WO2020232740A1 - 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架 - Google Patents

一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架 Download PDF

Info

Publication number
WO2020232740A1
WO2020232740A1 PCT/CN2019/089389 CN2019089389W WO2020232740A1 WO 2020232740 A1 WO2020232740 A1 WO 2020232740A1 CN 2019089389 W CN2019089389 W CN 2019089389W WO 2020232740 A1 WO2020232740 A1 WO 2020232740A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
suspension
dual
magnetic circuit
degree
Prior art date
Application number
PCT/CN2019/089389
Other languages
English (en)
French (fr)
Inventor
徐磊
朱孝勇
张超
全力
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2017837.2A priority Critical patent/GB2587964B/en
Publication of WO2020232740A1 publication Critical patent/WO2020232740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/31Spring/Damper and/or actuator Units with the spring arranged around the damper, e.g. MacPherson strut
    • B60G2202/312The spring being a wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/50Electric vehicles; Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/60Vehicles using regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/17Magnetic/Electromagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic

Definitions

  • the invention belongs to the field of vehicle suspension structures, and in particular relates to a two-degree-of-freedom electromagnetic energy-feeding suspension based on a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator.
  • Electromagnetic energy-fed active suspension refers to the recovery and storage of the vertical vibration and vertical and horizontal swing kinetic energy generated during the driving process of the vehicle through the electromagnetic energy conversion device, while realizing the stable control and damping of the two degrees of freedom of the body's linear rotation.
  • a new type of active suspension that effectively reduces the energy consumption of the entire vehicle.
  • electromagnetic energy-fed active suspension uses a power source to provide energy to reduce body vibration.
  • electromagnetic energy feed suspensions are mainly of rotary motor type and linear motor type.
  • the rotary motor type is connected to the shaft of the rotary motor through mechanical structures such as hinges, ball screws, rack and pinion, and converts the vibration energy generated by the vertical force and the vertical and horizontal swing moments into electric energy storage through the rotary motor actuator.
  • the Volkswagen Audi A8L adopts a swing arm + rotating motor pneumatic active suspension structure to achieve vertical body stability control and body vibration energy recovery.
  • Literature 1 Human Kun, Zhang Yongchao, Yu Fan, et al. Coordination and optimization of the overall performance of electric active energy-regenerative suspension [J].
  • the hydraulic active suspension system has defects such as slow response, large energy consumption, and complex structure. It uses a ball screw combined with a permanent magnet DC brushless motor structure to feed energy electric suspension. Its biggest feature is that it can guarantee the suspension Based on the damping characteristics, the vibration energy of the suspension system caused by the excitation of uneven roads is converted into electrical energy and recycled.
  • the linear motor type uses a linear motor as an actuator or damper. Literature 2 (Deng Zhaoxiang, Lai Fei. Research on Electromagnetic Linear Actuator for Vehicle Active Suspension[J].
  • the rotating motor type electromagnetic energy-feeding suspension has a simple structure, but requires auxiliary devices such as a transmission mechanism. It is large in size, relatively low in reliability, and high-strength working conditions.
  • the transmission mechanism is required to have high structural strength and stable control of the body. Relatively complex, slow response and low efficiency.
  • the suspension has an obvious effect on vertical force control and adjustment, while the lateral and front-rear rotation torque needs to be realized through the coordinated control of the four suspensions. The control is complicated and the reliability is low. It is limited in the application of large and heavy vehicles such as SUVs and buses. .
  • the purpose of the present invention is to provide a two-degree-of-freedom electromagnetic energy-fed suspension based on a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator, which has two degrees of freedom dynamic active control of vehicle linear rotation and vertical vibration and vertical and horizontal swing kinetic energy Energy recovery can effectively solve the serious energy consumption problem of the suspension system, reduce the energy consumption of the whole vehicle, and improve the efficiency of the vehicle drive system.
  • a linearly rotating permanent magnet motor with linear, rotating and spiral motion is introduced into the electromagnetic energy-feeding suspension to realize the drive and energy-feeding requirements of the electromagnetic energy-feeding suspension.
  • a new linear rotating permanent magnet motor is used as the actuator.
  • a two-degree-of-freedom electromagnetic energy-fed suspension based on a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator including a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator, a damping spring, a suspension shell, and an upper end Cover, lower end cover, body coupling buckle, and wheel coupling buckle; one side of the two-degree-of-freedom electromagnetic energy feeding suspension is a wheel coupling buckle, and the other side is a car body coupling buckle; the suspension shell passes through the lower end cover; The lower end cover and the upper end cover are arranged concentrically side by side, the damping spring is arranged between the upper end cover and the lower end cover through the first rotating bearing, and is sleeved on the suspension shell; the upper end cover is connected with the wheel coupling buckle;
  • the suspension housing is provided with a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator.
  • the input shaft of the dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator is connected to the wheel coupling buckle, and the dual-winding hybrid magnetic circuit
