WO2020233250A1 - 伺服电机驱动电路及3d打印装置 - Google Patents

伺服电机驱动电路及3d打印装置 Download PDF

Info

Publication number
WO2020233250A1
WO2020233250A1 PCT/CN2020/083150 CN2020083150W WO2020233250A1 WO 2020233250 A1 WO2020233250 A1 WO 2020233250A1 CN 2020083150 W CN2020083150 W CN 2020083150W WO 2020233250 A1 WO2020233250 A1 WO 2020233250A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse
pulse period
servo motor
latch
Prior art date
Application number
PCT/CN2020/083150
Other languages
English (en)
French (fr)
Inventor
俞萍初
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Priority to JP2021564961A priority Critical patent/JP7182730B2/ja
Publication of WO2020233250A1 publication Critical patent/WO2020233250A1/zh
Priority to US17/516,454 priority patent/US11951685B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/24Controlling the direction, e.g. clockwise or counterclockwise
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42237Pwm pulse width modulation, pulse to position modulation ppm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to the technical field of drive control, and in particular to a servo motor drive circuit and a 3D printing device.
  • Existing 3D printers usually include a carriage and a support platform.
  • a print head is installed on the carriage.
  • the carriage is driven by a servo motor to maintain a uniform motion in the printing area, and accelerate or decelerate in the non-printing area.
  • the character car needs to accelerate until the moving speed of the character car reaches the speed value set in the printing area.
  • the character car needs to decelerate until the speed is 0. Then do acceleration motion to print the next area. Therefore, it is necessary to accurately control the acceleration, uniform speed and deceleration rotation of the servo motor according to the needs of the movement.
  • the rotation of the servo motor is controlled by the software of the single chip microcomputer or the computer, and then the carriage is driven to alternately accelerate, uniformly and decelerate.
  • the embodiments of the present application provide a servo motor drive circuit and a 3D printing device, which improve the duty cycle stability of the drive signal, thereby improving the continuity of acceleration and deceleration movement of the moving parts in the 3D printing device.
  • a servo motor drive circuit including: a motion controller, a timer, a first comparison unit, and a pulse period providing unit;
  • the motion controller is connected to the timer, and is used to send a drive enable signal to the timer;
  • the pulse period providing unit is connected to the timer and the first comparing unit, and is configured to send a pulse period value to the timer and the first comparing unit at the beginning of each pulse period;
  • the timer is connected to the first comparison unit, and is used to initialize in response to the received pulse period value during the enabling period of the drive enable signal, and cycle with the pulse period value as the timing period Timing, and sending the timing duration to the first comparing unit;
  • the first comparison unit is configured to obtain current level information that satisfies the preset duty cycle according to the preset duty cycle, the pulse period value, and the timing duration, and to provide information about the current level according to the current level information.
  • the servo motor sends a high-level or low-level drive signal.
  • the pulse period providing unit includes: a latch, a latch trigger unit, and a period control unit;
  • the period control unit is connected to the latch, and is configured to receive a pulse period update signal, and send the pulse period value of the next pulse period to the latch in response to the pulse period update signal;
  • the latch trigger unit is connected to the motion controller and the latch, and is used to receive a signal that the current pulse period ends, or receive a latch signal from the motion controller, and respond to the current pulse period The end signal or the latch signal, sending a latch control signal to the latch at the beginning of each pulse period;
  • the latch is used to respond to the latch control signal, receive the pulse period value from the period control unit, and send the pulse period value received from the period control unit to the timer and the first comparison unit The pulse period value;
  • the motion controller is also used to send a latch signal to the latch trigger unit when the first pulse period starts.
  • the driving signal in each pulse period is a first level signal and a second level signal in sequence
  • the servo motor drive circuit further includes: a first detection unit;
  • the first detection unit is connected to the latch trigger unit and the first comparison unit, and is used to detect the change from the second level signal to the first level information number in the drive signal,
  • the latch trigger unit sends a signal that the current pulse period ends.
  • it further includes: a second comparison unit;
  • the second comparison unit is connected to the latch trigger unit and the timer, and is configured to obtain the timing duration from the timer, and when the timing duration is equal to the pulse period value, report to the The latch trigger unit sends a signal that the current pulse period ends.
  • the driving signal in each pulse period sequentially includes a first level signal and a second level signal
  • the servo motor drive circuit further includes: a second detection unit;
  • the second detection unit is connected to the period control unit and the first comparison unit, and is configured to send a signal to the drive signal when a change from a first level signal to a second level information number is detected in the drive signal
  • the cycle control unit sends the pulse cycle update signal.
  • it further includes: a third comparison unit;
  • the third comparison unit is connected to the period control unit and the timer, and is configured to obtain the timing duration from the timer, and when the timing duration is equal to a preset timing threshold, report the period
  • the control unit sends the pulse period update signal, wherein the timing threshold is greater than 0 and less than the pulse period value.
  • the sequence of the driving signal in each pulse period includes: a pulse valid level signal and a pulse invalid level signal;
  • the first comparison unit is configured to: determine the pulse effective duration according to the preset duty ratio and the pulse period value, wherein the pulse effective duration is the product of the preset duty ratio and the pulse period value; When the timing duration is less than or equal to the effective duration, the pulse valid level signal is sent to the servo motor; when the timing duration is greater than the valid duration, the pulse invalid level signal is sent to the servo motor.
  • the sequence of the driving signal in each pulse period includes: a pulse invalid level signal and a pulse valid level signal;
  • the first comparison unit is configured to: determine the pulse invalid duration according to the preset duty ratio and the pulse period value, wherein the pulse invalid duration is the difference between 1 and the preset duty ratio and the pulse The product of the period value; when the timing duration is less than the invalid duration, the pulse invalid level signal is sent to the servo motor, and when the timing duration is greater than or equal to the invalid duration, the pulse is sent to the servo motor Effective level signal.
  • the sequence of the drive signal in each pulse period includes: a pulse ineffective level signal, a pulse effective level signal, and a pulse ineffective level signal;
  • the first comparison unit is configured to determine the lower limit time of the pulse valid duration and the upper limit time of the pulse valid duration according to the preset duty ratio and the pulse period value, wherein the lower limit time of the pulse valid duration is 1 and the preset Assuming that the difference in duty cycle is 1/2 of the product of the pulse period value, the upper limit time of the pulse valid duration is 1/2 of the product of the sum of 1 and the preset duty cycle value and the pulse period value
  • the pulse invalid level signal is sent to the servo motor; when the timing duration is less than or equal to the upper limit time of the pulse valid duration, and greater than or equal to the
  • the pulse valid duration lower limit moment the pulse valid level signal is sent to the servo motor; when the timing duration is greater than the pulse valid duration upper limit moment, the pulse invalid level signal is sent to the servo motor.
  • the motion controller is further connected to the cycle control unit, and is configured to send an acceleration enable signal or a deceleration enable signal to the cycle control unit;
  • the period control unit is further configured to respond to the acceleration enable signal, send the pulse period value to the latch according to a period sequence corresponding to a preset acceleration curve, and complete the preset acceleration curve
  • the state signal is fed back to the motion controller; or, in response to the deceleration enable signal, the pulse period value is sent to the latch according to the period sequence corresponding to the preset deceleration curve, and the preset
  • the completion status signal of the deceleration curve is fed back to the motion controller.
  • the motion controller is further configured to send a motion direction signal to the servo motor.
  • the motion controller is further configured to initialize the cycle control unit before sending an acceleration enable signal or a deceleration enable signal to the cycle control unit; Before sending the acceleration enable signal or deceleration enable signal, the control unit sends a latch signal to the latch trigger unit; and after sending the latch signal, sends the drive enable signal to the timer to Make the timer count.
  • the latch trigger unit includes an OR circuit.
  • a 3D printing device including the servo motor drive circuit of the first aspect and various possible designs of the first aspect of the present application.
  • the present application provides a servo motor drive circuit and a 3D printing device.
  • the servo motor drive circuit includes a motion controller, a timer, a first comparison unit and a pulse period providing unit.
  • the motion controller is connected to the timer and is used to send a drive enable signal to the timer;
  • the pulse period providing unit is connected to the timer and the first comparison unit, and is used to send the timer and the first comparison unit at the beginning of each pulse period Send the pulse period value;
  • the timer is connected to the first comparison unit, and is used to initialize in response to the received pulse period value during the enable period of the drive enable signal, take the pulse period value as the timing period for cyclic timing, and time
  • the duration is sent to the first comparison unit;
  • the first comparison unit is used to obtain the current level information that meets the preset duty cycle according to the preset duty cycle, pulse period value and timing duration, and send it to the servo motor according to the current level information Send high-level or low-level drive signals to achieve precise
  • FIG. 1 is a schematic structural diagram of a servo motor drive circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a waveform of a driving signal in a single pulse period provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another waveform of a driving signal in a single pulse period provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of another waveform of a driving signal in a single pulse period provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another servo motor drive circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of still another servo motor drive circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a control logic provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another control logic provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another servo motor drive circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another servo motor drive circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another servo motor drive circuit provided by an embodiment of the present application.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the difference in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and according to A Can confirm B. Determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the match between A and B means that the similarity between A and B is greater than or equal to a preset threshold.
  • connection herein includes any direct and indirect electrical connection means. Therefore, if the text describes that a first element is connected to a second element, it means that the first element can be directly electrically connected to the second element, or through Other elements or connecting means indirectly electrically connect the second element.
  • the servo motor drive circuit in the embodiment of the present application sends a drive signal to the servo motor, and the servo motor runs in a specified direction and rotation speed according to the pulse of the drive signal to drive the 3D printer carriage
  • the moving parts are accelerated, moved at a constant speed or decelerated on the supporting platform to realize 3D printing.
  • the servo motor drive circuit provided by the embodiments of the present application can accurately control the duty cycle in the pulse period, improve the running continuity and stability of the servo motor in the acceleration or deceleration phase, and reduce the intervention of software interruption. Improve the overall system stability.
  • FIG. 1 is a schematic structural diagram of a servo motor drive circuit provided by an embodiment of the present application.
  • the servo motor drive circuit shown in Figure 1 mainly includes: a motion controller, a timer, a first comparison unit and a pulse period providing unit.
