WO2020233181A1 - 显示面板及其控制方法、显示装置 - Google Patents

显示面板及其控制方法、显示装置 Download PDF

Info

Publication number
WO2020233181A1
WO2020233181A1 PCT/CN2020/076189 CN2020076189W WO2020233181A1 WO 2020233181 A1 WO2020233181 A1 WO 2020233181A1 CN 2020076189 W CN2020076189 W CN 2020076189W WO 2020233181 A1 WO2020233181 A1 WO 2020233181A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
electric field
electrostrictive layer
voltage difference
Prior art date
Application number
PCT/CN2020/076189
Other languages
English (en)
French (fr)
Inventor
胡贵光
叶雪芳
刘承俊
鲁俊祥
孙少君
池彦菲
陈霞
林祥栋
俞洋
陈凡
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020233181A1 publication Critical patent/WO2020233181A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel, a control method thereof, and a display device.
  • the traditional privacy display is that the privacy film is attached to the surface of the display.
  • the privacy film uses ultra-fine blinds technology. The principle is similar to that of vertical blinds.
  • the privacy film allows light from a specific viewing angle to pass through, and light from other viewing angles is blocked, resulting in the display. The brightness is greatly reduced.
  • a display panel including: a display substrate and an adjusting device provided on a light exit side of the display substrate.
  • the adjusting device includes a first electrode, a first insulating layer, an electrostrictive layer, and a second electrode stacked on the display substrate.
  • the first electrode is configured to receive a first voltage.
  • the second electrode is configured to receive a second voltage.
  • the electrostrictive layer is configured to be deformed under the action of the electric field generated between the first electrode and the second electrode due to the voltage difference between the first voltage and the second voltage, so as to cause the impact on the electrostrictive layer. The direction of light propagation of the layer is adjusted.
  • the electrostrictive layer is configured to deform under the action of a first electric field generated between the first electrode and the second electrode due to the first voltage difference between the first voltage and the second voltage , Becomes a concave lens structure so that the light incident on the electrostrictive layer diverges when exiting; and due to the second voltage difference between the first voltage and the second voltage generated between the first electrode and the second electrode Under the action of the second electric field, it deforms and becomes a convex lens structure so that the light incident on the electrostrictive layer converges when it exits, wherein the first voltage difference is opposite to the second voltage difference.
  • the second electrode is a flexible electrode.
  • the first electrode includes a plurality of strip-shaped sub-electrodes
  • the display substrate includes a plurality of pixel units
  • each of the strip-shaped sub-electrodes corresponds to each of the pixel units in a one-to-one correspondence.
  • the material of the second electrode is ITO or nano silver wire.
  • the display substrate includes: a substrate, a plurality of thin film transistors, a second insulating layer, and a third electrode stacked on the substrate, and a pattern formed on the third electrode and the second electrode.
  • the organic light-emitting layer and the black matrix on the second insulating layer, the third electrode and each of the thin film transistors are connected through a via provided on the second insulating layer, and the first electrode is provided on the organic light-emitting layer
  • the third electrode is an anode or a cathode, and the first electrode is multiplexed as a cathode or an anode corresponding to the third electrode.
  • the material of the electrostrictive layer is an electroactive polymer.
  • the material of the electrostrictive layer includes at least one of the following: AOC, DEAP, ESGE, ESP, EVEM, FEP, LCE, CNT, CP, ERF, IPG, and IPMC.
  • the display panel further includes a controller configured to control the electric field generated between the first electrode and the second electrode by controlling the voltage difference between the first voltage and the second voltage, thereby controlling the electrostriction The deformation of the layer under the electric field.
  • a display device including the display panel as described above.
  • a control method of a display panel which is applied to the display panel as described above.
  • the control method includes: controlling a first voltage applied to a first electrode and a control applied to a second electrode.
  • the voltage difference between the second voltages is used to control the electric field generated between the first electrode and the second electrode, thereby controlling the deformation of the electrostrictive layer under the action of the electric field, so as to The propagation direction of light to the electrostrictive layer is adjusted.
  • the first electrode is disposed close to the display substrate, the second electrode is a flexible electrode, and the first electrode includes a plurality of strip-shaped sub-electrodes.
  • the voltage difference between the first voltage applied to the first electrode and the second voltage applied to the second electrode is controlled to control the electric field generated between the first electrode and the second electrode, thereby controlling
  • the step of deforming the electrostrictive layer under the action of the electric field further includes: in the first display stage, by making the first voltage applied to the first electrode and the second voltage applied to the second electrode A voltage difference is formed between the voltages to generate an electric field between the first electrode and the second electrode, and the electric field causes the electrostrictive layer between the first electrode and the second electrode to form a plurality of lenses Structure, each of the lens structures corresponds to the strip-shaped sub-electrodes; in the second display stage, the first voltage applied to the first electrode is the same as the second voltage applied to the second electrode to The electrostrictive layer between the first electrode and the second electrode forms a planar structure, and the planar
  • the voltage difference between the first voltage applied to the first electrode and the second voltage applied to the second electrode is controlled to control the voltage difference between the first electrode and the second electrode.
  • the step of controlling the deformation of the electrostrictive layer under the action of the electric field further includes at least one of the following: making the first voltage applied to the first electrode and the second electrode applied to the A first voltage difference is formed between the second voltages of, and a first electric field is generated between the first electrode and the second electrode.
  • the first electric field deforms the electrostrictive layer, forming a concave lens structure, so that it is incident on the The light from the electrostrictive layer diverges when it exits; a second voltage difference is formed between the first voltage applied to the first electrode and the second voltage applied to the second electrode, so that the first electrode and A second electric field is generated between the second electrodes.
  • the second electric field deforms the electrostrictive layer and becomes a convex lens structure, so that the light incident on the electrostrictive layer is concentrated when exiting.