  • the output shaft of the linear rotating permanent magnet motor actuator sequentially passes through the linear rotating bearing, the second rotating bearing, and the upper end cover is connected with the body coupling buckle.
  • the dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator includes a stator and a mover.
  • the mover realizes linear, rotating and helical motions.
  • the stator consists of n stator modules in an axial direction in an alternating manner of positive and negative sides. Arranged structure, each stator module has m stator teeth, and each stator tooth is provided with two sets of concentrated windings;
  • the mover is composed of a toroidal core embedded with a tile-shaped permanent magnet and a toroidal permanent magnet alternately arranged in an axial direction, and the toroidal core and the toroidal permanent magnet are arranged on a non-magnetically conductive shaft .
  • Each of the toroidal cores is embedded with k tile-shaped alternating pole permanent magnets (consequent-pole PM, CPM), that is, tile-shaped permanent magnets.
  • the upper winding and the lower winding in the two sets of concentrated windings, the upper winding and the lower winding; in the same stator module, the upper windings of the upper winding are connected in series in the circumferential direction to form a winding 1, and n windings 1 in the axial direction are then connected to form an armature Winding 1; the lower coils of the lower windings in the same axial direction of the n stator modules in the axial direction are connected in series to form a winding 2, and j windings 2 in the circumferential direction are connected to form an armature winding 2.
  • the tile-shaped permanent magnet (2-2) is magnetized in the radial direction with an axial length of l1
  • k tile-shaped permanent magnets are embedded on each of the toroidal iron cores.
  • the magnetizing directions of the k tile-shaped permanent magnets are the same, and the magnetizing directions are all NN or all.
  • the toroidal core has k convex teeth and k grooves, and the grooves are used to embed the tile-shaped permanent magnet; in the axial direction, the toroidal core is in accordance with the NN of the tile-shaped permanent magnet
  • the direction and the SS direction are alternately arranged in sequence; the annular permanent magnet is embedded between the two annular iron cores at NS intervals.
  • one end of the non-magnetic shaft is the input shaft of the dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator, and the other end of the non-magnetic shaft is the output shaft of the dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator.
  • suspension shell is a cylindrical hollow shell with through holes at both ends of the cylindrical shape.
  • the input shaft and output shaft of the dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator respectively pass through the through holes at both ends.
  • the wheel coupling buckle is connected with the suspension shell, and the vehicle body coupling buckle is connected with the vehicle body.
  • the linear rotating motor actuator is introduced into the active suspension to form a new type of two-degree-of-freedom electromagnetic energy-feeding suspension, which realizes the body stability control and vibration energy recovery of the single suspension in the vertical and two-degree-of-freedom directions;
  • the single suspension has a two-degree-of-freedom body adjustment, which can constitute a vehicle's four-suspension eight-degree-of-freedom body stability control, which is easy to realize the three-dimensional stability control of the vehicle chassis.
  • the suspension fails, only one suspension is needed to realize the stability control of the vehicle body, which is easy to realize the fault-tolerant and stable control of the vehicle suspension.
  • Linear rotating two-degree-of-freedom motor actuator adopts single stator/single mover structure, high integration, compact and firm structure, easy processing and manufacturing; radial and axial permanent magnets are embedded in mover core, mover structure High intensity, suitable for high-speed frequent exercise, fast response speed;
  • Linear rotation two-degree-of-freedom actuator with the structural characteristics of interleaved pole permanent magnet motors and permanent magnet reluctance linear motors, less permanent magnets, obvious salient pole effect, high force density and torque density, and high power density;
  • Linear rotary two-degree-of-freedom actuator adopts modular stator and concentrated winding structure, with large winding space and easy to achieve high back EMF; two independent armature windings, two-degree-of-freedom control is flexible, and decoupling control is easy.
  • Figure 1 is a cross-sectional view of a two-degree-of-freedom energy-feeding suspension structure
  • Figure 2 is a cross-sectional view of the actuator structure of a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor.
  • Figure 3 is an expanded schematic diagram of the mover structure.
  • Figure 4 is a diagram of the stator module.
  • Figure 5 shows the arrangement and polarity distribution of permanent magnets.
  • Figure 6 is a diagram of the magnetic flux path during rotation; (a) is the magnetic circuit structure 1; (b) is the magnetic circuit structure 2;
  • Figure 7 is a diagram of the magnetic flux path in linear motion; (a) is the magnetic circuit structure 1; (b) is the magnetic circuit structure 2;
  • Figure 8 is a diagram of a 1/2 two-degree-of-freedom energy-feeding electromagnetic suspension system.
  • Fig. 9 is a system structure diagram of the present invention applied in a pure electric vehicle system.
  • 1 is a dual-winding hybrid magnetic circuit linear rotation two-degree-of-freedom motor actuator
  • 1-1 is a stator
  • 1-2 is a lower winding
  • 1-3 is an upper winding
  • 2-1 is a ring permanent magnet
  • 2 -2 is a tile-shaped permanent magnet
  • 2-3 is a toroidal iron core
  • 3 is a non-magnetic shaft
  • 4 is a damping spring
  • 5 is a body coupling buckle
  • 6 is a wheel coupling buckle
  • 7 is a linear rotary bearing
  • 8 -1 is the first rotating bearing
  • 8-2 is the second rotating bearing
  • 9-1 is the lower end cover
  • 9-2 is the upper end cover
  • 10 is the suspension shell
  • 11-1 is the suspension battery pack
  • 11-2 is the Two-way inverter
  • 11-3 is a two-degree-of-freedom energy feeding suspension.
