WO2020233110A1 - 具有冷启动功能的燃料电池汽车热管理***及其控制方法 - Google Patents

具有冷启动功能的燃料电池汽车热管理***及其控制方法 Download PDF

Info

Publication number
WO2020233110A1
WO2020233110A1 PCT/CN2019/126255 CN2019126255W WO2020233110A1 WO 2020233110 A1 WO2020233110 A1 WO 2020233110A1 CN 2019126255 W CN2019126255 W CN 2019126255W WO 2020233110 A1 WO2020233110 A1 WO 2020233110A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
liquid outlet
solenoid valve
cell stack
heat exchanger
Prior art date
Application number
PCT/CN2019/126255
Other languages
English (en)
French (fr)
Inventor
熊树生
章晓轩
李伟
江仁埔
吴占宽
叶世言
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/607,216 priority Critical patent/US11545677B2/en
Publication of WO2020233110A1 publication Critical patent/WO2020233110A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to the technical field of new energy vehicles, in particular to a fuel cell vehicle thermal management system with a cold start function and a control method thereof.
  • the current use of pure electric vehicles is limited by the energy density of the power battery, and the driving range is limited.
  • electric heating is used to heat the vehicle and in summer to provide cooling for air conditioning, which further limits the driving range of pure electric vehicles.
  • Fuel cell vehicles only need to provide fuel for refilling, which greatly increases the driving range.
  • a proper working range can ensure the safety and cycle life of the power battery; considering the thermal comfort of the human body, it is also necessary to control the temperature of the passenger compartment.
  • the cold start of fuel cell is a major problem that limits the operation of fuel cell vehicles in cold environments.
  • the working characteristics of the fuel cell stack determine that the air entering the stack cannot be lower than 0°C, because the long-term low-temperature air entering the stack will cause the temperature of the monolithic membrane electrode at the stack entrance to blow down, resulting in ice piercing the membrane electrode. Film leakage.
  • the large temperature difference between the inlet and outlet of the monolithic membrane electrode, long-term use will accelerate the degradation of the stack performance and reduce the service life.
  • Starting the fuel cell in an environment below 0°C due to the formation of ice and blockage of the reaction site, reduces the operating performance and life of the fuel cell, thereby causing irreversible damage to the battery components.
  • the utility model patent with publication number CN207398272U and publication date on May 22, 2018 discloses a thermal management system and control pipeline for a hydrogen fuel cell, which is controlled by controlling the on and off of the three-way solenoid valve and the opening of the water pump.
  • the on-off and direction of the waterway in the road and select the radiator and heating device to start and stop according to the temperature to realize the heating, heat dissipation and insulation of the system.
  • Its shortcomings are: the cold start and cold air intake in the low temperature environment of the fuel cell are not realized.
  • the preheating in front of the stack also did not use the waste heat generated during the operation of the fuel cell to heat the passenger compartment and the lithium power battery, causing energy waste.
  • the present invention provides a fuel cell vehicle thermal management system with a cold start function and a control method thereof, thereby solving the cold start of the fuel cell vehicle in a low temperature environment and the preconditioning of cold air before entering the stack. Thermal problem.
  • a fuel cell vehicle thermal management system with a cold start function including a fuel cell stack, an electronic water pump, an electronic thermostat, a cold start heater, a first solenoid valve, a thermal management controller, and an air intake preheating structure.
  • the water pump, electronic thermostat, cold start heater and the first solenoid valve are all electrically connected to the thermal management controller.
  • the electronic thermostat includes a liquid inlet, a first liquid outlet and a second liquid outlet.
  • the thermal structure includes an intake preheating heat exchanger arranged in the air intake duct; the coolant outlet of the fuel cell stack is connected with the liquid inlet of the electronic water pump, and the liquid outlet of the electronic water pump is connected to the inlet of the electronic thermostat.
  • the liquid port is connected with the liquid inlet of the first solenoid valve
  • the first liquid outlet of the electronic thermostat is connected with the liquid inlet of the cold start heater
  • the liquid outlet of the cold start heater is connected with the liquid inlet of the fuel cell stack Connected
  • the liquid outlet of the first solenoid valve is connected with the liquid inlet of the intake air preheating heat exchanger
  • the liquid outlet of the intake air preheating heat exchanger is connected with the liquid inlet of the cold start heater.
  • the air intake preheating structure further includes an intake filter, an intake compressor, a humidifier, a back pressure valve, and a muffler. After the air enters the air intake duct under the driving action of the intake compressor, , Which enters the fuel cell stack after being filtered by the intake filter, heated by the intake preheating heat exchanger and humidified by the humidifier, and then passed through the humidifier and the back pressure valve after the fuel mixture reaction with the fuel in the fuel cell stack is completed. And the muffler exhausts the airway.
  • a waste heat control circuit which includes a second solenoid valve, a lithium power battery heat exchanger, a lithium power battery, a third solenoid valve, a passenger compartment heat exchanger, a fourth solenoid valve, and fuel cell heat dissipation
  • the lithium power battery heat exchanger is set directly opposite to the lithium power battery.
  • the second liquid outlet of the electronic thermostat and the liquid inlet of the second solenoid valve, the liquid inlet of the third solenoid valve and the fourth solenoid valve The liquid inlet is connected, the liquid outlet of the second solenoid valve is connected with the liquid inlet of the lithium power battery heat exchanger, the liquid outlet of the third solenoid valve is connected with the liquid inlet of the passenger compartment heat exchanger, and the fourth solenoid valve The liquid outlet is connected with the liquid inlet of the fuel cell radiator.
  • the liquid outlet of the lithium power battery heat exchanger, the liquid outlet of the passenger compartment heat exchanger and the liquid outlet of the fuel cell radiator are all connected with the cold start heater
  • the second solenoid valve, the lithium power battery heat exchanger, the third solenoid valve, the passenger compartment heat exchanger, the fourth solenoid valve and the fuel cell radiator are all electrically connected to the thermal management controller.
  • the present invention also provides a control method for a fuel cell vehicle thermal management system with a cold start function according to the above-mentioned method, which includes the following steps:
  • T1 the temperature of the coolant outlet of the fuel cell stack as Tout and the minimum start-up temperature of the fuel cell as TQ.
  • the initial temperature of the coolant outlet of the fuel cell stack is set to T1.
  • the thermal management controller detects the start of the coolant outlet of the fuel cell stack. Start temperature T1, if T1 ⁇ TQ, go to step S2; if T1>TQ, go to step S3 directly;
  • step S3 further includes: turning off the cold start heater after starting the fuel cell stack in the cold start mode.
  • step S4 when the fuel cell stack is working normally, the temperature Tout of the coolant outlet of the fuel cell stack is detected in real time, and the specific detection includes the following:
  • the thermal management controller When the thermal management controller detects Tout ⁇ TL, where TL is the lowest temperature threshold of the coolant outlet of the fuel cell stack, it controls the first liquid outlet of the electronic thermostat to open and the second liquid outlet to close, and the coolant only Small loop
  • TH is the highest temperature threshold of the coolant outlet of the fuel cell stack.