  • the motion controller is connected to the timer, and is used to send a driving enable signal to the timer.
  • the drive enable signal output terminal of the motion controller is connected to the enable terminal of the timer, and the motion controller keeps transmitting the enable signal to the timer during the movement of the moving part or during the implementation of 3D printing. , So that the timer maintains the power-on working state during the enable period of the drive enable signal.
  • the pulse period providing unit is connected to the timer and the first comparing unit, and is used to send the pulse period value to the timer and the first comparing unit at the beginning of each pulse period.
  • the pulse period providing unit can be understood as storing a pulse period sequence in advance, and simultaneously sending the pulse period value of each pulse period to the timer and the first comparing unit according to the pulse period sequence.
  • the pulse period providing unit may send the pulse period value periodically, or determine the time when the pulse period value is sent according to the output signal of the timer and/or the first comparison unit.
  • the timer is connected to the first comparison unit, and is used to initialize in response to the received pulse period value during the enable period of the drive enable signal, and use the pulse period
  • the value is the timing period for cyclic timing, and the timing duration is sent to the first comparison unit. It can be understood that, when the timer receives the pulse period value, it will initialize immediately, initialize the current timing duration to 0 and start timing from 0 again. Wherein, taking the pulse period value as the timing period to perform cyclic timing can be understood as starting timing from 0 and restarting timing from 0 after the timing duration reaches the pulse period value, thereby achieving the cyclic timing.
  • the timer sends the timing duration to the first comparison unit in real time. For example, when the timer reaches 11, it sends 11 to the first comparison unit. If it continues to count to 12, it sends 12 to the first comparison unit. This enables the first comparison unit to obtain the timing duration of the current timer in real time.
  • the first comparison unit is configured to obtain the current level information that satisfies the preset duty ratio according to the preset duty ratio, the pulse period value and the timing duration, and according to The current level information sends a high-level or low-level drive signal to the servo motor.
  • the first comparison unit may store the preset duty ratio in advance, and then compare with the timing duration according to the preset duty ratio and pulse period value, so as to determine whether to output a high level or a low level to the servo motor , So that the driving signal meets the preset duty cycle.
  • the preset duty ratio is the ratio of the effective level signal output time in one pulse period.
  • the effective level signal can be understood as the signal component that can make the servo motor rotate in response.
  • the duty cycle refers to the ratio of the duration of the output high level in the current pulse period to the current pulse period value, or the time occupied by the pulse in the current pulse period and the current pulse period value Ratio.
  • the driving signal may be a high-level signal as the effective level, and the duty cycle is the duty ratio of the high-level output time in a pulse period.
  • the driving signal may be a low-level signal as the effective level, and the duty cycle is the proportion of the low-level output time in a pulse period.
  • the duty ratio in each pulse period is the same.
  • the preset duty ratio 1/K is not close to 0 or not close to 1, and K is a number greater than 1.
  • the preset duty ratio 1/K may be 1/2. This reduces the possibility that the anti-interference filter that may be introduced in the signal transmission process will easily recognize high-frequency signals as interference waves and be filtered, resulting in the possibility that the servo motor cannot be driven.
  • the implementation of the first comparison unit is determined according to the form of the drive signal in a single pulse period, and the drive signal in each pulse period can have multiple forms.
  • the function of the first comparison unit is illustrated by examples.
  • FIG. 2 is a schematic diagram of a waveform of a driving signal in a single pulse period provided by an embodiment of the present application.
  • the driving signal sequence in each pulse period includes: a pulse valid level signal and a pulse invalid level signal. That is, output high level first, then output low level.
  • the first comparing unit may be used to determine the effective duration of the pulse according to the preset duty ratio and the pulse period value, where the effective duration of the pulse is the preset duty ratio and The product of the pulse period value; when the timing duration is less than or equal to the effective duration, the pulse effective level signal is sent to the servo motor; when the timing duration is greater than the effective duration, the pulse is sent to the servo motor
  • the pulse invalid level signal For example, the current pulse period is T0, the high level is the effective level signal, the pulse effective duration is T0/K, and the time value recorded by the timer is t0.
  • the first comparison unit compares t0 and T0/K: when t0 ⁇ When T0/K, output high level corresponds to output pulse; when t0>T0/K, output low level.
  • the first comparison unit outputs a high level or a low level in the subsequent pulse periods T1, T2... in the same way, thereby achieving a stable maintenance of the duty ratio at 1/K in each pulse period.
  • FIG. 3 is another schematic diagram of the waveform of the driving signal in a single pulse period provided by the embodiments of the present application.
  • the driving signal sequence in each pulse period includes: a pulse invalid level signal and a pulse valid level signal. That is, output low level first, then output high level.
  • the first comparison unit may be used to determine the pulse invalid duration according to the preset duty ratio and the pulse period value, where the pulse invalid duration is 1 and the preset The product of the difference in duty cycle and the pulse period value; when the timing duration is less than the invalid duration, the pulse invalid level signal is sent to the servo motor, and when the timing duration is greater than or equal to the invalid duration When, send the pulse effective level signal to the servo motor.
  • the current pulse period is T0
  • the high level is the active level signal
  • the pulse inactive duration is T0 (1-1/K)
  • the time value recorded by the timer is t0
  • the first comparison unit compares t0 and T0 (1- 1/K) compare: when t0 ⁇ T0(1-1/K), output low level; when t0 ⁇ T0(1-1/K), output high level corresponding to output pulse.
  • the first comparison unit outputs a high level or a low level in the subsequent pulse periods T1, T2... in the same way, thereby achieving a stable maintenance of the duty ratio at 1/K in each pulse period.
  • FIG. 4 is a schematic diagram of another waveform of a driving signal in a single pulse period provided by an embodiment of the present application.
  • the driving signal sequence in each pulse period includes: a pulse ineffective level signal, a pulse effective level signal, and a pulse ineffective level signal. That is, first output low level, then output high level, and finally output low level.
  • the first comparison unit may be used to determine the lower limit time of the pulse valid duration and the upper limit time of the pulse valid duration according to the preset duty ratio and the pulse period value, wherein the The pulse valid duration lower limit moment is 1/2 of the product of the difference between 1 and the preset duty cycle value and the pulse period value, and the pulse valid duration upper limit moment is the sum of 1 and the preset duty cycle 1/2 of the product of the pulse period value; when the timing duration is less than the lower limit of the pulse effective duration, the pulse invalid level signal is sent to the servo motor; when the timing duration is less than or equal to the pulse When the effective duration upper limit moment is greater than or equal to the pulse effective duration lower limit moment, the pulse effective level signal is sent to the servo motor; when the timing duration is greater than the pulse effective duration upper limit moment, the pulse effective level signal is sent to the servo motor The pulse invalid level signal.
  • the current pulse period is T0
  • the high level is the effective level signal.
  • the first comparison unit compares the time t0 recorded by the timer with T0(K-1)/2K, and compares the time t0 recorded by the timer with T0( K+1)/2K for comparison, when t0 ⁇ T0(K-1)/2K, output low level; when T0(K-1)/2K ⁇ t0 ⁇ T0(K+1)/2K, output The high level corresponds to the output pulse; when t0>T0(K+1)/2K, the low level is output.
  • the first comparison unit outputs a high level or a low level in the subsequent pulse periods T1, T2... in the same way, thereby achieving a stable maintenance of the duty ratio at 1/K in each pulse period.
  • a servo motor drive circuit includes: a motion controller, a timer, a first comparison unit, and a pulse period providing unit.
  • the motion controller is connected to the timer and is used to send a drive enable signal to the timer;
  • the pulse period providing unit is connected to the timer and the first comparison unit, and is used to send the timer and the first comparison unit at the beginning of each pulse period Send the pulse period value;
  • the timer is connected to the first comparison unit, and is used to initialize in response to the received pulse period value during the enable period of the drive enable signal, take the pulse period value as the timing period for cyclic timing, and time
  • the duration is sent to the first comparison unit;
  • the first comparison unit is used to obtain the current level information that meets the preset duty cycle according to the preset duty cycle, pulse period value and timing duration, and send it to the servo motor according to the current level information Send high-level or low-level drive signals to achieve precise control of the duty cycle of the drive signal in each pulse period, improve the continuity and stability of
  • pulse period providing unit On the basis of the above-mentioned embodiments, there may be multiple implementation modes of the pulse period providing unit.
  • the structure of the pulse period providing unit will be illustrated below with reference to the drawings and specific embodiments.
  • the pulse period providing unit may include: a latch, a latch trigger unit, and a period control unit.
  • the period control unit is connected to the latch, and is used to receive the pulse period update signal, and send the pulse period value of the next pulse period to the latch in response to the pulse period update signal.
  • the period control unit may be a circuit with storage and addition and subtraction logic functions.
  • the pulse period update signal is used as the enable signal to update the current pulse period value to the pulse period value of the next pulse period , And send the pulse period value of the next pulse period to the latch, thereby realizing the update of the pulse period value.
  • the pulse period update signal received by the period control unit may be determined according to the output signal of the timer or the output signal of the first comparison unit. For details, please refer to the examples of subsequent embodiments.
  • the latch trigger unit is connected to the motion controller and the latch, and is used to receive a signal indicating the end of the current pulse period, or receive a latch signal from the motion controller, and respond to the current pulse period
  • the end signal or the latch signal sends a latch control signal to the latch at the beginning of each pulse period.
  • the motion controller shown in FIG. 5 is also used to send a latch signal to the latch trigger unit at the beginning of the first pulse period.
  • the motion controller sends a latch signal, such as a high level signal 1, to the latch trigger unit, and the latch trigger unit is activated when it receives the latch signal of the high level signal 1. It can send a latch control signal to the latch.
  • the latch trigger unit sends a latch control signal to the latch when receiving a signal that the current pulse period ends.
  • the latch signal and the signal at the end of the current pulse period can both be high level 1, and after the motion controller sends the latch signal, it can still be electrically connected to the latch trigger unit, but the motion controller sends the latch trigger unit The low level 0 is transmitted, and the latch trigger unit will not be enabled by the low level 0.
  • the latch trigger unit may include or be composed of an OR circuit.
  • the latch trigger unit is an OR circuit
  • the OR circuit if any input signal of the OR circuit is 1, the OR circuit outputs the latch control signal 1 to the latch. If all input signals of the OR circuit are If it is 0, the OR circuit outputs a non-latching control signal 0 to the latch.
  • the input signal or the latch signal of the end of the current pulse period of the arithmetic circuit can be understood as 1.
  • the motion controller sends the latch signal 1 only once at the beginning of the first pulse period, and the motion controller outputs 0 to the latch trigger unit for the remaining time. It can be seen that in the remaining time, the latch trigger unit only outputs the latch control signal 1 in response to the signal at the end of the current pulse period, and outputs 0 when the signal at the end of the current pulse period is not received.
  • the latch is used to respond to the latch control signal, receive the pulse period value from the period control unit, and send a slave period control to the timer and the first comparison unit.