  • the first voltage difference is The second voltage difference is inverted; and so that there is no voltage difference between the first voltage applied to the first electrode and the second voltage applied to the second electrode, so that there is no voltage difference between the first electrode and the second electrode.
  • a second electric field is generated to make the electrostrictive layer form a planar structure, and the planar structure is parallel to the display substrate.
  • a controller configured to execute the control method according to any one of claims 11-13.
  • FIG. 1 shows a schematic cross-sectional structure diagram of a display panel in the first display stage according to an embodiment of the present application
  • FIG. 2 shows a schematic cross-sectional structure diagram of a display panel in a second display stage according to an embodiment of the present application
  • FIG. 3 shows a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the present application.
  • FIG. 4A shows a flowchart of steps of a method for controlling a display panel provided by an embodiment of the present application.
  • FIG. 4B shows a flowchart of steps of a method for controlling a display panel provided by an embodiment of the present application.
  • Fig. 5 shows a schematic block diagram of a display device provided by an embodiment of the present application.
  • the display panel includes: a display substrate 10 and an adjusting device 11.
  • the adjusting device 11 is arranged on the light emitting side of the display substrate 10, and the adjusting device 11 includes a laminated arrangement.
  • the first electrode 111 receives a first voltage
  • the second electrode 114 receives a second voltage.
  • an electric field is generated between the first electrode 111 and the second electrode 114, and the electrostrictive layer 113 will deform (for example, bend) under the action of the electric field.
  • the propagation direction of the light incident on the electrostrictive layer 113 is adjusted.
  • FIG. 1 shows an exemplary embodiment in which the electrostrictive layer 113 is deformed under the action of an electric field.
  • the position of the electrostrictive layer 113 corresponding to each electrode becomes a convex lens structure, so that the light incident on the electrostrictive layer 113 from the display substrate 10 will converge when exiting, thereby changing the field of view that can be peeped. small.
  • the electrostrictive layer 113 and each electrode The corresponding position becomes a concave lens structure, so that the light incident from the display substrate 10 to the electrostrictive layer 113 will diverge when exiting, so that the field of view that can be peeped becomes larger.
  • the stretchable layer 113 has a planar structure, for example.
  • FIG. 2 shows an exemplary embodiment in which the electrostrictive layer 113 is not deformed.
  • the display substrate 10 may be, for example, an OLED (Organic Light-Emitting Diode) display substrate or the like.
  • the electrostrictive layer 113 can be a material with an electrostrictive effect.
  • This material has molecular groups formed spontaneously, called electric domains, which have a certain polarization, and the length along the polarization direction is often different from other directions. .
  • this kind of electric domain will rotate to make its polarization direction as far as possible to be consistent with the direction of the external electric field, so the length of this material along the direction of the external electric field will change.
  • the material of the electrostrictive layer 113 may be an electroactive polymer
  • the electroactive polymer EAP is a smart material with special electrical and mechanical properties. This polymer undergoes a slight deformation after being electrically stimulated.
  • electroactive polymer EAP can be divided into electronic EAP or ionic EAP.
  • Electronic EAP includes all organic composite materials (AOC), dielectric EAP (DEAP), electrostrictive grafted elastomer (ESGE), electrostrictive film (ESP), electroviscoelastic polymer (EVEM), ferroelectric Bulk polymer (FEP) and liquid crystal elastomer (LCE), etc.
  • Ionic EAPs include carbon nanotubes (CNT), conductive polymers (CP), electrorheological fluids (ERF), ionic polymer gels (IPG), and ionic polymer-based metal composites (IPMC).
  • the material of the electrostrictive layer may include at least one of electroactive polymers such as AOC, DEAP, ESGE, ESP, EVEM, FEP, LCE, CNT, CP, ERF, IPG, and IPMC.
  • electroactive polymers such as AOC, DEAP, ESGE, ESP, EVEM, FEP, LCE, CNT, CP, ERF, IPG, and IPMC.
  • Various means can be used to control the voltage difference between the first voltage and the second voltage.
  • the display panel includes a driving circuit, and the driving circuit is connected to the first electrode and the second electrode to apply the first voltage and the second voltage to the first electrode and the second electrode, respectively.
  • the display panel may further include a controller or a control circuit connected to the driving circuit, and the controller or control circuit may control the first voltage and the second voltage applied to the first electrode and the second electrode via the driving circuit. (In other words, control the voltage difference between the first voltage and the second voltage).
  • the controller may cause a first voltage difference to be formed between the first voltage applied to the first electrode and the second voltage applied to the second electrode, so that the A first electric field is generated between the second electrodes, so that the electrostrictive layer between the first electrode and the second electrode is deformed into a convex lens structure under the action of the electric field (for example, as shown in FIG.
  • the controller can also make the first voltage applied to the first electrode and the second voltage applied to the second electrode A second voltage difference is formed between the voltages to generate a second electric field between the first electrode and the second electrode, so that the electrostrictive layer between the first electrode and the second electrode is deformed into a concave lens structure, so that parallel light or internal Condensed light becomes diffuse light, achieving the effect of increasing the viewing angle.
  • the controller can make the first voltage applied to the first electrode the same as the second voltage applied to the second electrode, so that no electric field is generated between the first electrode and the second electrode.
  • the planar structure is parallel to the display substrate (for example, as shown in FIG. 2).
  • the adjusting device is arranged on the light-emitting side of the display substrate, and the electrostrictive layer in the adjusting device is deformed under the action of an electric field to form a lens structure, thereby changing the propagation direction of incident light and changing the viewing angle of the display
  • the size enables the display panel to achieve the effect of preventing peeping (reducing the viewing angle) or sharing (increasing the viewing angle).
  • the first display stage and the second display stage do not mean the sequence of the two display stages, but merely indicate that the display panel is in two different states.
  • the first display stage and the second display stage can be defined by the user. For example, when the user activates the anti-peep mode or sharing mode, the display device may be in the first display stage; when the user uses the display device in the normal mode, the display device may be in the second display stage.