  • FIG. 1 it is an embodiment of the present invention, which includes a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator (1), a damping spring (4), a suspension housing (10), and an upper end cover (9). -2), the lower end cover (9-1), the body coupling buckle (5) and the wheel coupling buckle (6); one side of the two-degree-of-freedom electromagnetic energy feeding suspension is the wheel coupling buckle (6), and the other side Is the body coupling buckle (5); the suspension shell (10) passes through the lower end cover (9-1); the lower end cover (9-1) and the upper end cover (9-2) are arranged concentrically side by side, the The damping spring (4) is arranged between the upper end cover (9-2) and the lower end cover (9-1) through the first rotating bearing (8-1), and is sleeved on the suspension housing (10); the upper end The cover (9-2) is connected with the wheel coupling buckle (6); the suspension housing (10) is provided with a dual-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator (1), the dual-winding
  • the double-winding hybrid magnetic circuit linear rotating permanent magnet motor actuator of this embodiment is arranged in the suspension housing, the non-magnetic shaft of the mover is connected to the upper end cover through the linear rotating bearing, and the damping spring passes through the first rotating bearing and The second rotating bearing is arranged between the lower end cover and the lower end cover.
  • the upper coils are sequentially connected in series along the circumferential direction to form a winding 1
  • the mover is composed of a toroidal iron core embedded with a tile-shaped permanent magnet and a toroidal permanent magnet combined in an axial direction.
  • the iron core toroid and the toroidal permanent magnet are arranged in a non- On the magnetic axis.
  • the stator axial tooth pitch ⁇ s 18mm
  • the toroidal cores are arranged alternately in the NN direction and the SS direction of the tile-shaped CPM; the toroidal permanent magnets are embedded between the two toroidal cores at NS intervals, As shown in Figure 5.
  • the magnetic circuit directions of the mover core blocks embedded with two different directions of CPM are opposite in the circumferential direction. Because the stator modules are arranged alternately on the front and back, the coil directions are opposite, and the two permanent magnets in the magnetizing direction The direction of the generated back EMF is the same. When rotating, a continuous back electromotive force is generated in the rotating winding. As shown in Fig. 7, the linear motion magnetic circuit has two types: single ring permanent magnet excitation and tile permanent magnet and ring permanent magnet excitation. When the mover moves linearly, since the linear coils of the same stator module are connected in series, the linear windings in the axial direction generate continuous back electromotive force with the same amplitude. When the mover receives the linear force and the rotational torque at the same time, the back electromotive force is generated in the linear and rotating windings at the same time.
  • the active body adjustment and energy feedback of the suspension with two degrees of freedom can be realized through the electric and power generation motion control of the linear rotating motor actuator.
  • the two-degree-of-freedom electromagnetic energy-feeding suspension of the present invention mainly has two kinds of vehicle body stable energy consumption modes and vibration and swing energy-feeding modes, and the two modes are coordinated and switched according to the vehicle driving settings.
  • the two-degree-of-freedom electromagnetic energy-feeding suspension of the present invention is mainly in the stable energy consumption mode of the car body and the two operating states of vibration and swing energy-feeding modes are coordinated and switched; when operating in suburban conditions, the present invention
  • the two-degree-of-freedom electromagnetic energy-feeding suspension is mainly in a stable energy consumption mode of the body.
  • the two-degree-of-freedom electromagnetic energy-feeding suspension of the present invention is mainly in the energy-feeding mode of vehicle body vibration and swing; when the vehicle is in the comfortable driving mode, the two-degree-of-freedom electromagnetic energy-feeding suspension of the present invention is mainly It is in a two-degree-of-freedom vehicle body stable energy consumption mode; when the vehicle is in a high-efficiency driving mode, the two-degree-of-freedom electromagnetic energy-feeding suspension of the present invention is mainly in a vehicle body vibration and swing energy-feeding mode; when the vehicle is in an automatic driving mode, the The invented two-degree-of-freedom electromagnetic energy-feeding suspension is mainly in the coordinated switching of two operating states of the stable energy consumption mode of the vehicle body and the vibration and swing energy-feeding modes.
  • the structure of the suspension energy-feeding battery and the power battery in parallel is adopted.
  • the structure of a 1/2 two-degree-of-freedom electromagnetic energy-feeding suspension system is shown in Figure 8.
  • the system consists of left and right suspensions, two-way inverters and batteries.
  • the energy-fed active suspension system realizes the drive control and energy recovery and storage of the motor through the power converter.
  • the structural block diagram of the application system of the present invention in a pure electric vehicle as shown in Figure 9, adopts a parallel structure with the main drive system of the electric vehicle, and the power battery and the suspension battery realize energy transmission through a bidirectional DC-DC converter.
  • the vehicle controller detects the real-time status of the power battery pack and the suspension battery pack, and can charge the power battery pack when the voltage level of the suspension battery pack is low. When the suspension battery pack is fully charged, the power battery pack can be charged, thereby realizing the effective use of electric vehicle energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明公开了一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,属于电磁馈能式主动悬架领域。该悬架包括双绕组混合磁路直线旋转永磁电机作动器、减振弹簧、悬架外壳、上端盖、下端盖、车身联结扣和车轮联结扣,电机作动器设置在悬架外壳内,减振弹簧通过旋转轴承设置在所述上、下端盖之间;电机作动器由n个定子模块沿轴向按照正反面交替方式依次排列构成定子,动子由嵌有瓦片状永磁体的圆环铁芯和圆环永磁体沿轴向组合构成。本发明有效解决了悬架***严重的能量消耗问题,提高了车辆驱动***效率。