  • the pulse period value received by the unit is used to respond to the latch control signal, receive the pulse period value from the period control unit, and send a slave period control to the timer and the first comparison unit.
  • the period control unit receives the pulse period update signal and sends the pulse period value T0 of the first pulse period to the latch in response to the pulse period update signal, and the motion control unit sends
  • the latch trigger unit sends a latch signal 1 and a drive enable signal 1 to the timer.
  • the latch trigger unit sends a latch control signal 1 to the latch in response to the latch signal.
  • the latch receives and latches T0 sent by the cycle control unit, and sends T0 to the timer and the first comparison unit.
  • the timer is initialized when T0 is received and counts periodically with T0, and at the same time sends the timing duration to the first comparison unit.
  • the first comparison unit determines whether to output a high level or a low level to the servo motor according to the input T0 and the timing duration and the preset duty ratio.
  • the latch keeps latching T0, but does not send a new pulse period value to the timer and the first comparison unit, until the current pulse period ends, and the latch trigger unit receives the signal that the current pulse period ends.
  • the latch trigger unit responds to the signal 1 at the end of the current pulse period, and sends a latch control signal 1 to the latch.
  • the latch receives the latch control signal 1, it receives and latches the T1 sent by the cycle control unit, sends T1 to the timer and the first comparison unit, and starts the cycle timing of the new pulse cycle and the drive signal output.
  • the cycle control unit may generate and send T1 to the latch before T0 arrives.
  • This embodiment realizes the automatic and accurate control of the pulse period of the driving signal through the above-mentioned latch, latch trigger unit, and period control unit, reduces the intervention of the motion controller, and further improves the stability of the duty ratio of the driving signal.
  • the signal at the end of the current pulse period and the pulse period update signal can be obtained according to the output of the timer and/or the first comparison unit.
  • the following will combine the drawings and specific embodiments to obtain the current pulse period
  • the structure of the finished signal and the structure of obtaining the pulse period update signal are illustrated by examples, but the application is not limited to this.
  • FIG. 6 is a schematic structural diagram of yet another servo motor drive circuit provided by an embodiment of the present application.
  • the signal that the current pulse period ends may be acquired by the first detection unit.
  • the driving signal in each pulse period is a first level signal and a second level signal in sequence.
  • the servo motor drive circuit further includes: a first detection unit.
  • the first detection unit is connected to the latch trigger unit and the first comparison unit, and is used to detect the change from the second level signal to the first level information number in the drive signal,
  • the latch trigger unit sends a signal that the current pulse period ends.
  • Fig. 7 is a schematic diagram of a control logic provided by an embodiment of the present application.
  • the first level signal is a low level signal
  • the second level signal is a high level signal
  • the first detection unit can be understood as a falling edge circuit.
  • the first comparison unit outputs a low level first and then outputs a high level.
  • the first detection unit extracts the falling edge signal of the drive signal, it indicates that the timer reaches the pulse period value and starts to re-timing from 0 Therefore, the first detection unit generates a signal that the current pulse period ends, and enables the latch to send the pulse period value of the next pulse period.
  • FIG. 8 is a schematic diagram of another control logic provided by the embodiments of the present application.
  • the first level signal is a high level signal
  • the second level signal is a low level signal
  • the first detection unit can be understood as a rising edge circuit.
  • the first comparison unit outputs a high level first and then outputs a low level.
  • the first detection unit extracts the rising edge signal of the drive signal, it indicates that the timer reaches the pulse period value and restarts from 0 Therefore, the first detection unit generates a signal that the current pulse period ends, and enables the latch to send the pulse period value of the next pulse period.
  • the first detection unit improves the control accuracy of the pulse period.
  • FIG. 9 is a schematic structural diagram of another servo motor drive circuit provided by an embodiment of the present application.
  • the signal at the end of the current pulse period in the embodiment of the servo motor drive circuit as shown in FIG. 9 may be obtained by the second comparing unit.
  • the servo motor drive circuit further includes: a second comparison unit.
  • the second comparison unit is connected to the latch trigger unit and the timer, and is configured to obtain the timing duration from the timer, and when the timing duration is equal to the pulse period value, report to the The latch trigger unit sends a signal that the current pulse period ends. Understandably, the second comparison unit compares the timing duration with the pulse period value.
  • the comparison unit sends a signal that the current pulse period ends to the latch trigger unit.
  • the second comparison unit improves the control accuracy of the pulse period.
  • the pulse period update signal may be obtained by the second detection unit.
  • the driving signal in each pulse period may sequentially include a first level signal and a second level signal.
  • the servo motor drive circuit may further include: a second detection unit. The second detection unit is connected to the period control unit and the first comparison unit, and is configured to send a signal to the drive signal when a change from a first level signal to a second level information number is detected in the drive signal The cycle control unit sends the pulse cycle update signal.
  • the first level signal is a low level signal
  • the second level signal is a high level signal
  • the second detection unit can be understood as a rising edge circuit.
  • the first comparison unit outputs a low level first and then outputs a high level.
  • the second detection unit extracts the rising edge signal of the drive signal, it indicates that the timer has started to count after initialization but has not reached the pulse period value. Therefore, the second detection unit generates the pulse period update signal, and the period control unit is enabled to generate and transmit the pulse period value of the next pulse period.
  • the latch at this time also latches the current pulse period value, and will not receive the pulse period value transmitted by the period control unit, until the current pulse period ends, through the first detection unit in Figure 6 or the first detection unit in Figure 9
  • the second comparison unit outputs the signal that the current pulse period ends, and the latch immediately receives the pulse period value transmitted by the period control unit for latching and sending. It can be seen that the second detection unit can pre-generate the pulse period value of the next pulse period before the end of the current pulse period, which improves the update speed and reliability of the pulse period value.
  • the first level signal is a high level signal and the second level signal is a low level signal
  • the second detection unit can be understood as a falling edge circuit.
  • the first comparison unit outputs a high level first and then outputs a low level.
  • the second detection unit extracts the falling edge signal of the drive signal, it indicates that the timer has started to count after initialization but has not reached the pulse period value. Therefore, the second detection unit generates the pulse period update signal, and the period control unit is enabled to generate and transmit the pulse period value of the next pulse period.
  • the latch at this time also latches the current pulse period value, and will not receive the pulse period value transmitted by the period control unit, until the current pulse period ends, through the first detection unit in Figure 6 or the first detection unit in Figure 9
  • the second comparison unit outputs the signal that the current pulse period ends, and the latch immediately receives the pulse period value transmitted by the period control unit for latching and sending. It can be seen that the second detection unit can pre-generate the pulse period value of the next pulse period before the end of the current pulse period, which improves the update speed and reliability of the pulse period value.
  • the driving signal may sequentially include a first level signal, a second level signal, and a first level signal.
  • the first comparison unit outputs a low level first, then outputs a high level, and then outputs a low level.
  • the second detection unit can be understood as the above-mentioned rising edge taking circuit or falling edge taking circuit to send a pulse period update signal to the period control unit when the rising edge or the falling edge is obtained.
  • the second detection unit can send a pulse period update signal to the period control unit before the end of the current pulse period, so that the period control unit generates the pulse period value of the next pulse period in advance, which improves the update speed and rate of the pulse period value. reliability.
  • the servo motor drive circuit may further include: a third comparison unit.
  • the third comparison unit is connected to the period control unit and the timer, and is used to obtain the timing duration from the timer, and when the timing duration is equal to a preset timing threshold, send a pulse period update signal to the period control unit, wherein the The timing threshold is greater than 0 and less than the pulse period value.
  • the third comparing unit sends the pulse period update signal
  • the first detecting unit or the second comparing unit may be used to send the signal that the current pulse period ends, see FIG. 10 and FIG. 11. Understandably, the third comparison unit compares the timing duration with the timing threshold.
  • the timing threshold is a non-zero value less than the pulse period value.
  • the timing duration is equal to the timing threshold, it indicates that the current pulse period has started, but the current The pulse period is not over yet (the timing threshold is less than the pulse period value), and the period control unit is required to provide the pulse period value of the next pulse period.
  • the third comparison unit improves the control accuracy of the pulse period.
  • the pulse period providing unit can be automatically initialized at a fixed time and generate the pulse period value according to pre-stored data, or it can be connected to the motion controller (see Figure 10 and Figure 11), according to the motion controller Control and initialize and generate pulse period value.
  • the function of initializing the pulse period providing unit is to output the first pulse period T0 to start the servo motor drive circuit in this application.
  • the motion controller may also control the pulse period value generated by the period control unit by sending an acceleration enable signal or a deceleration enable signal to the period control unit.
  • the motion controller is also connected to the cycle control unit, and is used to send an acceleration enable signal or a deceleration enable signal to the cycle control unit.
  • the cycle control unit is further configured to respond to the acceleration enable signal when receiving the acceleration enable signal, and send all data to the latch according to the cycle sequence corresponding to the preset acceleration curve.
  • the period control unit is further configured to respond to the deceleration enable signal and send the pulse period value to the latch according to the period sequence corresponding to the preset deceleration curve when receiving the deceleration enable signal, and The completion state signal of the preset deceleration curve is fed back to the motion controller.
  • the motion controller may also be used to send a motion direction signal to the servo motor.
  • the servo motor determines its rotation direction according to the movement direction signal.
  • the motion controller is further configured to initialize the period control unit before sending an acceleration enable signal or a deceleration enable signal to the period control unit.
  • the initialization of the period control unit may be, for example, to make the period control unit generate the first pulse period value T0 and output the first pulse period value.
  • the motion controller may also send a latch signal to the latch trigger unit, so that the latch receives T0, and Send T0 to the timer and the first comparison unit. After sending the latch signal, the motion controller sends the drive enable signal to the timer, so that the timer counts.
  • an embodiment of the present application provides a 3D printing device, which may include the servo motor drive circuit described in any of the foregoing embodiments.
  • the 3D printing device includes the above-mentioned specific embodiment and any one of the above embodiments and the servo motor drive circuit, the servo motor and the moving parts that control the change of the drive speed of the servo motor.
  • the first comparison unit is electrically connected with the servo motor
  • the motion controller is connected with the servo motor circuit.
  • the motion controller outputs a motion direction signal to the servo motor, and the first comparison unit sends a drive signal to the servo motor, so that the servo motor runs in a specified direction and rotation speed, and finally drives the moving parts to accelerate or decelerate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

