WO2020233211A1 - 一种天线***和终端 - Google Patents

一种天线***和终端 Download PDF

Info

Publication number
WO2020233211A1
WO2020233211A1 PCT/CN2020/080078 CN2020080078W WO2020233211A1 WO 2020233211 A1 WO2020233211 A1 WO 2020233211A1 CN 2020080078 W CN2020080078 W CN 2020080078W WO 2020233211 A1 WO2020233211 A1 WO 2020233211A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
low
frequency
wave array
antennas
Prior art date
Application number
PCT/CN2020/080078
Other languages
English (en)
French (fr)
Inventor
舒超凡
刘洋
周闯柱
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20809734.5A priority Critical patent/EP3916915B1/en
Priority to US17/612,119 priority patent/US20220238984A1/en
Publication of WO2020233211A1 publication Critical patent/WO2020233211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • This article relates to but not limited to an antenna system and terminal.
  • 4G network 5G is the natural evolution of the current 4G network and the necessary transition to 5G, and it is also the best low-cost evolution method from 4G to 5G.
  • Network deployment determines that during the transition period, terminal products need to support 4G and 5G communications at the same time, which means that low-frequency antennas (2G/3G/4G antennas and sub 6G antennas, working below 6GHz) and 5G millimeter wave arrays should be considered in the same terminal product. antenna.
  • 5G array antennas and low-frequency antennas (2G/3G/4G antennas and sub 6G antennas, working below 6GHz) have different headroom layouts for terminal products, which means more headroom areas, which is unfavorable for the development of terminal miniaturization .
  • the embodiment of the present application provides an antenna system and a terminal, which simultaneously implement a low-frequency antenna and a 5G millimeter wave end-fire array antenna in the same clear space area.
  • the embodiment of the present application provides an antenna system, including a low-frequency antenna and a millimeter wave array antenna.
  • the low-frequency antenna is an antenna with a working frequency band less than 6 GHz.
  • the low-frequency antenna and the millimeter wave array antenna are arranged on a dielectric plate.
  • a passive grid structure is arranged between the low-frequency antenna and the millimeter wave array antenna.
  • An embodiment of the present application also provides a terminal, including the antenna system described above.
  • Figure 1 is a schematic diagram of a millimeter wave array antenna placed behind a low frequency antenna
  • Figure 2 is a schematic diagram of a millimeter wave array antenna placed in front of a low frequency antenna
  • Fig. 3 is a schematic diagram of an antenna system according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an antenna system according to another embodiment of the present application.
  • FIG. 5 (a) and (b) are schematic diagrams of the antenna system of the application example of the present application, where (a) is the front side and (b) is the back side;
  • Figure 6 (a) and (b) are simulation results diagrams of application examples of this application.
  • Fig. 7 is a schematic diagram of a working frequency band of a low-frequency antenna of an application example of the present application.
  • FIG. 8 is a simulation diagram of an application example of the present application, in which the solid line is the end-fire pattern of only 5G millimeter wave array antenna, and the dashed line is the end-fire pattern when the 5G millimeter wave array antenna and the low-frequency antenna coexist without a grid structure;
  • FIG. 9 is a simulation schematic diagram of an application example of the present application, in which the solid line is the end-fire pattern of only 5G millimeter wave array antenna, and the dashed line is the end-fire pattern when the 5G millimeter wave array antenna and low-frequency antenna coexist and have a grid structure;
  • 1 is a low-frequency antenna (that is, the traditional 2G/3G/4G antenna and sub 6G antenna, the working frequency band is less than 6GHz);
  • 2 is a 5G millimeter wave array antenna
  • terminal products usually reserve a clearance area 6 at the bottom or top of the antenna area.
  • terminal products are usually required to support both
  • the 5G network is backward compatible, that is, the same terminal needs to contain both low-frequency antennas (2G/3G/4G antennas and sub 6G antennas, working below 6GHz frequency band) 1 and 5G millimeter wave array antenna 2.
  • low-frequency antennas i.e. traditional 2G/3G/4G antennas and sub 6G antennas, working frequency less than 6GHz
  • high-frequency antennas 5G millimeter wave array antennas
  • the millimeter wave array antenna 2 is placed in front of the low-frequency antenna (that is, the traditional 2G/3G/4G antenna and the sub6G antenna, the working frequency band is less than 6GHz) 1, the electromagnetic wave propagation direction, as shown in Figure 2, then due to space constraints , The millimeter wave array antenna 2 will affect the impedance and bandwidth of the low frequency antenna (that is, the traditional 2G/3G/4G antenna and the sub 6G antenna, the working frequency band is less than 6GHz)1; and the feed system of the millimeter wave antenna 2 will Low-frequency antennas (that is, traditional 2G/3G/4G antennas and sub 6G antennas, the working frequency band is less than 6GHz) 1 cross to produce strong coupling;