Description

一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架 技术领域
本发明属于车辆悬架结构领域,尤其涉及一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架。
背景技术
自20世纪90年代以来,为了有效降低悬架减振***的能耗,电磁馈能主动悬架受到国际知名汽车企业和相关领域学者的广泛关注和高度重视。电磁馈能主动悬架,是指通过电磁能量转换装置将车辆行驶过程产生的垂向振动和纵横向摆动动能进行回收存储,在实现车身直线旋转两自由度方向稳定控制与减振的同时,从而有效降低整车能耗的一类新型主动悬架。与被动悬架和半主动悬架将振动能量以热能的形式耗散掉不同,电磁馈能主动悬架在通过动力源提供能量削减车身振动的主动悬架基础上,引入电机作动器,能有效回收垂向振动和纵横向摆动能量,已成为改善汽车动态性能,降低车辆整车能耗。目前,电磁馈能悬架主要旋转电机式和直线电机式。旋转电机式是通过铰链、滚珠丝杆、齿轮齿条等机械结构与旋转电机转轴相连,将垂向力与纵横向摆动力矩产生的振动能量通过旋转电机作动器转化为电能储存。大众奥迪A8L为采用摆臂+旋转电机气动主动悬架结构,实现垂向车身稳定控制和车身振动能量回收。文献1(黄昆,张勇超,喻凡,等.电动式主动馈能悬架综合性能的协调性优化[J].上海交通大学学报,2009,43(2):226-230)针对现在普遍采用的液力式主动悬架***的响应慢、能耗大、结构复杂等缺陷,采用滚珠丝杠结合永磁直流无刷电机结构的馈能式电动悬架,其最大特点是能够在保证悬架减振特性的基础上,将不平路面激励引起的悬架***振动能转化为电能并回收利用。直线电机式是采用直线电机作为作动器或阻尼器。文献2(邓兆祥,来飞.车辆主动悬架用电磁直线作动器的研究[J].机械工程学报,2011,47(14):121-128)采用圆筒型电磁直线电机作为作动器来实现主动悬架力发生器,解决了由于液压或气压结构在本质上存在着泄露、密封、响应慢及结构复杂等诸多问题,很难将车辆的极限性能发挥出来的主动悬架问题。然而,旋转电机式电磁馈能悬架,结构简单,但需要传动机构等辅助装置,体积较大,可靠性相对较低,高强度的工作条件,要求传动机构具有较高结构强度,车身稳定控制相对复杂,响应速度慢,效率较低。该悬架对垂直力控制调整效果明显,而对于侧向和前后旋转力矩需要通过四悬架协调控制实现,控制复杂,可靠性低,在SUV、公交车等车身大和重量重的车型应用受限。
近年来,汽车电动化、智能化的发展趋势对底盘***提出了新的要求和挑战。电动汽车底盘控制***正从传统的纵横二维平面控制转向整合车轮、转向甚至悬架功能的纵向、横向、垂向三维空间全方位立体综合控制。这些均对悬架***提出了更高的要求,使传统悬架***受到挑战。因此,研发更小巧、更稳定、控制能力更强且能够缓解操纵稳定性与平顺性控制之间矛盾的新型主动悬架,突破传统被动悬架的局限,使汽车的悬架特性与道路状况和行驶状态相适应,从而能满足汽车平顺性和操纵稳定性的要求。此外,为实现电动化、智能化底盘以及高效节能悬架***,需要对汽车底盘***三维两自由度(垂向、纵向和横向)的有效动力学控制,提高垂向振动和纵横向摆动动能的回收效率。
发明内容
本发明的目的是提供一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,具有车辆直线旋转两自由度动态主动控制和垂向振动与纵横摆动动能能量回收,能有效解决悬架***严重的能量消耗问题,降低整车能耗,提高车辆驱动***效率。
针对电磁馈能悬架直线旋转两自由度运动的需求,将具有直线、旋转和螺旋运动的直线旋转永磁电机引入电磁馈能悬架,实现电磁馈能悬架的驱动与馈能需求。
采用新型直线旋转永磁电机作为作动器。将“交替极永磁”与“永磁磁阻”电机原理与直线旋转两自由度电机结构相融合,提出一种适合电动汽车电磁馈能悬架电机作动器、响应速度快、功率密度高、效率高的新型双绕组混合磁路直线旋转永磁电机。
本发明的技术方案为:
一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,包括双绕组混合磁路直线旋转永磁电机作动器、减振弹簧、悬架外壳、上端盖、下端盖、车身联结扣和车轮联结扣;所述两自由度电磁馈能悬架的一侧是车轮联结扣,另一侧是车身联结扣;所述悬架外壳穿过下端盖;所述下端盖和上端盖是同心并排设置,所述减振弹簧通过第一旋转轴承设置在上端盖与下端盖之间,并套在悬架外壳上;所述上端盖与车轮联结扣相连;所述悬架外壳内设置有双绕组混合磁路直线旋转永磁电机作动器,所述双绕组混合磁路直线旋转永磁电机作动器的输入轴与车轮联结扣相连,双绕组混合磁路直线旋转永磁电机作动器的输出轴依次穿过直线旋转轴承、第二旋转轴承、上端盖与车身联结扣相连。