本申请提供一种伺服电机驱动电路及3D打印装置,通过运动控制器与定时器连接,用于向定时器发送驱动使能信号;脉冲周期提供单元与定时器和第一比较单元连接,用于在每个脉冲周期开始时刻向定时器和第一比较单元发送脉冲周期值;定时器与第一比较单元连接,用于在驱动使能信号的使能期间,响应接收到的脉冲周期值进行初始化,以脉冲周期值为计时周期进行循环计时,将计时时长发送至第一比较单元;第一比较单元用于根据预设占空比、脉冲周期值和计时时长,获取满足预设占空比的当前电平信息,并根据当前电平信息向伺服电机发送高电平或者低电平的驱动信号,从而实现对驱动信号在各脉冲周期中占空比的精确控制,提高伺服电机的运行连贯性。

Description

伺服电机驱动电路及3D打印装置
本申请要求于2019年5月17日提交中国专利局、申请号为201910412904.8、发明名称为“伺服电机驱动电路及3D打印装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及驱动控制技术领域,尤其涉及一种伺服电机驱动电路及3D打印装置。
背景技术
现有的3D打印机通常包括字车和支撑平台,字车上安装有打印头,通常字车在伺服电机的驱动下在打印区域中维持匀速运动,在非打印区域中进行加速运动或减速运动,例如在进行目标物体打印之前字车需要做加速运动直到字车的移动速度达到打印区域中设定的速度值,在目标物体的当前打印区域完成后,字车需要做减速运动直到速度为0,之后再做加速运动进行下一区域的打印。因此需要根据运动需要而对伺服电机的加速、匀速和减速转动进行准确控制。
现有技术中,由单片机或计算机的软件控制伺服电机的转动,进而驱动字车交替进行加速、匀速和减速的运动。
然而,单片机或计算机输出脉冲的占空比不稳定,导致输出脉冲频率不准确,由此给移动部件的加减速移动造成不连贯的问题。
发明内容
本申请实施例提供一种伺服电机驱动电路及3D打印装置,提高了驱动信号的占空比稳定性,从而提高了3D打印装置中移动部件的加减速移动的连贯性。
本申请实施例的第一方面,提供一种伺服电机驱动电路,包括:运动控制器、定时器、第一比较单元和脉冲周期提供单元;
所述运动控制器与所述定时器连接,用于向所述定时器发送驱动使能信号;
所述脉冲周期提供单元与所述定时器和所述第一比较单元连接,用于在每个脉冲周期开始时刻向所述定时器和所述第一比较单元发送脉冲周期值;
所述定时器与所述第一比较单元连接,用于在所述驱动使能信号的使能期间,响应接收到的所述脉冲周期值进行初始化,以所述脉冲周期值为计时周期进行循环计时,并将计时时长发送至所述第一比较单元;
所述第一比较单元用于根据预设占空比、所述脉冲周期值和所述计时时长,获取满足所述预设占空比的当前电平信息,并根据所述当前电平信息向伺服电机发送高电平或者低电平的驱动信号。
可选地,所述脉冲周期提供单元包括:锁存器、锁存触发单元以及周期控制单元;
所述周期控制单元与所述锁存器连接,用于接收脉冲周期更新信号,并响应所述脉冲周期更新信号向所述锁存器发送下一个脉冲周期的脉冲周期值;
所述锁存触发单元与所述运动控制器和所述锁存器连接,用于接收当前脉冲周期结束的信号,或者从所述运动控制器接收到锁存信号,并响应所述当前脉冲周期结束的信号或所述锁存信号,在每个脉冲周期开始时刻向所述锁存器发送锁存控制信号;
所述锁存器用于响应所述锁存控制信号,从所述周期控制单元接收所述脉冲周期值,并向所述定时器和所述第一比较单元发送从所述周期控制单元接收到的所述脉冲周期值;
所述运动控制器还用于在首个脉冲周期开始时向所述锁存触发单元发送锁存信号。
可选地,每个所述脉冲周期中的所述驱动信号顺序为第一电平信号和第二电平信号;
所述伺服电机驱动电路还包括:第一检测单元;
所述第一检测单元与所述锁存触发单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第二电平信号变为第一电平信息号时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。
可选地,还包括:第二比较单元;
所述第二比较单元与所述锁存触发单元和所述定时器连接,用于从所述定时器获取所述计时时长,并在所述计时时长等于所述脉冲周期值时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。
可选地,每个所述脉冲周期中的所述驱动信号顺序包括第一电平信号和第二电平信号;
所述伺服电机驱动电路还包括:第二检测单元;
所述第二检测单元与所述周期控制单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第一电平信号变为第二电平信息号时,向所述周期控制单元发送所述脉冲周期更新信号。
可选地,还包括:第三比较单元;
所述第三比较单元与所述周期控制单元和所述定时器连接,用于从所述定时器获取所述计时时长,并在所述计时时长等于预设的计时阈值时,向所述周期控制单元发送所述脉冲周期更新信号,其中,所述计时阈值大于0且小于所述脉冲周期值。
可选地,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲有效电平信号和脉冲无效电平信号;
所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长,其中,所述脉冲有效时长为预设占空比和所述脉冲周期值的乘积;在所述计时时长小于或等于所述有效时长时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述有效时长时,向伺服电机发送所述脉冲无效电平信号。
可选地,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平信号、脉冲有效电平信号;
所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲无效时长,其中,所述脉冲无效时长为1与所述预设占空比之差与所述脉冲周期值的乘积;在所述计时时长小于所述无效时长时,向伺服电机发送所述脉冲无效电平信号,在所述计时时长大于或等于所述无效时长时,向伺服电机发送所述脉冲有效电平信号。
可选地,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平 信号、脉冲有效电平信号、脉冲无效电平信号;
所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长下限时刻和脉冲有效时长上限时刻,其中,所述脉冲有效时长下限时刻为1与所述预设占空比之差与所述脉冲周期值的乘积的1/2,所述脉冲有效时长上限时刻为1与所述预设占空比之和与所述脉冲周期值的乘积的1/2;在所述计时时长小于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲无效电平信号;在所述计时时长小于或等于所述脉冲有效时长上限时刻,且大于或等于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述脉冲有效时长上限时刻时,向伺服电机发送所述脉冲无效电平信号。
可选地,所述运动控制器还与所述周期控制单元连接,用于向所述周期控制单元发送加速使能信号或减速使能信号;
所述周期控制单元还用于响应所述加速使能信号,根据与预设加速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设加速曲线的完成状态信号反馈给所述运动控制器;或者,响应所述减速使能信号,根据与预设减速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设减速曲线的完成状态信号反馈给所述运动控制器。
可选地,所述运动控制器还用于:向所述伺服电机发送运动方向信号。
可选地,所述运动控制器,还用于在向所述周期控制单元发送加速使能信号或减速使能信号之前,对所述周期控制单元进行初始化;初始化完成后且在向所述周期控制单元发送加速使能信号或减速使能信号之前,向所述锁存触发单元发送锁存信号;并在发送所述锁存信号之后,向所述定时器发送所述驱动使能信号,以使所述定时器计时。
可选地,所述锁存触发单元包括或运算电路。
本申请实施例的第二方面,提供一种3D打印装置,包括本申请第一方面及第一方面各种可能设计的所述伺服电机驱动电路。
本申请提供的一种伺服电机驱动电路及3D打印装置,伺服电机驱动电路包括:运动控制器、定时器、第一比较单元和脉冲周期提供单元。运动控制器与定时器连接,用于向定时器发送驱动使能信号;脉冲周期提供单元与定时器和第一比较单元连接,用于在每个脉冲周期开始时刻向定时器和第一 比较单元发送脉冲周期值;定时器与第一比较单元连接,用于在驱动使能信号的使能期间,响应接收到的脉冲周期值进行初始化,以脉冲周期值为计时周期进行循环计时,并将计时时长发送至第一比较单元;第一比较单元用于根据预设占空比、脉冲周期值和计时时长,获取满足预设占空比的当前电平信息,并根据当前电平信息向伺服电机发送高电平或者低电平的驱动信号,从而实现对驱动信号在各脉冲周期中占空比的精确控制,提高伺服电机在加速或减速阶段的运行连贯性和平稳性,还减少了软件中断的介入,提高了整体***稳定性。
附图说明
图1是本申请实施例提供的一种伺服电机驱动电路结构示意图;
图2是本申请实施例提供的一种单个脉冲周期中驱动信号的波形示意图;
图3是本申请实施例提供的另一种单个脉冲周期中驱动信号的波形示意图;
图4是本申请实施例提供的另一种单个脉冲周期中驱动信号的波形示意图;
图5是本申请实施例提供的另一种伺服电机驱动电路结构示意图;
图6是本申请实施例提供的再一种伺服电机驱动电路结构示意图;
图7是本申请实施例提供的一种控制逻辑示意图;
图8是本申请实施例提供的另一种控制逻辑示意图;
图9是本申请实施例提供的又一种伺服电机驱动电路结构示意图;
图10是本申请实施例提供的又一种伺服电机驱动电路结构示意图;
图11是本申请实施例提供的又一种伺服电机驱动电路结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
