12 symbols from the 14 symbols in the time slot table.
  • the terminal device determines the attributes of the 12 symbols corresponding to the extended cyclic prefix time slot according to the symbol attributes at the positions of the 12 symbols.
  • these 12 symbols can be the first symbol indicated by the aforementioned 60KHz ordinary cyclic prefix slot format index.
  • the first symbol to the sixth symbol (symbol index 0 to 5) and the 8th symbol to the 13th symbol (symbol index 7 to 12) of the 14 symbols in a symbol attribute.
  • the 12 symbols indicated by each slot format index may be the 60KHz common cyclic prefix slot format index table shown in Table 4
  • the first symbol to the sixth symbol symbol index 0 to 5
  • the 8th symbol to the 13th symbol symbol index 7 to 12
  • these 12 symbols may be the aforementioned 30KHz ordinary cyclic prefix slot format index
  • these 12 symbols may be the aforementioned 15KHz common cyclic prefix slot format index The first 12 symbols among the 14 symbols in the indicated 14 symbol attributes, or the last 12 symbols.
  • the symbol indicated by the network device by using the slot format index is the first 12 symbols, or the last 12 symbols, or the first to the sixth symbols of the 14 symbols indicated by a row in the slot format table, and The 8th symbol to the 13th symbol.
  • the network device can determine the symbol attributes of the 12 symbols indicated by the slot format index more accurately and conveniently, which reduces the complexity of determining the symbol attributes of the 12 symbols indicated by the slot format index by the network device, and is easy to implement.
  • the 60KHz extended cyclic prefix format determined by the terminal device according to the symbol attributes of the 12 symbols indicated by the slot format index can satisfy the transmission of URLLC uplink services and downlink services, and can ensure the transmission of SSB. Ensure communication quality and efficiency.
  • the subcarrier interval corresponding to the time slot table indicated only by the time slot format index sent by the network device to the terminal device is any one of 15KHz subcarrier interval, 30KHz subcarrier interval and 60KHz subcarrier interval.
  • the terminal equipment determines the time slot format of the extended cyclic prefix under the 60KHz subcarrier interval according to the time slot format index as an example for description.
  • the subcarrier interval corresponding to the time slot table indicated by the time slot format index sent by the network device to the terminal device may also be 15KHz subcarrier interval, 30KHz subcarrier interval, 60KHz subcarrier interval, 120KHz subcarrier interval And any one or more of the 240KHz subcarrier interval, and the terminal equipment can also determine the slot format of the extended cyclic prefix under the 15KHz subcarrier interval according to the slot format index, and the extended cyclic under the 30KHz subcarrier interval Any one of the time slot format of the prefix, the time slot format of the extended cyclic prefix under the 120KHz subcarrier interval, or the time slot format of the extended cyclic prefix under the 240KHz subcarrier interval.
  • the subcarrier interval corresponding to the time slot table indicated by the time slot format index sent by the network device to the terminal device is less than or equal to the subcarrier interval corresponding to the time slot format of the extended cyclic prefix that the terminal device needs to determine according to the time slot format index.
  • the method 200 further includes S209.
  • the terminal device sends first indication information to the network device, where the first indication information is used to indicate that the terminal device supports receiving the SS/PBCH block in the time slot of the extended cyclic prefix.
  • the terminal device may report to the network device the time slot format index of a time slot corresponding to the extended cyclic prefix and/or capability information of the terminal device supporting receiving the SS/PBCH block corresponding to the extended cyclic prefix. That is, the terminal device can use the foregoing first indication information to indicate to the network device that it supports data or control information transmitted in the extended cyclic prefix time slot format.
  • the subcarrier interval corresponding to the extended cyclic prefix time slot format may be any one or more of 15KHz subcarrier interval, 30KHz subcarrier interval, 60KHz subcarrier interval, 120KHz subcarrier interval and 240KHz subcarrier interval.
  • the network device can execute the steps of S210 and S220 to send the time slot format index to the terminal device.
  • the time slot format index is used
  • the terminal equipment determines the time slot format of the extended cyclic prefix.
  • the terminal device determines the time slot format of the extended cyclic prefix, it can receive the SSB in the time slot format of the extended cyclic prefix, and send uplink data and receive downlink data in the time slot format of the extended cyclic prefix.
  • the method 200 further includes S208.
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to instruct the terminal device to receive the SS/PBCH block in the time slot of the extended cyclic prefix.
  • the network device may also send second indication information to the terminal device.
  • the second indication information may be used to instruct the terminal device to receive the time slot format index of a time slot corresponding to the extended cyclic prefix, and/or to receive the corresponding extended cyclic prefix.
  • SS/PBCH block For example, when the terminal device does not support receiving the slot format index of a slot corresponding to the extended cyclic prefix ECP, and/or does not support receiving the capability information of the SS/PBCH block corresponding to ECP, the network device can configure the terminal device Receive the slot format index of a slot corresponding to the extended cyclic prefix, and/or support receiving the SS/PBCH block corresponding to the extended cyclic prefix.
  • the network device configures the terminal device to support receiving the slot format index of a slot corresponding to the extended cyclic prefix through the second indication information (or can also be referred to as configuration information), and/or supports receiving the corresponding extended cyclic prefix SS/PBCH block.
  • the network device can perform the steps of S210 and S220 to send the time slot format index to the terminal device.
  • the time slot format index is used by the terminal device to determine the time slot format of the extended cyclic prefix.
  • the terminal device determines the time slot format of the extended cyclic prefix, it can receive the SSB in the time slot format of the extended cyclic prefix, and send uplink data and receive downlink data in the time slot format of the extended cyclic prefix.
  • S208 may also be included in the steps shown in FIG. 5.
  • the network device sends a time slot format index to the terminal device, and the time slot format indicated by the time slot format index can be an extended cyclic time slot format or a normal cyclic time slot format.
  • the terminal equipment determines the symbol attributes in the extended cyclic time slot format according to the time slot format index.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U, and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the uplink transmission, downlink transmission and transmission delay requirements of the URLLC service, thereby ensuring the normal transmission of the URLLC service.
  • the time slot format of the extended cyclic prefix can also satisfy the normal transmission of the SSB, thereby further ensuring the communication quality.
  • the second indication information sent by the network device to the terminal may be implemented by the network device sending high-level signaling, physical layer signaling, or dedicated configuration information to the terminal.
  • the high-level signaling may include, for example, radio resource control (radio resource control, RRC), medium access control (medium access control, MAC) control element (CE), and radio link control (radio link control, RLC).
  • RRC radio resource control
  • CE medium access control
  • RLC radio link control
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • first, the second, etc. are only used to indicate that multiple objects are different.
  • first type of symbol attribute and the second type of symbol attribute are just to show different symbol attributes. It should not have any influence on the symbol attribute itself, and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminals and network devices).
  • the specific implementation method is not limited.
  • the device 300 may correspond to the terminal device described in the above method 200, or may be a chip or component applied to the terminal device, and each of the devices 300 The modules or units are respectively used to execute various actions or processing procedures performed by the terminal device in the above method 200.
  • the communication device 300 may include:
  • the receiving module 310 is configured to receive a slot format index, where the slot format index is used to indicate a row in the slot format table, and a row in the slot format table is used to indicate symbol attributes corresponding to at least 12 symbols.
  • the symbol attribute includes the position of the uplink symbol U, the downlink symbol D, or the flexible symbol F, and the value of the slot format index is greater than or equal to 56 and less than or equal to 254.
  • the processing module 320 is configured to determine the slot format of the extended cyclic prefix according to the slot format index.
  • the slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U and/or at least one flexible symbol F.
  • the communication device receives a time slot format index sent by a network device.
  • the time slot format index is used by the device to determine the time slot format of the extended cyclic prefix, and the time slot format of the extended cyclic prefix includes the downlink symbol D , At least one uplink symbol U and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the requirements of the device for uplink transmission, downlink transmission and transmission delay of the URLLC service, and can ensure the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where D represents a downlink symbol, and Y 0 to Y 3 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 Represents flexible symbols or downlink symbols, Y 4 represents flexible symbols or uplink symbols.
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is: Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 , where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents Downlink symbol.
  • the symbol attribute is: Z 0 DD FDD F Z 1 DD Z 2 DD Z 3 , where F represents a flexible symbol, and Z 1 to Z 3 all represent flexible symbols or uplink symbols , D represents the downlink symbol.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: A 0 A 1 A 2 DDDDDDDDF, where F represents a flexible symbol, D represents a downlink symbol, and A 0 to A 2 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol;
  • the first symbol attribute is: B 0 DDDDDDDDB 1 B 2 B 3 , where F represents a flexible symbol, D represents a downlink symbol, B 0 represents a flexible symbol or an uplink symbol, B 1 represents a flexible symbol or a downlink symbol, B 2 and B 3 represents any one of flexible symbols, uplink symbols, and downlink symbols.
  • the symbol attribute is:
  • Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3
  • Z 0 represents flexible symbols or uplink symbols
  • Z 1 represents flexible symbols or downlink symbols
  • D represents downlink symbols
  • C 0 and C 1 both represent flexible symbols or downlink symbols
  • Z 2 represents a flexible symbol or a downlink symbol
  • Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is:
  • C 0 DD DD C 1 C 2 DD DD C 3 where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols.
  • the symbols indicated by the slot format index are 12 symbols among the 14 symbols indicated by a row in the slot format table.
  • the 12 symbols are the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the 13th symbol is the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the symbol attributes of the 14 symbols indicated by the slot format index include: the downlink symbol D and the uplink symbol U are two consecutive symbols, and the symbol index of the downlink symbol D The symbol index smaller than the uplink symbol U, wherein the subcarrier interval corresponding to the slot format indicated by the slot format index is less than or equal to the subcarrier interval corresponding to the slot format of the extended cyclic prefix.
  • the device 300 further includes a sending module 330 to send first indication information, where the first indication information is used to indicate that the communication device supports receiving the time slot in the extended cyclic prefix Synchronous broadcast block SS/PBCH block.
  • the receiving module 310 is further configured to: receive second indication information, where the second indication information is used to instruct the communication device to receive the synchronous broadcast block in the time slot of the extended cyclic prefix SS/PBCH block.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the carrier interval corresponding to the carrier interval of the time slot format of the extended cyclic prefix is: 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval, and 240KHz subcarrier interval. Any kind.
  • the receiving module (unit) 310 and the sending module (unit) 330 are used to execute the steps of receiving and sending information by the terminal device in each embodiment of the foregoing method 200 and the embodiments shown in FIGS. 3 to 5.
  • the communication device 300 may further include a storage module for storing instructions executed by the processing module 320, the receiving module 310, and the sending module 330.
  • the processing module 320, the receiving module 310, the sending module 330 and the storage module are in communication connection to store and store instructions.
  • the processing module 320 is used to execute the instructions stored in the storage module.
  • the receiving module 310 and the sending module 330 are used to execute under the driving of the processing module 320. Specific signal transmission and reception.
  • the receiving module 310 and the sending module 330 may be transceivers, input/output interfaces, or interface circuits.
  • the storage unit may be a memory.
  • the processing module 320 may be implemented by a processor. As shown in FIG. 7, the communication device 400 may include a processor 410, a memory 420, and a transceiver 430.
  • the communication device 300 shown in FIG. 6 or the communication device 400 shown in FIG. 7 can implement the various embodiments of the foregoing method 200 and the steps performed by the terminal device in the embodiments shown in FIG. 3 to FIG. 5.
  • the communication device 300 shown in FIG. 6 or the communication device 400 shown in FIG. 7 may be a terminal device.
  • FIG. 8 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may correspond to the network equipment described in the above method 200, or may be a chip or component applied to a network, and each module in the device 500 The or units are respectively used to execute various actions or processing procedures performed by the network device in the above method 200.
  • the communication device 500 may include: a processing module 510 and a sending module 520.
  • the processing module 510 is configured to determine the time slot format index according to the time slot format of the extended cyclic prefix.
  • the time slot format of the extended cyclic prefix includes a downlink symbol D, at least one uplink symbol U and/or at least one flexible symbol F.
  • the slot format index is used to indicate a row in the slot format table, and a row in the slot format table is used to indicate the symbol attributes corresponding to at least 12 symbols respectively.