  • the millimeter wave array antenna 2 is placed behind the low-frequency antenna (that is, the traditional 2G/3G/4G antenna and the sub 6G antenna, the working frequency band is less than 6GHz) 1, that is, the opposite direction of electromagnetic wave propagation, as shown in Figure 1, then Low-frequency antennas (that is, traditional 2G/3G/4G antennas and sub 6G antennas, the working frequency band is less than 6GHz) 1 due to the low frequency band and long wiring, it will affect the end-fire pattern of the 5G millimeter wave array antenna 2. Therefore, it is a challenging task to realize the coexistence of two generations of antennas in the same clear space without affecting the performance of the two antennas.
  • the low-frequency antenna 1 and the millimeter-wave array antenna 2 are arranged in the same clearance area 6 on the dielectric plate 8, and are arranged between the low-frequency antenna 1 and the millimeter-wave array antenna 2.
  • the passive grid structure 7 acts as an anti-reflection layer, so that part of the wave is transmitted in the end-fire direction and the other part is reflected back by the passive grid structure 7 Millimeter wave array antenna 2.
  • the wave transmitted in the end-fire direction will be reflected by the low-frequency antenna (that is, the traditional 2G/3G/4G antenna and sub 6G antenna, the working frequency band is less than 6GHz) 1 and return to the millimeter wave array antenna 2.
  • the low-frequency antenna that is, the traditional 2G/3G/4G antenna and sub 6G antenna, the working frequency band is less than 6GHz
  • the low-frequency antenna 1 is arranged in the end firing direction of the millimeter wave array antenna 2, that is, the electromagnetic wave propagation direction.
  • the propagation path difference of the two reflected waves to the millimeter wave array antenna 2 is an odd multiple of the half wavelength, namely:
  • L1 is the distance between the passive grid structure 7 and the low-frequency antenna 1
  • L2 is the distance between the passive grid structure 7 and the main board ground of the dielectric plate 8
  • n is a natural number.
  • the value of L2 cannot be 0; on the other hand, because the low-frequency antenna and the millimeter-wave array antenna are located in the same clearance area, then The value of L2 cannot be infinite. Therefore, the value of L2 can be determined according to the actual layout requirements of the low-frequency antenna and the millimeter-wave array antenna in the clearance area.
  • L1 is close to a quarter wavelength, and because the millimeter array antenna 2 has a higher working frequency band, even if it has a higher absolute bandwidth, the relative bandwidth under the high-frequency working frequency band is lower. Therefore, in the working frequency band of the relative bandwidth, the difference between the two reflected waves is close to 180 degrees, so the millimeter wave array antenna 2 can radiate to the end-fire direction without interference.
  • an anti-reflection passive grating structure 7 is designed between the two antennas by using the principle of electromagnetic wave anti-phase cancellation. By adjusting the structural parameters, the reflected waves have opposite phases and then cancel each other, so as to be in the same clear space. 6
  • traditional low-frequency antennas that is, traditional 2G/3G/4G antennas and sub 6G antennas, working frequency less than 6GHz
  • 5G millimeter wave end-fire array antenna 2 coexist in the same clear space area 6.
  • the passive gate structure 7 may be a one-layer or multi-layer structure.
  • the passive gate structure 7 is a two-layer structure.
  • the passive gate structure 7 may be arranged on one or both sides of the dielectric plate.
  • the passive gate structure 7 may be provided on one surface of the dielectric plate 8, or the passive gate structure 7 may be provided on both surfaces of the dielectric layer 8.
  • the passive grid structure 7 can also be arranged in any combination on any layer of the printed circuit board.
  • the low-frequency antenna 1 may be a printed antenna or a support antenna.
  • the millimeter wave array antenna 2 may be a printed antenna or a support antenna.
  • the passive grid structure 7 may be a printed structure or a support structure.
  • An embodiment of the present application also provides a terminal, including the above-mentioned antenna system.
  • the antenna system of the embodiment of the present application includes a low frequency antenna and a millimeter wave array antenna, the low frequency antenna is an antenna with a working frequency band less than 6 GHz, and the low frequency antenna and the millimeter wave array antenna are arranged in the same clearance area on the dielectric plate, A passive grid structure is provided between the low frequency antenna and the millimeter wave array antenna.