  • the first electrode 111 is disposed close to the display substrate 10, and the material of the first electrode 111 may be, for example, ITO (Indium Tin Oxide, indium tin oxide) or other transparent electrodes.
  • ITO Indium Tin Oxide, indium tin oxide
  • the material of the first insulating layer 112 is a transparent insulating material, such as silicon nitride or OC material.
  • the material of the second electrode 114 may be, for example, a flexible electrode material such as ITO or nano silver wire.
  • the display substrate 10 includes a plurality of pixel units.
  • the first electrode 111 can be configured to include a plurality of strip-shaped sub-electrodes, and each strip-shaped sub-electrode is connected to each pixel unit.
  • the electrostrictive layer can form multiple lens structures under the action of an electric field, and each lens structure corresponds to the strip-shaped sub-electrodes (or pixel units) one-to-one.
  • the display substrate 10 includes: a substrate 31, a plurality of thin film transistors stacked on the substrate 31, a second insulating layer 33, a third electrode 34, and a third
  • the organic light emitting layer 35 and the black matrix 36 on the electrode 34 and the second insulating layer 33, the third electrode 34 and each thin film transistor are connected through the vias 331 provided on the second insulating layer 33, and the first electrode 111 is arranged on the organic light emitting
  • the layer 35 and the black matrix 36 are on the side facing away from the substrate 31, the third electrode 34 is an anode or a cathode, and the first electrode 111 is multiplexed as a cathode or an anode corresponding to the third electrode 34.
  • the thin film transistor may include a gate 321, a gate insulating layer 322, an active layer 323, and source and drain electrodes 324 sequentially formed on the substrate 31.
  • a forming process of the display substrate 10 is as follows:
  • the gate 321 is fabricated on the substrate 31 through a series of patterning processes such as film formation, coating of PR glue, exposure, development, and etching; the gate insulating layer 322 is covered on the surface of the gate 321; fabricated on the gate insulating layer 322
  • the Active layer is the active layer 323; source and drain electrodes 324 are fabricated on the active layer 323; the source and drain electrodes 324 are covered with a second insulating layer 33; a via 331 is formed on the second insulating layer 33 to connect to the third electrode of the OLED 34; Then patterned to form an organic light-emitting layer 35 and a black matrix 36, the black matrix 36 is used to define the pixel unit; and then form another electrode corresponding to the third electrode 34 in the OLED, this electrode can be connected with the adjustment device 11
  • the first electrode 111 is shared.
  • the first electrode 111 is multiplexed as the cathode of the OLED; when the third electrode 34 is the cathode of the OLED, the first electrode 111 is multiplexed as the anode of the OLED.
  • FIG. 5 shows a display device according to an embodiment of the present disclosure.
  • the display device may include the display panel described in any embodiment, for example.
  • the display panel may include the controller or control circuit as described above.
  • the display panel may also include a driving circuit.
  • the controller may be a controller in the display device that is coupled to the outside of the display panel, and the controller may control the driving circuit of the display panel.
  • the display device in this embodiment may be any product or component with a display function, such as electronic paper, mobile phone, tablet computer, television, notebook computer, digital photo frame, navigator, etc.
  • the controller may be a digital controller or an analog controller.
  • the controller may also be a processor in the display device.
  • Fig. 4A shows a control method of a display panel provided according to an embodiment of the present application.
  • the control method can be applied to the display panel described in any of the above embodiments.
  • the control method can include:
  • this step can be executed by the above-mentioned controller or control circuit.
  • Fig. 4B shows a method for controlling a display panel according to another embodiment of the present application.
  • the first electrode is arranged close to the display substrate, the second electrode is a flexible electrode, and the first electrode includes a plurality of strip-shaped sub-electrodes.
  • control method provided in this embodiment may specifically include:
  • Step 401 In the first display stage, by forming a voltage difference between the first voltage applied to the first electrode and the second voltage applied to the second electrode, the voltage difference between the first electrode and the An electric field is generated between the second electrodes, and the electric field causes the electrostrictive layer between the first electrode and the second electrode to form a plurality of lens structures, and each of the lens structures corresponds to the strip-shaped sub-electrodes one to one.
  • This includes, for example, forming a first voltage difference between the first voltage applied to the first electrode and the second voltage applied to the second electrode, thereby generating a first voltage difference between the first electrode and the second electrode.
  • the electric field and the first electric field deform the electrostrictive layer into a concave lens structure, so that the light incident on the electrostrictive layer diverges when exiting, for example, the parallel light or cohesive light becomes diffused light to achieve The effect of increasing the viewing angle.
  • the second electric field deforms the electrostrictive layer into a convex lens structure, so that the light incident on the electrostrictive layer is concentrated when exiting, for example, the scattered light becomes parallel light or cohesive light, reducing the viewing angle , So as to achieve the effect of anti-peep.
  • the first voltage difference is opposite to the second voltage difference.
  • the electrostrictive layer can be deformed to different degrees.
  • the electrostrictive layer can be deformed in different directions.
  • Step 402 In the second display stage, make the first voltage applied to the first electrode the same as the second voltage applied to the second electrode, so that the gap between the first electrode and the second electrode
  • the electrostrictive layer forms a planar structure, and the planar structure is parallel to the display substrate.
  • FIGS. 4A and 4B are only flowcharts of exemplary methods. The order of the steps can be changed, and the method according to the present disclosure can include more or fewer steps.
  • the present application provides a display panel and a control method thereof, and a display device.
  • the electrostrictive layer in the adjusting device deforms under the action of an electric field to form a lens structure, thereby changing the incidence
  • the propagation direction of the light changes the size of the viewing angle of the display, so that the display panel achieves the effect of preventing peeping (reducing the viewing angle) or sharing (increasing the viewing angle).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请提供了一种显示面板及其控制方法、显示装置。该显示面板,包括:显示基板;以及设置在所述显示基板的出光侧的调节装置,所述调节装置包括层叠设置在所述显示基板上的第一电极、第一绝缘层、电致伸缩层以及第二电极,第一电极配置为接收第一电压;第二电极配置为接收第二电压;所述电致伸缩层配置为在由于第一电压与第二电压之间的电压差而在第一电极与第二电极之间产生的电场的作用下发生形变,对入射至所述电致伸缩层的光线的传播方向进行调节。