  • the symbol attributes include uplink symbol U, downlink symbol D, or flexible symbol F
  • the value of the slot format index is greater than or equal to 56 and less than or equal to 254.
  • the sending module 520 is used to send the slot format index.
  • the communication device provided in this application sends a time slot format index to a terminal device.
  • the time slot format index is used by the terminal device to determine the time slot format of the extended cyclic prefix, and the time slot format of the extended cyclic prefix includes downlink symbols D, At least one uplink symbol U and/or at least one flexible symbol F.
  • the time slot format of the extended cyclic prefix can meet the requirements of the device for uplink transmission, downlink transmission and transmission delay of the URLLC service, and can ensure the normal transmission of the SSB, thereby ensuring the normal transmission of the URLLC service.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: Y 0 Y 1 Y 2 Z 0 DDDDDDDD Y 3 Y 4 , where D represents a downlink symbol, and Y 0 to Y 3 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol, Z 0 Represents flexible symbols or downlink symbols, Y 4 represents flexible symbols or uplink symbols;
  • the second symbol attribute is: X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5 , where D represents a downlink symbol, X 0 and X 1 both represent a flexible symbol or an uplink symbol, X 2 represents a flexible symbol or a downlink symbol, and X 3 represents a flexible symbol or an uplink symbol, and X 4 and X 5 both represent any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is: Z 0 Z 1 DDDD Z 2 Z 3 DDDD Z 4 Z 5 , where Z 0 to Z 5 all represent flexible symbols or uplink symbols, and D represents Downlink symbol.
  • the symbol attribute is: Z 0 DD FDD F Z 1 DD Z 2 DD Z 3 , where F represents a flexible symbol, and Z 1 to Z 3 all represent flexible symbols or uplink symbols , D represents the downlink symbol.
  • the symbol attribute includes at least one of the following two symbol attributes:
  • the first type of symbol attribute is: A 0 A 1 A 2 DDDDDDDDF, where F represents a flexible symbol, D represents a downlink symbol, and A 0 to A 2 represent any one of a flexible symbol, an uplink symbol, and a downlink symbol;
  • the first symbol attribute is: B 0 DDDDDDDDB 1 B 2 B 3 , where F represents a flexible symbol, D represents a downlink symbol, B 0 represents a flexible symbol or an uplink symbol, B 1 represents a flexible symbol or a downlink symbol, B 2 and B 3 represents any one of flexible symbols, uplink symbols, and downlink symbols.
  • the symbol attribute is:
  • Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3
  • Z 0 represents flexible symbols or uplink symbols
  • Z 1 represents flexible symbols or downlink symbols
  • D represents downlink symbols
  • C 0 and C 1 both represent flexible symbols or downlink symbols
  • Z 2 represents a flexible symbol or a downlink symbol
  • Z 3 represents any one of a flexible symbol, an uplink symbol, and a downlink symbol.
  • the symbol attribute is:
  • C 0 DD DD C 1 C 2 DD DD C 3 where C 0 to C 3 all represent flexible symbols or downlink symbols, and D represents downlink symbols.
  • the symbols indicated by the slot format index are 12 symbols among the 14 symbols indicated by a row in the slot format table.
  • the 12 symbols are the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the 13th symbol is the first 12 symbols, or the last 12 symbols, or the first symbol to the sixth symbol and the eighth symbol to the 14 symbols.
  • the symbol attributes of the 14 symbols indicated by the slot format index include: the downlink symbol D and the uplink symbol U are two consecutive symbols, and the symbol index of the downlink symbol D The symbol index smaller than the uplink symbol U, wherein the subcarrier interval corresponding to the slot format indicated by the slot format index is less than or equal to the subcarrier interval corresponding to the slot format of the extended cyclic prefix.
  • the communication device further includes: the receiving module 530 is further configured to: receive first indication information, where the first indication information is used to indicate that the terminal device supports receiving the extended cyclic prefix. Synchronous broadcast block SS/PBCH block in the slot.
  • the sending module 520 is further configured to: send second indication information, where the second indication information is used to instruct the terminal device to receive the synchronous broadcast block SS in the time slot of the extended cyclic prefix /PBCH block.
  • the subcarrier interval corresponding to the timeslot format indicated by the timeslot format index is less than or equal to the subcarrier interval corresponding to the timeslot format of the extended cyclic prefix.
  • the carrier interval corresponding to the carrier interval of the time slot format of the extended cyclic prefix is: 30KHz subcarrier interval, 60KHz subcarrier interval, 120K subcarrier interval, and 240KHz subcarrier interval. Any kind.
  • the sending module (unit) 520 and the receiving module (unit) 530 are used to perform the steps of receiving and sending information by the network device in the foregoing method embodiment.
  • the communication device 500 may further include a storage module for storing instructions executed by the processing module 510, the sending module 520, and the receiving module 530.
  • the processing module 510, the sending module 520, the receiving module 530 and the storage module are in communication connection.
  • the storage module stores instructions.
  • the processing module 510 is used to execute the instructions stored in the storage module.
  • the sending module 520 and the receiving module 530 execute specific instructions under the drive of the processing module 510. Signal transceiving.
  • the sending module 520 and the receiving module 530 may be transceivers, input/output interfaces, or interface circuits.
  • the storage module may be a memory.
  • the processing module 510 may be implemented by a processor. As shown in FIG. 9, the communication device 600 may include a processor 610, a memory 620, and a transceiver 630.
  • the communication device 500 shown in FIG. 8 or the communication device 600 shown in FIG. 9 can implement the steps performed by the network device in each embodiment of the foregoing method 200.
  • the communication device 500 shown in FIG. 8 or the communication device 600 shown in FIG. 9 may be a network device.
  • each unit in the above device can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • the processing element may also be called a processor, and may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 10 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal equipment includes an antenna 710, a radio frequency device 720, and a baseband device 730.
  • the antenna 710 is connected to the radio frequency device 720.
  • the radio frequency device 720 receives information sent by the network device through the antenna 710, and sends the information sent by the network device to the baseband device 730 for processing.
  • the baseband device 730 processes the information of the terminal device and sends it to the radio frequency device 720
  • the radio frequency device 720 processes the information of the terminal device and sends it to the network device via the antenna 710.
  • the baseband device 730 may include a modem subsystem, which is used to process the various communication protocol layers of data; it may also include a central processing subsystem, which is used to process the terminal operating system and application layer; in addition, it may also include other Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be an independent chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 731, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 732 and an interface circuit 733.
  • the storage element 732 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 732, but is stored in a memory outside the modem subsystem.
  • the interface circuit 733 is used to communicate with other subsystems.
  • the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
  • the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the terminal in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application. Used to implement the operation of the network device in the above embodiment.