  • the embodiment of the application adopts a passive grid structure to realize the low-frequency antenna and the 5G millimeter wave array antenna in the same clear space area, and can ensure the end-fire characteristics of the array antenna; it can effectively reduce the coexistence of several generations of antennas.
  • the layout is conducive to the development of terminal miniaturization.
  • FIG. 5 it is an example of an antenna system in which low-frequency antennas (that is, traditional 2G/3G/4G antennas and sub 6G antennas, working frequency less than 6GHz) and 5G millimeter-wave array antennas coexist in the same clear space area.
  • Two-generation antenna systems They are all in the form of printed antennas.
  • the antenna system is placed on a dielectric board with a dielectric constant of 2.2 and a thickness of 0.8.
  • the antenna system is located at the top of the same clear space area.
  • the low-frequency antenna 1 is placed in the end firing direction of the 5G millimeter wave array antenna 2.
  • the 5G millimeter wave array antenna 2 adopts the form of a vivaldi antenna (that is, a cone-shaped slot antenna).
  • the two parts of the vivaldi antenna are placed on the front and back of the dielectric plate respectively.
  • the parameters of the vivaldi antenna and the spacing between the antennas are adjusted to make the 5G millimeter wave array
  • the antenna is an end-fire array with a working frequency band of 28GHz.
  • the simulation results show that the maximum mutual coupling between antennas is less than -15dB. In the operating frequency band, the antenna efficiency is greater than 60%, and the maximum gain is 6dBi. The simulation results show that the antenna array still has high radiation efficiency and gain within +/-70 degree scanning angle.
  • Low-frequency antennas that is, traditional 2G/3G/4G antennas and sub 6G antennas, the working frequency band is less than 6GHz
  • the via 5 goes to the back of the dielectric board, where 4 is the grounding point, and 3 is the feeding point for coupling feeding.
  • the antenna working frequency ranges from 698MHz to 960MHz, 1700MHz to 2300MHz. As shown in Figure 7.
  • the passive grid structure 7 is located on the back of the dielectric plate, and the parameters of the grid structure (interspace, size, and distance from the antenna) are adjusted so that the spacing parameters (L1 and L2) satisfy formulas (1) and ( 2) Adjust the width Ls and spacing S of the grid structure according to the radiation characteristics of the array antenna, so that when the two antennas work at the same time, the array still has end-fire characteristics.
  • the experimental simulation results show that the addition of a grid-like passive structure enables the low-frequency antenna 1 and the 5G millimeter-wave array antenna 2 to be realized in the same clearance area at the same time without affecting the end-fire characteristics of the array antenna.
  • the low-frequency antenna 1 in the embodiment of the application is an antenna with a working frequency band less than 6GHz, and is not limited to all antennas working in the 2G/3G/4G frequency band, including WLAN (Wireless Local Area Network, wireless local area network), sub Antennas working below 6GHz such as 6G.
  • WLAN Wireless Local Area Network, wireless local area network
  • 6G sub Antennas working below 6GHz
  • the 5G millimeter wave array antenna 2 of the embodiment of the present application can work in all millimeter wave frequency bands, and is not limited to working at 28 GHz.
  • the low-frequency antenna 1 and the millimeter-wave array antenna 2 can be not only printed antennas, but also support antennas and other forms.
  • the embodiment of the application uses the principle of electromagnetic wave antiphase cancellation to realize the coexistence of 4G antennas (including 2G/3G, working below 6GHz band) and 5G millimeter wave array antennas in the same clear space area, that is, a kind of anti-
  • the reflective passive grid structure is placed between the low-frequency antenna (including 2G/3G/4G antenna and sub 6G antenna, working below 6GHz) and the 5G millimeter-wave array antenna, and the reflected wave can be reversed by adjusting the structure Then cancel each other out, so as to realize the low-frequency antenna and the 5G millimeter-wave end-fire array antenna at the same time in the same clearance area, which can ensure the end-fire characteristics of the 5G millimeter-wave end-fire array antenna; it can effectively reduce the layout caused by the coexistence of several generations of antenna , Is conducive to the development of terminal miniaturization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线***和终端,其中,所述天线***包括低频天线(1)和毫米波阵列天线(2),所述低频天线(1)为工作频段小于6GHz的天线,所述低频天线(1)和所述毫米波阵列天线(2)设置在介质板(8)上相同的净空区(6),在所述低频天线(1)和所述毫米波阵列天线(2)之间设置有无源栅状结构(7)。