  • the fuel cell stack is in a suitable working temperature range and controls the first liquid outlet of the electronic thermostat Both the second liquid outlet and the second liquid outlet are open, and the cooling liquid carries out small circulation and large circulation at the same time;
  • the thermal management controller When the thermal management controller detects Tout ⁇ TH, it controls the first liquid outlet of the electronic thermostat to close and the second liquid outlet to open, so that the coolant only performs a large cycle.
  • the small cycle refers to the state where the first liquid outlet of the electronic thermostat is opened and the second liquid outlet is closed
  • the large cycle refers to the state where the first liquid outlet of the electronic thermostat is closed and the second liquid outlet is closed.
  • the state where the liquid outlet is open; simultaneous small circulation and large circulation means that the first liquid outlet and the second liquid outlet of the sub-thermostat are both open.
  • the thermal management controller when Tout>TL, that is, when the coolant has a large circulation, the thermal management controller also performs waste heat control on the high-temperature coolant flowing from the second outlet of the electronic thermostat, which specifically includes the following :
  • the thermal management controller controls to open the second solenoid valve, the high-temperature coolant in the large circulation enters the lithium power battery heat exchanger, and controls to open the fan of the lithium power battery heat exchanger to provide warmth for the lithium power battery Wind insulation
  • the thermal management controller controls to open the third solenoid valve, the large circulating part of the high temperature coolant enters the passenger compartment heat exchanger, and controls the fan that opens the passenger compartment heat exchanger to provide warm air for the passenger compartment.
  • the thermal management controller controls to open the fourth solenoid valve, and the remaining high-temperature coolant of the large cycle enters the fuel cell radiator, and controls and adjusts the air intake of the fan of the fuel cell radiator After cooling, the cooling liquid flows back into the fuel cell stack to cool the fuel cell stack while ensuring that TL ⁇ Tout ⁇ TH.
  • the present invention overcomes the problem that the fuel cell stack in the prior art cannot be started in a low temperature environment.
  • the cold start heater heats the coolant in the small cycle to provide preheating for the fuel cell stack in the low temperature environment, thereby realizing the fuel cell
  • the startup of the automobile in a low temperature environment avoids irreversible damage to the stack caused by the startup of the fuel cell in a low temperature environment; and uses the waste heat of the fuel cell stack coolant to preheat the low temperature air, reducing the temperature difference between the inlet and outlet of the monolithic membrane electrode and extending the fuel The service life of the battery stack.
  • the present invention also provides the waste heat of the fuel cell stack to the lithium power battery for heat preservation to ensure that the lithium power battery works at an appropriate temperature, and provides the passenger compartment to provide comfortable warm air for the passengers, and the remaining heat is dissipated by the fuel cell radiator.
  • the invention fully considers the energy consumption of the battery and prolongs the driving range of the fuel cell vehicle.
  • the present invention controls the fuel cell stack to work within a suitable temperature range, which not only improves the working efficiency of the battery, but also prolongs the service life of the fuel cell stack.
  • the present invention has a simple structure, does not need to add complicated pipelines and wiring harnesses, can ensure the safety and reliability of the entire fuel cell vehicle system, and has great promotion and application value.
  • Fig. 1 is a schematic structural diagram of a fuel cell vehicle thermal management system with a cold start function according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the fuel cell air intake preheating according to an embodiment of the present invention.
  • Fig. 3 is a control diagram of the fuel cell cold start system according to an embodiment of the present invention.
  • 1 fuel cell stack
  • 2 electronic water pump
  • 3 electronic thermostat
  • 4 cold start heater
  • 5 first solenoid valve
  • 6 intake air preheating heat exchanger
  • 7 second solenoid Valve
  • 8 lithium power battery heat exchanger
  • 9 lithium power battery
  • 10 third solenoid valve
  • 11 crew compartment heat exchanger
  • 12 fourth solenoid valve
  • 13 fuel cell radiator
  • 14 thermo management Controller
  • 15 intake filter
  • 16 intake compressor
  • 17 humidityidifier
  • 18 back pressure valve
  • 19 muffler.
  • a fuel cell vehicle thermal management system with cold start function described in this embodiment includes a fuel cell stack 1, an electronic water pump 2, an electronic thermostat 3, and a cold start heater 4.
  • the first solenoid valve 5, the thermal management controller 14 and the air intake preheating structure; among them, the electronic water pump 2, the electronic thermostat 3, the cold start heater 4 and the first solenoid valve 5 are all electrically connected to the thermal management controller 14.
  • the electronic thermostat 3 includes a liquid inlet, a first liquid outlet and a second liquid outlet
  • the air intake preheating structure includes an air intake duct The intake air preheating heat exchanger 6.
  • the coolant outlet of the fuel cell stack 1 is connected to the liquid inlet of the electronic water pump 2 through a pipeline.
  • the electronic water pump 2 is used to adjust the flow of coolant flowing through the electronic water pump 2.
  • the liquid outlet is connected with the liquid inlet of the electronic thermostat 3 and the liquid inlet of the first solenoid valve 5 through a pipeline; the electronic thermostat 3 is used to adjust the first liquid outlet and the second liquid outlet
  • the first liquid outlet of the electronic thermostat 3 is connected to the liquid inlet of the cold start heater 4 through the pipeline;
  • the liquid outlet of the cold start heater 4 is connected to the liquid inlet of the fuel cell stack 1 through the pipeline
  • the cold start heater 4 is used to heat the coolant during the cold start of the fuel cell stack 1;
  • the liquid outlet of the first solenoid valve 5 is connected to the liquid inlet of the intake preheating heat exchanger 6, so
  • the first solenoid valve 5 is used to adjust the flow of coolant flowing through the intake air preheating heat exchanger 6;
  • the air intake preheating structure further includes an intake filter 15, an intake compressor 16, a humidifier 17, a back pressure valve 18 and a muffler 19, and the intake filter 15 is used for
  • the air inlet compressor 16 is used to drive air into the air channel to increase the concentration of oxygen in the air inlet
  • the humidifier 17 is used to humidify the air entering the air channel.
  • the back pressure The valve 18 is used to adjust the air pressure inside the fuel cell stack 1 at the air outlet
  • the muffler 19 is used to muffle the air discharged from the air duct.
  • the air After the air enters the air intake air passage under the driving action of the intake compressor 16, it is filtered by the intake filter 15, heated by the intake preheating heat exchanger 6, and humidified by the humidifier 17, and then enters the fuel cell stack 1. After the mixing and reaction with the fuel in the fuel cell stack 1 is completed, it passes through the humidifier 17, the back pressure valve 18 and the muffler 19 to discharge the air passage in sequence.
  • the thermal management system for a fuel cell vehicle with a cold start function described in this embodiment further includes a waste heat control circuit including a second solenoid valve 7, a lithium power battery heat exchanger 8, and a lithium power battery 9 ,
  • the third solenoid valve 10, the passenger compartment heat exchanger 11, the fourth solenoid valve 12 and the fuel cell radiator 13, the lithium power battery heat exchanger 8 is arranged facing the lithium power battery 9, the electronic thermostat