Description

显示面板及其控制方法、显示装置 技术领域
本公开涉及显示技术领域,特别是涉及一种显示面板及其控制方法、显示装置。
背景技术
现有技术中手机、平板电脑、电视等显示设备多采用宽视角屏,极少厂商加入防窥相关技术,无法满足用户的隐私需求,信息泄露事件近年频增。随着企业、个人保密防护意识的增强,对显示设备的防窥技术有了极大的市场需求。
传统的防窥显示在是显示器表面贴附防窥膜,防窥膜采用超微细百叶窗技术,原理和垂直百叶窗相似,防窥膜使得特定视角的光线透过,其它视角的光线被阻拦,导致显示器亮度大大降低。
发明内容
根据本公开的一个方面,提供一种显示面板,包括:显示基板以及设置在所述显示基板的出光侧的调节装置。所述调节装置包括层叠设置在所述显示基板上的第一电极、第一绝缘层、电致伸缩层以及第二电极。第一电极配置为接收第一电压。第二电极配置为接收第二电压。所述电致伸缩层配置为在由于第一电压与第二电压之间的电压差而在第一电极与第二电极之间产生的电场的作用下发生形变,对入射至所述电致伸缩层的光线的传播方向进行调节。
可选地,所述电致伸缩层配置为:在由于第一电压与第二电压之间的第一电压差而在第一电极与第二电极之间产生的第一电场的作用下发生形变,成为凹透镜结构以使得入射至所述电致伸缩层的光线在出射时发散;和在由于第一电压与第二电压之间的第二电压差而在第一电极与第二电极之间产生的第二电场的作用下发生形变,成为凸透镜结构以使得入射至所述电致伸缩层的光线在出射时汇聚,其中第一电压差与第二电压差反相。
可选地,所述第二电极为柔性电极。
可选地,所述第一电极包括多个条状子电极,所述显示基板包括多个像素单元,各所述条状子电极与各所述像素单元一一对应。
可选地,所述第二电极的材料为ITO或者纳米银线。
可选地,所述显示基板包括:衬底,层叠设置在所述衬底上的多个薄膜晶体管、第 二绝缘层、第三电极,以及图案化形成在所述第三电极和所述第二绝缘层上的有机发光层和黑色矩阵,所述第三电极与各所述薄膜晶体管通过设置在所述第二绝缘层上的过孔连接,所述第一电极设置在所述有机发光层和所述黑色矩阵背离所述衬底的一侧,所述第三电极为阳极或阴极,所述第一电极复用为与所述第三电极对应的阴极或阳极。
可选地,所述电致伸缩层的材料为电活性聚合物。
可选地,所述电致伸缩层的材料包括以下至少之一:AOC、DEAP、ESGE、ESP、EVEM、FEP、LCE、CNT、CP、ERF、IPG和IPMC。
可选地,显示面板还包括控制器,控制器配置为通过控制第一电压和第二电压之间的电压差来控制在第一电极和第二电极之间产生的电场,从而控制电致伸缩层在所述电场作用下的形变。
根据本公开另一方面,提供一种显示装置,包括如上所述的显示面板。
根据本公开另一方面,提供一种显示面板的控制方法,该方法应用于如上所述的显示面板,所述控制方法包括:控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变,以对入射至所述电致伸缩层的光线的传播方向进行调节。
可选地,所述第一电极靠近所述显示基板设置,所述第二电极为柔性电极,且所述第一电极包括多个条状子电极。所述控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变的步骤进一步包括:在第一显示阶段,通过使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成电压差,来在所述第一电极与所述第二电极之间产生电场,该电场使所述第一电极与所述第二电极之间的电致伸缩层形成多个透镜结构,各所述透镜结构与所述条状子电极一一对应;在第二显示阶段,使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压相同,以使所述第一电极与所述第二电极之间的电致伸缩层形成平面结构,所述平面结构与所述显示基板平行。
可选地,所述控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩 层在所述电场的作用下的形变的步骤进一步包括以下中的至少一者:使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第一电压差,从而在第一电极与第二电极之间产生第一电场,第一电场使所述电致伸缩层发生形变,成为凹透镜结构,以使得入射至所述电致伸缩层的光线在出射时发散;使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第二电压差,从而在第一电极与第二电极之间产生第二电场,第二电场使所述电致伸缩层发生形变,成为凸透镜结构,以使得入射至所述电致伸缩层的光线在出射时汇聚,其中第一电压差与第二电压差反相;和使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间没有电压差,从而在第一电极与第二电极之间不产生第二电场,使所述电致伸缩层形成平面结构,所述平面结构与所述显示基板平行。
根据本公开另一方面,提供一种控制器,配置为执行如权利要求11-13中任一项所述的控制方法。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的一种显示面板在第一显示阶段的剖面结构示意图;
图2示出了本申请实施例提供的一种显示面板在第二显示阶段的剖面结构示意图;
图3示出了本申请实施例提供的另一种显示面板的剖面结构示意图;