Description

一种天线***和终端
相关申请的交叉引用
本申请基于申请号为201910419841.9、申请日为2019年5月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本文涉及但不限于一种天线***和终端。
背景技术
2018年6月14日,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)全会(TSG#80)批准了第五代移动通信技术标准(5G NR)独立组网功能冻结,5G已经完成第一阶段全功能标准化工作,进入了产业全面冲刺新阶段。各大运营商也正在积极地部署5G设备,从网络架构、关键技术、基础硬件来看,4G网络架构面向5G改造建设准备、5G技术先行用于4G网络提升性能及4G硬件就绪支持5G平滑演进这三方面,使得“4G网络5G化”已成为4G网络面向5G的一个最优低成本的演进方式。技术层面的变革撑起业务的数字化转型。通过5G技术4G“先行”,可以释放频谱资源,助5G频谱战略布局,推动未来业务向5G的平滑演进。
毋庸置疑,5G将给用户带来全新的体验,它拥有比4G快十倍的传输速率,对天线***提出了新的要求。在5G通信中,实现高速率的关键是毫米波以及波束成形技术,但传统的天线显然无法满足这一需求,毫米波阵列天线将是5G通信的主流天线方案。“4G网络5G化”是当前4G网络的自然演进和面向5G的必要过渡,也是4G向5G的最优低成本演进方式。通过将面向5G的新技术提前导入4G网络,实现4G网络的5G化,可以不断提升网络能力和用户体验,试水新业务为5G孵化新商业模式,并改造现网为云化网络架构,以最大化4G 网络的投资回报,同时为未来提前构筑竞争力。
网络部署决定了过渡时期内,终端产品需要同时支持4G和5G通信,意味着同一终端产品内同时兼顾低频天线(2G/3G/4G天线以及sub 6G天线,工作在6GHz以下)以及5G毫米波阵列天线。
常用方案是5G阵列天线与低频天线(2G/3G/4G天线以及sub 6G天线,工作在6GHz以下)在终端产品的不同净空布局,这就意味着更多的净空区,不利终端小型化的发展。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种天线***和终端,在同一净空区同时实现低频天线和5G毫米波端射阵列天线。
本申请实施例提供了一种天线***,包括低频天线和毫米波阵列天线,所述低频天线为工作频段小于6GHz的天线,其中,所述低频天线和所述毫米波阵列天线设置在介质板上相同的净空区,在所述低频天线和所述毫米波阵列天线之间设置有无源栅状结构。
本申请实施例还提供一种终端,包括所述的天线***。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是毫米波阵列天线置于低频天线的后方的示意图;
图2是毫米波阵列天线置于低频天线的前方的示意图;
图3是本申请实施例的天线***的示意图;
图4是本申请另一实施例的天线***的示意图;
图5(a)和(b)是本申请应用实例的天线***的示意图,其中,(a)为正面,(b)为背面;
图6(a)和(b)是本申请应用实例的仿真结果图;
图7是本申请应用实例的低频天线工作频段的示意图;
图8是本申请应用实例的仿真示意图,其中实线为仅5G毫米波阵列天线端射方向图,虚线为5G毫米波阵列天线与低频天线共存无有栅状结构时的端射方向图;
图9是本申请应用实例的仿真示意图,其中实线为仅5G毫米波阵列天线端射方向图,虚线为5G毫米波阵列天线与低频天线共存且有栅状结构时的端射方向图;
图中:
1为低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz);
2为5G毫米波阵列天线;
3为馈电点;
4为接地点;
5为过孔;
6为净空区;
7为无源栅状结构;
8为介质板。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,终端产品通常会在其底端或顶端预留出净空区6作为天线区域,鉴于目前4G到5G网络的过渡期间非独门组网的网络要求,通常需要终端产品能同时支持5G网络且能够向下兼容,即同一个终端需要同时含有低频天线(2G/3G/4G天线以及sub 6G天线,工作在6GHz频段以下)1和5G毫米波阵列天线2。
若考虑在同一净空区实现低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)与高频天线(5G毫米波阵列天线),会面临如何布局的问题:
1、由于终端产品小型化发展且2G/3G/4G制式频段低频覆盖范围从600MHz跨越,走线较长,并列摆放尺寸有所限制;
2、若将毫米波阵列天线2置于低频天线(即传统的2G/3G/4G天线以及sub6G天线,工作频段小于6GHz)1的前方即电磁波传播方向,如图2所示,那么由于空间限制,毫米波阵列天线2会影响低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1的阻抗、带宽等性能;而且,毫米波天线2的馈电***会与低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1交叉产生强耦合;
3、若将毫米波阵列天线2置于低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1的后方即电磁波传播的反方向,如图1所示,那么低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1由于频段较低、走线较长,会影响5G毫米波阵列天线2的端射方向图。所以在同一净空区中实现两代天线共存且不影响两天线的工作性能,是一个具有挑战工作。
如图3所示,本申请实施例中,低频天线1和毫米波阵列天线2设置在介质板8上相同的净空区6,在所述低频天线1和所述毫米波阵列天线2之间设置有无源栅状结构7。