  • the second liquid outlet of 3 and the liquid inlet of the second solenoid valve 7, the liquid inlet of the third solenoid valve 10 and the liquid inlet of the fourth solenoid valve 12 are all connected by pipelines, and the outlet of the second solenoid valve 7 The liquid port is connected to the liquid inlet of the lithium power battery heat exchanger 8.
  • the second solenoid valve 7 is used to adjust the flow of the coolant flowing through the lithium power battery heat exchanger 8.
  • the lithium power battery 8 is used for lithium
  • the power battery 9 is insulated; the liquid outlet of the third solenoid valve 10 is connected to the liquid inlet of the passenger compartment heat exchanger 11, and the third solenoid valve 10 is used to adjust the coolant flow through the passenger compartment heat exchanger 11.
  • the passenger compartment heat exchanger 11 is used to heat the passenger compartment; the liquid outlet of the fourth solenoid valve 12 is connected to the liquid inlet of the fuel cell radiator 13, and the fourth solenoid valve 12 is used to regulate the flow through the fuel cell radiator
  • the coolant flow rate of the fuel cell radiator 13 is used to provide heat dissipation to the coolant flowing through the fuel cell radiator 13; the liquid outlet of the lithium power battery heat exchanger 8 and the liquid outlet of the passenger compartment heat exchanger 11
  • the liquid outlet of the fuel cell radiator 13 and the liquid inlet of the cold start heater 4 are connected by pipelines; the second solenoid valve 7, the lithium power battery heat exchanger 8, the third solenoid valve 10, and the passenger compartment
  • the heat exchanger 11, the fourth solenoid valve 12 and the fuel cell radiator 13 are all electrically connected to the thermal management controller 14 and controlled by the thermal management controller 14.
  • This embodiment also provides a control method for a fuel cell vehicle thermal management system with a cold start function according to the foregoing, as shown in FIG. 3, including the following steps:
  • the temperature of the coolant outlet of the fuel cell stack 1 be Tout, and the minimum start-up temperature of the fuel cell is TQ, where the initial temperature of the coolant outlet of the fuel cell stack 1 is set to T1, and the thermal management controller 14 detects the cooling of the fuel cell stack 1
  • T1 the initial temperature of the liquid outlet
  • step S2 is executed; if T1>TQ, step S3 is directly executed.
  • the temperature of the coolant in the fuel cell stack 1 is measured by a temperature sensor installed at the coolant outlet of the fuel cell stack 1.
  • the temperature at the coolant outlet is equivalent to the temperature of the coolant in the fuel cell stack 1.
  • the thermal management controller 14 controls the electronic thermostat 3 to open the first liquid outlet, close the second liquid outlet, and at the same time start the cold start heater 4 to heat the coolant, and then start the electronic water pump 2 to adjust The coolant flow rate. At this time, the coolant only performs a small cycle, and then returns to detect T1.
  • T1>0°C the temperature rise of the fuel cell stack 1 is completed, and then step S3 is performed.
  • the thermal management controller 14 executes a command to detect the ambient temperature TA, where the ambient temperature TA is measured by a temperature sensor set at the air inlet port. When the ambient temperature TA>0°C, the air intake does not need to be preheated. Directly execute the command to start the operation of the fuel cell stack 1.
  • the thermal management controller 14 controls the first solenoid valve 5 to open, and then executes the command to start the operation of the fuel cell stack 1.
  • the fuel cell stack 1 starts the high temperature cooling after the operation
  • the liquid is pumped out by the electronic water pump 2 and enters the intake preheating heat exchanger 6 through the first solenoid valve 5.
  • the air enters the air intake air passage under the driving action of the intake compressor 16, and then passes through the intake filter in turn 15 Filtration, intake air preheating heat exchanger 6 heating and heating (about 3-5°C), intake compressor 16 compression and heating, and humidifier 17 humidifying, then enter the fuel cell stack 1.
  • the cold start heater 4 is turned off to reduce power loss.
  • the temperature Tout of the coolant outlet of the fuel cell stack 1 is detected in real time.
  • the specific detection includes the following:
  • TL is the lowest temperature threshold of the coolant outlet of the fuel cell stack 1, preferably TL is 40°C. At this time, the working temperature of the fuel cell stack 1 is low, and the thermal management The controller 14 controls the first liquid outlet of the electronic thermostat 3 to open and the second liquid outlet to close, so that the cooling liquid only performs a small cycle;
  • TH is the highest temperature threshold of the coolant outlet of the fuel cell stack 1, preferably TH is 70°C.
  • the fuel cell stack 1 is in a suitable operating temperature range, and the thermal management The controller 14 controls the first liquid outlet and the second liquid outlet of the electronic thermostat 3 to be opened, and the cooling liquid performs a small cycle and a large cycle at the same time;
  • the thermal management controller 14 detects Tout ⁇ TH, the working temperature of the fuel cell stack 1 is too high at this time, and the thermal management controller 14 controls the first liquid outlet of the electronic thermostat 3 to close and the second liquid outlet The port is opened, and the coolant only performs a large cycle.
  • the small cycle refers to the state where the first liquid outlet of the electronic thermostat 3 is opened and the second liquid outlet is closed;
  • the large cycle refers to the first liquid outlet of the electronic thermostat 3 The state in which the second liquid outlet is closed and the second liquid outlet is opened;
  • simultaneous small and large cycles refer to a state in which the first liquid outlet and the second liquid outlet of the sub-thermostat 3 are both open.
  • the thermal management controller 14 when Tout>TL, that is, when there is a large circulation of the cooling liquid, that is, when TL ⁇ Tout ⁇ TH or Tout ⁇ TH, the thermal management controller 14 further controls the secondary electronic thermostat 3
  • the high-temperature coolant flowing out of the liquid outlet performs waste heat control, which specifically includes the following:
  • the thermal management controller 14 controls the opening of the second solenoid valve 7, the large circulating part of the high temperature coolant enters the lithium power battery heat exchanger 8, and controls the fan to open the lithium power battery heat exchanger 8
  • the lithium power battery 9 provides warm air insulation and makes full use of the waste heat of the fuel cell stack 1; when the lithium power battery 9 does not need to be heated, the thermal management controller 14 controls to close the second solenoid valve 7 and the fan of the lithium power battery heat exchanger 8.
  • the thermal management controller 14 controls to open the third solenoid valve 10, the large circulating part of the high temperature coolant enters the passenger compartment heat exchanger 11, and controls to turn on the fan of the passenger compartment heat exchanger 11 to provide heating for the passenger compartment
  • the wind makes full use of the waste heat of the fuel cell stack 1; when the passenger compartment does not need to be heated, the thermal management controller 14 controls to close the third solenoid valve 10 and the fan of the passenger compartment heat exchanger 11.
  • the thermal management controller 14 controls the opening of the fourth solenoid valve 12, the remaining high-temperature coolant in the large cycle enters the fuel cell radiator 13, and controls and regulates the air intake of the fan of the fuel cell radiator 13, and the coolant flows back to the fuel cell stack after cooling 1 is for cooling the fuel cell stack while ensuring that TL ⁇ Tout ⁇ TH.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种具有冷启动功能的燃料电池汽车热管理***,包括燃料电池堆(1)、电子水泵(2)、电子节温器(3)、冷启动加热器(4)、第一电磁阀(5)、热管理控制器(14)以及进气预热换热器(6),电子水泵(2)、电子节温器(3)、冷启动加热器(4)和第一电磁阀(5)均与热管理控制器(14)电连接;燃料电池堆(1)的冷却液出口与电子水泵(2)的进液口连接,电子水泵(2)的出液口与电子节温器(3)的进液口和第一电磁阀(5)的进液口连接,电子节温器(3)的第一出液口与冷启动加热器(4)的进液口连接,冷启动加热器(4)的出液口与燃料电池堆(1)的进液口连接,第一电磁阀(5)的出液口与进气预热换热器(6)的进液口连接,进气预热换热器(6)的出液口与冷启动加热器(4)的进液口连接。解决了燃料电池汽车在低温环境下的冷启动以及冷空气入堆前的预热问题。