进一步,所述双绕组混合磁路直线旋转永磁电机作动器包括定子和动子,动子实现 直线、旋转和螺旋运动,所述定子由n个定子模块沿轴向按照正反面交替方式依次排列构成,每个所述定子模块具有m个定子齿,每个定子齿上设置有两套集中式绕组;
所述动子由嵌有瓦片状永磁体的圆环铁芯和圆环永磁体沿轴向交替排列组合构成,所述圆环铁芯与所述圆环永磁体设置于非导磁轴上。每个所述圆环铁芯上嵌有k个瓦片状交替极永磁体(consequent-pole PM,CPM),也就是瓦片状永磁体。
进一步,两套集中式绕组中,上层绕组和下层绕组;在同一个定子模块中,上层绕组的上层线圈沿圆周方向依次串联连接构成一个绕组1,轴向上n个绕组1再联结成电枢绕组1;沿轴向的n个定子模块的同一轴向方向下层绕组的下层线圈依次串联构成一个绕组2,圆周方向上j个绕组2联结成电枢绕组2。
进一步,所述瓦片状永磁体(2-2)沿径向充磁,轴向长度为l1,所述圆环永磁体沿轴向充磁,轴向宽度为l2,且满足g(l1+l2)=nτ s,其中τ s为轴向定子齿距,g为圆环永磁体个数。
进一步,每个所述圆环铁芯上嵌有k个瓦片状永磁体,在同一个圆环铁芯上,k个瓦片状永磁体充磁方向一致,充磁方向都为N-N或者都为S-S,圆环铁芯具有k个凸齿和k个凹槽,凹槽用来嵌入瓦片状永磁体;在轴向上,所述圆环铁芯按照所述瓦片状永磁体的N-N方向与S-S方向交替依次设置;所述圆环永磁体按N-S间隔嵌在两个所述圆环铁芯之间。
进一步,非导磁轴的一端为双绕组混合磁路直线旋转永磁电机作动器的输入轴,非导磁轴的另一端为双绕组混合磁路直线旋转永磁电机作动器的输出轴。
进一步,悬架外壳为圆柱状空壳,圆柱状的两端开有通孔,双绕组混合磁路直线旋转永磁电机作动器的输入轴和输出轴分别从两端的通孔穿过。
进一步,所述车轮联结扣与悬架外壳相连,车身联结扣与车身相连。
本发明具有以下有益效果:
1.将直线旋转电机作动器引入主动悬架,形成一类新型两自由度电磁馈能悬架,实现了单悬架垂直与垂直面两自由度方向的车身稳定控制和振动能量回收;
2.单悬架具备两自由度车身调整,可构成的车辆四悬架八自由度的车身稳定控制,易于实现车辆底盘三维稳定控制。同时,当悬架故障时,仅需一个悬架即可实现车身稳定控制,易实现车辆悬架故障容错稳定控制。
3.直线旋转两自由度电机作动器,采用单定子/单动子结构,集成度高,结构紧凑坚固,加工制造容易;径向和轴向永磁体均嵌入动子铁芯,动子结构强度高,适合高速频 繁运动,响应速度快;
4.直线旋转两自由度作动器,具有交错极永磁电机与永磁磁阻直线电机的结构特征,永磁体用量少,凸极效应明显,力密度与力矩密度高,功率密度高;
5.直线旋转两自由度作动器,采用模块化定子与集中绕组结构,绕线空间大,易于实现高反电动势;两套独立的电枢绕组,两自由度控制灵活,解耦控制容易。
6.弹簧与直线旋转永磁电机集成设计,悬架***具备Fail-Safe特性,保证了电机故障失效后,仍能正常工作。
附图说明
图1为两自由度馈能悬架结构剖视图
图2为双绕组混合磁路直线旋转永磁电机作动器结构剖视图。
图3为动子结构展开示意图。
图4为定子模块图。
图5为永磁体排布及极性分布图。
图6为旋转运动时的磁通路径图;(a)为磁路结构1;(b)为磁路结构2;
图7为直线运动时的磁通路径图;(a)为磁路结构1;(b)为磁路结构2;
图8为1/2两自由度馈能电磁悬架***图。
图9为本发明的在纯电动汽车***中应用的***结构图。
图中:1为双绕组混合磁路直线旋转两自由度电机作动器,1-1为定子,1-2为下层绕组,1-3为上层绕组,2-1为圆环永磁体,2-2为瓦片状永磁体,2-3为圆环铁芯,3为非导磁轴,4为减振弹簧,5为车身联结扣,6为车轮联结扣,7为直线旋转轴承,8-1为第一旋转轴承,8-2为第二旋转轴承,9-1为下端盖,9-2为上端盖,10为悬架外壳,11-1为悬架电池包,11-2为双向逆变器,11-3为两自由度馈能悬架。
具体实施方式
下面结合附图通过具体实施方式对本发明作进一步阐述。
如图1所示,为本发明的一个实施例,包括双绕组混合磁路直线旋转永磁电机作动器(1)、减振弹簧(4)、悬架外壳(10)、上端盖(9-2)、下端盖(9-1)、车身联结扣(5)和车轮联结扣(6);所述两自由度电磁馈能悬架的一侧是车轮联结扣(6),另一侧是车身联结扣(5);所述悬架外壳(10)穿过下端盖(9-1);所述下端盖(9-1)和上端盖(9-2)是同心并排设置,所述减振弹簧(4)通过第一旋转轴承(8-1)设置在上端盖(9-2)与下端盖(9-1)之间,并套在悬架外壳(10)上;所述上端盖(9-2)与车轮联结扣(6) 相连;所述悬架外壳(10)内设置有双绕组混合磁路直线旋转永磁电机作动器(1),所述双绕组混合磁路直线旋转永磁电机作动器(1)的输入轴与车轮联结扣(6)相连,双绕组混合磁路直线旋转永磁电机作动器(1)的输出轴依次穿过直线旋转轴承(7)、第二旋转轴承(8-2)、上端盖(9-2)与车身联结扣(5)相连。
该实施例所述双绕组混合磁路直线旋转永磁电机作动器设置在悬架外壳内,动子的非导磁轴通过直线旋转轴承与上端盖相连,减震弹簧通过第一旋转轴承和第二旋转轴承设置在下端盖和下端盖之间。