  • the network equipment includes an antenna 801, a radio frequency device 802, and a baseband device 803.
  • the antenna 801 is connected to the radio frequency device 802.
  • the radio frequency device 802 receives the information sent by the terminal through the antenna 801, and sends the information sent by the terminal device to the baseband device 803 for processing.
  • the baseband device 803 processes the information of the terminal and sends it to the radio frequency device 802, and the radio frequency device 802 processes the information of the terminal device and sends it to the terminal via the antenna 801.
  • the baseband device 803 may include one or more processing elements 8031, for example, a main control CPU and other integrated circuits.
  • the baseband device 803 may also include a storage element 8032 and an interface 8033.
  • the storage element 8032 is used to store programs and data; the interface 8033 is used to exchange information with the radio frequency device 802.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 803.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 803.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-chip.
  • the baseband device includes the SOC chip for implementing the above method.
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the foregoing terminal device and the foregoing network device.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code.
  • the computer program includes instructions for executing the time slot format indication method of the embodiment of the present application in the above method 200.
  • the readable medium may be read-only memory (ROM) or random access memory (RAM), which is not limited in the embodiment of the present application.
  • the present application also provides a computer program product, the computer program product including instructions, when the instructions are executed, so that the terminal device and the network device perform operations of the terminal device and the network device corresponding to the above method.
  • the embodiment of the present application also provides a system chip.
  • the system chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the chip in the communication device executes any of the above-mentioned methods for indicating the time slot format provided in the embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (ROM).
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the above feedback information transmission method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static RAM
  • dynamic RAM dynamic RAM
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct memory bus random access Access memory
  • direct rambus RAM direct rambus RAM
  • system and “network” in this article are often used interchangeably in this article.
  • and/or in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction from the centralized unit to the distributed unit.
  • uplink and downlink “It is only used to describe the direction of data/information transmission.
  • the specific start and end equipment of the data/information transmission is not limited.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer program or instruction can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrated with one or more available media.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种时隙格式指示的方法和通信装置,该方法包括:接收时隙格式索引,该时隙格式索引用于指示时隙格式表中的一行,时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,符号属性包括上行符号U、下行符号D或灵活符号F的位置。根据该时隙格式索引,确定扩展循环前缀的时隙格式,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。本申请提供的方法,利用用于指示扩展循环前缀的时隙格式的时隙格式索引确定扩展循环时隙格式,该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,从而保证了URLLC业务的正常传输。

Description

时隙格式指示的方法和通信装置
本申请要求于2019年05月22日提交中国专利局、申请号为201910429847.4、申请名称为“时隙格式指示的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及一种时隙格式指示的方法和通信装置。
背景技术
第五代(the fifth generation,5G)移动通信***致力于支持更高的***性能,支持多种业务类型、不同部署场景和更宽的频谱范围。其中,多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB)、海量机器类型通信(massive machine type communication,mMTC)、超可靠低延迟通信(ultra-reliable and low-latency communications,URLLC)、多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等。
URLLC业务对数据传输的时延和可靠性要求都比较高,在一些场景中,利用普通循环前缀的时隙传输URLLC业务无法满足时延要求,因此,需要利用扩展循环前缀的时隙传输URLLC业务。但是由于URLLC业务的上行数据和下行数据是同时存在的,利用扩展循环前缀的时隙传输URLLC业务不能保证URLLC业务的上行数据和下行数据同时传输,严重影响了URLLC业务中上行数据和下行数据的传输,影响了URLLC业务的正常运行,降低了通信效率。
发明内容
本申请提供了一种时隙格式指示的方法和通信装置,利用用于指示扩展循环前缀的时隙格式的时隙格式索引确定扩展循环时隙格式,该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
第一方面,提供了一种时隙格式指示的方法,该方法的执行主体既可以是终端设备也可以是应用于终端设备的芯片,以执行主体为终端设备为例,该方法包括:终端设备接收时隙格式索引,该时隙格式索引用于指示时隙格式表中的一行,该时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,该符号属性包括上行符号U、下行符号D或灵活符号F的位置,该时隙格式索引的取值大于或等于56且小于或等于254。该终端设备根据该时隙格式索引,确定扩展循环前缀的时隙格式,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
第一方面提供的时隙格式指示的方法,网络设备通过向终端设备发送时隙格式索引, 该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式,并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
在第一方面的一种可能的实现方式中,该符号属性包括以下两种符号属性中的至少一种:第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号。第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。可选的,这两种符号属性对应时隙格式为子载波间隔为60KHz下的普通循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为60KHz下的普通循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的普通循环前缀格式和扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度,容易实现。
在第一方面的一种可能的实现方式中,该符号属性为:Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。可选的,该符号属性对应时隙格式为子载波间隔为30KHz下的普通循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为30KHz下的普通循环前缀格式对应的符号属性,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式。进一步的,由于只需要通知14个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在第一方面的一种可能的实现方式中,该符号属性为:Z 0DD FDD F Z 1DD Z 2DD Z 3,其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。可选的,该符号属性对应时隙格式为子载波间隔为15KHz下的普通循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为15KHz下的普通循环前缀格式对应的符号属性,终端设备根据普通循环前缀时隙格式和扩展循环前缀时隙格式之间的映射关系,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式。进一步的,由于只需要通知14个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在第一方面的一种可能的实现方式中,该符号属性包括以下两种符号属性中的至少一种:第一种符号属性为:A 0A 1A 2DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个;第一种符号属性为:B 0DDDDDDDDB 1B 2B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵活符号、上行符号以及下行符号中的任意一个。可选的,这两种符号属性对应时隙格式为子载波间隔为60KHz下的扩展循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为60KHz下的扩展循环前缀格式对应的符号属性,终端设备可以直接根据指示的60KHz下的扩展循环前缀格式进行上下行数据的传输和SSB的传输。终端设备不需要在进行时隙格式的映射。降低终端设备确定60KHz下的扩展循环前缀格式的复杂度,容易实现。
在第一方面的一种可能的实现方式中,该符号属性为:Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。可选的,该符号属性对应时隙格式为子载波间隔为30KHz下的扩展循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为30KHz下的扩展循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的扩展循环前缀格式和30KHz的扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度。进一步的,由于只需要通知12个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在第一方面的一种可能的实现方式中,该符号属性为:C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。可选的,该符号属性对应时隙格式为子载波间隔为15KHz下的扩展循环前缀格式,在该实现方式中,通过向终端设备指示子载波间隔为15KHz下的扩展循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的扩展循环前缀格式和15KHz的扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度。进一步的,由于只需要通知12个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在第一方面的一种可能的实现方式中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的12个符号。在该实现方式中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的12个符号,由于终端设备最终进行上下行数据传输利用的是扩展循环前缀格式的12个符号,可以更加准确和方便的确定出该时隙格式索引指示的12符号的符号属性,降低了确定该时隙格式索引指示的12符号的符号属性的复杂度,容易实现。并且,提高了该时隙格式索引指示的12符号的符号属性的准确性。
在第一方面的一种可能的实现方式中,该12个符号为14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。在该实现方式中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。可以更加准确和方便的确定出该时隙格式索引指示的12符号的符号属性,降低了确定该时隙格式索引指示的12符号的符号属性的复杂度,容易实现。并且,终端设备根据该时隙格式索引指示的12符号的符号属性确定出的60KHz下的扩展循环前缀格式可以满足URLLC上行业务和下行业务的传输,并且可以保证SSB的传输。保证了通信质量和效率。
在第一方面的一种可能的实现方式中,该时隙格式索引指示的14个符号的符号属性包括:下行符号D和上行符号U为连续两个符号,并且,该下行符号D的符号索引小于该上行符号U的符号索引。其中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。在该实现方式中,通过利用该时隙 格式索引指示的14个符号的符号属性中包括D和U为连续两个符号的符号属性,并且D的符号索引小于U的符号索引。可以增加用于指示14个符号的符号属性时隙格式索引的数量和种类,即可以利用更多类型的14个符号的符号属性指示扩展循环前缀格式。实现了14个符号的符号属性更加灵活的指示。并且,终端设备根据该时隙格式索引指示的14符号的符号属性确定出的60KHz下的扩展循环前缀格式满足URLLC上行业务和下行业务的传输,保证了通信质量和效率。
在第一方面的一种可能的实现方式中,该方法还包括:该终端设备发送第一指示信息,该第一指示信息用于指示该终端设备支持接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
在第一方面的一种可能的实现方式中,该方法还包括:该终端设备接收第二指示信息,该第二指示信息用于指示该终端设备接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