Description

具有冷启动功能的燃料电池汽车热管理***及其控制方法 技术领域
本发明涉及新能源汽车技术领域,具体涉及一种具有冷启动功能的燃料电池汽车热管理***及其控制方法。
背景技术
世界各国都在积极开发新能源技术,燃料电池汽车作为一种降低石油消耗、高能量转化率、零排放、低噪声的新能源汽车,被认为是解决能源危机和环境恶化的重要途径。国家发展改革委、国家能源局组织编制的《能源技术革命创新行动计划(2016-2030年)》,部署了包含氢能与燃料电池技术创新在内的15项重点任务。
技术问题
当前纯电动汽车使用受限于动力电池的能量密度,续驶里程有限,在冬季为使用电加热为车辆供暖,夏季为空调供电实现制冷,更加限制了纯电动汽车的续驶里程。而燃料电池汽车只需要提供燃料加注,大大增加了续驶里程。在燃料电池汽车中,适宜的工作范围才能保证动力电池的安全性以及循环寿命;考虑人体热舒适性,还需要控制乘员舱的温度。燃料电池的冷启动是限制燃料电池汽车在寒冷环境运行的一大难题。
    燃料电池电堆的工作特性决定电堆的空气入堆不能低于0℃,因为长时间低温空气入堆,会导致电堆入口处的单片膜电极温度吹低,以致结冰穿刺膜电极导致膜串漏。另外,单片膜电极进出口温差大,长时间使用,会加速电堆性能衰减,减少使用寿命。在低于0℃的环境下启动燃料电池,由于冰的形成和反应部位的堵塞,使得燃料电池操作性能和寿命降低,从而对电池组件造成不可逆转的损伤。
公开号为CN207398272U、公开日为2018年05月22日的实用新型专利公开了一种氢燃料电池的热管理***及控制管路,通过控制三通电磁阀的通断及水泵的开启来控制管路中水路的通断与走向,并根据温度选择散热器及加热装置启停对***实现加热、散热与保温,其不足之处是:没有实现燃料电池的低温环境下的冷启动以及冷空气入堆前的预热,也没有利用燃料电池工作中产生的余热来为乘员舱、锂动力电池供暖,造成能源浪费。
技术解决方案
本发明为了克服以上技术的不足,提供了一种具有冷启动功能的燃料电池汽车热管理***及其控制方法,从而解决了燃料电池汽车在低温环境下的冷启动以及冷空气入堆前的预热问题。
本发明克服其技术问题所采用的技术方案是:
一种具有冷启动功能的燃料电池汽车热管理***,包括燃料电池堆、电子水泵、电子节温器、冷启动加热器、第一电磁阀、热管理控制器以及空气进气预热结构,电子水泵、电子节温器、冷启动加热器和第一电磁阀均与热管理控制器电连接,电子节温器包括进液口、第一出液口和第二出液口,空气进气预热结构包括设置在空气进气气道中的进气预热换热器;所述燃料电池堆的冷却液出口与电子水泵的进液口连接,电子水泵的出液口与电子节温器的进液口和第一电磁阀的进液口连接,电子节温器的第一出液口与冷启动加热器的进液口连接,冷启动加热器的出液口与燃料电池堆的进液口连接,第一电磁阀的出液口与进气预热换热器的进液口连接,进气预热换热器的出液口与冷启动加热器的进液口连接。
进一步地,所述空气进气预热结构还包括进气过滤器、进气压缩机、增湿器、背压阀和***,空气在进气压缩机的驱动作用下进入空气进气气道后,依次经过进气过滤器过滤、进气预热换热器加热升温和增湿器加湿后进入燃料电池堆,与燃料电池堆内的燃料混合反应完毕后再依次经过增湿器、背压阀和***排出气道。
进一步地,还包括余热控制回路,所述余热控制回路包括第二电磁阀、锂动力电池换热器、锂动力电池、第三电磁阀、乘员舱换热器、第四电磁阀和燃料电池散热器,锂动力电池换热器正对着锂动力电池设置,电子节温器的第二出液口与第二电磁阀的进液口、第三电磁阀的进液口和第四电磁阀的进液口连接,第二电磁阀的出液口与锂动力电池换热器的进液口连接,第三电磁阀的出液口与乘员舱换热器的进液口连接,第四电磁阀的出液口与燃料电池散热器的进液口连接,锂动力电池换热器的出液口、乘员舱换热器的出液口和燃料电池散热器的出液口均与冷启动加热器的进液口连接,所述第二电磁阀、锂动力电池换热器、第三电磁阀、乘员舱换热器、第四电磁阀和燃料电池散热器均与热管理控制器电连接。
本发明还提供了一种根据上述所述的具有冷启动功能的燃料电池汽车热管理***的控制方法,包括如下步骤:
S1、设燃料电池堆冷却液出口的温度为Tout、燃料电池最低启动温度为TQ,其中燃料电池堆冷却液出口的起始温度设为T1,热管理控制器检测燃料电池堆冷却液出口的起始温度T1,若T1≤TQ,则执行步骤S2;若T1>TQ,则直接执行步骤S3;
S2、进入冷启动模式,控制电子节温器打开第一出液口、关闭第二出液口,同时启动冷启动加热器对冷却液加热,再启动电子水泵调节冷却液流量,然后再返回检测T1,当T1>0℃,完成燃料电池堆的升温,然后执行步骤S3;
S3、执行检测环境温度TA的命令,当环境温度TA>0℃时,空气进气无需预热,直接执行启动燃料电池堆工作的命令;当环境温度TA≤0℃时,控制第一电磁阀打开,再执行启动燃料电池堆工作的命令,这时控制开启空气进气预热结构,燃料电池堆启动工作后的高温冷却液经电子水泵泵出并通过第一电磁阀进入进气预热换热器中,进入空气进气气道中的空气依次通过进气预热换热器升温和进气压缩机压缩升温。
进一步地,所述步骤S3还包括:当通过冷启动模式启动燃料电池堆工作之后,再将冷启动加热器关闭。
进一步地,所述步骤S3之后还包括步骤S4:当燃料电池堆正常工作后,对燃料电池堆冷却液出口的温度Tout实时检测,其具体检测包括如下:
当热管理控制器检测到Tout≤TL时,其中TL为燃料电池堆冷却液出口的最低温度阈值,控制电子节温器的第一出液口打开、第二出液口关闭,冷却液只进行小循环;
当热管理控制器检测到TL<Tout<TH时,其中TH为燃料电池堆冷却液出口的最高温度阈值,这时燃料电池堆处于适宜工作温度区间,控制电子节温器的第一出液口和第二出液口均打开,冷却液同时进行小循环和大循环;
当热管理控制器检测到Tout≥TH时,控制电子节温器的第一出液口关闭、第二出液口打开,冷却液只进行大循环。
进一步地,所述小循环是指电子节温器的第一出液口打开且第二出液口关闭的状态;所述大循环是指电子节温器的第一出液口关闭且第二出液口打开的状态;同时进行小循环和大循环是指子节温器的第一出液口和第二出液口均打开的状态。