如图2、4所示,所述双绕组混合磁路直线旋转永磁电机作动器的定子由n=6个定子模块沿轴向按照正反面交替方式依次排列构成,每个定子模块具有m=9个齿,每个齿上设置有两套集中式绕组,上层绕组和下层绕组。在一个定子模块中,上层线圈沿圆周方向依次串联连接构成一个绕组1,轴向上n=6个绕组1在联结成旋转运动电枢绕组。沿轴向的n=6个定子模块的同一轴向方向下层线圈依次串联构成一个绕组2,圆周方向上j=9个绕组2联结成直线运动电枢绕组。
如图3所示,所述动子由嵌有瓦片状永磁体的圆环铁芯和圆环永磁体沿轴向组合构成,所述铁芯圆环与所述圆环永磁体设置于非导磁轴上。所述瓦片状永磁体沿径向充磁,轴向长度为l 1=10mm,所述圆环永磁体沿轴向充磁,轴向宽度为l 2=8mm,定子轴向齿距τ s=18mm,圆环永磁体个数为g=6。每个所述圆环铁芯上嵌有k=6个瓦片状永磁体,圆环铁芯凸齿数为6。在轴向上,所述圆环铁芯按照所述瓦片状CPM的N-N方向与S-S方向交替依次设置;所述圆环永磁体按N-S间隔嵌在两个所述圆环铁芯之间,如图5所示。
如图6所示,嵌有两种不同方向CPM的动子铁芯块在圆周方向上的磁路方向相反,由于定子模块按照正反面交替排列,线圈方向相反,两个充磁方向的永磁体产生的反电动势方向一致。当旋转转动时,在旋转绕组中产生连续的反电动势。如图7所示,直线运动磁路有单圆环永磁体励磁和瓦片永磁体与圆环永磁体共同励磁两种。当动子直线运动时,由于同一定子模块直线线圈串联连接,在轴向上的直线绕组产生幅值一致的连续反电动势。当动子受到直线力和旋转力矩同时作用时,在直线和旋转绕组中同时产生反电动势。
通过对直线旋转电机作动器的电动和发电运动控制即可实现悬架两自由度的主动车身调整和能量回馈。本发明的两自由度电磁馈能悬架主要有车身稳定耗能模式和振动与摇摆馈能模式两种,根据车辆行驶设置进行两种模式的协调切换。当在城市工况运行时,本发明的两自由度电磁馈能悬架主要处于车身稳定耗能模式和振动与摇摆馈能模式两种 运行状态协调切换;当在市郊工况运行时,本发明的两自由度电磁馈能悬架主要处于车身稳定的耗能模式。当车辆处于运动驾驶模式时,本发明的两自由度电磁馈能悬架主要处于车身振动与摇摆的馈能模式;当车辆处于舒适驾驶模式时,本发明的两自由度电磁馈能悬架主要处于两自由度车身稳定的耗能模式;当车辆处于高效驾驶模式时,本发明的两自由度电磁馈能悬架主要处于车身振动与摇摆的馈能模式;当车辆处于自动驾驶模式时,本发明的两自由度电磁馈能悬架主要处于车身稳定耗能模式和振动与摇摆馈能模式两种运行状态协调切换。
为提高电动汽车***控制效率,降低能量扰动,采用悬架馈能电池与动力电池并联的结构。1/2两自由度电磁馈能悬架***结构,如图8所示,该***由左右悬架、双向逆变器和电池构成。该馈能式主动悬架***通过功率变换器实现电机的驱动控制与能量回收存储。本发明在纯电动汽车中的应用***结构框图,如图9所示,采用与电动汽车主驱动***并联结构,动力电池与悬架电池通过一个双向DC-DC变换器实现能量的传输。整车控制器通过对动力电池组和悬架电池包的实时状态检测,在悬架电池包电压等级较低时,可以通过动力电池组进行充电。当悬架电池包电量充足时可以给动力电池组进行充电,进而实现电动汽车能量的有效利用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,包括双绕组混合磁路直线旋转永磁电机作动器(1)、减振弹簧(4)、悬架外壳(10)、上端盖(9-2)、下端盖(9-1)、车身联结扣(5)和车轮联结扣(6);所述两自由度电磁馈能悬架的一侧是车轮联结扣(6),另一侧是车身联结扣(5);所述悬架外壳(10)穿过下端盖(9-1);所述下端盖(9-1)和上端盖(9-2)是同心并排设置,所述减振弹簧(4)通过第一旋转轴承(8-1)设置在上端盖(9-2)与下端盖(9-1)之间,并套在悬架外壳(10)上;所述上端盖(9-2)与车轮联结扣(6)相连;所述悬架外壳(10)内设置有双绕组混合磁路直线旋转永磁电机作动器(1),所述双绕组混合磁路直线旋转永磁电机作动器(1)的输入轴与车轮联结扣(6)相连,双绕组混合磁路直线旋转永磁电机作动器(1)的输出轴依次穿过直线旋转轴承(7)、第二旋转轴承(8-2)、上端盖(9-2)与车身联结扣(5)相连。
  2. 根据权利要求1所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,所述双绕组混合磁路直线旋转永磁电机作动器(1)包括定子(1-1)和动子,动子实现直线、旋转和螺旋运动,所述定子(1-1)由n个定子模块沿轴向按照正反面交替方式依次排列构成,每个所述定子模块具有m个定子齿,每个定子齿上设置有两套集中式绕组;
    所述动子由嵌有瓦片状永磁体(2-2)的圆环铁芯(2-3)和圆环永磁体(2-1)沿轴向交替排列组合构成,所述圆环铁芯与所述圆环永磁体(2-1)设置于非导磁轴(3)上。