在第一方面的一种可能的实现方式中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
在第一方面的一种可能的实现方式中,该扩展循环前缀的时隙格式对应载波间隔的载波间隔为:30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。
第二方面,提供了一种时隙格式指示的方法,该方法的执行主体既可以是网络设备也可以是应用于网络设备的芯片,以执行主体为网络设备为例,该方法包括:网络设备根据扩展循环前缀的时隙格式,确定时隙格式索引,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F,该时隙格式索引用于指示时隙格式表中的一行,该时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,该符号属性包括上行符号U、下行符号D或灵活符号F的位置,该时隙格式索引的取值大于或等于56且小于或等于254。该网络设备发送该时隙格式索引。
第二方面提供的时隙格式指示的方法,网络设备通过向终端设备发送时隙格式索引,该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式,并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
在第二方面的一种可能的实现方式中,该符号属性包括以下两种符号属性中的至少一种:第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号。第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
在第二方面的一种可能的实现方式中,该符号属性为:Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
在第二方面的一种可能的实现方式中,该符号属性为:Z 0DD FDD F Z 1DD Z 2DD Z 3, 其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。
在第二方面的一种可能的实现方式中,该符号属性包括以下两种符号属性中的至少一种:第一种符号属性为:A 0A 1A 2DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个。第一种符号属性为:B 0DDDDDDDDB 1B 2B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵活符号、上行符号以及下行符号中的任意一个。
在第二方面的一种可能的实现方式中,该符号属性为:Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
在第二方面的一种可能的实现方式中,该符号属性为:C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
在第二方面的一种可能的实现方式中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的12个符号。
在第二方面的一种可能的实现方式中,该12个符号为14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。
在第二方面的一种可能的实现方式中,该时隙格式索引指示的14个符号的符号属性包括:下行符号D和上行符号U为连续两个符号,并且,该下行符号D的符号索引小于该上行符号U的符号索引。其中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
在第二方面的一种可能的实现方式中,该方法还包括:该网络设备接收第一指示信息,该第一指示信息用于指示终端设备支持接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
在第二方面的一种可能的实现方式中,该方法还包括:该网络设备发送第二指示信息,该第二指示信息用于指示终端设备接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
在第二方面的一种可能的实现方式中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
在第二方面的一种可能的实现方式中,该扩展循环前缀的时隙格式对应载波间隔的载波间隔为:30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。
第三方面,提供了一种通信装置,该装置具有实现上述方法设计中终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该模块可以是软件和/或硬件。
在一个可能的设计中,终端设备的结构中包括发送器和处理器,该处理器被配置为支持终端设备执行上述方法中相应的功能。该发送器用于支持网络设备与终端设备之间的通信,向网络设备发送上述方法中所涉及的信息或者指令。该终端设备还可以包括存储器,该存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,提供了一种通信装置,该装置具有实现上述方法设计中网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,网络设备的结构中包括处理器和接收器,该处理器被配置为支持网络设备执行上述方法中相应的功能。该接收器用于支持网络设备与终端设备之间的通信,接收终端设备发送的上述方法中所涉及的信息或者指令。该网络设备还可以包括存储器,该存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第五方面,提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述第一方面或者第一方面任意一种可能的实现方式中的所设计的程序。
第六方面,提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述第二方面或者第二方面任意一种可能的实现方式中的所设计的程序。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,提供了一种芯片***,该芯片***包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,生成,接收,确定,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,提供了一种芯片***,该芯片***包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,确定,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是为Case C对应的SSB映射到60kHz子载波间隔对应的NCP和ECP上的符号位置。
图2是适用于本申请实施例的移动通信***的架构示意图。
图3是本申请实施例提供的时隙格式指示的方法的示意***互图。
图4是本申请实施例提供的另一例时隙格式指示的方法的示意***互图。
图5是本申请实施例提供的又一例时隙格式指示的方法的示意***互图。
图6是本申请实施例提供的通信装置的示意图。
图7是本申请实施例提供的又一例通信装置的示意图。
图8是本申请实施例提供的通信装置的示意图。
图9是本申请实施例提供的又一例通信装置的示意图。
图10是本申请实施例提供的终端设备的示意图。
图11是本申请实施例提供的网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技 术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
第五代(the fifth generation,5G)移动通信***致力于支持更高的***性能,支持多种业务类型、不同部署场景和更宽的频谱范围。其中,多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB)、海量机器类型通信(massive machine type communication,mMTC)、超可靠低延迟通信(ultra-reliable and low-latency communications,URLLC)、多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等。
典型的URLLC业务对数据传输的时延要求较高,URLLC业务主要包括:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用。这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。
典型的mMTC业务有:智能电网配电自动化、智慧城市等。这种业务的主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感。这些mMTC通信设备需要满足低成本和非常长的待机时间的需求。
典型的eMBB业务对于数传输时延不敏感,并且数据传输量大。典型的eMBB业务主要包括:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。
目前,NR***支持各种时间单元的调度,时间单元的长度可以为一个或多个时域符号。符号可以为正交频分复用符号(orthogonal frequency division multiplexing,OFDM)。NR***的时域资源是由时隙(slot)组成的。对于普通循环前缀(normal cyclic prefix,NCP)的时隙格式,一个slot包括14个符号。对于扩展循环前缀(extended cyclic prefix,ECP)的时隙格式,一个slot包括12个符号。NR***支持多种子载波间隔。不同的子载波间隔下时隙slot对应的时间长度不同。例如,当子载波间隔为15kHz,一个slot对应的时间长度为1ms,当子载波间隔30kHz,一个slot对应的时间长度为0.5ms,当子载波间隔60kHz,一个slot对应的时间长度为0.25ms,当子载波间隔120kHz,一个slot对应的时间长度为0.125ms。由于一个时隙的符号数一直都是14或者12个符号,因此可以理解的是,一个符号对应的时间长度也随着子载波间隔的变化而变化。
网络设备会使用物理层信令或高层信令通知一个或多个时隙中的上行符号(Uplink Symbol,U)、下行符号(Downlink Symbol,D)和灵活符号(Flexible Symbol,F)在一个时隙内的分布。其中,上行符号是用于传输上行数据和/或上行控制信息,下行符号是用于传输下行数据和/或下行控制信息,灵活符号可能用于传输上行数据和/或上行控制信息,或下行数据和/或下行控制信息,灵活符号用于上行传输和下行传输取决于网络设备的下行控制信息(downlink control information,DCI)。当网络设备通过DCI指示某一 个时隙资源为上行信道,且该资源包括灵活符号,此时灵活符号用于传输上行数据和/或上行控制信息。当网络设备通过下行控制信息DCI指示某一个时域资源为下行信道,且该时域资源包括灵活符号,此时灵活符号用于传输下行数据和/或下行控制信息。但是,灵活符号一般不可以同时承载上行和下行的数据和/或控制信息。
目前,网络设备是通过时隙格式指示(slot format indication,SFI)向终端设备指示一个时隙内的U、D和F的位置的,例如,表1所示的为对于普通循环前缀的时隙格式的时隙格式指示表格。
表1
Figure PCTCN2020089339-appb-000001
Figure PCTCN2020089339-appb-000002
对于普通循环前缀时隙,由于不同子载波间隔对应的时隙长度是不同的,可以利用不同的子载波之间的符号对应关系确定其中一个子载波间隔的时隙包括的符号为上行符号、下行符号或者为灵活符号。例如,子载波间隔为15kHz的一个时隙相当于子载波间隔30kHz对应的两个时隙,子载波间隔为15kHz的一个符号的时间长度和子载波间隔30kHz对应的两个符号的时间长度相同,则子载波间隔为15kHz的一个U可以映射(对应)为子载波间隔30kHz对应的两个U,子载波间隔为15kHz的一个D可以映射为子载波间隔30kHz对 应的两个D,子载波间隔为15kHz的一个F可以映射为子载波间隔30kHz对应的两个F。类似的,对于子载波间隔为15kHz和子载波间隔为60kHz的对应的时隙格式,子载波间隔为15kHz的一个符号的时间长度和子载波间隔60kHz对应的4个符号的时间长度相同,则子载波间隔为15kHz的一个U可以映射为子载波间隔60kHz对应的4个U,子载波间隔为15kHz的一个D可以映射为子载波间隔60kHz对应的4个D,子载波间隔为15kHz的一个F可以映射为子载波间隔60kHz对应的4个F。类似的,对于子载波间隔为30kHz和子载波间隔为60kHz的对应的时隙格式、子载波间隔为30kHz和子载波间隔为120kHz的对应的时隙格式等,也可以根据上述的映射关系,确定对应的子载波间隔的时隙格式。
另外,对于扩展循环前缀的时隙,由于对于相同的子载波间隔而言,ECP对应的时隙和NCP对应的时隙的时间长度是相同的,并且,时隙边界是对齐的。根据现有的协议定义的。ECP对应的时隙格式是根据NCP对应的时隙格式来确定的。具体的实现方法为:
如果一个ECP符号(ECP symbol)与NCP symbol的D或者U重叠(即使同时也与F重叠),那么ECP symbol的方向与NCP symbol的方向相同;
例如,一个ECP符号与NCP的DD或DF或FD重叠,那么这个ECP符号对应为D。如果一个ECP符号与NCP的UU或UF或FU重叠,那么这个ECP符号对应为U。
如果一个ECP symbol只与NCP symbol的F重叠,那么ECP symbol为F。
例如,一个ECP符号与NCP的FF重叠,那么这个ECP符号对应为F。
如果一个ECP symbol同时与NCP symbol的D和U重叠,那么ECP symbol为F。
例如,一个ECP符号与NCP的DU重叠,那么这个ECP符号对应为F。
根据以上的实现方式,则可以确定出ECP对应时隙格式,表2所示的为子载波间隔为60kHz时对应的ECP时隙格式表格。
表2
Figure PCTCN2020089339-appb-000003
Figure PCTCN2020089339-appb-000004
Figure PCTCN2020089339-appb-000005
可以发现:表格2中的时隙格式索引3指示的时隙格式3与时隙格式索引1指示的时隙格式重复,表格2中的时隙格式索引28、31、34-36和45-47这几个时隙格式中,由于D→U中间没有F。则不可用。因为标准中定义,DU之间一定有F的存在,因为终端设备需要从下行接收到上行发送的转换时间,所以这些格式由于没有预留转换时间则不可用。但是,U→D中间是可以没有F的。
在无线通信***中,在上行数据传输(终端设备发向网络设备)或下行数据传输(网络设备发向终端设备)时,需要传输参考信号。这是因为接收端在进行数据译码之前,需要使用参考信号对于信道进行信道估计,进而使用信道估计的结果将空间信道对于数据的影响去掉,从而进行译码。例如,以同步信号块(Synchronization Sigal block,SSB)或者物理广播信道块(physical Broadcast channel block,PBCH block)为例,网络设备会先向终端设备发送SSB,终端设备根据SSB,识别小区以及和小区进行同步等。终端设备成功接收同步信号块是其接入小区的前提。由于同步信号块是网络设备发送终端设备的下行信号,因此,如果某一个时隙中存在SSB的传输,则SSB所占的符号应该为D。目前存在以下几种SSB的传输情况,其中,每次SSB的传输占据4个符号。
Case A:用15kHz子载波间隔对应的时隙格式传输SSB,SS/PBCH block的起始符号对应的索引为{2,8}+14*n。如果载波的频域小于或等于3GHz,n=0,1;如果载波的频域小于或等于6GHz,n=0,1,2,3。符号的索引可以理解为符号的编号,例如,对于NCP的时隙格式,14个符号的编号分别为0至13,对于ECP的时隙格式,12个符号的编号分别为0至11。
Case B:用30kHz子载波间隔对应的时隙格式传输SSB,SS/PBCH block的起始符号对应的索引为{4,8,16,20}+28*n,如果载波的频域小于或等于3GHz,n=0;如果载波的频域小于或等于6GHz,n=0,1。
Case C:用于30kHz子载波间隔对应的时隙格式传输SSB,SS/PBCH block起始符号对应的索引为{2,8}+14*n。对于对称频谱(FDD***),如果载波的频域小于或等于3GHz,n=0,1;如果载波的频域大于3GHz且小于或等于6GHz,n=0,1,2,3。对于非对称频谱(TDD***),如果GHz小于或等于2.4GHz,n=0,1;如果GHz大于2.4G小于或等于6GHz,n=0,1,2,3。
根据60kHz子载波间隔对应的NCP和30kHz子载波间隔对应的NCP时隙格式之间的映射关系以及60kHz子载波间隔对应的NCP和ECP时隙格式之间的映射关系,可以确定出Case C对应的SSB映射到60kHz子载波间隔对应的NCP和ECP上的符号位置。如图1所示的,图1所示为Case C对应的SSB映射到60kHz子载波间隔对应的NCP和ECP 上的符号位置。
从NR***中定义可知,携带相同信息的信号由于传播路径不同,从而导致到达接收侧的时延差大于循环前缀(cyclic prefix,CP)对应的时间长度时,就会有造成不同符号的干扰,这些符号间干扰会大幅度降低信号接收的成功率。所以在NR***中是要避免这种情况的出现。目前,在研究中发现在工厂环境中最大时延差(约2.4us-2.6us)较大。表3所示的为NR***中定义不同子载波对应的CP长度,从表3中可以看出,工厂环境中最大时延差已经大于30Khz/60Khz子载波间隔对应的NCP时隙格式的CP长度,也就是说:现有***中利用30Khz/60Khz子载波间隔NCP时隙格式传输的方式不可用。与此对应的,只能使用15Khz子载波间隔NCP,或者60Khz子载波间隔ECP时隙格式进行数据的传输。由于15Khz子载波间隔NCP的时隙格式中每个符号的所占用的时域长度太长,进而每次传输所占用的时域长度太长,导致15Khz子载波间隔NCP不适用于URLLC这种时延敏感的业务。这样唯一的选择就是使用60Khz子载波间隔ECP时隙格式进行数据的传输。
表3
Figure PCTCN2020089339-appb-000006
对于利用使用60Khz子载波间隔ECP时隙格式进行数据的传输时,首先需要保证SSB的正常传输。从图1中可以看出,对于使用60Khz子载波间隔ECP时隙格式进行SSB传输,存在两种不同的传输格式(传输图案),其中,第一种传输格式需要保证第一个时隙内符号3至符号10均为下行符号,第二种传输格式需要保证第二个时隙内符号1至符号8均为下行符号。结合表2中所示的60Khz子载波间隔ECP的时隙格式,那么表格2中可以使用时隙格式包括:
第一种传输格式对应的时隙格式包括:DDD”DDDDDDDD”F,对应格式索引4
第二种传输格式对应的时隙格式包括:
DDDDDDDDDDDDD,对应格式索引0/3,