这种布局,当毫米波阵列天线2的波向端射方向辐射时,无源栅状结构7充当抗反射层,使得一部分波向端射方向传输、另一部分被无源栅状结构7反射回毫米波阵列天线2。其中向端射方向传输的波又会被低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1反射回到毫米波阵列天线2。这样就有两部分波被反射到毫米波阵列天线2上,到达毫米波阵列天线2的这两部分反射波相互抵消,就可以实现毫米波阵列天线2向端射方向辐射而不受干扰。
本申请实施例中,所述低频天线1设置在所述毫米波阵列天线2的端射方向,也即电磁波传播方向。
由于两个反射波具有相反的相位,这就意味两反射波到达毫米波阵列天线2的传播路径差是半波长的奇数倍,即:
2*(L2+L1)-2*L2=2L1    (1)
2L1=(2n+1)λ/2     (2)
其中,L1为无源栅状结构7与所述低频天线1的距离,L2为无源栅状结构7与所述介质板8上主板地的距离,n为自然数。在实际应用中,一方面,由于低频天线与毫米波阵列天线之间存在间距,那么L2的取值不可能为0;另一方面,由于低频天线与毫米波阵列天线位于同一净空区内,那么L2的取值也不可能无限大。因此,L2的取值可根据低频天线与毫米波阵列天线在净空区中实际的布局需要来确定。
为使两个反射波相互抵消,L1接近四分之一波长,且由于毫米阵列天线2的工作频段较高,即便有较高的绝对带宽,但高频工作频段情况下的相对带宽较低,所以在该相对带宽的工作频段内,两个反射波相差都接近180度,因此毫米波阵列天线2可以向端射方向辐射而不受干扰。
本申请实施例中,利用电磁波反相抵消原理,在两天线之间设计一种抗反射的无源栅状结构7,通过调整该结构参数使反射波相位相反进而相互抵消,从而在同一净空区6同时实现传统低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1和5G毫米波端射阵列天线2在同一净空区6共存。
本申请实施例中,所述无源栅状结构7可以是一层或多层结构。例如,图4所示,该实施例中,所述无源栅状结构7为两层结构。
本申请实施例中,所述无源栅状结构7可以设置于所述介质板的一面或两面。
也就是说,所述无源栅状结构7可以设置在所述介质板8的一个表面,也可以在所述介质层8的两个表面都设置有无源栅状结构7。
所述无源栅状结构7亦可在印刷电路板任意一层随意组合设置。
所述低频天线1可以是印刷天线,也可以是支架天线。
所述毫米波阵列天线2可以是印刷天线,也可以是支架天线。
所述无源栅状结构7可以是印刷结构,也可以是支架结构。
本申请实施例还提供一种终端,包括上述的天线***。
本申请实施例的天线***,包括低频天线和毫米波阵列天线,所述低频天线为工作频段小于6GHz的天线,所述低频天线和所述毫米波阵列天线设置在介质板上相同的净空区,在所述低频天线和所述毫米波阵列天线之间设置有无源栅状结构。本申请实施例通过采用无源栅状结构,使得低频天线与5G毫米波阵列天线在同一净空区实现,且能保证阵列天线的端射特性;能有效的减少因几代天线共存而多产生的布局,有利于终端小型化的发展。
下面以应用实例进行说明。
如图5所示,是在同一净空区实现低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)与5G毫米波阵列天线共存的天线***实例,两代天线***均采用印刷天线的形式,天线***置于介质板上,介电常数为2.2,厚度为0.8,天线***位于同一净空区的顶端。
其中,低频天线1置于5G毫米波阵列天线2的端射方向。5G毫米波阵列天线2采用vivaldi天线(即锥形槽天线)的形式,vivaldi天线的两部分分别置于介质板的正面和背面,调整vivaldi天线参数和天线之间的间距,使5G毫米波阵列天线为工作频段为28GHz的端射阵列。
如图6(a)和(b)所示,仿真结果显示,天线之间的互耦最大小于-15dB,在工作频段内,天线效率大于60%,最大增益6dBi。仿真结果显示,该天线阵列在+/-70度扫描角度内仍有较高的辐射效率和增益。
低频天线(即传统的2G/3G/4G天线以及sub 6G天线,工作频段小于6GHz)1采用印刷天线的形式,其中一部分天线在介质板正面,如图5(a),另一部分低频天线1通过过孔5走到介质板背面,其中4为接地点,3为耦合馈电的馈电点。仿真中发现耦合馈电比直接馈电能有效扩展低频带宽,天线工作频段从698MHz~960MHz,1700MHz~2300MHz.,如图7所示。
本应用实例中,无源栅状结构7位于介质板背面,调整栅状结构的参数(相互间距,尺寸,以及离天线的距离),使间距参数(L1和L2)满足公式(1) 和(2),再根据阵列天线辐射特性调整栅状结构的宽度Ls与间距S,使两天线同时工作时,阵列仍具有端射特性。实验仿真结果显示,增加栅状无源结构可使低频天线1与5G毫米波阵列天线2同时在同一净空区实现,且不影响阵列天线的端射特性。
仿真结果如图8、9所示,其中如图8所示,当不采用本申请实施例的方案时,5G毫米波阵列天线2的端射特性受到低频天线1的影响;如图9所示,当采用本申请实施例的方案时,5G毫米波阵列天线2仍具有端射特性。
需要说明的是,本申请实施例中的低频天线1,为工作频段小于6GHz的天线,不限于所有工作在2G/3G/4G频段的天线,含WLAN(Wireless Local Area Network,无线局域网),sub 6G等工作在6GHz以下的天线。
本申请实施例的5G毫米波阵列天线2,可以工作所有毫米波频段,不限于工作在28GHz。
低频天线1和毫米波阵列天线2不仅可以是印刷天线,还可以是支架天线等形式。
综上所述,本申请实施例利用电磁波反相抵消原理,在同一净空区实现4G天线(含2G/3G,工作在6GHz频段以下)与5G毫米波阵列天线共存,即,设计了一种抗反射的无源栅状结构,置于低频天线(含2G/3G/4G天线以及sub 6G天线,工作在6GHz频段以下)与5G毫米波阵列天线之间,可以通过调整该结构使反射波相位相反进而相互抵消,从而在同一净空区同时实现低频天线和5G毫米波端射阵列天线,能保证5G毫米波端射阵列天线的端射特性;能有效的减少因几代天线共存而多产生的布局,有利于终端小型化的发展。