应当理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应当理解,在本申请中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“多个”是指两个或两个以上。“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“包含A、B和C”、“包含A、B、C”是指A、B、C三者都包含,“包含A、B或C”是指包含A、B、C三者之一,“包含A、B和/或C”是指包含A、B、C三者中任1个或任2个或3个。
应当理解,在本申请中,“与A对应的B”、“与A相对应的B”、“A与B相对应”或者“B与A相对应”,表示B与A相关联,根据A可以确定B。根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。A与B的匹配,是A与B的相似度大于或等于预设的阈值。
在本申请中,取决于语境,术语“若”、“响应”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。此外,术语“连接”一词在此包含任何直接及间接的电气连接手段,因此,若文中描述第一元件连接第二元件,则代表该第一元件可直接电气连接该第二元件,或者通过其他元件或连接手段间接地电气连接该第二元件。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例 不再赘述。
在例如3D打印机的应用场景中,本申请实施例中的伺服电机驱动电路向伺服电机发送驱动信号,伺服电机根据驱动信号的脉冲而在指定的方向和旋转速度下运转,带动3D打印机字车的移动部件在支撑平台之上进行加速、匀速或减速移动,实现3D打印。其中,通过本申请实施例提供的伺服电机驱动电路,可以准确控制脉冲周期中的占空比,提高伺服电机在加速或减速阶段的运行连贯性和平稳性,还减少了软件中断的介入,提高了整体***稳定性。
参见图1,是本申请实施例提供的一种伺服电机驱动电路结构示意图。如图1所示的伺服电机驱动电路,主要包括:运动控制器、定时器、第一比较单元和脉冲周期提供单元。
其中,如图1所示,运动控制器与定时器连接,用于向所述定时器发送驱动使能信号。可以理解为,运动控制器的驱动使能信号输出端与定时器的使能端连接,运动控制器在移动部件的移动期间,或者理解为在3D打印实施期间,保持向定时器传输使能信号,以使得定时器在驱动使能信号的使能期间保持上电工作状态。
如图1所示,脉冲周期提供单元与定时器和第一比较单元连接,用于在每个脉冲周期开始时刻向定时器和第一比较单元发送脉冲周期值。脉冲周期提供单元可以理解为预先存储有脉冲周期序列,并根据脉冲周期序列向定时器和第一比较单元同时发送每个脉冲周期的脉冲周期值。在一些实施例中,脉冲周期提供单元可以是定时发送脉冲周期值,也可以是根据定时器和/或第一比较单元的输出信号而确定发送脉冲周期值的时刻。
如图1所示,所述定时器与所述第一比较单元连接,用于在所述驱动使能信号的使能期间,响应接收到的所述脉冲周期值进行初始化,以所述脉冲周期值为计时周期进行循环计时,并将计时时长发送至所述第一比较单元。可以理解为,定时器在接收到脉冲周期值时,立即进行初始化,将当前计时时长初始化为0并重新从0开始计时。其中,以所述脉冲周期值为计时周期进行循环计时,可以理解为,从0开始计时并在计时时长达到脉冲周期值后重新从0开始计时,由此实现所述的循环计时。例如,脉冲周期值为15,定时器从0计时到15,则返回到0重新计时。定时器在循环计时的过程中,实 时地将计时时长发送至第一比较单元,例如计时到11,则向第一比较单元发送11,继续计时到12,则向第一比较单元发送12,由此使得第一比较单元能够实时获得当前定时器的计时时长。
在图1所示实施例中,第一比较单元用于根据预设占空比、所述脉冲周期值和所述计时时长,获取满足所述预设占空比的当前电平信息,并根据所述当前电平信息向伺服电机发送高电平或者低电平的驱动信号。第一比较单元例如可以是预先存储有所述预设占空比,然后根据预设占空比和脉冲周期值,与计时时长进行比较,从而确定向伺服电机是输出高电平还是低电平,以使得驱动信号满足预设占空比。
在本实施例中,预设占空比是在一个脉冲周期中有效电平信号输出时间的占比。有效电平信号可以理解为能够使伺服电机响应而转动的信号成分。以输出高电平对应输出脉冲为例,占空比是指当前脉冲周期中输出高电平的持续时间与当前脉冲周期值的比值,或者是当前脉冲周期中脉冲占用的时间与当前脉冲周期值的比值。例如,驱动信号可以是以高电平为有效电平信号,那么占空比是在一个脉冲周期中高电平输出时间的占比。或者,驱动信号可以是以低电平为有效电平信号,那么占空比是在一个脉冲周期中低电平输出时间的占比。本实施例中,各脉冲周期中占空比相同。其中,可选地,预设占空比1/K不接近0或不接近1,K为大于1的数。例如,预设占空比1/K可以为1/2。由此降低了在信号传输过程中可能引入的抗干扰滤波器容易将高频率的信号认作干扰波而被过滤,导致伺服电机无法被驱动的可能性。
在图1所示实施例中,第一比较单元的实现方式是根据单个脉冲周期中驱动信号的形式而确定的,而每个脉冲周期中的驱动信号可以有多种形式,下面以高电平为有效电平信号结合图2至图4所示三种可选的驱动信号,对第一比较单元的功能进行举例说明。
在一些实施例中,参见图2,是本申请实施例提供的一种单个脉冲周期中驱动信号的波形示意图。如图2所示,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲有效电平信号和脉冲无效电平信号。即先输出高电平,再输出低电平。
在图2所示的实施例中,第一比较单元可以用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长,其中,所述脉冲有效时长为预设占空比 和所述脉冲周期值的乘积;在所述计时时长小于或等于所述有效时长时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述有效时长时,向伺服电机发送所述脉冲无效电平信号。例如,当前脉冲周期为T0,高电平为有效电平信号,脉冲有效时长为T0/K,定时器记录的时间值为t0,第一比较单元将t0和T0/K进行比较:当t0≤T0/K时,输出高电平对应输出脉冲;当t0>T0/K时,输出低电平。第一比较单元以同样的方法在后续脉冲周期T1、T2......中输出高电平或低电平,由此实现在各脉冲周期中占空比稳定维持在1/K。
在另一些实施例中,参见图3,是本申请实施例提供的另一种单个脉冲周期中驱动信号的波形示意图。如图3所示,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平信号、脉冲有效电平信号。即先输出低电平,再输出高电平。
在图3所示的实施例中,第一比较单元可以用于:根据预设占空比和所述脉冲周期值,确定脉冲无效时长,其中,所述脉冲无效时长为1与所述预设占空比之差与所述脉冲周期值的乘积;在所述计时时长小于所述无效时长时,向伺服电机发送所述脉冲无效电平信号,在所述计时时长大于或等于所述无效时长时,向伺服电机发送所述脉冲有效电平信号。例如,当前脉冲周期为T0,高电平为有效电平信号,脉冲无效时长为T0(1-1/K),定时器记录的时间值为t0,第一比较单元将t0和T0(1-1/K)进行比较:当t0<T0(1-1/K)时,输出低电平;当t0≥T0(1-1/K)时,输出高电平对应输出脉冲。第一比较单元以同样的方法在后续脉冲周期T1、T2......中输出高电平或低电平,由此实现在各脉冲周期中占空比稳定维持在1/K。
在再一些实施例中,参见图4,是本申请实施例提供的另一种单个脉冲周期中驱动信号的波形示意图。如图4所示,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平信号、脉冲有效电平信号、脉冲无效电平信号。即先输出低电平,再输出高电平,最后再输出低电平。
在图4所示的实施例中,所述第一比较单元可以用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长下限时刻和脉冲有效时长上限时刻,其中,所述脉冲有效时长下限时刻为1与所述预设占空比之差与所述脉冲周期值的乘积的1/2,所述脉冲有效时长上限时刻为1与所述预设占空比之和与 所述脉冲周期值的乘积的1/2;在所述计时时长小于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲无效电平信号;在所述计时时长小于或等于所述脉冲有效时长上限时刻,且大于或等于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述脉冲有效时长上限时刻时,向伺服电机发送所述脉冲无效电平信号。例如,当前脉冲周期为T0,高电平为有效电平信号,第一比较单元将定时器记录的时间t0与T0(K-1)/2K进行比较,将定时器记录的时间t0与T0(K+1)/2K进行比较,当t0<T0(K-1)/2K时,输出低电平;当T0(K-1)/2K≤t0≤T0(K+1)/2K时,输出高电平对应输出脉冲;当t0>T0(K+1)/2K时,输出低电平。第一比较单元以同样的方法在后续脉冲周期T1、T2......中输出高电平或低电平,由此实现在各脉冲周期中占空比稳定维持在1/K。
在本实施例提供的一种伺服电机驱动电路,包括:运动控制器、定时器、第一比较单元和脉冲周期提供单元。运动控制器与定时器连接,用于向定时器发送驱动使能信号;脉冲周期提供单元与定时器和第一比较单元连接,用于在每个脉冲周期开始时刻向定时器和第一比较单元发送脉冲周期值;定时器与第一比较单元连接,用于在驱动使能信号的使能期间,响应接收到的脉冲周期值进行初始化,以脉冲周期值为计时周期进行循环计时,并将计时时长发送至第一比较单元;第一比较单元用于根据预设占空比、脉冲周期值和计时时长,获取满足预设占空比的当前电平信息,并根据当前电平信息向伺服电机发送高电平或者低电平的驱动信号,从而实现对驱动信号在各脉冲周期中占空比的精确控制,提高伺服电机在加速或减速阶段的运行连贯性和平稳性,还减少了软件中断的介入,提高了整体***稳定性。
在上述实施例的基础上,脉冲周期提供单元的实现方式可以有多种,下面结合附图和具体实施例,对脉冲周期提供单元的结构进行举例说明。
参见图5,是本申请实施例提供的另一种伺服电机驱动电路结构示意图。在图5所示的结构中,脉冲周期提供单元可以包括:锁存器、锁存触发单元以及周期控制单元。