DDDDDDDDDDDDF,对应格式索引4,
DDDDDDDDDDDFF,对应格式索引5,
DDDDDDDDDDFFF,对应格式索引6,
DDDDDDDDDDDDU,对应格式索引28—有问题不可用,
DDDDDDDDDDDFU,对应格式索引29,
DDDDDDDDDDFFU,对应格式索引30,
DDDDDDDDDDDUU,对应格式索引31—有问题不可用,
DDDDDDDDDDFUU,对应格式索引32,
可以看出:表格2中现有可用的时隙格式中基本上都是D,也就是现有时隙格式在满 足SSB传输的基础上,只适用于传输下行数据。但在工厂场景中,上行和下行URLLC业务是同时存在的,也就是说现有时隙格式不适用于传输上行数据。严重影响了URLLC业务中上行数据的传输,影响了URLLC业务的正常运行,降低了通信效率。
有鉴于此,本申请体用了一种时隙格式指示的方法和通信装置,可以使得时隙格式在支持下行信号传输的同时也可以上行数据的传输,保证了URLLC业务中上行数据的传输,保障了URLLC业务的正常运行。
为便于理解本申请实施例,首先结合图2简单介绍适用于本申请实施例的通信***。
图2是适用于本申请实施例的通信***的示意图。如图2所示,该移动通信***100可以包括至少一个无线接入网设备110和至少一个终端设备(如图2中所示的终端设备120、130、140、150,160)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备可以是上述的网络设备。至少一个终端设备可以发送上行数据或者信息给无线接入网设备,无线接入网设备110也可以将下行数据或者信息发送给至少一个终端设备。并且,多个终端设备也可以组成一个通信***,例如,终端设备140、150,160可以组成一个通信***,终端设备140也可以将下行数据或者信息发送给终端设备150和160,终端设备150和160也可以将上行数据或者信息发送给终端设备140。终端设备和无线接入网设备之间可以传输于URLLC业务相关的上行和下行数据以及信息等。
应理解。图2只是示意图,该通信***中还可以包括其它网络设备和/或终端设备,在图3中未画出。本申请的实施例对该移动通信***中包括的无线接入网设备和终端的数量不做限定。在移动通信***100中,无线接入网设备110可以是上述的网络设备。
下面结合图3详细说明本申请提供的调整时域资源边界方法,图3是本申请一个实施例的时隙格式指示的方法200的示意性流程图,该方法200可以应用在图2所示的场景中,例如,可以应用在对数据包传输时延要求比较高的场景中,例如包括工程自动化、流程控制等场景中。本申请实施例在此不作限制。
应理解,下文的描述中,以终端设备和网络设备作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于终端设备和网络设备的芯片。
如图3所示,图3中示出的方法200可以包括步骤S210至步骤S220。下面结合图3详细说明方法200中的各个步骤。该方法200包括:
S210,网络设备根据扩展循环前缀的时隙格式,确定时隙格式索引。该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该时隙格式索引用于指示时隙格式表中的一行,该时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,该符号属性包括上行符号U、下行符号D或灵活符号F的位置。可选的,该时隙格式索引的取值大于或等于56且小于或等于254。
S220,该网络设备向终端设备发送该时隙格式索引。相应的,终端设备接收该时隙格式索引。
S230,终端设备根据该时隙格式索引,确定扩展循环前缀的时隙格式,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
具体而言,在S210中,在网络设备和终端设备之间进行数据的传输时,网络设备可以将用于数据传输的时隙格式索引通知给终端设备。具体的,由上述可知,为了满足 URLLC业务的传输时延要求,需要利用扩展循环前缀时隙格式进行数据的上行和下行传输。因此,网络设备根据扩展循环前缀的时隙格式,确定时隙格式索引。该扩展循环前缀的时隙格式对应的子载波间隔可以为30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。也就是说,该扩展循环前缀的时隙格式需要满足适用上行传输和下行传输,并且需要满足URLLC业务的传输时延。例如,该扩展循环前缀的时隙格式可以60Khz子载波间隔ECP时隙格式。并且,该扩展循环前缀的时隙格式还需要满足可以传输SSB的要求,例如,对于利用上述的60Khz子载波间隔ECP时隙格式传输SSB时,需要满足的上述的两种传输格式,即需要满足SSB所占的符号位置为下行符号。
该时隙格式索引用于指示时隙格式表中的一行。时隙格式表的形式可以和上述的表1或表2的形式类似。该时隙格式索引相当于表1或者表2中第一列中格式(format)。该时隙格式索引的值相当于表1或者表2中第一列中格式(format)的取值。可选的,在本申请实施例中,该时隙格式索引的取值大于或等于56且小于或等于254。即可以利用时隙格式索引的保留值指示时隙格式。应理解,在本申请实例中,该时隙格式索引的取值也可以小于56。或者,该时隙格式索引的取值也可以大于254。该时隙格式表指示的时隙格式可以为扩展循环前缀时隙,也可以是普通循环前缀时隙。
该时隙格式表用于指示一个时隙包括的12或者14符号的符号属性,该符号属性可以理解为一个符号为上行符号U、下行符号D或灵活符号F的属性。时隙格式表可以是预配置的或者预定义的。时隙格式表指示的时隙格式可以为普通循环前缀的时隙格式(14符号)或者扩展循环前缀时隙格式(14个符号)。时隙格式表指示的时隙格式对应的子载波间隔也可为15KHz子载波间隔、30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔等子载波间隔中的任意一种。可选的,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
在S220中,网络设备向终端设备发送该时隙格式索引。相应的,终端设备接收该时隙格式索引。例如,网络设备可以通过高层信令或者物理层信令向终端设备发送该时隙格式索引。
在S230中,终端设备根据该时隙格式索引,可以确定该时隙格式索引指示的时隙表格中的某一个行的12个或者14个符号的符号属性,根据该12个或者14个符号的符号属性,可以确定该扩展循环前缀的时隙格式。其中,该扩展循环时隙格式适用上行传输和下行传输,并且需要满足URLLC业务的传输时延要求。并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
本申请提供的时隙格式指示的方法,网络设备通过向终端设备发送时隙格式索引,该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式,并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
在上述的S220中,网络设备向终端设备发送该时隙格式索引。具体的,网络设备会 根据该时隙格式表格中的最大时隙格式索引,确定第一比特数。该时隙格式表格中的最大时隙格式索引可以理解为该时隙格式表格中的时隙格式索引的最大取值。网络设备会向终端设备发送该第一比特数对应的第一比特状态值,该第一比特状态值用于指示该时隙格式索引。例如,该时隙格式表格中的时隙格式索引的最大取值为128,则第一比特数为7比特,每个比特位的比特状态可以为0或1,则第一比特数对应的比特状态值就有128种。第一比特状态值为该128种比特状态值的一种,并且,该第一比特状态值用于指示某一个时隙格式索引的取值。终端设备接收到该第一比特状态值后,便可以根据该第一比特状态值,确定第一比特状态值指示的时隙格式索引。可选的,该第一比特数可以由公式(1)计算得出。
Figure PCTCN2020089339-appb-000007
公式(1)中,M表示第一比特数,SFIindex表示时隙格式表格的最大时隙格式索引。
Figure PCTCN2020089339-appb-000008
表示向上取整。
在本申请实例中,作为一种可能的实现方式,网络设备向终端设备发送的时隙格式索引包括用于指示以下两种符号属性的时隙格式索引中的至少一种:
第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号。
第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
具体而言,对于网络设备向终端设备发送的时隙格式索引对应的时隙表格为子载波间隔为60KHz下的普通循环前缀格式表格,并且,终端设备最终进行上下行数据传输利用的扩展循环前缀的时隙格式为子载波间隔为60KHz下的扩展循环前缀格式的情况下。由于该扩展循环前缀的时隙格式还需要保证SSB的传输,该扩展循环前缀的时隙格式需要满足图2所示的时隙格式,即60KHz下的扩展循环前缀格式需要满足:第一种传输格式(或者称为第一种符号属性)需要保证某一个时隙内符号3至符号10均为下行符号,相当于保证了图2中60KHz下的扩展循环前缀格式第一个时隙中的时隙格式。第二种传输格式(或者称为第二种符号属性)需要保证某一个时隙内符号1至符号8均为下行符号,相当于保证了图2中60KHz下的扩展循环前缀格式第二个时隙中的时隙格式。由于该时隙格式索引对应的时隙表格为子载波间隔为60KHz下的普通循环前缀格式表格,终端设备可以根据上述的扩展循环前缀的时隙格式和普通循环前缀的时隙格式之间的映射关系,根据60KHz下的普通循环前缀格式,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足:第一种传输格式需要保证符号3至符号10均为下行符号,第二种传输格式需要保证符号1至符号8均为下行符号。而且,其他符号位置上需要包括上行符号U和/或灵活符号F。
因此,对于该时隙格式索引对应的时隙表格为子载波间隔为60KHz下的普通循环前缀格式,该时隙格式索引包括用于指示子载波间隔为60KHz下的普通循环前缀格式的两种符号属性中的至少一种:
第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至 Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号。
第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
第一种符号属性和第二中符号属性对应的均为子载波间隔为60KHz下的普通循环前缀时隙格式。
具体而言,对于第一种符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的14个符号的符号属性可以为表4所示的。
表4
Figure PCTCN2020089339-appb-000009
表4所示的时隙表格中,D表示下行符号,Z 0表示灵活符号或者下行符号,Y 3表示灵活符号、上行符号以及下行符号中的任意一个,Y 4表示灵活符号或者上行符号。但是,在Y 3表示的为D时,在Y 4表示的不能为U。
应该理解的是,表4只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的14个符号的符号属性产生限制。例如,表4中时隙格式索引的取值还可以为其他取值,例如71至85等。
终端设备接收到表4所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定60KHz下的普通循环前缀格式,在确定出了某一个60KHz下的普通循环前缀格式后,根据60KHz下的普通循环前缀格式和扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式。该60KHz下的扩展循环前缀的时隙格式包括下行 符号D、至少一个上行符号U和至少一个灵活符号F,从而保证了URLLC上行业务和下行业务的传输。并且,该60KHz下的扩展循环前缀的时隙格式还可以满足第一种传输格式要求,即可以保证SSB的传输,从而保障了通信的质量。
对于第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。作为一种可能的实现方式,对于第二种符号属性,该时隙格式索引的可能的取值和每个可能的取值指示的14个符号的符号属性可以为表5所示的。
表5
Figure PCTCN2020089339-appb-000010
表5所示的时隙表格中,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号。
应该理解的是,表5只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的14个符号的符号属性产生限制。例如,表4中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表5所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定对应的60KHz下的普通循环前缀格式,在确定出了某一个60KHz下的普通循环前缀格式后,根据60KHz下的普通循环前缀格式和扩展循环前缀的时隙格式映射关系或者对应关系,确定出60KHz下的扩展循环前缀的时隙格式。并且,该60KHz下的扩展循环前缀的时隙格式还可以满足第二种传输格式要求,即可以保证SSB的传输。
通过向终端设备指示子载波间隔为60KHz下的普通循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的普通循环前缀格式和扩展循环前缀的时隙格式之间的映 射关系,确定出60KHz下的扩展循环前缀的时隙格式,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度,容易实现。
在本申请实例中,作为另一种可能的实现方式,网络设备向终端设备发送的时隙格式索引指示符号属性为:
Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
具体而言,对于网络设备向终端设备发送的时隙格式索引对应的时隙表格为子载波间隔为30KHz下的普通循环前缀时隙格式表格,并且,并且,终端设备最终进行上下行数据传输利用的为60KHz下的扩展循环前缀格式的情况下。由于该扩展循环前缀的时隙格式需要保证SSB的传输,该扩展循环前缀的时隙格式需要满足图2所示的时隙格式。由图2所示的30KHz下的普通循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的对应关系,可以看出,在需要保证该扩展循环前缀的时隙格式可以满足SSB的传输的情况下,30KHz下的普通循环前缀时隙格式需要保证:符号2至符号5均为下行符号,符号8至符号11均为下行符号。
因此,对于该时隙格式索引对应的时隙表格为子载波间隔为30KHz下的普通循环前缀格式,并且,该扩展循环前缀的时隙格式为子载波间隔为60KHz下的扩展循环前缀格式的情况下,该时隙格式索引指示的30KHz下的普通循环前缀格的符号属性为:
Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
终端设备可以根据上述的扩展循环前缀的时隙格式和普通循环前缀的时隙格式之间的映射关系或者对应关系,根据30KHz下的普通循环前缀格式,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足:第一种传输格式需要保证符号3至符号10均为下行符号,第二种传输格式需要保证符号1至符号8均为下行符号。而且,其他符号位置上需要包括上行符号U和/或灵活符号F。
对于上述的30KHz下的普通循环前缀格式的符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的14个符号的符号属性可以为表6所示的。
表6
Figure PCTCN2020089339-appb-000011
Figure PCTCN2020089339-appb-000012
Figure PCTCN2020089339-appb-000013
应该理解的是,表6只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的14个符号的符号属性产生限制。例如,表6中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表6所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定30KHz下的普通循环前缀时隙格式,在确定出30KHz下的普通循环前缀时隙格式后,根据30KHz下的普通循环前缀时隙格式和60KHz下的普通循环前缀时隙格式之间的映射关系,确定出60KHz下的普通循环前缀时隙格式,然后根据60KHz下的普通循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足SSB的传输,而且,其他符号位置上需要包括上行符号U和/或灵活符号F。即还可以满足URLLC业务的上行传输和下行传输以及传输时延要求。
通过向终端设备指示子载波间隔为30KHz下的普通循环前缀格式对应的符号属性,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式。进一步的,由于只需要通知14个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在本申请实例中,作为另一种可能的实现方式,网络设备向终端设备发送的时隙格式索引指示符号属性为:
Z 0DD FDD F Z 1DD Z 2DD Z 3,其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。
具体而言,对于网络设备向终端设备发送的时隙格式索引对应的时隙表格为子载波间隔为15KHz下的普通循环前缀时隙格式表格,并且,并且,终端设备最终进行上下行数据传输利用的为60KHz下的扩展循环前缀格式的情况下。由于该扩展循环前缀的时隙格式需要保证SSB的传输,该扩展循环前缀的时隙格式需要满足图2所示的时隙格式。由图2所示的15KHz下的普通循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的对应关系,可以看出,在需要保证该扩展循环前缀的时隙格式可以满足SSB的传输的情况下,15KHz下的普通循环前缀时隙格式需要保证:符号1和符号2均为下行符号,符号4和符号5均为下行符号,符号8和符号9均为下行符号,符号11和符号12均为下行符号。
因此,对于该时隙格式索引对应的时隙表格为子载波间隔为15KHz下的普通循环前缀格式,并且,该扩展循环前缀的时隙格式为子载波间隔为60KHz下的扩展循环前缀格式的情况下,该时隙格式索引指示的15KHz下的普通循环前缀格的符号属性为:
Z 0DD FDD F Z 1DD Z 2DD Z 3,其中,F表示灵活符号,Z 0至Z 3均表示灵活符号或者上行符号,D表示下行符号。
终端设备根据15KHz下的普通循环前缀格式,结合上述的不同子载波间隔的普通循环前缀的时隙格式之间的映射关系,确定出60KHz下的普通循环前缀格式,然后再根据普通循环前缀的时隙格式与扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足:第一种传输格式需要保证符号3至符号10均为下行符号,第二种传输格式需要保证符号1至符号8均为下行符号。而且,其他符号位置上需要包括上行符号U和/或灵活符号F。