进一步地,设所述TL为40℃、TH为70℃。
进一步地,所述步骤S4中,当Tout>TL,即冷却液存在大循环时,热管理控制器还对从电子节温器第二出液口流出的高温冷却液进行余热控制,具体包括如下:
当锂动力电池需要加热时,热管理控制器控制打开第二电磁阀,大循环部分高温冷却液进入锂动力电池换热器,并控制打开锂动力电池换热器的风机为锂动力电池提供暖风保温;
当乘员舱需要加热时,热管理控制器控制打开第三电磁阀,大循环部分高温冷却液进入乘员舱换热器,并控制打开乘员舱换热器的风机为乘员舱提供暖风。
进一步地,当燃料电池堆剩余无法被利用的余热时,热管理控制器控制打开第四电磁阀,大循环剩余的高温冷却液进入燃料电池散热器,并控制调节燃料电池散热器的风机进风量,冷却液经过降温后流回燃料电池堆内为燃料电池堆降温,同时保证TL<Tout<TH。
有益效果
本发明的有益效果是:
1、本发明克服现有技术燃料电池堆不能在低温环境下启动的问题,通过冷启动加热器加热小循环中的冷却液,给低温环境下的燃料电池堆提供了预热,实现了燃料电池汽车在低温环境下的启动,避免了燃料电池低温环境启动对电堆的不可逆损伤;并利用燃料电池堆冷却液的余热对低温空气进行预热,减小单片膜电极进出口温差,延长燃料电池堆的使用寿命。
2、本发明还将燃料电池堆的余热提供给锂动力电池保温以保证锂动力电池工作在适宜温度,提供给乘员舱以给乘员舒服的暖风,剩余热量则由燃料电池散热器散去,本发明充分考虑电池的能量耗损,延长了燃料电池汽车的续驶里程。
3、本发明控制燃料电池堆工作在适宜温度范围内,不仅提高电池的工作效能,还延长了燃料电池堆的使用寿命。
4、本发明结构简单,无需增加复杂管路、线束,可以保证整个燃料电池汽车***的安全性和可靠性,具有极大的推广应用价值。
附图说明
图1为本发明实施例所述具有冷启动功能的燃料电池汽车热管理***的结构示意图。
图2为本发明实施例所述燃料电池空气进气预热的结构示意图。
图3为本发明实施例所述燃料电池冷启动***的控制图。
图中:1—燃料电池堆,2—电子水泵,3—电子节温器,4—冷启动加热器,5—第一电磁阀,6—进气预热换热器,7—第二电磁阀,8—锂动力电池换热器,9—锂动力电池,10—第三电磁阀,11—乘员舱换热器,12—第四电磁阀,13—燃料电池散热器,14—热管理控制器,15—进气过滤器,16—进气压缩机,17—增湿器,18—背压阀,19—***。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为了便于本领域人员更好的理解本发明,下面结合附图和具体实施例对本发明做进一步详细说明,下述仅是示例性的不限定本发明的保护范围。
如图1和2所示,本实施例所述的一种具有冷启动功能的燃料电池汽车热管理***,包括燃料电池堆1、电子水泵2、电子节温器3、冷启动加热器4、第一电磁阀5、热管理控制器14以及空气进气预热结构;其中,电子水泵2、电子节温器3、冷启动加热器4和第一电磁阀5均与热管理控制器14电连接并受热管理控制器14的控制,所述电子节温器3包括进液口、第一出液口和第二出液口,所述空气进气预热结构包括设置在空气进气气道中的进气预热换热器6。
如图1所示,所述燃料电池堆1的冷却液出口通过管路与电子水泵2的进液口连接,所述电子水泵2用于调节流经电子水泵2的冷却液流量,电子水泵2的出液口通过管路与电子节温器3的进液口和第一电磁阀5的进液口连接;所述电子节温器3用于调节第一出液口与第二出液口的流量比例,电子节温器3的第一出液口通过管路与冷启动加热器4的进液口连接;冷启动加热器4的出液口通过管路与燃料电池堆1的进液口连接,所述冷启动加热器4用于燃料电池堆1冷启动时对冷却液进行加热;第一电磁阀5的出液口与进气预热换热器6的进液口连接,所述第一电磁阀5用于调节流经进气预热换热器6的冷却液流量;进气预热换热器6的出液口通过管路与冷启动加热器4的进液口连接,所述进气预热换热器6用于对进入燃料电池堆1之前的空气进行加热升温。
如图2所示,所述空气进气预热结构还包括进气过滤器15、进气压缩机16、增湿器17、背压阀18和***19,所述进气过滤器15用于过滤气道中气体的杂质,所述进气压缩机16用于驱动空气进入气道,增加进气中氧气的浓度,所述增湿器17用于对进入气道中的空气加湿,所述背压阀18在空气出口处用于调节燃料电池堆1内部的空气压力,所述***19用于对排出气道的空气进行消声降噪。空气在进气压缩机16的驱动作用下进入空气进气气道后,依次经过进气过滤器15过滤、进气预热换热器6加热升温和增湿器17加湿后进入燃料电池堆1,与燃料电池堆1内的燃料混合反应完毕后再依次经过增湿器17、背压阀18和***19排出气道。
本实施例所述的一种具有冷启动功能的燃料电池汽车热管理***,还包括余热控制回路,所述余热控制回路包括第二电磁阀7、锂动力电池换热器8、锂动力电池9、第三电磁阀10、乘员舱换热器11、第四电磁阀12和燃料电池散热器13,所述锂动力电池换热器8正对着锂动力电池9设置,所述电子节温器3的第二出液口与第二电磁阀7的进液口、第三电磁阀10的进液口和第四电磁阀12的进液口均通过管路连接,第二电磁阀7的出液口与锂动力电池换热器8的进液口连接,所述第二电磁阀7用于调节流经锂动力电池换热器8的冷却液流量,所述锂动力电池8用于为锂动力电池9保温;第三电磁阀10的出液口与乘员舱换热器11的进液口连接,第三电磁阀10用于调节流经乘员舱换热器11的冷却液流量,所述乘员舱换热器11用于对乘员舱供暖;第四电磁阀12的出液口与燃料电池散热器13的进液口连接,所述第四电磁阀12用于调节流经燃料电池散热器13的冷却液流量,所述燃料电池散热器13用于对流经燃料电池散热器13的冷却液提供散热;锂动力电池换热器8的出液口、乘员舱换热器11的出液口和燃料电池散热器13的出液口均与冷启动加热器4的进液口通过管路连接;所述第二电磁阀7、锂动力电池换热器8、第三电磁阀10、乘员舱换热器11、第四电磁阀12和燃料电池散热器13均与热管理控制器14电连接并受热管理控制器14的控制。