图4A示出了本申请实施例提供的一种显示面板的控制方法的步骤流程图。
图4B示出了本申请实施例提供的一种显示面板的控制方法的步骤流程图。
图5示出了本申请实施例提供的一种显示装置的示意框图。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。
本申请一实施例提供了一种显示面板,参照图1和图2,该显示面板包括:显示基板10和调节装置11,调节装置11设置在显示基板10的出光侧,调节装置11包括层叠设置 在显示基板10上的第一电极111、第一绝缘层112、电致伸缩层113以及第二电极114。
第一电极111接收第一电压,第二电极114接收第二电压。当第一电压和第二电压不同,从而形成电压差时,第一电极111与第二电极114之间产生电场,电致伸缩层113在该电场的作用下会发生形变(例如弯曲),对入射至电致伸缩层113上光线的传播方向进行调节。
图1示出电致伸缩层113在电场作用下发生形变的示例性实施例。如图1所示,电致伸缩层113与每个电极对应的位置变成凸透镜结构,这样从显示基板10入射到电致伸缩层113的光线在出射时将汇聚,从而使得能够窥探的视野变小。
在另一些实施例中,当第一电压与第二电压之间的电压差变为反相(例如与图1对应的电压差反相)时,还可以使得电致伸缩层113与每个电极对应的位置变成凹透镜结构,这样从显示基板10入射到电致伸缩层113的光线在出射时将发散,从而使得能够窥探的视野变大。
在另一些实施例中,当第一电压和第二电压相同时,即第一电压和第二电压之间不存在电压差时,第一电极111与第二电极114之间不产生电场,电致伸缩层113例如为平面结构。图2示出电致伸缩层113不发生形变的示例性实施例。显示基板10例如可以为OLED(Organic Light-Emitting Diode,有机发光二极管)显示基板等。
电致伸缩层113可以是具有电致伸缩效应的材料,这种材料存在着自发形成的分子集团即所谓电畴,它具有一定的极化,并且沿极化方向的长度往往与其他方向的不同。当有外加电场作用时,这种电畴就会发生转动,使其极化方向尽量转到与外电场方向一致,因此这种材料沿外电场方向的长度会发生变化。
例如,电致伸缩层113的材料可以为电活性聚合物,电活性聚合物EAP是一种智能材料,具有特殊的电性能和机械性能。这种聚合物在受到电刺激后产生微小形变。按照作用机理的不同,电活性聚合物EAP可以分为电子型EAP或离子型EAP。电子型EAP包括全有机复合材料(AOC)、介电EAP(DEAP)、电致伸缩接枝弹性体(ESGE)、电致伸缩薄膜(ESP)、电致粘弹性聚合物(EVEM)、铁电体聚合物(FEP)和液晶弹性体(LCE)等。离子型EAP包括碳纳米管(CNT)、导电聚合物(CP)、电致流变液体(ERF)、离子聚合物凝胶(IPG)和离子聚合物基金属复合材料(IPMC)等。
电致伸缩层的材料可以包括:AOC、DEAP、ESGE、ESP、EVEM、FEP、LCE、CNT、CP、ERF、IPG和IPMC等电活性聚合物中至少之一。
可以采用各种手段来实现第一电压和第二电压之间的电压差的控制。
例如,在一些实施例中,显示面板包括驱动电路,驱动电路连接第一电极和第二电极来给第一电极和第二电极分别施加第一电压和第二电压。在一些实施例中,显示面板还可以包括与驱动电路连接的控制器或控制电路,该控制器或控制电路可以控制经由驱动电路施加到第一电极和第二电极的第一电压和第二电压的大小(换言之,控制第一电压和第二电压之间的电压差)。
例如,在第一显示阶段,参照图1,控制器可以使得在施加于第一电极的第一电压和施加于第二电极的第二电压之间形成第一电压差,以在第一电极与第二电极之间产生第一电场,以使第一电极与第二电极之间的电致伸缩层在该电场作用下形变为凸透镜结构(例如如图1所示),改变显示器件光线的传播方向,使散射光线变成平行光线或内聚光线,减小视角,从而达到防窥的效果;或者,控制器还可以使得施加于第一电极的第一电压以及施加于第二电极的第二电压之间形成第二电压差,来在第一电极与第二电极之间产生第二电场,使第一电极与第二电极之间的电致伸缩层形变为凹透镜结构,使平行光线或内聚光线变成扩散光线,达到增大视角的效果。
在第二显示阶段,参照图2,控制器可以使施加于第一电极的第一电压与施加于第二电极的第二电压相同,从而在第一电极与第二电极之间不产生电场,以使第一电极与第二电极之间的电致伸缩层恢复成平面结构,该平面结构与显示基板平行(例如如图2所示)。
本实施例提供的显示面板,将调节装置设置在显示基板的出光侧,调节装置中的电致伸缩层在电场的作用下发生形变形成透镜结构,从而改变入射光线的传播方向,改变显示视觉角度大小,使显示面板达到防窥(减小视角)或共享(增大视角)的效果。
在本公开实施例中,第一显示阶段和第二显示阶段并不意味着这两个显示阶段的先后顺序,而仅仅是为了表示显示面板处于两种不同的状态。第一显示阶段和第二显示阶段可以由用户定义。例如,当用户启动防窥视模式或分享模式时,显示装置可以处于第一显示阶段;当用户在正常模式下使用显示装置时,显示装置可以处于第二显示阶段。
在一些实施例中,第一电极111靠近显示基板10设置,第一电极111的材料例如可以为ITO(Indium Tin Oxide,铟锡氧化物)或其他透明电极。
第一绝缘层112的材料为透明绝缘材料,例如可以为氮化硅或者OC材料等。
第二电极114的材料例如可以为ITO或者纳米银线等柔性电极材料。