对于上述的15KHz下的普通循环前缀格式的符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的14个符号的符号属性可以为表7所示的。
表7
Figure PCTCN2020089339-appb-000014
表7所示的时隙表格中,F表示灵活符号,Z 0至Z 3均表示灵活符号或者上行符号,D表示下行符号。
应该理解的是,表7只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的14个符号的符号属性产生限制。例如,表7中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表7所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定对应的15KHz下的普通循环前缀时隙格式,在确定出15KHz下的普通循环前缀时隙格式后,根据15KHz下的普通循环前缀时隙格式和60KHz下的普通循环前缀时隙格式之间的映射关系,确定出60KHz下的普通循环前缀时隙格式,然后根据60KHz下的普通循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足SSB的传输,而且,其他符号位置上需要包括上行符号U和/或灵活符号F。即还可以满足URLLC业务的上行传输和下行传输以及传输时延要求。
通过向终端设备指示子载波间隔为15KHz下的普通循环前缀格式对应的符号属性,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式。进一步的,由于只需要通知14个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
对于上述的网络设备向终端设备发送的时隙格式索引对应的时隙表格均为普通循环前缀格式表格的几种情况,即网络设备向终端设备发送的时隙格式索引对应的时隙表格均为普通循环前缀格式表格,表格中的每一行均有14个符号的符号属性。这些表格对应的子载波间隔分别为15KHz、30KHz、60KHz。而终端设备最终是利用子载波间隔为60KHz的扩展循环前缀格式传输上下行数据和SSB。可以看出,这些时隙格式表格中时隙格式索引指示的14个符号的符号属性包括:D和U为连续两个符号,并且,该下行符号D的符号索引小于该上行符号U的符号索引。即可以出现符号D和符号U之间没有F的情况,例如表格4所示的时隙格式表中的符号11和符号12、表格6所示的时隙格式表中时隙格式索引71至87中的符号11和符号12、表格7所示的时隙格式表中的符号9和符号10等。这是因为网络设备向终端设备通知的是普通循环前缀时隙格式的时隙格式的时隙格式索引,终端设备在接收到普通循环前缀时隙格式的时隙格式索引后,确定了该时隙格式索引指示的普通循环前缀时隙格式,还需要根据扩展循环前缀的时隙格式和普通循环前缀的时隙格式之间的映射关系,确定最终传输上下行数据和SSB的扩展循环前缀的时隙格式。即使网络设备通知时隙格式中包括的DU,但是最终映射到扩展循环前缀的时隙格式时就可以在D和U之间出现F。因此,网络设备向终端设备发送的时隙格式索引对应的普通循环前缀格式表格中可以存在两个相邻的符号为DU的符号属性。
通过利用该时隙格式索引指示的14个符号的符号属性中包括D和U为连续两个符号的符号属性,并且D的符号索引小于U的符号索引。可以增加用于指示14个符号的符号属性时隙格式索引的数量,即可以利用更多类型的14个符号的符号属性指示扩展循环前缀格式。实现了14个符号的符号属性更加灵活的指示。并且,终端设备根据该时隙格式索引指示的14符号的符号属性确定出的60KHz下的扩展循环前缀格式满足URLLC上行业务和下行业务的传输,保证了通信质量和效率。
另外,上述的几种可能的实现方式均为网络设备向终端设备发送的时隙格式索引对应的时隙表格均为普通循环前缀格式表格,即表格中的一行均有14个符号的符号属性。终端设备可以根据时隙索引指示的某一种子载波间隔下(例如,15KHz、30KHz、60KHz等)的14个符号的符号属性,结合上述的扩展循环前缀的时隙格式和普通循环前缀的时隙格式之间和/或不同子载波间隔的普通循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀格式。在本申请的另一些可能的实现方式中,网络设备向终端设备发送的时隙格式索引对应的时隙表格也可以为扩展循环前缀格式表格,即表格中的一行均有12个符号的符号属性。终端设备可以根据时隙索引指示的某一种子载波间隔下(例如,15KHz、30KHz、60KHz等)的12个符号的符号属性,结合上述的不同子载波间隔的扩展循环前缀的时隙格式之间的映射关系,可以确定出最终传输上下行数据和SSB某个子载波间隔(例如60KHz子载波间隔)下的扩展循环前缀格式。
下面将具体说明该时隙格式索引指示的为扩展循环前缀时隙格式下的12个符号的符号属性的情况。
对于该时隙格式索引指示的为60KHz子载波间隔对应扩展循环前缀时隙格式的12个符号的属性情况,由于该扩展循环前缀的时隙格式需要保证SSB的传输,该扩展循环前缀的时隙格式需要满足图2所示的时隙格式,即60KHz下的扩展循环前缀格式需要满足:第一种传输格式(或者称为第一种符号属性)需要保证符号3至符号10均为下行符号,相当于保证了图2中60KHz下的扩展循环前缀格式第一个时隙中的时隙格式。第二种传输格式(或者称为第二种符号属性)需要保证符号1至符号8均为下行符号,
因此,对于该时隙格式索引对应的时隙表格为子载波间隔为60KHz下的扩展循环前缀格式,并且,并且,终端设备最终进行上下行数据传输利用的为子载波间隔为60KHz下的扩展循环前缀格式的情况下,该时隙格式索引指示的符号属性包括以下两种符号属性中的至少一种:
第一种符号属性为:A 0A 1A 2DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个。
第一种符号属性为:B 0DDDDDDDDB 1B 2B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵活符号、上行符号以及下行符号中的任意一个。
具体而言,对于第一种符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的12个符号的符号属性可以为表8所示的。
表8
Figure PCTCN2020089339-appb-000015
Figure PCTCN2020089339-appb-000016
应该理解的是,表8只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的12个符号的符号属性产生限制。例如,表8中时隙格式索引的取值还可以为其他取值,例如71至85等。
终端设备接收到表8所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定出60KHz下的扩展循环前缀的时隙格式。该60KHz下的扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和至少一个灵活符号F,保证了URLLC上行业务和下行业务的传输。并且,该60KHz下的扩展循环前缀的时隙格式还可以满足第一种传输格式要求,即可以保证SSB的传输。
对于第二种符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的12个符号的符号属性可以为表9所示的。
表9
Figure PCTCN2020089339-appb-000017
Figure PCTCN2020089339-appb-000018
应该理解的是,表9所示的只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的12个符号的符号属性产生限制。例如,表9中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表9所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定出60KHz下的扩展循环前缀的时隙格式。该60KHz下的扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和至少一个灵活符号F,保证了URLLC上行业务和下行业务的传输。并且,该60KHz下的扩展循环前缀的时隙格式还可以满足第一种传输格式要求,即可以保证SSB的传输。
通过向终端设备指示子载波间隔为60KHz下的扩展循环前缀格式对应的12个符号的符号属性,终端设备可以直接根据指示的60KHz下的扩展循环前缀格式的12个符号上进行上下行数据的传输和SSB的传输。终端设备不需要在进行时隙格式的映射和转换过程。降低了终端设备确定60KHz下的扩展循环前缀格式的复杂度,容易实现。
在本申请实例中,作为另一种可能的实现方式,网络设备向终端设备发送的时隙格式索引指示符号属性为:
Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
具体而言,对于网络设备向终端设备发送的时隙格式索引对应的时隙表格为子载波间隔为30KHz下的扩展循环前缀时隙格式表格,并且,终端设备最终进行上下行数据传输利用的为子载波间隔为60KHz下的扩展循环前缀格式的情况下。由于该扩展循环前缀的时隙格式需要保证SSB的传输,因此,对于该时隙格式索引对应的时隙表格为子载波间隔为30KHz下的扩展循环前缀格式,并且,该扩展循环前缀的时隙格式为子载波间隔为60KHz下的扩展循环前缀格式的情况下,该时隙格式索引指示的30KHz下的扩展循环前缀格的符号属性为:
Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
对于上述的30KHz下的扩展循环前缀格式的符号属性,作为一种可能的实现方式,该时隙格式索引的可能的取值和每个可能的取值指示的12个符号的符号属性可以为表10所示的。
表10
Figure PCTCN2020089339-appb-000019
Figure PCTCN2020089339-appb-000020
Figure PCTCN2020089339-appb-000021
应该理解的是,表10只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的12个符号的符号属性产生限制。例如,表10中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表10所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定30KHz下的扩展循环前缀时隙格式,在确定出30KHz下的扩展循环前缀时隙格式后,根据30KHz下的扩展循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的关系,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足SSB的传输,而且,其他符号位置上需要包括上行符号U和/或灵活符号F。即还可以满足URLLC业务的上行传输和下行传输以及传输时延要求。
通过向终端设备指示子载波间隔为30KHz下的扩展循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的扩展循环前缀格式和30KHz的扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度。进一步的,由于只需要通知12个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
在本申请实例中,作为另一种可能的实现方式,网络设备向终端设备发送的时隙格式索引指示符号属性为:
C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
具体而言,对于网络设备向终端设备发送的时隙格式索引对应的时隙表格为子载波间隔为15KHz下的扩展循环前缀时隙格式表格,并且,并且,终端设备最终进行上下行数据传输利用的为60KHz下的扩展循环前缀格式的情况下。由于该扩展循环前缀的时隙格式需要保证SSB的传输,因此,对于该时隙格式索引对应的时隙表格为子载波间隔为15KHz下的扩展循环前缀格式时,该时隙格式索引指示的15KHz下的扩展循环前缀格的符号属性为:
C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
对于上述的15KHz下的扩展循环前缀格式的符号属性,作为一种可能的实现方式, 该时隙格式索引的可能的取值和每个可能的取值指示的12个符号的符号属性可以为表11所示的。
表11
Figure PCTCN2020089339-appb-000022
应该理解的是,表11只是示例性的,不应该对该时隙格式索引的取值以及与该时隙格式索引对应的12个符号的符号属性产生限制。例如,表11中时隙格式索引的取值还可以为其他取值等。
终端设备接收到表11所示的任意一个时隙格式索引时,便可以根据该时隙格式索引确定15KHz下的扩展循环前缀时隙格式,在确定出15KHz下的扩展循环前缀时隙格式后,根据15KHz下的扩展循环前缀时隙格式和60KHz下的扩展循环前缀时隙格式之间的关系,确定出60KHz下的扩展循环前缀格式。并且,确定出的60KHz下的扩展循环前缀格式需要满足SSB的传输,而且,其他符号位置上需要包括上行符号U和/或灵活符号F。即还可以满足URLLC业务的上行传输和下行传输以及传输时延要求。
通过向终端设备指示子载波间隔为15KHz下的扩展循环前缀格式对应的符号属性,终端设备仅需要利用60KHz下的扩展循环前缀格式和15KHz的扩展循环前缀的时隙格式之间的映射关系,确定出60KHz下的扩展循环前缀的时隙格式,可以使得终端设备更加准确的确定出60KHz下的扩展循环前缀格式,降低终端设备确定60KHz下的扩展循环前缀格式的复杂度。进一步的,由于只需要通知12个符号的符号属性,可以减少通知该符号属性所占的资源,提高资源的利用率。
上述分别利用时隙格式索引对应的时隙表格为子载波间隔为15KHz下的扩展循环前 缀时隙格式表格、子载波间隔为30KHz下的扩展循环前缀时隙格式表格、子载波间隔为60KHz下的扩展循环前缀时隙格式表格为例进行说明。对于时隙格式索引指示一行为12个符号的扩展循环时隙格式,这12个符号可以为相同的子载波间隔对应的普通循环前缀的14个符号中的12个符号。例如,可以为普通循环前缀的14个符号中的前12个符号或者后12个符号,或者为普通循环前缀的14个符号中的第1个符号(符号索引为0)到第6个符号(符号索引为5)以及第8个符号(符号索引为7)到第13个符号(符号索引为12)。或者还以为普通循环前缀的14个符号中其他位置的12个符号等。可以理解的,终端设备从时隙表格中的14个符号中确定12个符号的位置。终端设备根据12个符号的位置上的符号属性,确定扩展循环前缀时隙对应的12个符号的属性。
例如,对于上述的60KHz的扩展循环前缀时隙格式索引指示的第一种符号属性:A 0A 1A 2DDDDDDDDF,这12个符号可以为上述的60KHz的普通循环前缀时隙格式索引指示的第一种符号属性中的14个符号的第1个符号到第6个符号(符号索引为0至5)以及第8个符号到第13个符号(符号索引为7至12)。结合表8和表4进行说明。对于上述的表格8所示的60KHz的扩展循环前缀时隙格式索引表格,每个时隙格式索引指示的12个符号可以为表格4所示的所示的60KHz的普通循环前缀时隙格式索引表格中对应的时隙格式索引指示的13个符号中的第1个符号到第6个符号(符号索引为0至5)以及第8个符号到第13个符号(符号索引为7至12)。
又例如,对于上述的30KHz的扩展循环前缀时隙格式索引指示的符号属性:Z 0Z 1DDDC 0C 1DDDZ 2Z 3,这12个符号可以为上述的30KHz的普通循环前缀时隙格式索引指示的14个符号属性中的14个符号中的前12个符号,或者后12个符号,或者为该30KHz的普通循环前缀的14个符号中的第1个符号(符号索引为0)到第6个符号(符号索引为5)以及第8个符号(符号索引为7)到第13个符号(符号索引为12)。
又例如,对于上述的15KHz的扩展循环前缀时隙格式索引指示的符号属性:C 0DD DD C 1C 2DD DD C 3,这12个符号可以为上述的15KHz的普通循环前缀时隙格式索引指示的14个符号属性中的14个符号中的前12个符号,或者后12个符号。
网络设备通过利用该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。可以使得网络设备更加准确和方便的确定出该时隙格式索引指示的12符号的符号属性,降低了网络设备确定该时隙格式索引指示的12符号的符号属性的复杂度,容易实现。并且,终端设备根据该时隙格式索引指示的12符号的符号属性确定出的60KHz下的扩展循环前缀格式可以满足URLLC上行业务和下行业务的传输,并且可以保证SSB的传输。保证了通信质量和效率。
还应理解的是,上述仅仅以网络设备向终端设备发送的时隙格式索引指示的时隙表格对应的子载波间隔为15KHz子载波间隔、30KHz子载波间隔以及60KHz子载波间隔中的任意一种,而该终端设备根据该时隙格式索引,确定的为60KHz子载波间隔下扩展循环前缀的时隙格式为例进行说明。在本申请实施例中,网络设备向终端设备发送的时隙格式索引指示的时隙表格对应的子载波间隔还可以为15KHz子载波间隔、30KHz子载波间隔、60KHz子载波间隔、120KHz子载波间隔以及240KHz子载波间隔中的任意一种或者多种,而该终端设备根据该时隙格式索引,确定的还可以为15KHz子载波间隔下扩展循环前缀 的时隙格式、30KHz子载波间隔下扩展循环前缀的时隙格式、120KHz子载波间隔下扩展循环前缀的时隙格式或者240KHz子载波间隔下扩展循环前缀的时隙格式的中的任意一种。并且,网络设备向终端设备发送的时隙格式索引指示的时隙表格对应的子载波间隔小于或等于终端设备需要根据该时隙格式索引确定的扩展循环前缀的时隙格式对应的子载波间隔。
在本申请的一些实例中,以图4为例,在图3所示的方法步骤的基础上,该方法200还包括S209。
S209,终端设备向该网络设备发送第一指示信息,该第一指示信息用于指示该终端设备支持接收该扩展循环前缀的时隙中的SS/PBCH block。
图4中所示的S210至S230描述可以参考上述对S210至S230的描述,为了简洁,这里不再赘述。
在S209中,终端设备可以向网络设备上报终端设备支持接收扩展循环前缀对应的一个时隙的时隙格式索引,和/或支持接收扩展循环前缀对应的SS/PBCH block的能力信息。即终端设备可以利用上述的第一指示信息向网络设备指示自己支持利用扩展循环前缀时隙格式传输的数据或者控制信息。进一步的,该扩展循环前缀时隙格式对应的子载波间隔可以为15KHz子载波间隔、30KHz子载波间隔、60KHz子载波间隔、120KHz子载波间隔以及240KHz子载波间隔中的任意一种或者多种。终端设备向网络设备上报自己支持接收利用扩展循环前缀的时隙发送的数据或者控制信息后,网络设备便可以执行S210和S220的步骤,向终端设备发送时隙格式索引,该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式。终端设备确定了扩展循环前缀的时隙格式后,便可以在该扩展循环前缀的时隙格式中接收SSB,以及在该扩展循环前缀的时隙格式中发送上行数据和接收下行数据。