  3. 根据权利要求1所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,两套集中式绕组中,上层绕组(1-3)和下层绕组(1-2);在同一个定子模块中,上层绕组(1-3)的上层线圈沿圆周方向依次串联连接构成一个绕组1,轴向上n个绕组1再联结成电枢绕组1;沿轴向的n个定子模块的同一轴向方向下层绕组(1-2)的下层线圈依次串联构成一个绕组2,圆周方向上j个绕组2联结成电枢绕组2。
  4. 根据权利要求2所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,所述瓦片状永磁体(2-2)沿径向充磁,轴向长度为l1,所述圆环永磁体(2-1)沿轴向充磁,轴向宽度为l2,且满足g(l1+l2)=nτ s,其中τ s为轴向定子齿距,g为圆环永磁体(2-1)个数。
  5. 根据权利要求2所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由 度电磁馈能悬架,其特征在于,每个所述圆环铁芯(2-3)上嵌有k个瓦片状永磁体(2-2),在同一个圆环铁芯(2-3)上,k个瓦片状永磁体(2-2)充磁方向一致,充磁方向都为N-N或者都为S-S,圆环铁芯具有k个凸齿和k个凹槽,凹槽用来嵌入瓦片状永磁体;在轴向上,所述圆环铁芯(2-3)按照所述瓦片状永磁体(2-2)的N-N方向与S-S方向交替依次设置;所述圆环永磁体(2-1)按N-S间隔嵌在两个所述圆环铁芯(2-3)之间。
  6. 根据权利要求2所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,非导磁轴(3)的一端为双绕组混合磁路直线旋转永磁电机作动器(1)的输入轴,非导磁轴(3)的另一端为双绕组混合磁路直线旋转永磁电机作动器(1)的输出轴。
  7. 根据权利要求6所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,悬架外壳(10)为圆柱状空壳,圆柱状的两端开有通孔,双绕组混合磁路直线旋转永磁电机作动器(1)的输入轴和输出轴分别从两端的通孔穿过。
  8. 根据权利要求1所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,所述车轮联结扣(6)与悬架外壳(10)相连,车身联结扣(5)与车身相连。
  9. 根据权利要求1所述的一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架,其特征在于,通过对双绕组混合磁路直线旋转永磁电机作动器(1)的电动和发电运动控制实现悬架两自由度的主动车身调整和能量回馈;两自由度电磁馈能悬架主要有车身稳定耗能模式和振动与摇摆馈能模式两种,根据车辆行驶设置进行两种模式的协调切换;当在城市工况运行时,两自由度电磁馈能悬架处于车身稳定耗能模式和振动与摇摆馈能模式两种运行状态协调切换;当在市郊工况运行时,两自由度电磁馈能悬架处于车身稳定的耗能模式,当车辆处于运动驾驶模式时,两自由度电磁馈能悬架处于车身振动与摇摆的馈能模式;当车辆处于舒适驾驶模式时,两自由度电磁馈能悬架处于两自由度车身稳定的耗能模式;当车辆处于高效驾驶模式时,两自由度电磁馈能悬架主要处于车身振动与摇摆的馈能模式;当车辆处于自动驾驶模式时,两自由度电磁馈能悬架主要处于车身稳定耗能模式和振动与摇摆馈能模式两种运行状态协调切换。
PCT/CN2019/089389 2019-05-20 2019-05-31 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架 WO2020232740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2017837.2A GB2587964B (en) 2019-05-20 2019-05-31 Two-degree-of-freedom electromagnetic energy regenerative suspension based on linear-rotary permanent magnet actuator and dual-winding hybrid magnetic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910417478.7A CN110182013B (zh) 2019-05-20 2019-05-20 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架
CN201910417478.7 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020232740A1 true WO2020232740A1 (zh) 2020-11-26