在实际应用中,显示基板10包括多个像素单元,为了对每个像素单元的光线传播方 向进行精确调节,可以设置第一电极111包括多个条状子电极,各条状子电极与各像素单元一一对应。这样,在第一显示阶段,电致伸缩层在电场的作用下可以形成多个透镜结构,各透镜结构与条状子电极(或像素单元)一一对应。
在一些实施例中,参照图3,显示基板10包括:衬底31,层叠设置在衬底31上的多个薄膜晶体管、第二绝缘层33、第三电极34,以及图案化形成在第三电极34和第二绝缘层33上的有机发光层35和黑色矩阵36,第三电极34与各薄膜晶体管通过设置在第二绝缘层33上的过孔331连接,第一电极111设置在有机发光层35和黑色矩阵36背离衬底31的一侧,第三电极34为阳极或阴极,第一电极111复用为与第三电极34对应的阴极或阳极。
其中,薄膜晶体管可以包括依次形成在衬底31上的栅极321、栅极绝缘层322、有源层323以及源漏电极324。
在实际应用中,显示基板10的一种形成过程如下:
通过成膜、涂布PR胶、曝光、显影、刻蚀等一系列构图工艺在衬底31上制作栅极321;在栅极321表面覆盖栅极绝缘层322;在栅极绝缘层322上制作Active层即有源层323;在有源层323上制作源漏电极324;在源漏电极324上覆盖第二绝缘层33;在第二绝缘层33上形成过孔331,连接OLED第三电极34;然后图案化形成有机发光层35和黑色矩阵36,黑色矩阵36用于分割定义像素单元;然后形成OLED中与第三电极34相对应的另一电极,这一电极可以与调节装置11中第一电极111共用。当第三电极34为OLED阳极时,第一电极111复用为OLED的阴极;当第三电极34为OLED阴极时,第一电极111复用为OLED的阳极。
图5示出了根据本公开实施例的显示装置。如图所示,该显示装置例如可以包括任一实施例所述的显示面板。显示面板可以包括如上所述的控制器或控制电路。显示面板还可以包括驱动电路。在一些实施例中,该控制器可以是显示装置内与显示面板外部耦接的控制器,该控制器可以控制显示面板的驱动电路。
需要说明的是,本实施例中的显示装置可以为:电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在本公开的实施例中,控制器可以是数字控制器或模拟控制器。控制器也可以是显示装置内的处理器。
图4A示出根据本申请实施例提供的一种显示面板的控制方法,该控制方法可以应用 于上述任一实施例所述的显示面板,该控制方法可以包括:
4001:控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变,以对入射至所述电致伸缩层的光线的传播方向进行调节。
在实际应用中,该步骤可以由上述控制器或控制电路执行。
图4B示出根据本申请另一实施例提供的一种显示面板的控制方法。在该显示面板中,第一电极靠近显示基板设置,第二电极为柔性电极,且第一电极包括多个条状子电极。
如图4B所示,本实施例提供的控制方法具体可以包括:
步骤401:在第一显示阶段,通过使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成电压差,来在所述第一电极与所述第二电极之间产生电场,该电场使所述第一电极与所述第二电极之间的电致伸缩层形成多个透镜结构,各所述透镜结构与所述条状子电极一一对应。
这例如包括:使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第一电压差,从而在第一电极与第二电极之间产生第一电场,第一电场使所述电致伸缩层发生形变,成为凹透镜结构,以使得入射至所述电致伸缩层的光线在出射时发散,例如使平行光线或内聚光线变成扩散光线,达到增大视角的效果。或者,使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第二电压差,从而在第一电极与第二电极之间产生第二电场,第二电场使所述电致伸缩层发生形变,成为凸透镜结构,以使得入射至所述电致伸缩层的光线在出射时汇聚,例如使散射光线变成平行光线或内聚光线,减小视角,从而达到防窥的效果。第一电压差与第二电压差反相。
本领域技术人员可以想到,通过调节电压差的大小可以使电致伸缩层产生不同程度的形变。通过调节电压差的极性,可以使电致伸缩层产生不同方向的形变。本领域技术人员可以根据本公开的教导进行各种修改。
步骤402:在第二显示阶段,使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压相同,以使所述第一电极与所述第二电极之间的电致伸缩层形成平面结构,所述平面结构与所述显示基板平行。
本领域技术人员可以理解,第一显示阶段和第二显示阶段并不一定是必须按照图中的顺序执行,图4A和图4B中仅仅是示例性方法的流程图。其步骤的顺序可以改变,并且根据本公开的方法可以包括更多或更少的步骤。
本申请提供了一种显示面板及其控制方法、显示装置,通过将调节装置设置在显示基板的出光侧,调节装置中的电致伸缩层在电场的作用下发生形变形成透镜结构,从而改变入射光线的传播方向,改变显示视觉角度大小,使显示面板达到防窥(减小视角)或共享(增大视角)的效果。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种显示面板及其控制方法、显示装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (13)