Claims (9)

  1. 一种天线***,包括低频天线和毫米波阵列天线,所述低频天线为工作频段小于6GHz的天线,其中:
    所述低频天线和所述毫米波阵列天线设置在介质板上相同的净空区,在所述低频天线和所述毫米波阵列天线之间设置有无源栅状结构。
  2. 如权利要求1所述的天线***,其中,
    所述低频天线设置在所述毫米波阵列天线的端射方向。
  3. 如权利要求1所述的天线***,其中,
    所述无源栅状结构为一层或多层结构。
  4. 如权利要求1所述的天线***,其中,
    所述无源栅状结构设置于所述介质板的一面或两面。
  5. 如权利要求1所述的天线***,其中,所述无源栅状结构与所述低频天线的距离L1与所述毫米波阵列天线的信号波长λ的关系为:
    2L1=(2n+1)λ/2
    其中,n为自然数。
  6. 如权利要求1所述的天线***,其中,所述低频天线为印刷天线或支架天线。
  7. 如权利要求1所述的天线***,其中,所述毫米波阵列天线为印刷天线或支架天线。
  8. 如权利要求1所述的天线***,其中,所述无源栅状结构为印刷结构或支架结构。
  9. 一种终端,包括如权利要求1~8中任意一项所述的天线***。
PCT/CN2020/080078 2019-05-20 2020-03-18 一种天线***和终端 WO2020233211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20809734.5A EP3916915B1 (en) 2019-05-20 2020-03-18 Antenna system and terminal
US17/612,119 US20220238984A1 (en) 2019-05-20 2020-03-18 Antenna system and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910419841.9A CN111969323B (zh) 2019-05-20 2019-05-20 一种天线***和终端
CN201910419841.9 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233211A1 true WO2020233211A1 (zh) 2020-11-26