如图5所示,周期控制单元与锁存器连接,用于接收脉冲周期更新信号,并响应所述脉冲周期更新信号向所述锁存器发送下一个脉冲周期的脉冲周期值。周期控制单元可以是具有存储和加减逻辑功能的电路,在接收到脉冲周 期更新信号时,以该脉冲周期更新信号为使能信号而将当前脉冲周期值更新为下一个脉冲周期的脉冲周期值,并将下一个脉冲周期的脉冲周期值发送给锁存器,由此实现脉冲周期值的更新。其中,在一些实施例中,周期控制单元接收到的脉冲周期更新信号可以是根据定时器的输出信号或第一比较单元的输出信号而确定的,具体可参见后续实施例的举例说明。
如图5所示,锁存触发单元与运动控制器和锁存器连接,用于接收当前脉冲周期结束的信号,或者从所述运动控制器接收到锁存信号,并响应所述当前脉冲周期结束的信号或所述锁存信号,在每个脉冲周期开始时刻向所述锁存器发送锁存控制信号。如图5所示的运动控制器还用于在首个脉冲周期开始时向所述锁存触发单元发送锁存信号。
例如,在首个脉冲周期开始时,运动控制器向锁存触发单元发送锁存信号,例如高电平信号1,锁存触发单元在接收到高电平信号1的锁存信号时,被使能而向所述锁存器发送锁存控制信号。在首个脉冲周期之后,锁存触发单元在接收到当前脉冲周期结束的信号时,向所述锁存器发送锁存控制信号。其中,锁存信号和当前脉冲周期结束的信号都可以是高电平1,而在运动控制器发出锁存信号之后,仍可以与锁存触发单元电连接,但运动控制器向锁存触发单元传输的是低电平0,而锁存触发单元不会被低电平0使能。
在一些实施例中,锁存触发单元可以包括或运算电路,或由或运算电路组成。在锁存触发单元是或运算电路的实施例中,如果或运算电路的任一输入信号是1,则或运算电路向锁存器输出锁存控制信号1,如果或运算电路的所有输入信号都是0,则或运算电路向锁存器输出非锁存控制信号0。上述实施例中输入或运算电路的当前脉冲周期结束的信号和锁存信号,都可以理解为1。例如,运动控制器只在首个脉冲周期开始时发送一次锁存信号1,剩余时间运动控制器向锁存触发单元都是输出0。可见,在剩余时间中,锁存触发单元仅响应当前脉冲周期结束的信号而输出锁存控制信号1,在没接收到当前脉冲周期结束的信号时,输出0。
如图5所示,锁存器用于响应所述锁存控制信号,从所述周期控制单元接收所述脉冲周期值,并向所述定时器和所述第一比较单元发送从所述周期控制单元接收到的所述脉冲周期值。
例如,在首个脉冲周期开始时,周期控制单元接收到脉冲周期更新信号, 并响应所述脉冲周期更新信号向所述锁存器发送第一个脉冲周期的脉冲周期值T0,运动控制单元向锁存触发单元发送锁存信号1,向定时器发送驱动使能信号1。锁存触发单元响应锁存信号而向锁存器发送锁存控制信号1。锁存器响应锁存控制信号1接收并锁存周期控制单元发送的T0,将T0发送给定时器和第一比较单元。定时器在接收到T0时进行初始化并以T0为周期循环计时,同时将计时时长发送给第一比较单元。第一比较单元根据输入的T0和计时时长以及预设占空比,确定向伺服电机输出高电平还是低电平。而在T0到达之前,锁存器保持锁存T0,但不向定时器和第一比较单元发送新的脉冲周期值,直到当前脉冲周期结束,锁存触发单元收到当前脉冲周期结束的信号。锁存触发单元响应当前脉冲周期结束的信号1,而向锁存器发送锁存控制信号1。锁存器接收到锁存控制信号1时,接收并锁存周期控制单元发送的T1,将T1发送给定时器和第一比较单元,开始新的脉冲周期的循环计时和驱动信号输出。其中,周期控制单元可以是在T0到达之前生成并向锁存器发送T1。
本实施例通过上述锁存器、锁存触发单元以及周期控制单元,实现了驱动信号的脉冲周期的自动和准确控制,减少了运动控制器的介入,进一步提高了驱动信号占空比的稳定。
在上述实施例中,当前脉冲周期结束的信号和脉冲周期更新信号可以是根据定时器和/或第一比较单元的输出来得到的,下面将结合附图和具体实施例,对获取当前脉冲周期结束的信号的结构,以及获取脉冲周期更新信号的结构进行举例说明,但本申请不限于此。
参见图6,是本申请实施例提供的再一种伺服电机驱动电路结构示意图。如图6所示的伺服电机驱动电路实施例中,当前脉冲周期结束的信号可以是由第一检测单元获取的。每个所述脉冲周期中的所述驱动信号顺序为第一电平信号和第二电平信号。
所述伺服电机驱动电路还包括:第一检测单元。所述第一检测单元与所述锁存触发单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第二电平信号变为第一电平信息号时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。
在一些实施例中,参见图7,是本申请实施例提供的一种控制逻辑示意 图。如图7所示,第一电平信号为低电平信号,第二电平信号为高电平信号,那么第一检测单元可以理解为是取下降沿电路。第一比较单元在一个脉冲周期中,先输出低电平后输出高电平,第一检测单元提取到驱动信号的下降沿信号时,表示定时器的计时达到脉冲周期值并从0开始重新计时,因此第一检测单元生成当前脉冲周期结束的信号,使能锁存器发送下一个脉冲周期的脉冲周期值。
在另一些实施例中,参见图8,是本申请实施例提供的另一种控制逻辑示意图。如图8所示,第一电平信号为高电平信号,第二电平信号为低电平信号,那么第一检测单元可以理解为是取上升沿电路。第一比较单元在一个脉冲周期中,先输出高电平后输出低电平,第一检测单元提取到驱动信号的上升沿信号时,表示定时器的计时达到脉冲周期值并从0开始重新计时,因此第一检测单元生成当前脉冲周期结束的信号,使能锁存器发送下一个脉冲周期的脉冲周期值。
本实施例通过第一检测单元,提高了脉冲周期的控制精确性。
参见图9,是本申请实施例提供的又一种伺服电机驱动电路结构示意图。如图9所示的伺服电机驱动电路实施例中当前脉冲周期结束的信号可以是由第二比较单元获取的。例如,伺服电机驱动电路还包括:第二比较单元。所述第二比较单元与所述锁存触发单元和所述定时器连接,用于从所述定时器获取所述计时时长,并在所述计时时长等于所述脉冲周期值时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。可以理解地,第二比较单元是将计时时长与脉冲周期值进行比较,在计时时长等于脉冲周期值时,表明当前周期结束,需要锁存器提供下一个脉冲周期的脉冲周期值,则第二比较单元向锁存触发单元发送当前脉冲周期结束的信号。本实施例通过第二比较单元,提高了脉冲周期的控制精确性。
继续参见图6和图9,脉冲周期更新信号可以是通过第二检测单元获取的。在图6和图9所示的实施例中,每个所述脉冲周期中的所述驱动信号可以顺序包括第一电平信号和第二电平信号。伺服电机驱动电路还可以包括:第二检测单元。所述第二检测单元与所述周期控制单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第一电平信号变为第二电平信息号时,向所述周期控制单元发送所述脉冲周期更新信号。
在一些实施例中,如图7所示,第一电平信号为低电平信号,第二电平信号为高电平信号,那么第二检测单元可以理解为是取上升沿电路。第一比较单元在一个脉冲周期中,先输出低电平后输出高电平,第二检测单元提取到驱动信号的上升沿信号时,表示定时器的初始化后开始计时但未达到脉冲周期值,因此第二检测单元生成脉冲周期更新信号,使能周期控制单元生成并传输下一个脉冲周期的脉冲周期值。此时的锁存器还锁存当前的脉冲周期值,并不会接收周期控制单元传输的脉冲周期值,直到当前脉冲周期结束时,通过图6中的第一检测单元或者图9中的第二比较单元输出当前脉冲周期结束的信号,锁存器立即接收周期控制单元传输的脉冲周期值进行锁存和发送。可见,通过第二检测单元可以在当前脉冲周期结束前,预先生成下一个脉冲周期的脉冲周期值,提高了脉冲周期值的更新速度和可靠性。
在另一些实施例中,如图8所示,第一电平信号为高电平信号,第二电平信号为低电平信号,那么第二检测单元可以理解为是取下降沿电路。第一比较单元在一个脉冲周期中,先输出高电平后输出低电平,第二检测单元提取到驱动信号的下降沿信号时,表示定时器的初始化后开始计时但未达到脉冲周期值,因此第二检测单元生成脉冲周期更新信号,使能周期控制单元生成并传输下一个脉冲周期的脉冲周期值。此时的锁存器还锁存当前的脉冲周期值,并不会接收周期控制单元传输的脉冲周期值,直到当前脉冲周期结束时,通过图6中的第一检测单元或者图9中的第二比较单元输出当前脉冲周期结束的信号,锁存器立即接收周期控制单元传输的脉冲周期值进行锁存和发送。可见,通过第二检测单元可以在当前脉冲周期结束前,预先生成下一个脉冲周期的脉冲周期值,提高了脉冲周期值的更新速度和可靠性。
在再一些实施例中,驱动信号可以顺序包括第一电平信号、第二电平信号、第一电平信号。例如第一比较单元在一个脉冲周期中,先输出低电平接着输出高电平后再输出低电平。与前述实施例相比,本实施例中只可能通过图9中的第二比较单元输出当前脉冲周期结束的信号,即本实施例无法应用在图6所示结构中。在本实施例中,参见图9,第二检测单元可以理解为是上述取上升沿电路或者取下降沿电路,以在获取到上升沿或者下降沿时,向周期控制单元发送脉冲周期更新信号。
本实施例通过第二检测单元可以在当前脉冲周期结束前向周期控制单元 发送脉冲周期更新信号,以使得周期控制单元预先生成下一个脉冲周期的脉冲周期值,提高了脉冲周期值的更新速度和可靠性。
参见图10,是本申请实施例提供的又一种伺服电机驱动电路结构示意图。参见图11,是本申请实施例提供的又一种伺服电机驱动电路结构示意图。参见图10和图11,伺服电机驱动电路还可以包括:第三比较单元。第三比较单元与周期控制单元和定时器连接,用于从定时器获取计时时长,并在所述计时时长等于预设的计时阈值时,向周期控制单元发送脉冲周期更新信号,其中,所述计时阈值大于0且小于所述脉冲周期值。在以第三比较单元发送脉冲周期更新信号的实施例中,可以用第一检测单元或者第二比较单元发送所述当前脉冲周期结束的信号,参见图10和图11。可以理解地,第三比较单元是将计时时长与计时阈值进行比较,计时阈值是小于脉冲周期值的非零值,在计时时长等于计时阈值时,表明已开始了当前的脉冲周期,但当前的脉冲周期还未结束(计时阈值小于脉冲周期值),需要周期控制单元提供下一个脉冲周期的脉冲周期值。本实施例通过第三比较单元,提高了脉冲周期的控制精确性。
在上述各实施例中,脉冲周期提供单元例如可以是定时自动初始化并根据预先存储的数据生成脉冲周期值,也可以是与运动控制器连接(参见图10和图11),根据运动控制器的控制而初始化以及生成脉冲周期值。所述对脉冲周期提供单元进行初始化作用是输出首个脉冲周期T0,以启动本申请中的伺服电机驱动电路。