Family

ID=67716821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089389 WO2020232740A1 (zh) 2019-05-20 2019-05-31 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架

Country Status (3)

Country Link
CN (1) CN110182013B (zh)
GB (1) GB2587964B (zh)
WO (1) WO2020232740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115059721A (zh) * 2022-06-23 2022-09-16 南京信息工程大学 一种集成自发电功能的汽车减震弹簧***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082551B (zh) * 2020-01-19 2023-04-07 山东大学 定子及模块化结构的旋转直线两自由度永磁电机
CN111605377A (zh) * 2020-06-15 2020-09-01 北京汽车集团越野车有限公司 汽车悬架***及汽车
CN112503134B (zh) * 2020-11-11 2023-08-22 江苏大学 一种集成阻尼器与吸振器的混合电磁馈能减振***
CN112503133B (zh) * 2020-11-11 2023-08-22 江苏大学 一种多功能混合电磁减振***
CN113489282B (zh) * 2021-06-17 2022-09-16 江苏大学 一种转向悬架一体化五相永磁容错作动器及其两相开路容错直接转矩控制方法
CN113833793B (zh) * 2021-09-29 2023-03-31 中国科学院电工研究所 一种电磁减振器
CN116073615B (zh) * 2023-03-09 2024-02-02 山东大学 基于轴向磁通的可旋转和直线运动的电机及其工作方法
CN117656735A (zh) * 2023-03-31 2024-03-08 比亚迪股份有限公司 电磁悬架及车辆
CN117656739A (zh) * 2023-04-28 2024-03-08 比亚迪股份有限公司 悬架***和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418413A (en) * 1992-12-14 1995-05-23 Oriental Motor Co., Ltd. Linear pulse motor
CN102843015A (zh) * 2012-09-06 2012-12-26 东南大学 一种直线旋转两自由度磁悬浮无轴承永磁作动器
CN203082102U (zh) * 2012-12-20 2013-07-24 南京航空航天大学 基于Halbach永磁阵列的电磁式馈能减震器
FR2995561A1 (fr) * 2012-09-18 2014-03-21 Soben Dispositif de suspension a dispositif electromagnetique integre de recuperation d'energie
CN203734487U (zh) * 2014-02-12 2014-07-23 济宁小松电气科技有限公司 汽车电磁悬挂式发电机
CN104852549A (zh) * 2015-05-28 2015-08-19 东南大学 一种采用交错极结构的直线旋转永磁作动器
JP2015177587A (ja) * 2014-03-13 2015-10-05 学校法人大同学園 回転直動同期モータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260645B1 (en) * 1999-04-22 2001-07-17 Daimlerchrysler Corporation Electric vehicle with a movable battery tray mounted between frame rails
CN103917426B (zh) * 2011-11-10 2016-07-20 丰田自动车株式会社 车辆运行状况控制装置
CN103001449B (zh) * 2012-11-28 2015-03-04 浙江工业大学 电磁式振动发电装置
US10644578B2 (en) * 2016-09-13 2020-05-05 Indigo Technologies, Inc. Guided multi-bar linkage electric drive system
CN108638780A (zh) * 2018-04-29 2018-10-12 淮阴工学院 一种基于麦弗逊式结构的电磁直线馈能悬架
CN108880184A (zh) * 2018-08-20 2018-11-23 安徽理工大学 一种新型短动子凸极结构的直线旋转永磁作动器
CN109742874B (zh) * 2018-12-29 2020-09-25 江苏大学 一种直线旋转两自由度磁通切换永磁电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418413A (en) * 1992-12-14 1995-05-23 Oriental Motor Co., Ltd. Linear pulse motor
CN102843015A (zh) * 2012-09-06 2012-12-26 东南大学 一种直线旋转两自由度磁悬浮无轴承永磁作动器
FR2995561A1 (fr) * 2012-09-18 2014-03-21 Soben Dispositif de suspension a dispositif electromagnetique integre de recuperation d'energie
CN203082102U (zh) * 2012-12-20 2013-07-24 南京航空航天大学 基于Halbach永磁阵列的电磁式馈能减震器
CN203734487U (zh) * 2014-02-12 2014-07-23 济宁小松电气科技有限公司 汽车电磁悬挂式发电机
JP2015177587A (ja) * 2014-03-13 2015-10-05 学校法人大同学園 回転直動同期モータ
CN104852549A (zh) * 2015-05-28 2015-08-19 东南大学 一种采用交错极结构的直线旋转永磁作动器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115059721A (zh) * 2022-06-23 2022-09-16 南京信息工程大学 一种集成自发电功能的汽车减震弹簧***

Also Published As

Publication number Publication date
GB2587964B (en) 2022-03-30
GB202017837D0 (en) 2020-12-30
GB2587964A (en) 2021-04-14
CN110182013B (zh) 2021-10-12
CN110182013A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020232740A1 (zh) 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架
CN103640470B (zh) 用于车辆轮毂驱动的双转子电机结构及其动力传递模式
CN105024509A (zh) 四轮驱动电动汽车的双转子轮毂电机及其动力传递方法
CN102303545B (zh) 电动汽车双轮双馈驱动***及驱动方法
CN108206614B (zh) 五自由度双定子磁悬浮开关磁阻电机***
CN106515406A (zh) 同轴多电机驱动***和设置有同轴多电机驱动***的车辆
CN103723027B (zh) 磁齿轮电机传动的无级调速***
CN205017191U (zh) 混合动力车用少极差磁齿轮复合电机
CN203722441U (zh) 一种用于混合动力汽车的双转子磁齿轮电机
CN214380578U (zh) 一种组合电机与一种轮边驱动***
Li et al. The present status and future trends of in-wheel motors for electric vehicles
CN101973203A (zh) 纯自发电无需外加充电环保电动汽车
CN101947937B (zh) 汽车节能装置
TW200831319A (en) Regenerative braking system for restoring renewable energy from electric vehicles
CN102522866A (zh) 一种用于混合动力汽车的电动变速器双转子电机
CN105914975B (zh) 一种双转子励磁组合缓速器
Geng et al. Concept and electromagnetic design of a new axial flux hybrid excitation motor for in-wheel motor driven electric vehicle
CN107947512B (zh) 一种轮毂电机驱动轮
JP2021027615A (ja) モータ制御システム
CN107994745B (zh) 一种具有冗余功能的轮毂电机式电动车
CN107846126B (zh) 电动汽车直驱轮毂电机
CN203119729U (zh) 宽调速双凸极混合励磁电机
CN101860114A (zh) 集成式开关磁阻电机飞轮储能装置
CN105576856A (zh) 电动汽车用外转子双凸极永磁轮毂电动机
CN205097927U (zh) 集成式双离合双转子电机的混合动力汽车动力驱动***

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202017837

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190531

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929375

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11-05-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19929375

Country of ref document: EP

Kind code of ref document: A1