在本申请的一些实例中,以图5为例,在图3所示的方法步骤的基础上,该方法200还包括S208。
S208,终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示该终端设备接收该扩展循环前缀的时隙中的SS/PBCH block。
图5中所示的S210至S230描述可以参考上述对S210至S230的描述,为了简洁,这里不再赘述。
在S208中,网络设备还可以向终端设备发送第二指示信息,第二指示信息可以用于指示终端设备接收扩展循环前缀对应的一个时隙的时隙格式索引,和/或接收扩展循环前缀对应的SS/PBCH block。例如,在当终端设备不支持接收扩展循环前缀ECP对应的一个时隙的时隙格式索引,和/或不支持接收ECP对应的SS/PBCH block的能力信息的情况下,网络设备可以配置终端设备接收扩展循环前缀对应的一个时隙的时隙格式索引,和/或支持接收扩展循环前缀对应的SS/PBCH block。在这种情况下,网络设备通过第二指示信息(或者也可以称为配置信息)配置终端设备支持接收扩展循环前缀对应的一个时隙的时隙格式索引,和/或支持接收扩展循环前缀对应的SS/PBCH block。之后,网络设备便可以执行S210和S220的步骤,向终端设备发送时隙格式索引,该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式。终端设备确定了扩展循环前缀的时隙格式后,便可以在该扩展循环前缀的时隙格式中接收SSB,以及在该扩展循环前缀的时隙格式中发送上行数据和 接收下行数据。
应理解,图5中所示步骤中也可以包括S208。
本申请提供的时隙格式指示的方法,网络设备通过向终端设备发送时隙格式索引,时隙格式索引指示的时隙格式可以为扩展循环时隙格式,也可以是普通循环时隙格式。终端设备根据该时隙格式索引,确定出扩展循环时隙格式中的符号属性。并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足URLLC业务的上行传输和下行传输以及传输时延要求,从而保证了URLLC业务的正常传输。进一步的,该扩展循环前缀的时隙格式还可以满足SSB的正常传输,从而进一步的保证了通信质量。
应理解,在本申请的实施例中,网络设备向终端发送的第二指示信息可以网络设备向终端发送高层信令、物理层信令或者专用的配置信息实现。高层信令例如可以包括无线资源控制信令(radio resource control,RRC)、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、无线链路控制(radio link control,RLC)信令等,物理层信令例如可以下行控制信息(downlink control information,DCI)等。
还应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一种符号属性和第二种符号属性只是为了表示出不同的符号属性。而不应该对符号属性的本身产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化.例如,上述方法200中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中,“预定义”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
以上结合图1至图5对本申请实施例的时隙格式指示的方法做了详细说明。以下,结合图6至图11对本申请实施例通信装置进行详细说明。
图6示出了本申请实施例的通信装置300的示意性框图,该装置300可以对应上述方法200描述的终端设备,也可以是应用于终端设备的芯片或组件,并且,该装置300中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,如图6所 示,该通信装置300可以包括:
接收模块310,用于接收时隙格式索引,该时隙格式索引用于指示时隙格式表中的一行,该时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,该符号属性包括上行符号U、下行符号D或灵活符号F的位置,该时隙格式索引的取值大于或等于56且小于或等于254。
处理模块320,用于根据该时隙格式索引,确定扩展循环前缀的时隙格式,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
本申请提供的通信装置,通过接收网络设备发送的时隙格式索引,该时隙格式索引用于该装置确定扩展循环前缀的时隙格式,并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足该装置进行URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
可选的,在本申请的一些实施例中,该符号属性包括以下两种符号属性中的至少一种:
第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号。
第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该符号属性为:Z 0DD FDD F Z 1DD Z 2DD Z 3,其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该符号属性包括以下两种符号属性中的至少一种:
第一种符号属性为:A 0A 1A 2DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个;
第一种符号属性为:B 0DDDDDDDDB 1B 2B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:
Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:
C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的12个符号。
可选的,在本申请的一些实施例中,该12个符号为14个符号中的前12个符号,或 者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。
可选的,在本申请的一些实施例中,该时隙格式索引指示的14个符号的符号属性包括:下行符号D和上行符号U为连续两个符号,并且,该下行符号D的符号索引小于该上行符号U的符号索引,其中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
可选的,在本申请的一些实施例中,该装置300还包括发送模块330,发送第一指示信息,该第一指示信息用于指示该通信装置支持接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
可选的,在本申请的一些实施例中,接收模块310还用于:接收第二指示信息,该第二指示信息用于指示该通信装置接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
可选的,在本申请的一些实施例中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
可选的,在本申请的一些实施例中,该扩展循环前缀的时隙格式对应载波间隔的载波间隔为:30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。
应理解,装置300中各单元执行上述相应步骤的具体过程请参照前文中结合图3至图5所示的实施例以及方法200中的相关实施例的终端设备相关的描述,为了简洁,这里不加赘述。
可选的,接收模块(单元)310和发送模块(单元)330用于执行前述方法200的各个实施例以及图3至图5所示的实施例中终端设备接收信息和发送信息的步骤。可选的,通信装置300还可以包括存储模块,用于存储处理模块320、接收模块310和发送模块330执行的指令。处理模块320、接收模块310、发送模块330和存储模块通信连接,存储存储指令,处理模块320用于执行存储模块存储的指令,接收模块310、发送模块330用于在处理模块320的驱动下执行具体的信号收发。
应理解,接收模块310和发送模块330可以是收发器、输入/输出接口或接口电路。存储单元可以是存储器。处理模块320可由处理器实现。如图7所示,通信装置400可以包括处理器410、存储器420和收发器430。
图6所示的通信装置300或图7所示的通信装置400能够实现前述方法200的各个实施例以及图3至图5所示的实施例中终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图6所示的通信装置300或图7所示的通信装置400可以为终端设备。
图8示出了本申请实施例的通信装置500的示意性框图,该装置500可以对应上述方法200描述的网络设备,也可以是应用于网络的芯片或组件,并且,该装置500中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,如图8所示,该通信装置500可以包括:处理模块510和发送模块520。
处理模块510,用于根据扩展循环前缀的时隙格式,确定时隙格式索引,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F,该时隙格式索引用于指示时隙格式表中的一行,该时隙格式表中的一行用于指示至少12个符 号分别对应的符号属性,该符号属性包括上行符号U、下行符号D或灵活符号F的位置,该时隙格式索引的取值大于或等于56且小于或等于254。
发送模块520,用于发送该时隙格式索引。
本申请提供的通信装置,通过向终端设备发送时隙格式索引,该时隙格式索引用于终端设备确定扩展循环前缀的时隙格式,并且,该扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。该扩展循环前缀的时隙格式可以满足该装置进行URLLC业务的上行传输和下行传输以及传输时延要求,并且可以保证SSB的正常传输,从而保证了URLLC业务的正常传输。
可选的,在本申请的一些实施例中,该符号属性包括以下两种符号属性中的至少一种:
第一种符号属性为:Y 0Y 1Y 2Z 0DDDDDDDD Y 3Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号;
第二种符号属性为:X 0X 1DDDDDDDDX 2X 3X 4X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:Z 0Z 1DDDD Z 2Z 3DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该符号属性为:Z 0DD FDD F Z 1DD Z 2DD Z 3,其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该符号属性包括以下两种符号属性中的至少一种:
第一种符号属性为:A 0A 1A 2DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个;
第一种符号属性为:B 0DDDDDDDDB 1B 2B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:
Z 0Z 1DDDC 0C 1DDDZ 2Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
可选的,在本申请的一些实施例中,该符号属性为:
C 0DD DD C 1C 2DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
可选的,在本申请的一些实施例中,该时隙格式索引指示的符号为该时隙格式表中的一行指示的14个符号中的12个符号。
可选的,在本申请的一些实施例中,该12个符号为14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。
可选的,在本申请的一些实施例中,该时隙格式索引指示的14个符号的符号属性包括:下行符号D和上行符号U为连续两个符号,并且,该下行符号D的符号索引小于该上行符号U的符号索引,其中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或 等于该扩展循环前缀的时隙格式对应的子载波间隔。
可选的,在本申请的一些实施例中,该通信装置还包括:接收模块530还用于:接收第一指示信息,该第一指示信息用于指示终端设备支持接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
可选的,在本申请的一些实施例中,发送模块520还用于:发送第二指示信息,该第二指示信息用于指示终端设备接收该扩展循环前缀的时隙中的同步广播块SS/PBCH block。
可选的,在本申请的一些实施例中,该时隙格式索引指示的时隙格式对应的子载波间隔小于或等于该扩展循环前缀的时隙格式对应的子载波间隔。
可选的,在本申请的一些实施例中,该扩展循环前缀的时隙格式对应载波间隔的载波间隔为:30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。
应理解,装置500中各单元执行上述相应步骤的具体过程请参照前文中结合图3至图5所示的实施例以及方法200中的相关实施例的网络设备相关的描述,为了简洁,这里不加赘述。
可选的,发送模块(单元)520和接收模块(单元)530用于执行前述方法实施例中网络设备接收信息和发送信息的步骤。可选的,通信装置500还可以包括存储模块,用于存储处理模块510、发送模块520和接收模块530执行的指令。处理模块510、发送模块520、接收模块530和存储模块通信连接,存储模块存储指令,处理模块510用于执行存储模块存储的指令,发送模块520和接收模块530在处理模块510的驱动下执行具体的信号收发。
应理解,发送模块520和接收模块530可以是收发器、输入/输出接口或接口电路。存储模块可以是存储器。处理模块510可由处理器实现。如图9所示,通信装置600可以包括处理器610、存储器620和收发器630。
图8所示的通信装置500或图9所示的通信装置600能够实现前述方法200的各个实施例中网络设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图8所示的通信装置500或图9所示的通信装置600可以为网络设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC), 或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
图10示出了本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图10所示,该终端设备包括:天线710、射频装置720、基带装置730。天线710与射频装置720连接。在下行方向上,射频装置720通过天线710接收网络设备发送的信息,将网络设备发送的信息发送给基带装置730进行处理。在上行方向上,基带装置730对终端设备的信息进行处理,并发送给射频装置720,射频装置720对终端设备的信息进行处理后经过天线710发送给网络设备。
基带装置730可以包括调制解调子***,用于实现对数据各通信协议层的处理;还可以包括中央处理子***,用于实现对终端操作***以及应用层的处理;此外,还可以包括其它子***,例如多媒体子***,周边子***等,其中多媒体子***用于实现对终端设备相机,屏幕显示等的控制,周边子***用于实现与其它设备的连接。调制解调子***可以为一个独立的芯片。可选的,以上用于终端的装置可以位于该调制解调子***。
调制解调子***可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子***还可以包括存储元件732和接口电路733。存储元件732用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件732中,而是存储于调制解调子***之外的存储器中。接口电路733用于与其它子***通信。以上用于终端设备的装置可以位于调制解调子***,该调制解调子***可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子***上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。
图11是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图11所示,该网络设备包括:天线801、射频装置802、基带装置803。 天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收终端发送的信息,将终端设备发送的信息发送给基带装置803进行处理。在下行方向上,基带装置803对终端的信息进行处理,并发送给射频装置802,射频装置802对终端设备的信息进行处理后经过天线801发送给终端。
基带装置803可以包括一个或多个处理元件8031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置803还可以包括存储元件8032和接口8033,存储元件8032用于存储程序和数据;接口8033用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置803,例如,以上用于网络设备的装置可以为基带装置803上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上***的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信***,该通信***包括:上述终端设备和上述网络设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法200中本申请实施例的时隙格式指示的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该终端设备和该网络设备执行对应于上述方法的终端设备和网络设备的操作。
本申请实施例还提供了一种***芯片,该***芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种时隙格式指示的方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的传输方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该***芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/***/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行该计算机程序或指令时,全部或部分地执行本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序或指令可以存储在计算机可读存 储介质中,或者通过该计算机可读存储介质进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种时隙格式指示的方法,其特征在于,包括:
    终端设备接收时隙格式索引,所述时隙格式索引用于指示时隙格式表中的一行,所述时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,所述符号属性包括上行符号U、下行符号D或灵活符号F的位置,所述时隙格式索引的取值大于或等于56且小于或等于254;
    所述终端设备根据所述时隙格式索引,确定扩展循环前缀的时隙格式,所述扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备支持接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息用于指示所述终端设备接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  4. 一种时隙格式指示的方法,其特征在于,包括:
    网络设备根据扩展循环前缀的时隙格式,确定时隙格式索引,所述扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F,所述时隙格式索引用于指示时隙格式表中的一行,所述时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,所述符号属性包括上行符号U、下行符号D或灵活符号F的位置,所述时隙格式索引的取值大于或等于56且小于或等于254;
    所述网络设备发送所述时隙格式索引。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第一指示信息,所述第一指示信息用于指示终端设备支持接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  6. 根据权利要求4或5述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息用于指示终端设备接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  7. 一种通信装置,其特征在于,包括:
    接收模块,用于接收时隙格式索引,所述时隙格式索引用于指示时隙格式表中的一行,所述时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,所述符号属性包括上行符号U、下行符号D或灵活符号F的位置,所述时隙格式索引的取值大于或等于56且小于或等于254;
    处理模块,用于根据所述接收模块接收的时隙格式索引,确定扩展循环前缀的时隙格式,所述扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述装置支持接收所 述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  9. 根据权利要求7或8所述的装置,其特征在于,所述接收模块还用于接收第二指示信息,所述第二指示信息用于指示所述终端设备接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  10. 一种通信装置,其特征在于,包括:
    处理模块,用于根据扩展循环前缀的时隙格式,确定时隙格式索引,所述扩展循环前缀的时隙格式包括下行符号D、至少一个上行符号U和/或至少一个灵活符号F,所述时隙格式索引用于指示时隙格式表中的一行,所述时隙格式表中的一行用于指示至少12个符号分别对应的符号属性,所述符号属性包括上行符号U、下行符号D或灵活符号F的位置,所述时隙格式索引的取值大于或等于56且小于或等于254;
    发送模块,用于发送所述处理模块确定的所述时隙格式索引。
  11. 根据权利要求10所述的装置,其特征在于,还包括:
    接收模块,用于接收第一指示信息,所述第一指示信息用于指示终端设备支持接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  12. 根据权利要求10或11所述的装置,其特征在于,所述发送模块还用于发送第二指示信息,所述第二指示信息用于指示终端设备接收所述扩展循环前缀的时隙中的同步广播块SS/PBCH block。
  13. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性包括以下两种符号属性中的至少一种:
    第一种符号属性为:Y 0 Y 1 Y 2 Z 0DDDDDDDD Y 3 Y 4,其中,D表示下行符号,Y 0至Y 3均表示灵活符号、上行符号以及下行符号中的任意一个,Z 0表示灵活符号或者下行符号,Y 4表示灵活符号或者上行符号;
    第二种符号属性为:X 0 X 1 DDDDDDDDX 2 X 3 X 4 X 5,其中,D表示下行符号,X 0和X 1均表示灵活符号或者上行符号,X 2表示灵活符号或者下行符号,X 3表示灵活符号或者上行符号,X 4和X 5均表示灵活符号、上行符号以及下行符号中的任意一个。
  14. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性为:
    Z 0 Z 1 DDDD Z 2Z 3 DDDD Z 4Z 5,其中,Z 0至Z 5均表示灵活符号或者上行符号,D表示下行符号。
  15. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性为:
    Z 0 DD FDD F Z 1 DD Z 2DD Z 3,其中,F表示灵活符号,Z 1至Z 3均表示灵活符号或者上行符号,D表示下行符号。
  16. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性包括以下两种符号属性中的至少一种:
    第一种符号属性为:A 0 A 1 A 2 DDDDDDDDF,其中,F表示灵活符号,D表示下行符号,A 0至A 2均表示灵活符号、上行符号以及下行符号中的任意一个;
    第一种符号属性为:B 0 DDDDDDDDB 1 B 2 B 3,其中,F表示灵活符号,D表示下行符号,B 0表示灵活符号或者上行符号,B 1表示灵活符号或者下行符号,B 2和B 3均表示灵 活符号、上行符号以及下行符号中的任意一个。
  17. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性为:
    Z 0 Z 1 DDDC 0 C 1 DDDZ 2 Z 3,其中,Z 0表示灵活符号或者上行符号,Z 1表示灵活符号或者下行符号,D表示下行符号,C 0和C 1均表示灵活符号或者下行符号,Z 2表示灵活符号或者下行符号,Z 3表示灵活符号、上行符号以及下行符号中的任意一个。
  18. 根据权利要求1至6任一项权利要求所述的方法或者权利要求7至12任一项权利要求所述的装置,其特征在于,所述符号属性为:
    C 0 DD DD C 1 C 2 DD DD C 3,其中,C 0至C 3均表示灵活符号或者下行符号,D表示下行符号。
  19. 根据权利要求16至18中任一项所述的方法或装置,其特征在于,所述时隙格式索引指示的符号为所述时隙格式表中的一行指示的14个符号中的12个符号。
  20. 根据权利要求19所述的方法或装置,其特征在于,所述12个符号为14个符号中的前12个符号,或者后12个符号,或者第1个符号到第6个符号以及第8个符号到第13个符号。
  21. 根据权利要求13至15中任一项所述的方法或装置,其特征在于,所述时隙格式索引指示的14个符号的符号属性包括:
    下行符号D和上行符号U为连续两个符号,并且,所述下行符号D的符号索引小于所述上行符号U的符号索引,
    其中,所述时隙格式索引指示的时隙格式对应的子载波间隔小于或等于所述扩展循环前缀的时隙格式对应的子载波间隔。
  22. 根据权利要求1至21中任一项所述的方法或装置,其特征在于,所述时隙格式索引指示的时隙格式对应的子载波间隔小于或等于所述扩展循环前缀的时隙格式对应的子载波间隔。
  23. 根据权利要求1至22中任一项所述的方法或装置,其特征在于,所述扩展循环前缀的时隙格式对应载波间隔的载波间隔为:30KHz子载波间隔、60KHz子载波间隔、120K子载波间隔以及240KHz子载波间隔中的任意一种。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求1至3、13至23任一项所述方法的各个步骤的单元。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求4至6、13至23任一项所述方法的各个步骤的单元。
  26. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器存储有程序,所述程序由所述处理器执行,使得所述装置执行如权利要求1至3、13至23任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器存储有程序,所述程序由所述处理器执行,使得所述装置执行如权利要求4至6、13至23任一项所述的方法。
  28. 一种可读存储介质或程序产品,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至3、13至23任一项中任一项所述的方法被执行。
  29. 一种可读存储介质或程序产品,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求4至6、13至23任一项中任一项所述的方法被执行。
PCT/CN2020/089339 2019-05-22 2020-05-09 时隙格式指示的方法和通信装置 WO2020233420A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20809111.6A EP3965502A4 (en) 2019-05-22 2020-05-09 Slot format indication method and communication apparatus
US17/532,322 US20220086832A1 (en) 2019-05-22 2021-11-22 Slot Format Indication Method And Communication Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910429847.4 2019-05-22
CN201910429847.4A CN111988848B (zh) 2019-05-22 时隙格式指示的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/532,322 Continuation US20220086832A1 (en) 2019-05-22 2021-11-22 Slot Format Indication Method And Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2020233420A1 true WO2020233420A1 (zh) 2020-11-26

Family

ID=73436762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089339 WO2020233420A1 (zh) 2019-05-22 2020-05-09 时隙格式指示的方法和通信装置

Country Status (3)

Country Link
US (1) US20220086832A1 (zh)
EP (1) EP3965502A4 (zh)
WO (1) WO2020233420A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174653A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018195503A1 (en) * 2017-04-21 2018-10-25 Apple Inc. Apparatus, system and method for utilizing a flexible slot format indicator
WO2019052495A1 (en) * 2017-09-15 2019-03-21 Huawei Technologies Co., Ltd. SYSTEMS AND METHODS FOR CONFIGURING SQUARE FORMATS WITH MULTIPLE CRANK SWITCHING POINTS
WO2019083341A1 (ko) * 2017-10-27 2019-05-02 엘지전자 주식회사 무선 통신 시스템에서 장치의 동작 방법 및 상기 방법을 이용하는 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999190B (zh) * 2017-08-14 2023-08-18 韩国电子通信研究院 用于在通信***中传送和接收时隙设定信息的方法
US10932258B2 (en) * 2017-12-15 2021-02-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information and data information in wireless communication system
US11006408B2 (en) * 2018-02-26 2021-05-11 Qualcomm Incorporated Slot format determination for extended cyclic prefix transmissions using normal cyclic prefix slot formats
JP6912592B2 (ja) * 2018-04-06 2021-08-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末のスロットフォーマット決定方法、及び前記方法を利用する端末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174653A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018195503A1 (en) * 2017-04-21 2018-10-25 Apple Inc. Apparatus, system and method for utilizing a flexible slot format indicator
WO2019052495A1 (en) * 2017-09-15 2019-03-21 Huawei Technologies Co., Ltd. SYSTEMS AND METHODS FOR CONFIGURING SQUARE FORMATS WITH MULTIPLE CRANK SWITCHING POINTS
WO2019083341A1 (ko) * 2017-10-27 2019-05-02 엘지전자 주식회사 무선 통신 시스템에서 장치의 동작 방법 및 상기 방법을 이용하는 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Remaining Issues on Group Common PDCCH", R1-1806617, 3GPP TSG RAN WG1 #93, 12 May 2018 (2018-05-12), XP051441819, DOI: 20200624120938A *
QUALCOMM INC.: "Resource Management in IAB Network", R1-1811258, 3GPP TSG RAN WG1 MEETING #94BIS, 29 September 2018 (2018-09-29), XP051518661, DOI: 20200624120945A *

Also Published As

Publication number Publication date
US20220086832A1 (en) 2022-03-17
EP3965502A4 (en) 2022-06-29
EP3965502A1 (en) 2022-03-09
CN111988848A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
WO2020221021A1 (zh) 通信方法和通信装置
JP7319363B2 (ja) データ伝送方法及び通信装置
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
JP7164663B2 (ja) 情報伝送方法、ネットワーク機器及び端末装置
WO2018137700A1 (zh) 一种通信方法,装置及***
WO2019184614A1 (zh) 用于传输解调参考信号的方法、终端设备和网络侧设备
WO2021031939A1 (zh) 一种数据传输方法及装置
WO2021008416A1 (zh) 确定资源分配的方法和装置
WO2019192287A1 (zh) 资源配置方法及装置
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
US11770833B2 (en) Communication method, terminal device, and network device
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2020073991A1 (zh) 数据传输方法和通信装置
WO2020239062A1 (zh) 通信方法和装置
EP4021102A1 (en) Method, apparatus and system for receiving and sending control information
CN109219968A (zh) 一种csi-rs传输方法及网络设备
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
TW202007204A (zh) 調度資源的方法、終端設備和網路設備
WO2022141601A1 (zh) 发送和接收解调参考信号的方法以及通信装置
CN107733548B (zh) 信息的传输方法及相关装置
WO2021032134A1 (zh) 同步信号传输方法及通信装置
CN111988848B (zh) 时隙格式指示的方法和通信装置
WO2021134600A1 (zh) 信号传输的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809111

Country of ref document: EP

Effective date: 20211202