本实施例还提供了一种根据上述所述的具有冷启动功能的燃料电池汽车热管理***的控制方法,如图3所示,包括如下步骤:
S1、设燃料电池堆1冷却液出口的温度为Tout、燃料电池最低启动温度为TQ,其中燃料电池堆1冷却液出口的起始温度设为T1,热管理控制器14检测燃料电池堆1冷却液出口的起始温度T1,若T1≤TQ,本实施例优选TQ=0℃,则执行步骤S2;若T1>TQ,则直接执行步骤S3。在此说明一下,燃料电池堆1冷却液的温度是通过设置在燃料电池堆1冷却液出口处的温度传感器测得,冷却液出口处的温度就等同于燃料电池堆1内冷却液的温度。
S2、进入冷启动模式,热管理控制器14控制电子节温器3打开第一出液口、关闭第二出液口,同时启动冷启动加热器4对冷却液加热,再启动电子水泵2调节冷却液流量,这时冷却液只进行小循环,然后再返回检测T1,当T1>0℃,完成燃料电池堆1的升温,然后执行步骤S3。
S3、热管理控制器14执行检测环境温度TA的命令,其中环境温度TA是通过设置在空气进气气道口的温度传感器测得,当环境温度TA>0℃时,空气进气无需预热,直接执行启动燃料电池堆1工作的命令,这时空气在进气压缩机16的驱动作用下进入空气进气气道后,依次经过进气过滤器15过滤、进气预热换热器6(但这时进气预热换热器6不工作,即空气虽然经过进气预热换热器6但并没有被加热升温)和增湿器17加湿后进入燃料电池堆1;当环境温度TA≤0℃时,热管理控制器14控制第一电磁阀5打开,再执行启动燃料电池堆1工作的命令,这时控制开启空气进气预热结构,燃料电池堆1启动工作后的高温冷却液经电子水泵2泵出并通过第一电磁阀5进入进气预热换热器6中,空气在进气压缩机16的驱动作用下进入空气进气气道后,依次经过进气过滤器15过滤、进气预热换热器6加热升温(大概能升高3-5℃左右)、进气压缩机16压缩升温和增湿器17加湿后进入燃料电池堆1。其中,当通过冷启动模式启动燃料电池堆1工作之后,再将冷启动加热器4关闭,以减少电能损耗。
S4、当燃料电池堆1正常工作后,对燃料电池堆1冷却液出口的温度Tout实时检测,其具体检测包括如下:
当热管理控制器14检测到Tout≤TL时,其中TL为燃料电池堆1冷却液出口的最低温度阈值,优选TL为40℃,这时燃料电池堆1所处的工作温度偏低,热管理控制器14控制电子节温器3的第一出液口打开、第二出液口关闭,冷却液只进行小循环;
当热管理控制器14检测到TL<Tout<TH时,其中TH为燃料电池堆1冷却液出口的最高温度阈值,优选TH为70℃,这时燃料电池堆1处于适宜工作温度区间,热管理控制器14控制电子节温器3的第一出液口和第二出液口均打开,冷却液同时进行小循环和大循环;
当热管理控制器14检测到Tout≥TH时,这时燃料电池堆1所处的工作温度偏高,热管理控制器14控制电子节温器3的第一出液口关闭、第二出液口打开,冷却液只进行大循环。
上述步骤S4中,所述小循环是指电子节温器3的第一出液口打开且第二出液口关闭的状态;所述大循环是指电子节温器3的第一出液口关闭且第二出液口打开的状态;同时进行小循环和大循环是指子节温器3的第一出液口和第二出液口均打开的状态。
进一步地,所述步骤S4中,当Tout>TL,即冷却液存在大循环时,也就是TL<Tout<TH或Tout≥TH时,热管理控制器14还对从电子节温器3第二出液口流出的高温冷却液进行余热控制,具体包括如下:
当锂动力电池9需要加热时,热管理控制器14控制打开第二电磁阀7,大循环部分高温冷却液进入锂动力电池换热器8,并控制打开锂动力电池换热器8的风机为锂动力电池9提供暖风保温,充分利用燃料电池堆1的余热;当锂动力电池9无需加热时,热管理控制器14控制关闭第二电磁阀7和锂动力电池换热器8的风机。
当乘员舱需要加热时,热管理控制器14控制打开第三电磁阀10,大循环部分高温冷却液进入乘员舱换热器11,并控制打开乘员舱换热器11的风机为乘员舱提供暖风充分利用燃料电池堆1的余热;当乘员舱无需加热时,热管理控制器14控制关闭第三电磁阀10和乘员舱换热器11的风机。
进一步地,当燃料电池堆1剩余无法被利用的余热时,这种情况可以是锂动力电池9和/或乘员舱都已充分利用余热,或锂动力电池9和乘员舱都不需要加热时,热管理控制器14控制打开第四电磁阀12,大循环剩余的高温冷却液进入燃料电池散热器13,并控制调节燃料电池散热器13的风机进风量,冷却液经过降温后流回燃料电池堆1内为燃料电池堆降温,同时保证TL<Tout<TH。
以上仅描述了本发明的基本原理和优选实施方式,本领域人员可以根据上述描述做出许多变化和改进,这些变化和改进应该属于本发明的保护范围。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种具有冷启动功能的燃料电池汽车热管理***,其特征在于,包括燃料电池堆(1)、电子水泵(2)、电子节温器(3)、冷启动加热器(4)、第一电磁阀(5)、热管理控制器(14)以及空气进气预热结构,电子水泵(2)、电子节温器(3)、冷启动加热器(4)和第一电磁阀(5)均与热管理控制器(14)电连接,电子节温器(3)包括进液口、第一出液口和第二出液口,空气进气预热结构包括设置在空气进气气道中的进气预热换热器(6);所述燃料电池堆(1)的冷却液出口与电子水泵(2)的进液口连接,电子水泵(2)的出液口与电子节温器(3)的进液口和第一电磁阀(5)的进液口连接,电子节温器(3)的第一出液口与冷启动加热器(4)的进液口连接,冷启动加热器(4)的出液口与燃料电池堆(1)的进液口连接,第一电磁阀(5)的出液口与进气预热换热器(6)的进液口连接,进气预热换热器(6)的出液口与冷启动加热器(4)的进液口连接。
  2. 根据权利要求1所述的具有冷启动功能的燃料电池汽车热管理***,其特征在于,所述空气进气预热结构还包括进气过滤器(15)、进气压缩机(16)、增湿器(17)、背压阀(18)和***(19),空气在进气压缩机(16)的驱动作用下进入空气进气气道后,依次经过进气过滤器(15)过滤、进气预热换热器(6)加热升温和增湿器(17)加湿后进入燃料电池堆(1),与燃料电池堆(1)内的燃料混合反应完毕后再依次经过增湿器(17)、背压阀(18)和***(19)排出气道。