Family

ID=73357965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080078 WO2020233211A1 (zh) 2019-05-20 2020-03-18 一种天线***和终端

Country Status (4)

Country Link
US (1) US20220238984A1 (zh)
EP (1) EP3916915B1 (zh)
CN (1) CN111969323B (zh)
WO (1) WO2020233211A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624790B1 (en) * 2002-05-08 2003-09-23 Accton Technology Corporation Integrated dual-band printed monopole antenna
EP2028716B1 (en) * 2007-08-24 2017-04-05 ASUSTeK Computer Inc. Antenna structure
CN206619696U (zh) * 2017-03-03 2017-11-07 深圳市共进电子股份有限公司 无线通信设备及其双频天线
CN109301474A (zh) * 2018-11-13 2019-02-01 南京信息工程大学 一种适用于5g毫米波通信***的手机天线
CN109301460A (zh) * 2018-10-31 2019-02-01 南通至晟微电子技术有限公司 5g毫米波双频段双阵列天线
CN208570921U (zh) * 2018-08-27 2019-03-01 深圳市信维通信股份有限公司 一种基于第五代移动通信的mimo天线结构

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882460B2 (en) * 2002-08-23 2005-04-19 Energy Conversion Devices, Inc. Phase angle controlled stationary elements for long wavelength electromagnetic radiation
EP2178119B1 (en) * 2008-10-20 2018-06-20 QUALCOMM Incorporated Surface mountable integrated circuit package
KR101745411B1 (ko) * 2009-02-13 2017-06-09 위트리시티 코포레이션 손실성 환경에서의 무선 에너지 전달
KR102056411B1 (ko) * 2014-02-28 2019-12-16 삼성전자주식회사 무선 통신 시스템에서 빔 영역을 확장하기 위한 방법 및 장치
US10389008B2 (en) * 2015-02-26 2019-08-20 Ramot At Tel-Aviv University Ltd. Technique for improving efficiency of on-chip antennas
JPWO2017056437A1 (ja) * 2015-09-29 2018-07-19 日本電気株式会社 マルチバンドアンテナおよび無線通信装置
US20170141465A1 (en) * 2015-11-12 2017-05-18 King Fahd University Of Petroleum And Minerals Integrated microwave-millimeter wave antenna system with isolation enhancement mechanism
CN105470661B (zh) * 2015-11-30 2020-03-17 机比特电子设备南京有限公司 毫米波双层双频双极化平面反射阵列天线
RU2727767C1 (ru) * 2016-02-04 2020-07-23 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Матричный усилитель мощности
KR102063222B1 (ko) * 2016-05-26 2020-01-07 더 차이니즈 유니버시티 오브 홍콩 안테나 어레이에서의 상호 결합을 감소시키기 위한 장치 및 방법
JP6927293B2 (ja) * 2017-04-27 2021-08-25 Agc株式会社 アンテナ及びmimoアンテナ
CN107275807B (zh) * 2017-06-22 2021-01-08 昆山睿翔讯通通信技术有限公司 一种集成毫米波天线与导航天线的通信终端结构
US10658762B2 (en) * 2017-07-14 2020-05-19 Apple Inc. Multi-band millimeter wave antenna arrays
US10553945B2 (en) * 2017-09-20 2020-02-04 Apple Inc. Antenna arrays having surface wave interference mitigation structures
WO2019075190A1 (en) * 2017-10-11 2019-04-18 Wispry, Inc. SYSTEMS, DEVICES AND METHODS FOR LONGITUDINAL RADIATION ANTENNA AND CO-IMPLANTED LOW FREQUENCY ANTENNA
CN108321499A (zh) * 2017-12-29 2018-07-24 瑞声科技(新加坡)有限公司 一种毫米波阵列天线及移动终端
CN108511924B (zh) * 2018-03-26 2020-09-11 东南大学 一种用于毫米波通信***的宽带端射天线阵列
CN108550987B (zh) * 2018-05-24 2023-12-01 南京航空航天大学 一种基于siw的双频缝隙阵列天线
US11050138B2 (en) * 2018-07-12 2021-06-29 Futurewei Technologies, Inc. Combo sub 6GHz and mmWave antenna system
CN208460981U (zh) * 2018-08-28 2019-02-01 昆山睿翔讯通通信技术有限公司 一种移动通讯终端四单元毫米波天线***
CN109066087A (zh) * 2018-08-28 2018-12-21 昆山睿翔讯通通信技术有限公司 一种移动通讯终端四单元毫米波天线***
CN109616778A (zh) * 2018-12-05 2019-04-12 东南大学 用于移动终端的毫米波无源多波束阵列装置及其实现方法
CN209298341U (zh) * 2019-03-18 2019-08-23 Oppo广东移动通信有限公司 天线装置和电子设备
CN111129713A (zh) * 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 一种5g毫米波双极化天线模组及终端设备
US11735819B2 (en) * 2020-10-20 2023-08-22 Qualcomm Incorporated Compact patch and dipole interleaved array antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624790B1 (en) * 2002-05-08 2003-09-23 Accton Technology Corporation Integrated dual-band printed monopole antenna
EP2028716B1 (en) * 2007-08-24 2017-04-05 ASUSTeK Computer Inc. Antenna structure
CN206619696U (zh) * 2017-03-03 2017-11-07 深圳市共进电子股份有限公司 无线通信设备及其双频天线
CN208570921U (zh) * 2018-08-27 2019-03-01 深圳市信维通信股份有限公司 一种基于第五代移动通信的mimo天线结构
CN109301460A (zh) * 2018-10-31 2019-02-01 南通至晟微电子技术有限公司 5g毫米波双频段双阵列天线
CN109301474A (zh) * 2018-11-13 2019-02-01 南京信息工程大学 一种适用于5g毫米波通信***的手机天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT (3GPP, 14 June 2018 (2018-06-14)