  1. 一种显示面板,包括:
    显示基板;以及
    设置在所述显示基板的出光侧的调节装置,所述调节装置包括层叠设置在所述显示基板上的第一电极、第一绝缘层、电致伸缩层以及第二电极,
    第一电极配置为接收第一电压;
    第二电极配置为接收第二电压;
    所述电致伸缩层配置为在由于第一电压与第二电压之间的电压差而在第一电极与第二电极之间产生的电场的作用下发生形变,对入射至所述电致伸缩层的光线的传播方向进行调节。
  2. 如权利要求1所述的显示面板,其中,所述电致伸缩层配置为:
    在由于第一电压与第二电压之间的第一电压差而在第一电极与第二电极之间产生的第一电场的作用下发生形变,成为凹透镜结构以使得入射至所述电致伸缩层的光线在出射时发散;和
    在由于第一电压与第二电压之间的第二电压差而在第一电极与第二电极之间产生的第二电场的作用下发生形变,成为凸透镜结构以使得入射至所述电致伸缩层的光线在出射时汇聚,其中第一电压差与第二电压差反相。
  3. 根据权利要求1所述的显示面板,其中,所述第二电极为柔性电极。
  4. 根据权利要求3所述的显示面板,其中,所述第一电极包括多个条状子电极,所述显示基板包括多个像素单元,各所述条状子电极与各所述像素单元一一对应。
  5. 根据权利要求3所述的显示面板,其中,所述第二电极的材料为ITO或者纳米银线。
  6. 根据权利要求1所述的显示面板,其中,所述显示基板包括:衬底,层叠设置在 所述衬底上的多个薄膜晶体管、第二绝缘层、第三电极,以及图案化形成在所述第三电极和所述第二绝缘层上的有机发光层和黑色矩阵,所述第三电极与各所述薄膜晶体管通过设置在所述第二绝缘层上的过孔连接,所述第一电极设置在所述有机发光层和所述黑色矩阵背离所述衬底的一侧,所述第三电极为阳极或阴极,所述第一电极复用为与所述第三电极对应的阴极或阳极。
  7. 根据权利要求1至6任一项所述的显示面板,其中,所述电致伸缩层的材料为电活性聚合物。
  8. 根据权利要求7所述的显示面板,其中,所述电致伸缩层的材料包括以下至少之一:AOC、DEAP、ESGE、ESP、EVEM、FEP、LCE、CNT、CP、ERF、IPG和IPMC。
  9. 根据权利要求1至8中任一项所述的显示面板,还包括:
    控制器,配置为通过控制第一电压和第二电压之间的电压差来控制在第一电极和第二电极之间产生的电场,从而控制电致伸缩层在所述电场作用下的形变。
  10. 一种显示装置,包括根据权利要求1至9任一项所述的显示面板。
  11. 一种显示面板的控制方法,应用于权利要求1至10任一项所述的显示面板,所述控制方法包括:
    控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变,以对入射至所述电致伸缩层的光线的传播方向进行调节。
  12. 根据权利要求11所述的控制方法,其中,所述第一电极靠近所述显示基板设置,所述第二电极为柔性电极,且所述第一电极包括多个条状子电极,
    所述控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变的步骤进一步包括:
    在第一显示阶段,通过使所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成电压差,来在所述第一电极与所述第二电极之间产生电场,该电场使所述第一电极与所述第二电极之间的电致伸缩层形成多个透镜结构,各所述透镜结构与所述条状子电极一一对应;
    在第二显示阶段,使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压相同,以使所述第一电极与所述第二电极之间的电致伸缩层形成平面结构,所述平面结构与所述显示基板平行。
  13. 根据权利要求11所述的控制方法,其中,所述控制施加于第一电极的第一电压和施加于第二电极的第二电压之间的电压差,来控制在所述第一电极与所述第二电极之间产生的电场,从而控制所述电致伸缩层在所述电场的作用下的形变的步骤进一步包括以下中的至少一者:
    使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第一电压差,从而在第一电极与第二电极之间产生第一电场,第一电场使所述电致伸缩层发生形变,成为凹透镜结构,以使得入射至所述电致伸缩层的光线在出射时发散;
    使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间形成第二电压差,从而在第一电极与第二电极之间产生第二电场,第二电场使所述电致伸缩层发生形变,成为凸透镜结构,以使得入射至所述电致伸缩层的光线在出射时汇聚,其中第一电压差与第二电压差反相;和
    使施加于所述第一电极的第一电压与施加于所述第二电极的第二电压之间没有电压差,从而在第一电极与第二电极之间不产生第二电场,使所述电致伸缩层形成平面结构,所述平面结构与所述显示基板平行。
PCT/CN2020/076189 2019-05-21 2020-02-21 显示面板及其控制方法、显示装置 WO2020233181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910426193.X 2019-05-21
CN201910426193.XA CN110098241B (zh) 2019-05-21 2019-05-21 一种显示面板及其控制方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020233181A1 true WO2020233181A1 (zh) 2020-11-26