  3. 根据权利要求1或2所述的具有冷启动功能的燃料电池汽车热管理***,其特征在于,还包括余热控制回路,所述余热控制回路包括第二电磁阀(7)、锂动力电池换热器(8)、锂动力电池(9)、第三电磁阀(10)、乘员舱换热器(11)、第四电磁阀(12)和燃料电池散热器(13),锂动力电池换热器(8)正对着锂动力电池(9)设置,电子节温器(3)的第二出液口与第二电磁阀(7)的进液口、第三电磁阀(10)的进液口和第四电磁阀(12)的进液口连接,第二电磁阀(7)的出液口与锂动力电池换热器(8)的进液口连接,第三电磁阀(10)的出液口与乘员舱换热器(11)的进液口连接,第四电磁阀(12)的出液口与燃料电池散热器(13)的进液口连接,锂动力电池换热器(8)的出液口、乘员舱换热器(11)的出液口和燃料电池散热器(13)的出液口均与冷启动加热器(4)的进液口连接,所述第二电磁阀(7)、锂动力电池换热器(8)、第三电磁阀(10)、乘员舱换热器(11)、第四电磁阀(12)和燃料电池散热器(13)均与热管理控制器(14)电连接。
  4. 一种根据权利要求1-3任一项所述的具有冷启动功能的燃料电池汽车热管理***的控制方法,其特征在于,包括如下步骤:
    S1、设燃料电池堆(1)冷却液出口的温度为Tout、燃料电池最低启动温度为TQ,其中燃料电池堆(1)冷却液出口的起始温度设为T1,热管理控制器(14)检测燃料电池堆(1)冷却液出口的起始温度T1,若T1≤TQ,则执行步骤S2;若T1>TQ,则直接执行步骤S3;
    S2、进入冷启动模式,控制电子节温器(3)打开第一出液口、关闭第二出液口,同时启动冷启动加热器(4)对冷却液加热,再启动电子水泵(2)调节冷却液流量,然后再返回检测T1,当T1>0℃,完成燃料电池堆(1)的升温,然后执行步骤S3;
    S3、执行检测环境温度TA的命令,当环境温度TA>0℃时,空气进气无需预热,直接执行启动燃料电池堆(1)工作的命令;当环境温度TA≤0℃时,控制第一电磁阀(5)打开,再执行启动燃料电池堆(1)工作的命令,这时控制开启空气进气预热结构,燃料电池堆(1)启动工作后的高温冷却液经电子水泵(2)泵出并通过第一电磁阀(5)进入进气预热换热器(6)中,进入空气进气气道中的空气依次通过进气预热换热器(6)升温和进气压缩机(16)压缩升温。
  5. 根据权利要求4所述的控制方法,其特征在于,所述步骤S3还包括:当通过冷启动模式启动燃料电池堆(1)工作之后,再将冷启动加热器(4)关闭。
  6. 根据权利要求4所述的控制方法,其特征在于,所述步骤S3之后还包括步骤S4:当燃料电池堆(1)正常工作后,对燃料电池堆(1)冷却液出口的温度Tout实时检测,其具体检测包括如下:
    当热管理控制器(14)检测到Tout≤TL时,其中TL为燃料电池堆(1)冷却液出口的最低温度阈值,控制电子节温器(3)的第一出液口打开、第二出液口关闭,冷却液只进行小循环;
    当热管理控制器(14)检测到TL<Tout<TH时,其中TH为燃料电池堆(1)冷却液出口的最高温度阈值,这时燃料电池堆(1)处于适宜工作温度区间,控制电子节温器(3)的第一出液口和第二出液口均打开,冷却液同时进行小循环和大循环;
    当热管理控制器(14)检测到Tout≥TH时,控制电子节温器(3)的第一出液口关闭、第二出液口打开,冷却液只进行大循环。
  7. 根据权利要求6所述的控制方法,其特征在于,所述小循环是指电子节温器(3)的第一出液口打开且第二出液口关闭的状态;所述大循环是指电子节温器(3)的第一出液口关闭且第二出液口打开的状态;同时进行小循环和大循环是指子节温器(3)的第一出液口和第二出液口均打开的状态。
  8. 根据权利要求6所述的控制方法,其特征在于,设所述TL为40℃、TH为70℃。
  9. 根据权利要求6所述的控制方法,其特征在于,当Tout>TL,即冷却液存在大循环时,热管理控制器(14)还对从电子节温器(3)第二出液口流出的高温冷却液进行余热控制,具体包括如下:
    当锂动力电池(9)需要加热时,热管理控制器(14)控制打开第二电磁阀(7),大循环部分高温冷却液进入锂动力电池换热器(8),并控制打开锂动力电池换热器(8)的风机为锂动力电池(9)提供暖风保温;
    当乘员舱需要加热时,热管理控制器(14)控制打开第三电磁阀(10),大循环部分高温冷却液进入乘员舱换热器(11),并控制打开乘员舱换热器(11)的风机为乘员舱提供暖风。
  10. 根据权利要求9所述的控制方法,其特征在于,当燃料电池堆(1)剩余无法被利用的余热时,热管理控制器(14)控制打开第四电磁阀(12),大循环剩余的高温冷却液进入燃料电池散热器(13),并控制调节燃料电池散热器(13)的风机进风量,冷却液经过降温后流回燃料电池堆(1)内为燃料电池堆降温,同时保证TL<Tout<TH。
PCT/CN2019/126255 2019-05-20 2019-12-18 具有冷启动功能的燃料电池汽车热管理***及其控制方法 WO2020233110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/607,216 US11545677B2 (en) 2019-05-20 2019-12-18 Fuel cell vehicle thermal management system with cold start function and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910418641.1 2019-05-20
CN201910418641.1A CN110165247B (zh) 2019-05-20 2019-05-20 具有冷启动功能的燃料电池汽车热管理***及其控制方法