Also Published As

Publication number Publication date
EP3916915B1 (en) 2024-05-01
EP3916915A4 (en) 2022-03-23
CN111969323B (zh) 2023-02-28
US20220238984A1 (en) 2022-07-28
CN111969323A (zh) 2020-11-20
EP3916915A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2018230039A1 (ja) アンテナ装置
EP3622581B1 (en) A broadband antenna
CN106953168B (zh) 一种平面毫米波mimo天线
CN111327345B (zh) 天线隔离方法、时延网络及其设备
Muttair et al. A new design of mm-Wave MIMO antenna with high isolation for 5G applications
Nithya et al. MIMO antenna with isolation enrichment for 5G mobile information
WO2020233211A1 (zh) 一种天线***和终端
RU2650349C1 (ru) Антенный блок для телекоммуникационного устройства и телекоммуникационное устройство
Tahat et al. A compact 38 GHz millimetre-wave MIMO antenna array for 5G mobile systems
Bagheri et al. MmWave array antenna based on gap waveguide technology for 5G applications
CN117411497B (zh) 一种全双工相控阵列及其射频去耦网络
Elboushi et al. High gain 4-element antenna array for millimeter-wave applications
Nassar et al. Improving mutual coupling in MIMO antennas using different techniques
CA3136596C (en) Antenna, method for supplying power to antenna, single-feeding-based method for combining antennas, and terminal
Zaid et al. High isolation mimo antenna using dielectrically loaded printed dipole for 5g applications
Nej et al. Design of a wideband mm wave massive MIMO antenna for 5G communication
Alsahulli et al. Antenna Design and Simulation for 2x2 MIMO System for IEEE-802.11 a Application
CN115441899A (zh) 时延网络及包括时延网络的模拟消除模块和电子设备
Huang et al. Eight-Port Massive MIMO Antennas of USB Device for 5G C-Band
Joe et al. 2 X 2 MIMO Antenna Design For 5G Applications
Saeed et al. High bandwidth and gain V-band antenna based on FSS for the future Wi-Fi
Samad et al. $5\times 5$ MIMO Antennas for Future 5G mm-Wave Communication
Filgueiras et al. SICL-based Antenna Array for 5G Massive MIMO Applications in mm-waves
Samad et al. 5× 5 MIMO Antennas for Future 5G mm-Wave Communication
Priya et al. Reflector-based Isolation Technique for mm-Wave MIMO Antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020809734

Country of ref document: EP

Effective date: 20210825

NENP Non-entry into the national phase

Ref country code: DE