Family

ID=67448798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076189 WO2020233181A1 (zh) 2019-05-21 2020-02-21 显示面板及其控制方法、显示装置

Country Status (2)

Country Link
CN (1) CN110098241B (zh)
WO (1) WO2020233181A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098241B (zh) * 2019-05-21 2022-08-30 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN110764252B (zh) * 2019-10-28 2022-02-25 京东方科技集团股份有限公司 一种透明面板及裸眼立体显示装置
CN111092107B (zh) * 2019-12-25 2022-08-05 厦门天马微电子有限公司 一种显示面板及显示装置
CN113078184B (zh) * 2020-01-06 2023-09-26 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN113497094A (zh) * 2020-04-03 2021-10-12 深圳市柔宇科技有限公司 柔性显示面板与柔性显示装置
CN111679464A (zh) * 2020-06-10 2020-09-18 昆山龙腾光电股份有限公司 视角可切换的显示装置
CN111987128B (zh) * 2020-08-26 2022-06-24 武汉天马微电子有限公司 一种显示面板及显示装置
US20230320124A1 (en) * 2020-09-01 2023-10-05 Sharp Kabushiki Kaisha Light-emitting element and display device
CN112967617A (zh) * 2021-02-09 2021-06-15 维沃移动通信有限公司 显示组件和电子设备
CN113380862B (zh) * 2021-05-31 2023-12-22 合肥维信诺科技有限公司 显示面板及其制备方法
CN113703155B (zh) * 2021-09-08 2023-09-26 武汉华星光电技术有限公司 一种显示装置
CN113991002A (zh) * 2021-10-29 2022-01-28 武汉京东方光电科技有限公司 一种显示面板、显示装置
CN114594626B (zh) * 2022-03-17 2023-07-04 北京京东方光电科技有限公司 Tft基板、tft基板制备方法、显示面板及显示装置
CN116560122B (zh) * 2023-07-07 2023-11-21 惠科股份有限公司 显示模组、驱动方法和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172266A (zh) * 1996-07-10 1998-02-04 日本碍子株式会社 显示器
CN102736243A (zh) * 2011-03-31 2012-10-17 三星电子株式会社 微结构透镜单元和二维/三维可切换的自动立体显示装置
CN107357130A (zh) * 2017-09-07 2017-11-17 京东方科技集团股份有限公司 掩膜板、透镜阵列及其制备方法、显示面板
CN110098241A (zh) * 2019-05-21 2019-08-06 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026564A1 (en) * 2000-03-27 2003-02-06 Ngk Insulators, Ltd. Display device and method for producing the same
JP2007057855A (ja) * 2005-08-24 2007-03-08 Sanyo Electric Co Ltd 画像表示モジュール及び画像表示装置
JP5151127B2 (ja) * 2006-11-30 2013-02-27 凸版印刷株式会社 輝度向上視野角制御光学部材
US20090047197A1 (en) * 2007-08-16 2009-02-19 Gm Global Technology Operations, Inc. Active material based bodies for varying surface texture and frictional force levels
JP2009192884A (ja) * 2008-02-15 2009-08-27 Oki Electric Ind Co Ltd 覗き見防止機能付き表示装置
US8773744B2 (en) * 2011-01-28 2014-07-08 Delta Electronics, Inc. Light modulating cell, device and system
US9081190B2 (en) * 2012-04-26 2015-07-14 Qualcomm Mems Technologies, Inc. Voltage controlled microlens sheet
CN103383505A (zh) * 2013-07-12 2013-11-06 京东方科技集团股份有限公司 液晶显示面板和液晶显示装置
CN104536162B (zh) * 2015-01-19 2018-08-21 昆山国显光电有限公司 透明显示控制结构及透明显示装置
CN105607330B (zh) * 2015-12-31 2019-01-29 深圳市万普拉斯科技有限公司 显示设备及其显示模组
CN105607331B (zh) * 2015-12-31 2019-01-29 深圳市万普拉斯科技有限公司 显示设备视场角调节方法与***
CN105446028B (zh) * 2016-01-08 2019-12-10 京东方科技集团股份有限公司 一种液晶透镜板和显示装置
CN107833556B (zh) * 2017-12-01 2023-10-24 京东方科技集团股份有限公司 视角切换结构、显示装置及显示装置的视角切换方法
CN208297887U (zh) * 2018-07-02 2018-12-28 京东方科技集团股份有限公司 一种显示装置
CN109375388B (zh) * 2018-10-31 2022-06-17 京东方科技集团股份有限公司 光线控制结构、显示装置及工作方法
CN109212861B (zh) * 2018-11-16 2022-02-22 京东方科技集团股份有限公司 透镜组件及其控制方法、显示装置
CN109765774B (zh) * 2019-03-22 2022-04-19 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172266A (zh) * 1996-07-10 1998-02-04 日本碍子株式会社 显示器
CN102736243A (zh) * 2011-03-31 2012-10-17 三星电子株式会社 微结构透镜单元和二维/三维可切换的自动立体显示装置
CN107357130A (zh) * 2017-09-07 2017-11-17 京东方科技集团股份有限公司 掩膜板、透镜阵列及其制备方法、显示面板
CN110098241A (zh) * 2019-05-21 2019-08-06 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置

Also Published As

Publication number Publication date
CN110098241A (zh) 2019-08-06
CN110098241B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020233181A1 (zh) 显示面板及其控制方法、显示装置
CN112068361B (zh) 显示装置
JP2022130671A (ja) 半導体装置
KR102490188B1 (ko) 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
US10310338B2 (en) Manufacture method of IPS TFT-LCD array substrate and IPS TFT-LCD array substrate
WO2017152485A1 (zh) 显示面板、压感触摸屏及显示装置
TW562983B (en) Active matrix type liquid crystal display apparatus
US11637134B2 (en) Array substrate, method for manufacturing the same, and display device
US10073308B2 (en) Manufacture method of IPS TFT-LCD array substrate and IPS TFT-LCD array substrate
KR102332519B1 (ko) 유기 발광 표시 패널, 이를 포함하는 유기 발광 표시 장치 및 액정 표시 장치
TW201207530A (en) Liquid crystal display device and method for manufacturing the same
TW201316518A (zh) 半導體裝置
JP2019004185A (ja) トランジスタ
US20200219443A1 (en) Organic light emitting diode display panel
WO2018210025A1 (zh) 一种液晶显示面板及显示装置
CN105652488B (zh) 一种可书写液晶显示装置及其制作方法、驱动方法
CN107092127B (zh) 一种折射率调节结构、彩膜基板、显示面板和显示装置
JP2018013771A (ja) 表示装置、表示モジュール、電子機器、及び表示装置の作製方法
WO2013029554A1 (zh) 盲人显示面板及其制造方法和盲人显示装置
TWI701491B (zh) 顯示裝置
WO2018107736A1 (zh) 显示面板及显示装置
CN105759515B (zh) 液晶显示装置及其驱动方法
US9425421B2 (en) Gap controllable display device
JPWO2019123088A1 (ja) 液晶表示装置、液晶表示装置の駆動方法、および電子機器
JP4748441B2 (ja) 電気泳動表示装置、その製造方法及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808906

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20808906

Country of ref document: EP

Kind code of ref document: A1