Publications (1)

Publication Number Publication Date
WO2020233110A1 true WO2020233110A1 (zh) 2020-11-26

Family

ID=67631407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126255 WO2020233110A1 (zh) 2019-05-20 2019-12-18 具有冷启动功能的燃料电池汽车热管理***及其控制方法

Country Status (3)

Country Link
US (1) US11545677B2 (zh)
CN (1) CN110165247B (zh)
WO (1) WO2020233110A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733858A (zh) * 2021-09-27 2021-12-03 佛山仙湖实验室 一种氢燃料电池和动力电池混合动力汽车热管理***
CN114171761A (zh) * 2021-11-26 2022-03-11 中国科学院大连化学物理研究所 一种质子交换膜燃料电池快速低温启动方法
CN114361529A (zh) * 2021-12-14 2022-04-15 国家电投集团氢能科技发展有限公司 燃料电池***、运输设备及燃料电池冷启动运行方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165247B (zh) 2019-05-20 2021-04-20 浙江大学 具有冷启动功能的燃料电池汽车热管理***及其控制方法
CN110890573B (zh) * 2019-11-01 2021-04-13 中车工业研究院有限公司 一种冷启动方法、***、电子设备及存储介质
CN110828866B (zh) * 2019-11-15 2023-01-31 上海电气集团股份有限公司 车载燃料电池的冷却循环***及其控制方法
CN111152688B (zh) * 2019-12-27 2021-04-20 中国第一汽车股份有限公司 一种用于燃料电池汽车热管理***的控制方法
CN111370736A (zh) * 2020-02-18 2020-07-03 武汉海亿新能源科技有限公司 氢燃料电池***冷却回路大循环小循环切换控制方法及装置
CN111463453B (zh) * 2020-04-14 2022-09-27 吉林大学 一种具有相变蓄热及预加热功能的燃料电池热管理***
CN111785992B (zh) * 2020-07-22 2021-05-14 吉林大学 一种燃料电池车辆混合低温冷启动控制方法
CN112151830A (zh) * 2020-09-30 2020-12-29 武汉理工大学 一种燃料电池电堆冷却***
CN112373353B (zh) * 2020-10-27 2023-09-22 浙江大学 一种适用于燃料电池汽车热***的协同管理***
CN114435076B (zh) * 2020-10-30 2024-05-28 北京亿华通科技股份有限公司 一种燃料电池余热利用***的控制方法
CN114447474A (zh) * 2020-10-30 2022-05-06 上海汽车集团股份有限公司 一种动力电池热管理***及其方法
CN112582639A (zh) * 2020-12-20 2021-03-30 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车热管理热交换***及控制方法
CN112582640A (zh) * 2020-12-20 2021-03-30 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车热管理***及其控制方法
CN112526358B (zh) * 2021-02-07 2021-05-14 佛山市格美清洁设备有限公司 应用于扫地车燃料电池环境测试的测试设备及控制方法
CN113745588B (zh) * 2021-07-28 2023-04-18 东风汽车集团股份有限公司 一种燃料电池汽车的冷启动方法及装置
CN114347863B (zh) * 2022-03-15 2022-05-31 北汽福田汽车股份有限公司 车辆冷启动方法、装置、可读存储介质、电子设备及车辆
CN116093370A (zh) * 2023-02-08 2023-05-09 中联重科股份有限公司 用于热管理***的控制方法、热管理***及控制器
CN116936876B (zh) * 2023-09-18 2024-01-05 艾博特瑞能源科技(苏州)有限公司 一种液流电池储能***及其运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037447A1 (en) * 2000-09-27 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell
JP2007294305A (ja) * 2006-04-26 2007-11-08 Nissan Motor Co Ltd 燃料電池の冷却システム
CN108511775A (zh) * 2018-02-23 2018-09-07 北京亿华通科技股份有限公司 氢燃料电池***的冷启动装置
CN109378498A (zh) * 2018-10-23 2019-02-22 格罗夫汽车科技有限公司 一种用于新能源汽车的燃料电池热管理***
CN109532565A (zh) * 2018-11-12 2019-03-29 安徽江淮汽车集团股份有限公司 一种氢燃料电池汽车热管理***及控制方法
CN110165247A (zh) * 2019-05-20 2019-08-23 浙江大学 具有冷启动功能的燃料电池汽车热管理***及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260788A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 燃料電池システムにおける反応ガスの保温および加熱
CN103236555B (zh) * 2012-11-05 2015-01-28 华中科技大学 一种固体氧化物燃料电池***及热电协同控制方法
EP3306718B1 (en) * 2015-05-26 2020-11-25 Kyocera Corporation Power generation device, power generation system, and method for controlling power generation system
US10249890B2 (en) * 2015-06-19 2019-04-02 Daimler Ag Method for cold-start of fuel cell stack
CN106558713B (zh) * 2015-09-18 2019-12-10 北京亿华通科技股份有限公司 一种燃料电池低温启动***及运行方法
US10388971B2 (en) * 2016-03-09 2019-08-20 Ford Global Technologies, Llc Fuel cell stack thermal management
CN108172862A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种具有气体预热功能的燃料电池***
CN106945537B (zh) * 2017-01-23 2020-03-31 清华大学 燃料电池汽车热管理***
CN207398272U (zh) 2017-08-11 2018-05-22 中通客车控股股份有限公司 氢燃料电池的热管理***及控制管路
CN108172865B (zh) * 2017-12-26 2020-08-28 金龙联合汽车工业(苏州)有限公司 一种车用燃料电池热管理***及方法
CN208608304U (zh) * 2018-07-18 2019-03-15 郑州宇通客车股份有限公司 燃料电池辅助***
CN109244505B (zh) * 2018-09-25 2023-08-11 吉林大学 一种车用燃料电池热管理***及其控制方法
CN109473699A (zh) * 2018-11-12 2019-03-15 安徽江淮汽车集团股份有限公司 一种氢燃料电池汽车低温启动***及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037447A1 (en) * 2000-09-27 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell
JP2007294305A (ja) * 2006-04-26 2007-11-08 Nissan Motor Co Ltd 燃料電池の冷却システム
CN108511775A (zh) * 2018-02-23 2018-09-07 北京亿华通科技股份有限公司 氢燃料电池***的冷启动装置
CN109378498A (zh) * 2018-10-23 2019-02-22 格罗夫汽车科技有限公司 一种用于新能源汽车的燃料电池热管理***
CN109532565A (zh) * 2018-11-12 2019-03-29 安徽江淮汽车集团股份有限公司 一种氢燃料电池汽车热管理***及控制方法
CN110165247A (zh) * 2019-05-20 2019-08-23 浙江大学 具有冷启动功能的燃料电池汽车热管理***及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733858A (zh) * 2021-09-27 2021-12-03 佛山仙湖实验室 一种氢燃料电池和动力电池混合动力汽车热管理***
CN114171761A (zh) * 2021-11-26 2022-03-11 中国科学院大连化学物理研究所 一种质子交换膜燃料电池快速低温启动方法
CN114171761B (zh) * 2021-11-26 2023-11-10 中国科学院大连化学物理研究所 一种质子交换膜燃料电池快速低温启动方法
CN114361529A (zh) * 2021-12-14 2022-04-15 国家电投集团氢能科技发展有限公司 燃料电池***、运输设备及燃料电池冷启动运行方法

Also Published As

Publication number Publication date
US20220149396A1 (en) 2022-05-12
CN110165247A (zh) 2019-08-23
US11545677B2 (en) 2023-01-03
CN110165247B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
US11545677B2 (en) Fuel cell vehicle thermal management system with cold start function and control method thereof
CN109291830B (zh) 一种燃料电池汽车热管理***及其控制方法
US7141326B2 (en) Warm-up apparatus for fuel cell
WO2018113750A1 (zh) 一种燃料电池***以及燃料电池汽车
CN109532565A (zh) 一种氢燃料电池汽车热管理***及控制方法
CN108615911B (zh) 一种车用燃料电池水热管理***及其控制方法
CN209786084U (zh) 车用燃料电池***的冷却***
CN113540521B (zh) 一种燃料电池氢气供应装置与加热控制方法
WO2008044446A1 (fr) Systeme de commande de conditionnement d'air
WO2013139104A1 (zh) 燃料电池热管理***、燃料电池***及具有该***的车辆
CN109638314B (zh) 燃料电池空气供应***及空气供应方法
CN113270614B (zh) 一种车用质子交换膜燃料电池空气供应***及工作方法
JP5446065B2 (ja) 燃料電池と空調の協調冷却システム
CN209096524U (zh) 一种燃料电池汽车热管理***
CN114883611B (zh) 一种燃料电池低温启动控制***及方法
JP2001167779A (ja) 車両用燃料電池システム
CN210866371U (zh) 一种燃料电池加热***
JP4984808B2 (ja) 空調制御システム
CN112248748B (zh) 一种燃料电池汽车废空气再利用***及其控制方法
JP4114459B2 (ja) 燃料電池システム
KR20180068159A (ko) 연료전지 시스템
JP4950386B2 (ja) 燃料電池暖機装置
JP2005158282A (ja) 燃料電池システム
JP4328035B2 (ja) 燃料電池暖機装置
CN213692127U (zh) 车辆及其电池动力***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929474

Country of ref document: EP

Kind code of ref document: A1