在上述各实施例中,运动控制器还可以通过向周期控制单元发送加速使能信号或减速使能信号,来控制周期控制单元生成的脉冲周期值。例如参见图10和图11,运动控制器还与周期控制单元连接,用于向所述周期控制单元发送加速使能信号或减速使能信号。
在图10和图11中,周期控制单元还用于在接收到加速使能信号时,响应所述加速使能信号,根据与预设加速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设加速曲线的完成状态信号反馈给所述运动控制器。或者,周期控制单元还用于在接收到减速使能信号时,响应所述减速使能信号,根据与预设减速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设减速曲线的完成状态信号反馈给所述运动控制 器。
继续参见图10和图11,所述运动控制器还可以用于:向所述伺服电机发送运动方向信号。伺服电机根据运动方向信号确定其转动的方向。
在上述实施例的基础上,所述运动控制器,还用于在向所述周期控制单元发送加速使能信号或减速使能信号之前,对所述周期控制单元进行初始化。对周期控制单元的初始化例如可以是使周期控制单元生成首个脉冲周期值T0并输出该首个脉冲周期值。初始化完成后、且在向所述周期控制单元发送加速使能信号或减速使能信号之前,运动控制器还可以向所述锁存触发单元发送锁存信号,以使得锁存器接收T0,并将T0发送至定时器和第一比较单元。运动控制器在发送所述锁存信号之后,向所述定时器发送所述驱动使能信号,以使所述定时器计时。
在上述实施例的基础上,本申请实施例提供了一种3D打印装置,可以包括上述实施例中任一所述的伺服电机驱动电路。例如,3D打印装置包括上述具体实施例和各实施例中的任一种控制伺服电机驱动速度变化的伺服电机驱动电路、伺服电机和移动部件。其中,第一比较单元和伺服电机电连接,运动控制器和伺服电机电路连接。运动控制器向伺服电机输出运动方向信号,第一比较单元向伺服电机发送驱动信号,从而使得伺服电机在指定的方向和旋转速度下运转,最终带动移动部件加速或减速移动。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种伺服电机驱动电路,其特征在于,包括:运动控制器、定时器、第一比较单元和脉冲周期提供单元;
    所述运动控制器与所述定时器连接,用于向所述定时器发送驱动使能信号;
    所述脉冲周期提供单元与所述定时器和所述第一比较单元连接,用于在每个脉冲周期开始时刻向所述定时器和所述第一比较单元发送脉冲周期值;
    所述定时器与所述第一比较单元连接,用于在所述驱动使能信号的使能期间,响应接收到的所述脉冲周期值进行初始化,以所述脉冲周期值为计时周期进行循环计时,并将计时时长发送至所述第一比较单元;
    所述第一比较单元用于根据预设占空比、所述脉冲周期值和所述计时时长,获取满足所述预设占空比的当前电平信息,并根据所述当前电平信息向伺服电机发送高电平或者低电平的驱动信号。
  2. 根据权利要求1所述的伺服电机驱动电路,其特征在于,所述脉冲周期提供单元包括:锁存器、锁存触发单元以及周期控制单元;
    所述周期控制单元与所述锁存器连接,用于接收脉冲周期更新信号,并响应所述脉冲周期更新信号向所述锁存器发送下一个脉冲周期的脉冲周期值;
    所述锁存触发单元与所述运动控制器和所述锁存器连接,用于接收当前脉冲周期结束的信号,或者从所述运动控制器接收到锁存信号,并响应所述当前脉冲周期结束的信号或所述锁存信号,在每个脉冲周期开始时刻向所述锁存器发送锁存控制信号;
    所述锁存器用于响应所述锁存控制信号,从所述周期控制单元接收所述脉冲周期值,并向所述定时器和所述第一比较单元发送从所述周期控制单元接收到的所述脉冲周期值;
    所述运动控制器还用于在首个脉冲周期开始时向所述锁存触发单元发送锁存信号。
  3. 根据权利要求2所述的伺服电机驱动电路,其特征在于,每个所述脉冲周期中的所述驱动信号顺序为第一电平信号和第二电平信号;
    所述伺服电机驱动电路还包括:第一检测单元;
    所述第一检测单元与所述锁存触发单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第二电平信号变为第一电平信息号时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。
  4. 根据权利要求2所述的伺服电机驱动电路,其特征在于,还包括:第二比较单元;
    所述第二比较单元与所述锁存触发单元和所述定时器连接,用于从所述定时器获取所述计时时长,并在所述计时时长等于所述脉冲周期值时,向所述锁存触发单元发送所述当前脉冲周期结束的信号。
  5. 根据权利要求2至4任一所述的伺服电机驱动电路,其特征在于,每个所述脉冲周期中的所述驱动信号顺序包括第一电平信号和第二电平信号;
    所述伺服电机驱动电路还包括:第二检测单元;
    所述第二检测单元与所述周期控制单元和所述第一比较单元连接,用于在所述驱动信号中检测到从第一电平信号变为第二电平信息号时,向所述周期控制单元发送所述脉冲周期更新信号。
  6. 根据权利要求2至4任一所述的伺服电机驱动电路,其特征在于,还包括:第三比较单元;
    所述第三比较单元与所述周期控制单元和所述定时器连接,用于从所述定时器获取所述计时时长,并在所述计时时长等于预设的计时阈值时,向所述周期控制单元发送所述脉冲周期更新信号,其中,所述计时阈值大于0且小于所述脉冲周期值。
  7. 根据权利要求1所述的伺服电机驱动电路,其特征在于,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲有效电平信号和脉冲无效电平信号;
    所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长,其中,所述脉冲有效时长为预设占空比和所述脉冲周期值的乘积;在所述计时时长小于或等于所述有效时长时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述有效时长时,向伺服电机发送所述脉冲无效电平信号。
  8. 根据权利要求1所述的伺服电机驱动电路,其特征在于,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平信号、脉冲有效电平信号;
    所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲 无效时长,其中,所述脉冲无效时长为1与所述预设占空比之差与所述脉冲周期值的乘积;在所述计时时长小于所述无效时长时,向伺服电机发送所述脉冲无效电平信号,在所述计时时长大于或等于所述无效时长时,向伺服电机发送所述脉冲有效电平信号。
  9. 根据权利要求1所述的伺服电机驱动电路,其特征在于,每个所述脉冲周期中的所述驱动信号顺序包括:脉冲无效电平信号、脉冲有效电平信号、脉冲无效电平信号;
    所述第一比较单元用于:根据预设占空比和所述脉冲周期值,确定脉冲有效时长下限时刻和脉冲有效时长上限时刻,其中,所述脉冲有效时长下限时刻为1与所述预设占空比之差与所述脉冲周期值的乘积的1/2,所述脉冲有效时长上限时刻为1与所述预设占空比之和与所述脉冲周期值的乘积的1/2;在所述计时时长小于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲无效电平信号;在所述计时时长小于或等于所述脉冲有效时长上限时刻,且大于或等于所述脉冲有效时长下限时刻时,向伺服电机发送所述脉冲有效电平信号;在所述计时时长大于所述脉冲有效时长上限时刻时,向伺服电机发送所述脉冲无效电平信号。
  10. 根据权利要求2所述的伺服电机驱动电路,其特征在于,所述运动控制器还与所述周期控制单元连接,用于向所述周期控制单元发送加速使能信号或减速使能信号;
    所述周期控制单元还用于响应所述加速使能信号,根据与预设加速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设加速曲线的完成状态信号反馈给所述运动控制器;或者,响应所述减速使能信号,根据与预设减速曲线相对应的周期序列向所述锁存器发送所述脉冲周期值,并将所述预设减速曲线的完成状态信号反馈给所述运动控制器。
  11. 根据权利要求10所述的伺服电机驱动电路,其特征在于,所述运动控制器还用于:向所述伺服电机发送运动方向信号。
  12. 根据权利要求10所述的伺服电机驱动电路,其特征在于,所述运动控制器,还用于在向所述周期控制单元发送加速使能信号或减速使能信号之前,对所述周期控制单元进行初始化;初始化完成后且在向所述周期控制单元发送加速使能信号或减速使能信号之前,向所述锁存触发单元发送锁存信 号;并在发送所述锁存信号之后,向所述定时器发送所述驱动使能信号,以使所述定时器计时。
  13. 根据权利要求2所述的伺服电机驱动电路,其特征在于,所述锁存触发单元包括或运算电路。
  14. 一种3D打印装置,其特征在于,包括权利要求1至13任一所述的伺服电机驱动电路。
PCT/CN2020/083150 2019-05-17 2020-04-03 伺服电机驱动电路及3d打印装置 WO2020233250A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021564961A JP7182730B2 (ja) 2019-05-17 2020-04-03 サーボモータ駆動回路及び3dプリント装置
US17/516,454 US11951685B2 (en) 2019-05-17 2021-11-01 Servo motor drive circuit and 3D printing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910412904.8 2019-05-17
CN201910412904.8A CN110142965B (zh) 2019-05-17 2019-05-17 伺服电机驱动电路及3d打印装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/516,454 Continuation US11951685B2 (en) 2019-05-17 2021-11-01 Servo motor drive circuit and 3D printing apparatus

Publications (1)

Publication Number Publication Date
WO2020233250A1 true WO2020233250A1 (zh) 2020-11-26

Family

ID=67594271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083150 WO2020233250A1 (zh) 2019-05-17 2020-04-03 伺服电机驱动电路及3d打印装置

Country Status (4)

Country Link
US (1) US11951685B2 (zh)
JP (1) JP7182730B2 (zh)
CN (1) CN110142965B (zh)
WO (1) WO2020233250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142965B (zh) * 2019-05-17 2021-07-27 珠海赛纳三维科技有限公司 伺服电机驱动电路及3d打印装置
CN111983943A (zh) * 2019-10-25 2020-11-24 深圳市安达自动化软件有限公司 伺服电机控制方法及其控制器、装置、设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187578A (ja) * 1996-01-09 1997-07-22 Nippon Enkaku Seigyo Kk サーボモータ制御装置
JPH1153008A (ja) * 1997-08-08 1999-02-26 Nec Home Electron Ltd パルス幅変調信号発生装置
CN101610064A (zh) * 2008-06-19 2009-12-23 义隆电子股份有限公司 驱动装置及方法
CN204584272U (zh) * 2015-03-18 2015-08-26 上海航天设备制造总厂 三维打印设备成型装置
CN107482968A (zh) * 2017-08-30 2017-12-15 杭州为诺智能科技有限公司 一种提高直流电机运动精度的控制方法
CN108551336A (zh) * 2018-03-26 2018-09-18 南京矽力杰半导体技术有限公司 脉冲信号占空比的计算方法和计算电路
CN108663994A (zh) * 2018-06-04 2018-10-16 绵阳逢研科技有限公司 一种伺服电机s曲线加减速控制方法
CN110142965A (zh) * 2019-05-17 2019-08-20 珠海赛纳打印科技股份有限公司 伺服电机驱动电路及3d打印装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686480B1 (en) * 1988-04-18 2001-11-28 3D Systems, Inc. Stereolithographic supports
JPH03218845A (ja) * 1990-01-24 1991-09-26 Canon Inc インクジェットプリンタ
JP3195975B2 (ja) * 1990-02-01 2001-08-06 株式会社日立製作所 パルス信号発生装置とマイクロコンピュータ及び連想メモリ
JP2885256B2 (ja) * 1991-12-25 1999-04-19 日本電気株式会社 マイクロコンピュータ
JPH08168297A (ja) * 1994-12-12 1996-06-25 Keyence Corp パルス発生装置およびモータ駆動装置
US7376182B2 (en) 2004-08-23 2008-05-20 Microchip Technology Incorporated Digital processor with pulse width modulation module having dynamically adjustable phase offset capability, high speed operation and simultaneous update of multiple pulse width modulation duty cycle registers
JP5407297B2 (ja) 2007-11-30 2014-02-05 株式会社リコー モータ制御装置、及びモータ制御方法、並びに画像形成装置
JP5033114B2 (ja) 2008-12-15 2012-09-26 長野日本無線株式会社 三次元造形機
JP6081734B2 (ja) 2012-08-13 2017-02-15 ラピスセミコンダクタ株式会社 半導体装置、電子機器、及び制御信号生成方法
CN104242873B (zh) * 2014-10-13 2017-03-29 山东力创科技股份有限公司 一种超声波回波占空比测量电路及其测量方法
WO2017148100A1 (zh) * 2016-03-02 2017-09-08 珠海赛纳打印科技股份有限公司 一种彩色3d物体的制作方法及***
CN109361381B (zh) * 2018-12-10 2024-05-03 珠海一微半导体股份有限公司 一种pwm生成电路、处理电路及芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187578A (ja) * 1996-01-09 1997-07-22 Nippon Enkaku Seigyo Kk サーボモータ制御装置
JPH1153008A (ja) * 1997-08-08 1999-02-26 Nec Home Electron Ltd パルス幅変調信号発生装置
CN101610064A (zh) * 2008-06-19 2009-12-23 义隆电子股份有限公司 驱动装置及方法
CN204584272U (zh) * 2015-03-18 2015-08-26 上海航天设备制造总厂 三维打印设备成型装置
CN107482968A (zh) * 2017-08-30 2017-12-15 杭州为诺智能科技有限公司 一种提高直流电机运动精度的控制方法
CN108551336A (zh) * 2018-03-26 2018-09-18 南京矽力杰半导体技术有限公司 脉冲信号占空比的计算方法和计算电路
CN108663994A (zh) * 2018-06-04 2018-10-16 绵阳逢研科技有限公司 一种伺服电机s曲线加减速控制方法
CN110142965A (zh) * 2019-05-17 2019-08-20 珠海赛纳打印科技股份有限公司 伺服电机驱动电路及3d打印装置

Also Published As

Publication number Publication date
US20220048248A1 (en) 2022-02-17
CN110142965B (zh) 2021-07-27
US11951685B2 (en) 2024-04-09
JP2022530915A (ja) 2022-07-04
JP7182730B2 (ja) 2022-12-02
CN110142965A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2020233250A1 (zh) 伺服电机驱动电路及3d打印装置
US6577687B2 (en) Method for transmitting data over a data bus with minimized digital inter-symbol interference
US20170301196A1 (en) Integrated circuit with single wire haptic vibration control and selective open loop operation
US9032227B2 (en) Wireless communication apparatus and power management method for the same
US4158800A (en) Control system
WO2017065923A1 (en) Methods to avoid i2c void message in i3c
JP2016042688A (ja) 複数のスレーブ装置を用いるエッジベースの通信
JP2003308287A (ja) 制御装置および制御方法
CN116886247B (zh) 基于uart通信的波特率自适应方法、装置、uart***、介质
US10948891B2 (en) Motor driver with multipurpose pin
US12047480B2 (en) EtherCAT device
WO2018005516A1 (en) Accelerated i3c master stop
US20110099396A1 (en) Storage apparatus
CN112764672A (zh) 存储器控制器、存储装置及其控制方法以及记录介质
CN109899309B (zh) 用以检测风扇芯片的时脉频率偏移的***及方法
US7328334B2 (en) Hardware initialization with or without processor intervention
TWI641226B (zh) 用以檢測風扇晶片的時脈頻率偏移的系統及方法
JP6927678B2 (ja) 半導体装置、通信システムおよび初期化方法
CN115001325B (zh) 一种定时中断控制方法和多步进电机同步控制***及方法
CN117087345B (zh) 打印控制方法、设备及存储介质
CN108418477B (zh) 电机的同步控制方法、电子设备以及具有存储功能的装置
WO2018209615A1 (zh) 通信控制方法、通信主设备和通信***
TWI459344B (zh) 顯示裝置與其驅動方法
JPH0277928A (ja) インターフェース回路
JP3096195B2 (ja) 搬送部材駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810753

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 20.04.22.

122 Ep: pct application non-entry in european phase

Ref document number: 20810753

Country of ref document: EP

Kind code of ref document: A1